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ABSTRACT

In high-dimensional settings, Bayesian optimization (BO) can be expensive and
infeasible. The random embedding Bayesian optimization algorithm is commonly
used to address high-dimensional BO challenges. However, this method relies on
the effective subspace assumption on the optimization problem’s objective function,
which limits its applicability. In this paper, we introduce Condensing-Expansion
Projection Bayesian optimization (CEPBO), a novel random projection-based
approach for high-dimensional BO that does not reply on the effective subspace
assumption. The approach is both simple to implement and highly practical.
We present two algorithms based on different random projection matrices: the
Gaussian projection matrix and the hashing projection matrix. Experimental results
demonstrate that both algorithms outperform existing random embedding-based
algorithms in most cases, achieving superior performance on high-dimensional BO
problems. The code is available in https://anonymous.4open.science/
r/CEPBO-14429.

1 INTRODUCTION

For many optimization problems, the objective function f lacks a closed-form expression, and
gradient information is often unavailable, leading to what we are generally referred to as black-box
functions Jones et al. (1998); Snoek et al. (2012); Shahriari et al. (2015). Bayesian optimization (BO)
is an efficient method for solving such optimization problems by modeling the unknown objective
function through a probabilistic surrogate model, typically a Gaussian Process. The BO routine is
a sequential search algorithm where each iteration involves estimating the surrogate model from
available data and then maximizing an acquisition function to determine which point should be
evaluated next. As the input space dimension D increases, typically D ≥ 10, BO encounters the
so-called ‘curse of dimensionality’ Bellman (1966). This phenomenon refers to the exponential
increase in difficulty resulting from higher query complexity and the computational cost associated
with calculating the acquisition function.

To address the issue, numerous studies have proposed high-dimensional BO algorithms (Wang et al.,
2016; Chen et al., 2012; Binois et al., 2015; 2020; Nayebi et al., 2019; Letham et al., 2020b) that
typically translate high-dimensional optimizations into low-dimensional ones by various techniques,
and search the new point in the low-dimensional space. However, these approaches can become
inefficient when the maximum over the high-dimensional space cannot be well approximated by the
maximum over the low-dimensional space.

In this paper, we introduce a novel search strategy in high-dimensional BO problems called the
Condense-Expansion Projection (CEP) technique, which is both simple to implement and highly
practical. In each iteration of the sequential search, the CEP technique generates a random projection
matrix A ∈ Rd×D, where d ≪ D, to project the available data from the high-dimensional space to
the low-dimensional embedding space by multiplying them with A. It estimates the surrogate model
and searches for the next point to evaluation in the low-dimensional embedding space. Subsequently,
it projects the searched data point back to the high-dimensional space by multiplying it with A⊤ for
evaluation in the original space.

We utilize two distinct random projection matrices: the Gaussian projection matrix Dasgupta &
Gupta (2002) and the hashing projection matrix Rokhlin & Tygert (2008); Boutsidis & Gittens
(2013), within the CEP technique, resulting in the development of two algorithms, CEP-REMBO
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and CEP-HeSBO. Our experimental results, comprising comprehensive simulation studies and
analysis of four real-world datasets, demonstrate that both algorithms generally outperform existing
random embedding-based algorithms, showcasting the superior performance of the CEP technique
on high-dimensional BO problems.

2 RELATED WORK

There is a substantial body of literature on high-dimensional BO.The most closely related approach
is REMBO Wang et al. (2016) by fitting a Gaussian Process model in a low-dimensional embedding
space obtained through a Gaussian random projection matrix. This approach has been further
investigated by Binois et al. (2015; 2020); Binois (2015); Letham et al. (2020b) under various
conditions. Nayebi et al. (2019) proposed HeSBO that utilizes a hashing projection matrix. However,
these studies are based on the assumption of an effective subspace, where a small number of
parameters have a significant impact on the objective function. Similar to these studies, our approach
evaluates the acquisition function over the embedding space. However, unlike these studies, our
approach select the new point in the original space, implying that our approach does not relies on the
effective space assumption. The second distinguishing aspect of our approach is that it generates a
new random projection matrix in each iteration, thereby increasing the flexibility to accommodate the
possibility that the global optimum may not be located in a single embedding space.

Besides the embedding approach, two other techniques warrant consideration: one based on the
additive form of the objective function, and the other based on the dropout approach. Kandasamy
et al. (2015) tackled the challenges in high-dimensional BO by assuming an additive structure for
the function. Other works along the line include GPs with an additive kernel M. & Krause (2018);
Wang et al. (2017a) or cylindrical kernels Oh et al. (2018). However, this approach is limited by its
reliance on the assumption of the additive form of the objective function. Li et al. (2017) applied the
dropout technique into high-dimensional BO to alleviate reliance on assumptions regarding limited
“active” features or the additive form of the objective function. This method randomly selects subset
of dimensions and optimizes variables only from these chosen dimensions via Bayesian optimization.
However, it necessitates “filling-in" the variables from the left-out dimensions. The proposed “fill-in"
strategy, which involves copying the value of variables from the best function value, may lead to
being trapped in a local optimum, although the strategy is enhanced by mixing random values.

3 METHOD

3.1 BAYESIAN OPTIMIZATION

We consider the optimization problem

x∗ = argmaxx∈X f(x),

where f is a black-box function and X ⊂ RD is some bounded set. BO is a form of sequential
model-based optimization, where we fit a surrogate model, typically a Gaussian Process (GP) model,
for f that is used to identify which parameters x should be evaluated next. The GP surrogate
model is f ∼ GP (m(·), k(·, ·)), with a mean function m(·) and a kernel k(·, ·). Under the GP
prior, the posterior for the value of f(x) at any point in the space is a normal distribution with
closed-form mean and variance. Using that posterior, we construct an acquisition function α(x) that
specifies the utility of evaluating f at x, such as Expected Improvement Jones et al. (1998). We find
xnew = argmaxx∈X α(x), and in the next iteration evaluate f(xnew). However, GPs are known to
predict poorly for large dimension D Wang et al. (2016), which prevents the use of standard BO in
high dimensions.

3.2 CONDENSING-EXPANSION PROJECTION

The framework of Condensing-Expansion Projection (CEP) is delineated through two essential
projection procedures.

• Condensing Projection: transpose points from the original space into a reduced-
dimensional embedding subspace, where the surrogate model is fitted from available data

2
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and the acquisition function is maximized to determine which point should be evaluated
next.

• Expansion Projection: revert these points in the embedding subspace back to the original
space, where the searched point is evaluated.

𝑦 = 𝐴𝑥
𝑥

%𝑥 = 𝐴!𝑦

Condensing Projection

Expansion Projection

Figure 1: An illustration of CEP. The dimension of the original space is D = 3, and the dimension of
the embedding subspace is d = 2. The five points in the orginal space is projected to the embedding
subspace by Condensing Projection, then they are projected back to the original space by Expansion
Projection. The optimal point (red dot) in the original space is still at the (approximately) optimal
position after CEP.

Let us define an embedding subspace Y ⊂ Rd of dimension d. We generate a random projection
matrix A ∈ Rd×D. Various methodologies exist for the construction of such a matrix, including
the Gaussian random matrix, sparse random matrix Dasgupta (2000); Bingham & Mannila (2001),
and the Subsampled Randomized Hadamard Transform TROPP (2011). In this paper, we utilize the
Gaussian random matrix and the Hashing matrix.

Consider a point x ∈ X within the original space X . In the condensing projection, we project x from
the original space X to the embedding subspace Y by multiplying x with the matrix A, resulting in

y = Ax ∈ Y,

thereby reducing the dimension from D in the original space to d in the embedding subspace. In
the expansion projection, we project y back to X by multiplying y with the transposed matrix A⊤,
expressed as as

x̃ = A⊤y = A⊤Ax.

This completes the Condensing-Expansion Projection, which can be outlined as follows: transforming
a point from the original space to the embedding subspace and then restoring it back to the original
space, represented as

x → y → x̃.

We outline an illustration in Figure1.

The CEP offers flexibility in selecting random projection matrix A. In this paper, we focus on two
types: Gaussian random matrices and Hashing random matrices.

Definition 1. (Gaussian Random Matrix) Let A ∈ Rd×D be a random matrix with independent
Gaussian entries. For any 1 ≤ i ≤ d and 1 ≤ j ≤ D, the element aij defined as

aij ∼ N
(
0,

1

d

)
.

Definition 2. (Hashing Random Matrix) Let A ∈ Rd×D be a hashing random matrix. Specifically,
(1) Each column of A has a single non-zero element that is selected at random. (2) This non-zero
element has an equal probability p = 0.5 of being either +1 or −1.

3
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Assume a matrix A satisfying Definition 1 or Definition 2, we have

E
[
A⊤A

]
=ID. (1)

The proof of (1) is provided in the appendix 6.1. (1) represents the isometry in expectation, suggesting
that the process of two projections, on average, preserves both the magnitude and direction of x,
thereby making the gap from x̃ to x in the original space is zero on average.

Besides of the isometry in expectation, we also concern the concentration of x̃ around the original
point x in terms of the function f . We measure the concentration by the difference between x⊤x̃
round x⊤x, which presents how much x̃−x projects onto x. Assume a matrix A satisfying Definition
1, we have

E
[
(x⊤A⊤Ax− x⊤x)2

]
≤ 2

d
∥x∥4. (2)

Assume a matrix A satisfying Definition 2, we have

E
[
(x⊤A⊤Ax− x⊤x)2

]
≤ 1

d

(
∥x∥4 −

D∑
i=1

x4
i

)
. (3)

The proofs of (2) & (3) are provided in the appendix 6.2 & 6.3, respectively. They state that for
the variance of x⊤x̃ with respect to x⊤x diminishes as the dimension d of the embedding subspace
increases. Hence, CEP can maintain the function in the original space well when d is not small.

3.3 THE CEPBO ALGORITHM

We employ Condensing-Expansion Projection in Bayesian Optimization, leading to the development
of the Condensing-Expansion Projection Bayesian Optimization (CEPBO) algorithm. In contrast to
Random Embedding algorithms, sucha as REMBOWang et al. (2016), HeSBONayebi et al. (2019)
and ALEBOLetham et al. (2020b), where a fixed projection matrix is employed, the CEPBO algorithm
dynamically generates a new projection matrix At during each iteration t. Through Condensing
Projection, which condenses available points from the original space to a new embedding subspace
via multiplication with At, CEPBO leverages past information to conduct BO within the embedding
subspace. It then determines which point to evaluate next within this subspace. Afterward, the
selected point in the embedding subspace undergoes Expansion Projection, where it is projected back
to the original space via multiplication with A⊤

t . Subsequently, the objective function is evaluated at
that point. This approach bypasses the stringent assumption associated with effective dimension by
facilitating the projection of a new embedding subspace with each search iteration. This adaptability
acknowledges the possibility that the global optimum may not be confined to a single search.

The detailed procedural flow of the algorithm is outlined in Algorithm1. By using different random
projection matrices at line 4 of the Algorithm1, we derive two algorithms: CEP-REMBO and
CEP-HeSBO. These can be regarded as enhanced versions of REMBO and HeSBO, respectively.

Condense original space into the embedding subspace. The core concept of employing Con-
densing Projection entails the creation of a new subspace Y with each iteration, where BO is
subsequently performed. However, as the historical trajectories remains preserved within the
original space X , the newly formed subspace must be equipped with the requisite informa-
tion to enable effective BO. To tackle this issue, the primary objective of Condensing Projec-
tion is to transfer the historical trajectories from the original space X into an embedding sub-
space Y , thereby furnishing the embedding subspace Y with the necessary information to fa-
cilitate BO. At the current iteration t, let Dt−1 represent the trajectories in the original space
X , given by: Dt−1 = {(x1, f(x1)), (x2, f(x2)), . . . , (xt−1, f(xt−1))}. During this iteration, a
new projection matrix At of dimensions Rd×D is sampled. This matrix serves as projecting
the historical point from the original space X into a newly formed embedding subspace Yt:
Dy

t−1 = {(Atx1, f(x1)), (Atx2, f(x2)), · · · , (Atxt−1, f(xt−1))}.
Optimize over the embedding subspace. The objective f is fitted by a Gaussian Process model
over the embedding subspace Yt:

f(x) ≈ GP (m(Atx), k(Atx,Atx)) .

We demonstrate that the optimization over the embedding subspace closely approximates that over
the original space. Since the mean in the Gaussian process is typically constant, we primarily need to

4
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Algorithm 1: CEPBO Algorithm
Input: Objective f : X → R; Acquisition criterion α; Original dimension D; Embedding

dimension d; Initial points t0; Evaluation trials tN
Output: Best point x ∈ argmax

X
f(x)

1 Uniformly sample t0 points {x1,x2, · · · ,xt0} in the original space;
2 Define D0 = {(x1, f(x1)), (x2, f(x2)), . . . , (xt0 , f(xt0))};
3 while t0 + 1 ≤ t ≤ tN do
4 Construct the projection matrix At ∈ Rd×D according to Gaussian projection matrix in the

Definition 1 or hashing projection matrix in the Definition 2;
5 Project the points in Dt−1 onto the embedding subspace Yt via At, obtaining the set of

points in the embedding subspace
Dy

t−1 = {(Atx1, f(x1)), (Atx2, f(x2)), · · · , (Atxt−1, f(xt−1))};
6 Estimate the hyperparameters θt of the Gaussian Process prior for the given Dy

t−1;
7 Calculate the posterior probability of the Gaussian Process based on Dy

t−1 and the estimated
hyperparameters θt.

8 Compute the maximum of the acquisition criterion α, yt ∈ argmax
y∈Y

α(y | Dy
t−1);

9 Project yt back to the original space via A⊤
t , obtaining xt = A⊤

t yt;
10 Update the dataset Dt = Dt−1 ∪ {(xt, f(xt))}, and t = t+ 1.
11 end

consider the covariance matrix. We show that k(Atx1,Atx2) = (1 +Op(d
−1/2))k(Atx1,Atx2).

Details are provided in the appendix 6.4. Hence, the Gaussian process fit in the embedding space
converges to the fit in the original space. Within the embedding subspace Yt, the dataset Dy

t−1 informs
the estimation of the hyperparameters θt for the Gaussian process, and the posterior probability of the
Gaussian process is computed. The acquisition function α (such as Expected Improvement) identifies
the embedding subspace’s optimal point y∗

t within the embedding subspace, which is represented by
the equation y∗

t = argmax
y∈Yt

α(y | Dy
t−1).

Project back and evaluate in the original space. After searching the optimal point with the
acquisition function, we need to project this point back to the original space X for objective function
evaluation. Subsequently, we add this point to the historical trajectories. To be more specific, we
use the transpose projection matrix At to map the optimal point y∗

t from the embedding subspace
back to X by applying its transpose A⊤

t , expressed as: x̃∗
t = A⊤

t y
∗
t . As demonstrated in Section

3.2, x̃∗
t concentrates to x∗

t . Subsequently, we evaluate the objective function at x̃∗
t within X to obtain

f(x̃∗
t ). This data, denoted as (x̃∗

t , f(x̃
∗
t )), is then added to the historical trajectories Dt−1, resulting

in: Dt = Dt−1 ∪ {(x̃∗
t , f(x̃

∗
t ))}. This completes a full iteration cycle of the CEPBO algorithm.

3.4 ADDRESS THE BOUNDARY ISSUE

Our approach, akin to REMBO, encounters the issue of excessive exploration along the boundary
of X . To ensure the effective tuning of the acquisition function and to facilitate BO, it is crucial
for the embedding subspace Y to have a bounded domain. However, random projections between
the original space of dimension D and the embedding subspace of dimension d can lead to points
exceeding domain boundaries after CEP. These exceedances occur in two scenarios: y = Ax /∈
Y, x̃ = A⊤y /∈ X .

To mitigate the issue, we employ the convex projection of the original space, PX , and that of the
embedding subspace, PY , to rectify boundary transgressions. Specifically, the convex projection
within the original space X is defined as follows:

PX : RD → RD, PX (x̃) = argmin
z∈X

∥z− x̃∥2.

Similarly, the convex projection within the embedding subspace Y is expressed as:

PY : Rd → Rd, PY(y) = argmin
z∈Y

∥z− y∥2.

5
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Convex projection will lead to an issue where multiple distinctive values in the original space are
mapped to identical boundary points within the embedding subspace, i.e., for x1 ̸= x2 such that
f(x1) ̸= f(x2), the equality PY(Ax1) = PY(Ax2) holds. Moreover, the substantial disparity
between the dimensions d and D exacerbates the likelihood of such instances. This issue can
undermine the precision of Gaussian process models and consequently, diminish the efficacy of
optimization. To mitigate this risk, a scaling strategy is implemented within the Condensing Projection
and Expansion Projection phases to diminish the probability of such occurrences. This involves
scaling the projected points Ax using a reduction factor before applying convex projection, as
follows:

y = PY

(
1√
D
Ax

)
.

In a parallel procedure, the optimal points of the acquisition function in the embedding subspace y
undergo an inverse scaling:

x̃ = PX (
√
DA⊤y).

In this context, the scaling factors 1√
D

and
√
D confine the scope of projection within the viable

domain. These factors are verified through empirical experimentation.

4 EXPERIMENTS

We conduct experiments to demonstrate the performance of the proposed method across various
functions and real-world scenarios. In Section 4.1, we evaluate its performance on three benchmark
functions. In Section 4.2, we assess it across four real-world problems. These experimental results
indicate that our algorithms, CEP-REMBO and CEP-HeSBO, achieve superior results.

Because our approach, CEPBO, represents an advancement in the domain of the linear embeddings,
our experiments focus on comparing it with other linear embeddings. We aim to assess the improve-
ment achieved by applying CEP compared to REMBOWang et al. (2016) and HeSBONayebi et al.
(2019), respectively. ALEBO is considered to achieve state-of-the-art performance on this class of
optimization problems with a true linear subspace. Therefore, we chose REMBOWang et al. (2016),
HeSBONayebi et al. (2019), and ALEBOLetham et al. (2020b) as the benchmark algorithms for our
comparisons.

4.1 NUMERICAL RESULTS

We evaluated the performance of the algorithms using the following benchmark functions: (1) the
Holder Table function, (2) the Schwefel function, and (3) the Griewank function. Each function’s
input space was extended to a dimensionality of D = 100. The Holder Table function has an effective
dimension of 2, whereas the Schwefel and Griewank functions are fully defined over the entire
D-dimensional space. The goal is to find the minimum value of these functions. The number of
initialization trials for each algorithm was kept the same as the dimensionality of its embedding
subspace. Each experiment is independently repeated 50 times, with 50 evaluations per experiment.
To assess the performance of the CEPBO algorithm under various embedding space dimensions,
we take d = 2, 5, 10 in the Holder Table function and d = 2, 5, 20 in the Schwefel and Griewank
functions. Since an effective dimension for the Schwefel and Griewank functions is 100, we prioritize
the larger d for assessment. In these experiments, we utilize expected improvement as the acquisition
function.

We report the results in Figure 2. For the Schwefel and Griewank functions, where embedding
dimensions are smaller than the effective dimension of 100, the baseline algorithms nearly ceased
functioning, settling in local optima, which is visually depicted as a flat horizontal line on the
corresponding graphs. Interestingly, even in the instance of the Holder Table function, where the
embedding dimension met or exceeded the effective dimension, a circumstance where the baseline
algorithms typically perform well, the approached algorithms continued to show superior performance
over all baselines. Comparative the performance across a range of embedding dimensions d, the
performance are similar and CEP-REMBO and CEP-HeSBO consistently surpassed all baseline
algorithms. Therefore, the REMBO and HeSBO algorithms experienced substantial improvement
with the integration of the Condense-Expansion Projection mechanism.

6
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Figure 2: The results of the optimization experiments for three functions across various embedding
dimensions. From top to bottom: Holder Table, Schwefel, and Griewank functions.

Impact of higher dimension D.

To assess the performance of the CEPBO algorithm in higher dimensions, we conducted simulations
using the well-known Hartmann function. Specifically, we utilized the Hartmann function with an
original space dimension of D = 6 and set the embedded space dimension to d = 6 as well. To
simulate a high-dimensional environment, we expanded the original space from D = 6 to D = 1000,
but in practice, only the 6-dimensional data is valid.

The results are reported on the left in Figure 3. In this setup, ALEBO, REMBO, and HeSBO were
identified as the best-performing configurations. The experimental results demonstrate that our
proposed algorithm still maintains a certain level of superiority, with the CEP-REMBO algorithm
being the optimal one. Additionally, the results indicate that incorporating the CEP projection
mechanism can significantly improve the performance of both REMBO and HeSBO algorithms.

To realistically simulate the optimization performance of the CEPBO algorithm on an actual 1000-
dimensional function, we still use the settings from Section 4.1. However, we employ an Griewank
function with an effective dimension of 1000, where all 1000 dimensions have a tangible impact on
the function results.

As shown on the middle in Figure 3, other algorithms, apart from CEPBO, quickly fail and become
trapped in local optima. This indicates that even in extremely high dimensions, once the effective
dimension of the space exceeds the embedding dimension, non-CEPBO algorithms struggle to
perform. However, our projection can effectively alleviate this issue, allowing for continuous
searching for optimal solutions even when using a very small embedding space.

Robustness to noisy rewards.

To assess the performance of the CEPBO algorithm in a noisy setting, we conducted simulations
using the well-known Holder Table function. Specifically, the function settings were the same as
those outlined in Section 4.1. Furthermore, during the iterations of the Bayesian algorithm, we
introduced a random normal distribution noise disturbance to the reward function, where ϵ ∼ N(0, 1),
to simulate noise in real-world environments.
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The results are illustrated on the right in Figure 3. The experimental findings indicate that our proposed
algorithm retains a significant advantage, with the CEP-HeSBO algorithm demonstrating optimal
performance. Additionally, the results suggest that incorporating the CEP projection mechanism can
substantially enhance the performance of the REMBO and HeSBO algorithms.
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Figure 3: From left to right: the 1000-D Hartmann function, 1000-D Griewank function, and the
Noisy Holder Table function.

4.2 REAL-WORLD PROBLEMS

In this section, we evaluate the CEPBO algorithm on real-world optimization problems. The test
cases consist of lunar landing task in the realm of reinforcement learning with D = 12 Eriksson et al.
(2019), a robot pushing problem with D = 14 Wang et al. (2017b), a problem in neural architecture
search with D = 36 Letham et al. (2020a), and a rover trajectory planning problem with D = 60
Wang et al. (2018). Algorithmic configurations and acquisition function selections strictly adhere to
the settings outlined in the original papers. For additional details, please refer to the appendix. The
optimization goal is to maximize the reward function, and each experiment is independently repeated
10 times, with 500 evaluations per experiment.
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Figure 4: The results of the optimization experiments for four real-world scenarios. From left to right:
Lunar landing, Robot pushing, NAS, and Rover planning.

Lunar Landing. This experiment entails the task of devising a reinforcement learning strategy
for the lunar lander’s control mechanism, aiming to minimize fuel consumption and proximity to
the landing site while preventing a crash. The original space dimension is D = 12. In the first
column of Figure 4, REMBO, HeSBO, and ALEBO algorithms become trapped in local optima
to different extents. As the dimensionality of the embedding subspace d increases from d = 2
to d = 5, notable performance improvements are observed for most algorithms, except REMBO.
The introduced CEP-REMBO and CEP-HeSBO approaches consistently demonstrate the ability to
enhance and identify novel optimal resolutions.

Robot Pushing. This scenario involves a robotics dual-arm manipulation task where the robot’s
arms are controlled by adjusting 14 modifiable parameters to push two objects while tracking their
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movement trajectories. The original space dimension is D = 14. The second column of Figure 4
demonstrates that the proposed CEP-REMBO and CEP-HeSBO methods significantly outperform
others when d = 2. When increasing to d = 5, all methods exhibit varying degrees of performance
enhancement. This suggests that for optimization issues with moderate to low dimensionalities,
escalating the dimensions of the embedding subspaces can notably bolster the algorithms’ efficacy.
Notwithstanding these improvements, the CEP-REMBO and CEP-HeSBO methods consistently
maintain their leading positions.

Neural Architecture Search (NAS). The objective of this experiment is to identify an optimal
architecture for neural networks, paralleling the methodology utilized by Letham et al. (2020b).
Leveraging data from the NAS-Bench-101 benchmark Ying et al. (2019), we have developed an opti-
mization problem focused on searching for a convolutional neural network architecture characterized
by 36 dimensions. The original space dimension is D = 36. In the third column of Figure 4, at an
embedding subspace dimension of d = 2, the REMBO, HeSBO, and ALEBO algorithms rapidly
converge to less than ideal solutions, hindering the exploration of superior neural network structures.
On the contrary, the CEP-REMBO and CEP-HeSBO methods maintain the capability to persistently
optimize, discovering architectures with improved accuracy. Increasing the subspace dimension to
d = 5 reveals the ALEBO’s enhanced ability to perform on par with CEP-REMBO and CEP-HeSBO
methods; however, CEP-HeSBO consistently exhibits the highest performance across all conditions.

Rover Trajectory Planning. This task involves optimizing a 2D trajectory comprising of 30 pivotal
points that collectively define a navigational path. The original space dimension is D = 60. The
fourth column of Figure 4 indicates that for an embedding subspace dimension of d = 2, the REMBO,
HeSBO, and ALEBO algorithms can not successfully converge to an advantageous reward. In
contrast, the CEP-REMBO and CEPHeSBO algorithms exhibit a capacity to consistently identify
superior solutions. This pattern is similarly observed when the subspace dimension is increased to
d = 5.

5 CONCLUSION

This paper proposes a Bayesian optimization framework utilizing the Condensing-Expansion Projec-
tion technique, free from reliance on the assumption of effective dimension. The primary concept
involves employing projection twice within each iteration: first, projecting to an embedding subspace,
and then projecting back to retain optimization information in the original high-dimensional space.
The approach does not impose additional requirements on the projection matrix used, thereby signifi-
cantly enhancing the applicability of the embedding-based Bayesian optimization algorithms. This
flexibility enables the selection of a suitable projection matrix according to the problem’s charac-
teristics beforehand. Two new Bayesian optimization algorithms based on Condensing-Expansion
Projection are proposed: CEP-REMBO and CEP-HeSBO based on the Gaussian projection matrix
and the hash-enhanced projection matrix, respectively. Empirically, this paper conducts comprehen-
sive experiments to assess the performance of the proposed algorithms across diverse optimization
scenarios. The experimental results demonstrate that the Bayesian optimization algorithms based
on Condensing-Expansion Projection achieved promising performance across these optimization
functions, overcoming the reliance on effective dimension.

For previous embedding-based Bayesian algorithms, achieving an optimal solution requires d to be
greater than or equal to the true effective dimension of the optimization problem. In contrast, our
algorithm does not have this requirement and performs robustly across different choices of d. In
practice, d can be viewed as a hyperparameter to be set. When selecting d, it is crucial to balance
the choice of a value that is not too small with considerations of computational costs. Empirically,
setting d = 5 is typically effective.

Our work has several limitations that can be addressed by future works. For instance, while our
analysis supports the concentration of the transformed point around the original point after employing
CEP, we acknowledge the absence of ϵ-subspace embedding to preserve the variance function of a
Gaussian process. Although reference to Nayebi et al. (2019) suggests a potential avenue for such
analysis, a more thorough examination is warranted. Another constraint of our study is the absence
of an evaluation of CEP-based algorithms for optimization problems with billions of dimensions.
Despite this potential, our approach lacks empirical validation, whereas REMBO has been shown to
effectively address such challenges.

9
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6 APPENDIX

6.1 PROOF OF (1)

Proof. (1) First, we consider the Gaussian Projection. Let A = (l1, · · · , ld)⊤, such that li =
(αi1, · · · , αiD)⊤ is a D × 1 vector where each element is from N

(
0, 1

d

)
distribution. It is easy to

show that, given any vector x ∈ X and any vector g ∈ RD,

E(A⊤A) =

d∑
i=1

E
(
lil

⊤
i

)
= I.

(2) Second, we consider the Hashing Random Projection. For the Hashing Random Matrix, we
rewrite A = SD, where S ∈ Rd×D has each column chosen independently and uniformly from the
r standard basis vectors of Rd and D ∈ RD×D is a diagonal matrix with diagonal entries chosen
independently and uniformly on bi ∈ {±1}.

Let S = (s1, · · · , sD), such that si is a random vector taking the vector ej for equal probability,
where ek is the kth standard unit vector of Rd for k = 1, · · · , d. Then E(si) = 1

d1d and E(s⊤i si) = 1,
which follow that E[(S⊤S)ij ] = E(s⊤i sj) = E(si)⊤E(sj) = 1

d2 for i ̸= j; and E[(S⊤S)ii] =

E(s⊤i si) = 1. Obviously,
E(A⊤A) = I.

6.2 PROOF OF (2)

Proof. Let A = (l1, · · · , ld)⊤, such that li = (αi1, · · · , αiD)⊤ is a D×1 vector where each element
is from N

(
0, 1

d

)
distribution. (1) follows that

E[(x⊤A⊤Ax− x⊤x)2] =E[(x⊤A⊤Ax)2]− (x⊤x)2. (4)

In (4), we have,

E
[
(x⊤A⊤Ax)2

]
= E

[
(

d∑
i=1

x⊤lil
⊤
i x)

2
]

=E
[ d∑

i=1

(x⊤lil
⊤
i x)

2 +
∑
i̸=j

(x⊤lil
⊤
i x)(x

⊤ljl
⊤
j x)

]
(5)

=dE[(x⊤lil
⊤
i x)

2] + (d2 − d)
[
E(x⊤lil

⊤
i x)

]2
.

By (8) in Lemma 1,

E[(x⊤lil
⊤
i x)

2] =
3

d2
∥x∥4.

Then we have
E
[
(x⊤A⊤Ax)2

]
= (x⊤x)2 +

2

d
∥x∥4. (6)

Therefore, we have

E
[
(x⊤A⊤Ax− x⊤x)2

]
=

2

d
∥x∥4.

6.3 PROOF OF (3)

For the Hashing Random Matrix, we rewrite A = SD, where S ∈ Rd×D has each column chosen
independently and uniformly from the r standard basis vectors of Rd and D ∈ RD×D is a diagonal
matrix with diagonal entries chosen independently and uniformly on bi ∈ {±1}.

Let S = (s1, · · · , sD), such that si is a random vector taking the vector ej for equal probability,
where ek is the kth standard unit vector of Rd for k = 1, · · · , d. Then E(si) = 1

d1d and E(s⊤i si) = 1,
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which follow that E[(S⊤S)ij ] = E(s⊤i sj) = E(si)⊤E(sj) = 1
d2 for i ̸= j; and E[(S⊤S)ii] =

E(s⊤i si) = 1.

Applying Lemma 2,

E
[
(x⊤A⊤Ax)2

]
=(x⊤x)2 +

1

d

(
∥x∥4 −

D∑
i=1

x4
i

)
.

Thus, we have,

E
[
(x⊤A⊤Ax− x⊤x)2

]
=

1

d

(
∥x∥4 −

D∑
i=1

x4
i

)
.

6.4 CONSISTENCY OF GAUSSIAN PROCESS FIT IN THE EMBEDDING SPACE

For simplifying, we focus on the squared exponential kernel

KSE(x1,x2) = θ0 exp{−2−1r2(x1,x2)},

where

r2(x1,x2) =

D∑
j=1

(x1j − x2j)
2/θ2j .

Since θj can be absorbed into x1j − x2j , without loss of generality, we simplify to consider

r2(x1,x2) = (x1 − x2)
⊤(x1 − x2).

In the embedding space, the corresponding kernel is given by

r2(x̃1, x̃2) = (x1 − x2)
⊤A⊤A(x1 − x2).

According to (2) and (3), we have

E[(r2(x̃1, x̃2)− r2(x1,x2))
2] ≤ 2

d
[r2(x1,x2)]

2.

By applying the Markov inequality, we obtain that there exists ϵ >
√
2 such that

P
(
|r2(x̃1, x̃2)− r2(x1,x2)| ≤ ϵd−1/2r2(x1,x2)

)
≥1− 2

d

[r2(x1,x2)]
2

[ϵd−1/2r2(x1,x2)]2

=1− 2

ϵ2
.

Therefore, r2(x̃1, x̃2) = (1 +Op(d
−1/2))r2(x1,x2). It follows

κ(Ax1,Ax2) =(1 +Op(d
−1/2))κ(x1,x2).

6.4.1 TWO LEMMAS

Lemma 1. Let A = (l1, · · · , ld)⊤, such that li = (αi1, · · · , αiD)⊤ is an D × 1 vector where each
element is from zero mean distribution with E(α2

ij) = 1 and E(α4
ij) = γ, we have that, for any

matrices M1 ∈ RD×d1 and M2 ∈ RD×d2 , where m1i and m2i are their i-th row, respectively.

E
[
(M⊤

1 lil
⊤
i M2)(M

⊤
2 lil

⊤
i M1)

]
= M⊤

1 [(γ − 3)W2 + 2M2M
⊤
2 + tr(M2M

T
2 )I]M1, (7)

where W2 = diag{m⊤
21m21, · · · ,m⊤

2Dm2D}. Particularly, for Gaussian projection,

E
[
(M⊤

1 lil
⊤
i M2)(M

⊤
2 lil

⊤
i M1)

]
= 2M⊤

1 [M2M
⊤
2 ]M1 + tr(M2M

T
2 )M

T
1 M1, (8)
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Proof. Since M⊤
1 li =

D∑
j=1

αijm1j and M⊤
2 li =

D∑
j=1

αijm2j , where m⊤
1j and m⊤

2j are the jth row

of M1 and M2 respectively, it follows that,

M⊤
1 lil

⊤
i M2 = (

D∑
j=1

αijm1j)(

D∑
j=1

αijm2j)
⊤ =

n∑
j=1

α2
ijm1jm

⊤
2j +

∑
j1 ̸=j2

αij1αij2m1j1m
⊤
2j2 .

M⊤
2 lil

⊤
i M1 = (

D∑
j=1

αijm2j)(

D∑
j=1

αijm1j)
⊤ =

n∑
j=1

α2
ijm2jm

⊤
1j +

∑
j1 ̸=j2

αij1αij2m2j1m
⊤
1j2 ,

Since E(α4
ij) = γ, so, we have that

E

 D∑
j=1

α2
ijm1jm

⊤
2j

 n∑
j=1

α2
ijm2jm

⊤
1j


=γ

D∑
j=1

m1jm
⊤
2jm2jm

⊤
1j +

∑
j1 ̸=j2

m1j1m
⊤
2j1m2j2m

⊤
1j2

 ,

E

∑
j1 ̸=j2

αij1αij2m1j1m
⊤
2j2

∑
j1 ̸=j2

αij1αij2m2j1m
⊤
1j2


=

∑
j1 ̸=j2

m1j1m
⊤
2j2m2j1m

⊤
1j2

+
∑
j1 ̸=j2

m1j1m
T
2j2m2j2m

T
1j1 ,

E

 D∑
j=1

α2
ijm1jm

⊤
2j

∑
j1 ̸=j2

αij1αij2m2j1m
⊤
1j2

 = 0,

E

∑
j1 ̸=j2

αij1αij2m1j1m
⊤
2j2

 D∑
j=1

α2
ijm2jm

⊤
1j

 = 0.

Combing the four equations above, it is easy to verify that,

E
[
(M⊤

1 lil
⊤
i M2)M

⊤
2 lil

⊤
i M1

]
=(γ − 3)

n∑
j=1

m1jm
⊤
2jm2jm

⊤
1j + 2M⊤

1 M2M
⊤
2 M1 + tr(M2M

T
2 )M

T
1 M1.

Lemma 2. For the Hashing random projection

E
[
(M⊤

1 A
⊤AM2)(M

⊤
1 A

⊤AM2)
⊤] = M⊤

1 M2M
⊤
2 M1+

1

d
M⊤

1 M1tr(M2M
⊤
2 )−

1

d
M⊤

1 W2M1.

Proof. For the Hashing Random Matrix projection, we rewrite A = SD, where S ∈ Rd×D has each
column chosen independently and uniformly from the r standard basis vectors of Rd and D ∈ RD×D

is a diagonal matrix with diagonal entries chosen independently and uniformly on bi ∈ {±1}.

Let S = (s1, · · · , sn), such that si is a random vector taking the vector ej for equal probability, where
ej is the jth standard unit vector of Rd for j = 1, · · · , r. Then E(si) = 1

d1d and E(s⊤i si) = 1,
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which follow that E[(S⊤S)ij ] = E(s⊤i sj) = E(si)
⊤E(sj) = 1

d2 for i ̸= j; and E[(S⊤S)ii] =

E(s⊤i si) = 1. We have that,

M⊤
1 A

⊤AM2 = (

D∑
i=1

bisim
⊤
1i)

⊤(

D∑
i=1

bisim
⊤
2i)

=

D∑
i=1

b2im1is
⊤
i sim

⊤
2i +

∑
i̸=j

bibjm1is
⊤
i sjm

⊤
2j (9)

From (9), we have,

E
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] [
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]⊤
=E
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i sjm
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⊤
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⊤
i sim

⊤
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⊤
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⊤
2i)
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∑
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⊤
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⊤
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⊤
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⊤
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⊤
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⊤
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⊤
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⊤
2j)

⊤ =: E1 + E2 + E3.

Specifically, we have that
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E(m1is
⊤
i sim
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⊤
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⊤
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T
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∑
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⊤
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T
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d
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1 M1tr(M2M
⊤
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1

d
M⊤

1 W2M1 (10)

where W2 = diag{m⊤
21m21, · · · ,m⊤

2nm2n}. Thus, we have,

E
[
(M⊤

1 A
⊤AM2)(M

⊤
1 A

⊤AM2)
⊤] = M⊤

1 M2M
⊤
2 M1+

1

d
M⊤

1 M1tr(M2M
⊤
2 )−

1

d
M⊤

1 W2M1.

6.5 DETAILS OF MACHINE INFORMATION

The entire experiment in this paper is programmed in Python and run under the Linux system, using
open-source Bayesian optimization libraries such as AxBakshy et al. (2018) and BoTorchBalandat

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

et al. (2020) for assistance. The experimental equipment is equipped with 2 AMD EPYC 7601
processors, each with 32 cores and a base clock frequency of 2.2GHz. The experiment is conducted
in the form of parallel processing, with different independent repeating experiments distributed to
different CPU cores for acceleration. In addition, the system has a memory capacity of 768GB,
providing sufficient memory space for large-scale data processing and complex algorithm operation.

6.6 MODIFIED SCHWEFEL FUNCTION AND GRIEWANK FUNCTION

To investigate the efficacy of the proposed method within the complex context of high-dimensional
optimization problems that entail numerous local minima, we applied a Schwefel function of D = 100
and a Griewank function of D = 100. In the context of the Schwefel function and Griewank function,
every dimension qualifies as an effective dimension, hence de = D = 100. We increased the
optimization challenge by altering the Schwefel function and Griewank function. This alteration
involved the adjustment of positions within different dimensions where minimum values are attained,
thereby making the optimization of the Schwefel function and Griewank function more challenging.
The modified Schwefel function is:

f(x) =

D∑
i=1

x2
i

4000
−

d∏
i=1

cos

(
xi√
i

)
+ 1, (11)

Where bi ∼ N (0, 1). We maintain the constancy of bi values across different independent repeated
experiments, while allowing bi values to vary across different dimensions.

The modified Griewank function can be expressed as:

f(x) =

D∑
i=1

wi(xi − bi)
2 −

d∏
i=1

cos

(
xi√
i

)
, (12)

where wi ∼ N (0, 1) and bi ∼ N (0, 1). We ensure that the values of wi and bi remain consistent
within various independent repeat experiments, while differing across the several dimensions.

6.7 DETAILS ABOUT REAL-WORLD PROBLEMS

6.7.1 LUNAR LANDING

In this experiment, our goal is to learn a strategy that controls the lunar lander, so that the lunar lander
can minimize fuel consumption and distance from the landing target, while avoiding crashes. This
optimization task was proposed by ErikssonEriksson et al. (2019). The simulation environment of the
control task is implemented through OpenAI gym 1. The state space of the lunar lander includes its
coordinates x and y, linear velocities xv and yv , its angle, its angular velocity, and two boolean values
indicating whether each leg is in contact with the ground. At any moment, the current controller state
can be represented with an 8-dimensional vector. After obtaining the state vector, the controller can
choose one of four possible actions, corresponding to pushing the thrusters left, right, up or none.
In the experiment, it can be considered as a D = 12 optimization problem. Once the parameters
are determined, the corresponding rewards can be obtained through in-game feedback. If the lander
deviates from the landing pad, it loses rewards. If the lander crashes, it gets an extra −100 points.
If it successfully controls the lander to stop, it will get an extra +100 points. Each leg touching the
ground gets +10 points. Igniting the main engine gets −0.3 points per frame. Each frame starts side
engine for −0.03 points. The goal of the control task optimization is to maximize the average final
reward on a fixed set of 50 randomly generated terrains, initial positions, and speed combinations.
We observe that even minor perturbations can have an impact on the simulation.

6.7.2 ROBOT PUSHING

This paper follows the experimental setup of WangWang et al. (2017b), ErikssonEriksson et al. (2019)
et al., and also realizes the simulation of using two robot arms to push two objects in the Box 2DCatto
(2011) physics engine. In the simulation environment, the parameters of the robot arms are simulated
to push two objects, and the trajectories of the object movements are recorded at the same time. A

1www.gymlibrary.dev/environments/box2d/lunar_lander/
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total of 14 parameters are used by the two robot arms, which respectively specify the position and
rotation of the robot hands, the pushing speed, the moving direction, and the pushing time. The lower
bounds for these parameters are

[−5,−5,−10,−10, 2, 0,−5,−5,−10,−10, 2, 0,−5,−5],

and the upper bounds are

[5, 5, 10, 10, 30, 2π, 5, 5, 10, 10, 30, 2π, 5, 5].

The initial positions of the objects are designated as si0 and si1, and the end positions as se0 and se1.
The target positions of the two objects are indicated by sg0 and sg1. The reward is defined as

r = |sg0 − si0|+ |sg1 − si1| − |sg0 − se0| − |sg1 − se1| ,
namely the distance by which the objects move towards their target positions.

6.7.3 NAS

In this paper, referring to the settings of LethamLetham et al. (2020a) and others, by parameterizing
operations and edges respectively, the optimal architecture search problem in NASBench-101 is set as
a continuous high-dimensional Bayesian optimization problem. Specifically, L different operations
are represented by one-hot encoding.

Since two of the seven nodes are fixed as input and output nodes, the remaining five optional nodes,
each node corresponds to three different operations, which generate a total of 15 different parameters.
We optimize these parameters in the continuous [0, 1] space. For each node, we take the "operation"
corresponding to the maximum value of the three operations under that node as the "operation"
adopted by that node, and use one-hot encoding to represent the specific "operation" used under that
node.

Since NASBench-101 uses a 7×7 upper triangular adjacency matrix to represent edges, it generates a
total of 7·6

2 = 21 possible edges. And the five optional vertices can have three different operations, so
under this encoding there are about 221 · 35 ≈ 510M unique models, After removing a large number
of unreasonable input and output models and models with more than 9 edges, the search space still
has about 423k unique models. We convert these 21 possible edges into 21 binary parameters that
are similarly optimized in a continuous [0, 1] space. We rank the continuous values corresponding
to these 21 binary parameters and create an empty adjacency matrix. Then, we add edges to the
adjacency matrix in the percentile order of the 21 binary parameters iteratively, while pruning parts
that are not connected to the input or output nodes, until reaching the limit of 9 edges. Finally, the
combination of adjacency matrix parameters (21) and one-hot encoded "operation" parameters (15)
constitutes a 36-dimensional optimization space. The Bayesian optimization algorithm only needs
to be optimized in a high-dimensional space with D = 36, and the boundary constraint is [−1, 1]36.
Each vector x ∈ R36 can be decoded into a DAG and lookup evaluated in NASBench-101.

6.7.4 ROVER PLANNING

To explore the performance of the proposed method in complex high-dimensional optimization
scenarios, we considered a two-dimensional trajectory optimization task aimed at simulating detector
navigation missions. This optimization task was proposed by WangWang et al. (2018), and the
experimental setup by WangWang et al. (2018) was continued to be used here, with the optimization
objective being to maximize the reward function. The problem instance is described by defining
the starting position s, the target position g, and a cost function on the state space. The goal of the
problem is to optimize the detector’s trajectory on rugged terrain. The trajectory consists of a set of
points on a two-dimensional plane, and there are 30 points in this instance, which can be fitted into a
B-spline curve, so it is considered a high-dimensional optimization problem with D = 60. Through a
set of trajectories, x ∈ [0, 1]60, and a specific cost function, we can calculate the cost of a trajectory
c(x).

The reward for this problem is defined as

f(x) = c(x) + λ
(
|x0,1 − s| 1 + |x59,60 − g|1

)
+ b.

The reward function is non-smooth, discontinuous, and concave. The four input dimensions involved
in the reward function respectively represent the starting and target positions of the trajectory. Set
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λ = −10, b = 5, any collision with objects along the trajectory will incur a penalty of −20, which is
the collision cost of the trajectory. Thus, in addition to penalties in the reward function caused by
collisions, adverse deviations from the trajectory’s starting point will also incur additional penalties.
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