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Discovering and Measuring CDNs Prone to Domain Fronting
Anonymous Author(s)

ABSTRACT
Domain fronting is a network communication technique that in-
volves leveraging (or abusing) content delivery networks (CDNs)
to disguise the final destination of network packets by presenting
them as if they were intended for a different domain than their
actual endpoint. This technique can be used for both benign and
malicious purposes, such as circumventing censorship or hiding
malware-related communications from network security systems.
Since domain fronting has been known for a few years, some popu-
lar CDN providers have implemented traffic filtering approaches
to curb its use at their CDN infrastructure. However, it remains
unclear to what extent domain fronting has been mitigated.

To better understand whether domain fronting can still be effec-
tively used, we propose a systematic approach to discover CDNs
that are still prone to domain fronting. To this end, we leverage
passive and active DNS traffic analysis to pinpoint domain names
served by CDNs and build an automated tool that can be used to
discover CDNs that allow domain fronting in their infrastructure.
Our results reveal that domain fronting is feasible in 22 out of 30
CDNs that we tested, including some major CDN providers like
Akamai and Fastly. This indicates that domain fronting remains
widely available and can be easily abused for malicious purposes.

ACM Reference Format:
Anonymous Author(s). 2023. Discovering and Measuring CDNs Prone to
Domain Fronting. In Proceedings of ACM Conference (Conference’17). ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Domain Fronting, a technique designed to mask the true endpoints
in network communications, works by leveraging (or abusing)
shared hosting infrastructure provided by widespread services such
as Content Delivery Networks (CDNs). By leveraging a CDN’s
shared infrastructure, applications may appear to connect to a do-
main A served by the CDN while, in reality, the traffic is intended
for a different destination domain B that is served by the same CDN
as well. As a result, a network traffic monitor (e.g., an intrusion
detection system or a censorship enforcement device) may believe
a client is connecting to domain A, rather than B. In countries
with stringent internet restrictions, such as China and Iran, domain
fronting has been instrumental for activists and ordinary citizens
alike to bypass digital barriers and access platforms like Signal
and Telegram [5, 9]. However, the same technique has found favor
among malicious actors. For instance, APT29, also known as Cozy
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Bear, reportedly used domain fronting to camouflage their malware
command-and-control (C2) infrastructure, complicating detection
and attribution [7]. Furthermore, according to a recent study [10],
about 3.5% of all Cobalt Strike Beacons were configured to use do-
main fronting to effectively evade detection for a prolonged period
of time.

In order to detect or defend against domain fronting, censors
and network operators are compelled to adopt drastic CDN traffic
blocking measures, often with considerable collateral damage, in
an attempt to mitigate the associated risks [20]. Rather than block-
ing CDN traffic altogether, a more effective approach to counter
this threat lies within the infrastructure of CDNs themselves. To
prevent unintended consequences from nationwide censorship, few
popular CDNs have taken measures to prevent domain fronting on
their platforms. For example, Google and Amazon disabled domain
fronting in their services in 2018 [1], while Microsoft Azure only
disabled it recently in November 2022, following its use by Meek, a
Tor plugin for traffic tunneling [4, 7]. Irrespective of these measures,
there exists evidence that domain fronting may still be leveraged for
both benign [30] and malicious purposes [14]. However, it remains
unclear to what extent domain fronting can still be successfully
used and on what CDN infrastructure.

In this paper, we present a comprehensive measurement of CDNs
that are still prone to domain fronting, offering valuable insights
for CDN customers, researchers, and security administrators. To
this end, we develop an automated system capable of measuring
the potential for domain fronting in a variety of real-world CDNs.
Previous work [18] by Fifield et al. exposed and tested domain
fronting on a limited number of popular web services and major
CDNs, using mostly manual effort [18]. However, the proposed
approach is costly, does not scale, and is insufficient to perform
a comprehensive test of CDN infrastructure to determine what
parts of the infrastructure is prone to domain fronting. Unlike [18],
our proposed measurement system leverages readily available DNS
data to discover information on domains linked with CDNs and
automatically perform domain fronting testing at a large scale without
the need for registering any new domain names or hosting any new
services behind each CDN, thus largely reducing associated manual
efforts and monetary cost.

Using our proposed measurement system, we first collect domain
names served by 38 different CDNs. We found that, contrary to the
belief that popular domains are associated only with popular CDNs
(e.g., Akamai, Cloudflare, etc.), popular domains within the top 10k
ranking according to the ranking list, Tranco [27], also use less
popular CDNs. Using our automated measurement system, we then
performed domain fronting testing on 30 of the 38 CDNs and we
found that domain fronting remains possible in 22 of these CDNs.
Contrary to results reported in a previous study [18], our findings
reveal that domain fronting is currently still possible for popular
CDN service such as Fastly and Akamai, as well as for a variety of
less popular CDNs. This finding is also corroborated by third-party
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evidence suggesting that Fastly is being used as an alternate service
in Tor plugins like Meek and SnowFlake [21].

In summary, we make the following contributions:
• We design a new measurement system that leverages DNS

analysis to find domain names related toweb content served
via CDNs and that can automatically test whether a CDN
is prone to domain fronting.

• Unlike previous work, our system can automatically test for
domain fronting vulnerabilities without the need for regis-
tering new domain names or subscribing new web services
with a CDN, thus eliminating manual efforts and allowing
us to continuously test for domain fronting vulnerabilities
at scale.

• Using our measurement system, we tested 30 different
CDNs, and found that 22 of them are still currently vul-
nerable to domain fronting, including popular CDNs such
as Fastly and Akamai.

2 BACKGROUND AND MOTIVATION
2.1 Domain Fronting
Domain fronting exploits the discrepancy between the TLS server
name indication (SNI) and the Host header in HTTPS requests re-
lated to web content served via Content Delivery Networks (CDNs).
CDNs typically rely on the Host header to identify the origin web
server1 responsible for satisfying an HTTP request, while the SNI
is used for correctly establishing a TLS session (e.g., identify and
deliver the correct SSL certificate to the client). Because the SNI is
visible to network traffic monitors but the Host header is not (since
it is encrypted via TLS), the true endpoint of the communication
(the domain in the Host field) can be hidden “behind” the front
domain expressed in the SNI.

The inherent ability to conceal the true destination makes do-
main fronting an ideal choice for different use cases. For instance,
domain fronting has proved to be a valuable tool in internet cen-
sorship circumvention. This is demonstrated by its adoption in
a number of widely used applications such as Telegram [5] and
Signal [9], which are otherwise restricted as part of nation-wide cen-
sorship enforcement. At the same time, domain fronting is viewed
as a threat by authorities that implement censorship restrictions.

Unfortunately, domain fronting has also been adopted by mal-
ware developers to hide the communications frommalware compro-
mised machines to their command-and-control (C2) server [14, 25].
By abusing a legitimate popular domain name as a front domain,
they can hide C2 communications from network security and traffic
analysis systems. This allows the malware to evade detection and
to maintain control over a compromised system for longer periods
of time, enabling stealthy data ex-filtration, malware updates, etc.

Figure 1 provides an overview of the steps involved in the use
of domain fronting. As an example, we consider the case of a com-
promised machine that uses domain fronting to hide malware C2
communications, though the steps are similar in other applications
(e.g., for censorship circumvention). We assume that the attacker al-
ready knows that a benign domain name legitsite.com is served
by a given CDN. Before infecting the victim, the attacker registers

1https://www.cloudflare.com/learning/cdn/glossary/origin-server/

Victim machine

CDN Server

DNS Server

Attacker Server
evilsite.com

Step 2: 
IP of CDN 

edge server

Step1: 
DNS Query

legitsite.com

TLS SNI: 
legitsite.com

HTTP Host: 
evilsite.com

Step 3: 
Connect/Request

Step 4: 
Fetch from

Attack Server 

Figure 1: Example of domain fronting use in malware.

a new domain evilsite.com and subscribes it to the same CDN
used by legitsite.com. Afterwards, the attacker infects victim
machines with malware that uses domain fronting to connect to
evilsite.com. As a first step, the victim machine issues a DNS
query for legitsite.com, to find the IP address of a CDN server.
Then, the malware initiates a TLS session with the CDN server,
sets the SNI to legitsite.com, and sends an HTTP request to
the server in which the Host header is set to evilsite.com. Upon
reaching the CDN server, the web request is processed based on the
information provided in the Host header (i.e., evilsite.com). If
the related web content is not cached at the CDN’s edge server, the
CDN will forward the request to the evilsite.com origin server,
obtains a response, and forwards the response back to the malware.

Notice that it is common for enterprise networks to use DNS
and SNI monitoring to detect and block malicious communications.
However, since both the DNS query (step 1) and SNI set by the
victim (step 3) indicate a legitimate domain name, both the DNS
request and the HTTPS connection will not be blocked.

2.2 Motivations for this Study
To enforce censorship in the presence of domain fronting, some
nations, knowingly or unknowingly, have taken drastic measures
to block CDN traffic, which resulted in blocking access to popu-
lar services such as Google and Amazon [20, 29], thus affecting
millions of users. While this may be a potentially effective cen-
sorship strategy, this type of extreme countermeasure cannot be
easily used to block malware communications in non-censored
countries. For instance, consider Exfiltrator-22 [14], a malware that
uses domain fronting and abuses Akamai’s CDN infrastructure
to hide its C2 communications. Suppose, an enterprise network
has been compromised by such a malware, and that the malware
uses a set of popular legitimate domains as front domains. First,
detecting the malware infection via network traffic analysis can
be very challenging without sophisticated analysis of encrypted
traffic [3], which may also be prone to false positives. Second, if
the malware infection is identified and is found to abuse a set of
popular domains, the network operator would need to block all
traffic to those domains, which may include significant amounts of
legitimate traffic. Alternatively, a defender may attempt to block

2

https://www.cloudflare.com/learning/cdn/glossary/origin-server/


233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Discovering and Measuring CDNs Prone to Domain Fronting Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

all IP addresses related to the abused CDN, but this would further
increase the collateral damage. Furthermore, if traffic is blocked for
a given front domain and CDN, the malware could automatically
switch to a secondary front domain hosted on a different CDN that
allows domain fronting.

Some popular CDNs have started to proactively mitigate domain
fronting in their platforms by ensuring consistency between SNI
and the Host header on all incoming web requests. While this is
an effective countermeasure for preventing abuse, it is unclear to
what extent domain fronting has actually been mitigated and the
related challenges. For instance,

(i) Do popular CDNs block domain fronting throughout their
entire infrastructure?

(ii) Are there other (perhaps less popular) CDNs that do not
block domain fronting at all?

(iii) Do these CDNs serve content from popular legitimate do-
mains that can be abused as front domains?

These are some of the research questions we aim to investigate in
this study.

3 MEASUREMENT METHODOLOGY
In this section, we provide an overview of our proposed measure-
ment system to automatically test whether a CDN is prone to do-
main fronting. Figure 2 provides an overview of our system and its
components.

Ourmain goal is to facilitate automated testing of domain fronting
across many CDNs while avoiding the cumbersome manual process
required for registering domains, subscribing CDN services, and
paying for any associated costs. Our approach is based on the idea
that, rather than registering our own domains with each CDN under
test, we can identify domains registered by third-parties that al-
ready use those CDN services and leverage them to detect whether
a CDN is prone to domain fronting. To achieve this, we first perform
DNS traffic analysis to discover a list of domain names served by
each CDN. Then, we test for domain fronting by selecting pairs of
domains served by the same CDN to be assigned as either target
domain or front domain. The target domain represents the actual
destination of the HTTPS requests we will issue, while the front
domain serves as the domain used to disguise the true destination
of our HTTPS traffic.

The underlying idea is that if our tests succeed using existing
domain names and web content served by a CDN, any actor (benign
or malicious) can register a new domain name and subscribe to the
same CDN’s services and then use a third-party legitimate domain
as front domain. To further confirm that the abuse of CDNs using
domain fronting is in fact a real and current threat, we alsomeasured
the presence of malicious domains among the domain names that
we identified as being associated with each of the CDNs in our
data set. Specifically, we leverage Virus Total [8] to determine the
percentage of CDNs that serve content frommalicious domains. Our
findings revealed that approximately 31% of the domain fronting
prone CDNs served content from one or more malicious domains
flagged by at least 2 security vendors in Virus Total platform.

While at a high-level this testing approach appears as quite
straightforward, in practice, finding domain served by CDNs and

testing CDN infrastructure for domain fronting is non-trivial. We
discuss our approach in more details in the remainder of this section.

3.1 System Overview
As shown in Figure 2, our measurement system consists of three
key components: (1) CDN Domain Discovery, (2) URL Discovery, and
(3) Domain Fronting Tester. These components work together to (1)
perform DNS analysis to discover website-related domain names
whose content is served by a given CDN, (2) discover specific URLs
under those domains that point to existing web content served via
the CDN, and (3) use the information gathered from the two previ-
ous components to enable automated testing of domain fronting.
We elaborate on the role of each system component below.

3.2 Discovering Domain Names Served by CDNs
Domain Fronting is possible if, and only if, the fronting domain and
target domain are hosted on the same CDN. The first component of
our measurement system focuses on finding the mapping between
domain names and the CDNs that serve their content, by extracting
relevant information from DNS records. When a web service 𝑤
under domain 𝑑 subscribes to a CDN, the CDN may assign it a
custom subdomain 𝑠 .𝑐 of a domain 𝑐 owned by the CDN. This
newly assigned subdomain can then be added as an alias of the
subscribed domain in the DNS database for redirecting traffic to
the CDN. Namely, a CNAME resource record can be registered for 𝑑
(the resource record name) that points to 𝑠 .𝑐 (the resource record
data for the CNAME).

To find a list of domains served by a CDN, we proceed as follows.
Given a CDN 𝐶 (e.g., Akamai, Fastly, etc.), we first compile a list
𝐿𝐶 of effective second-level domains (SLDs) used by 𝐶 to assign
CNAMEs to its customers. We derive the list 𝐿𝐶 from an openly
available list of CDNs [13] and extract SLDs for each CDN via
manual search. Notice that this initial “seeding” step is the only
manual step in our system, which serves to bootstrap our automated
measurements.

Afterwards, to identify the list of domains related to websites
that are served to a given CDN, we use passive and active DNS
analysis. Specifically, we analyze DNS traffic passively collect at two
large academic networks (with IRB approval) and openly available
DNS data collected by the ActiveDNS project [24]. For every CDN’s
SLD, 𝑐 ∈ 𝐿𝐶 , we search the DNS datasets for CNAME records
whose record data match 𝑐 (we use suffix matching for this). We
then extract all resource records of the type 𝑠 .𝑐 . To obtain the
corresponding domain related to the website hosted by the CDN,
we inspect the DNS response that included the CNAME 𝑠 .𝑐 and
extract the query name 𝑞 from the question section of the DNS
response where the CNAME was found. We repeat the process for
each CDN.

Consider the following example to understand the steps involved.
Let 𝑐 be edgekey.net. In this case, we use DNS analysis to collect sub-
domains of 𝑐 such as www.microsoft.com-c-3.edgekey.net, denoted
as 𝑠 .𝑐 . To obtain the corresponding domain related to the website
hosted by the CDN, we inspect the DNS response that included the
CNAME 𝑠 .𝑐 and extract the query name 𝑞 from the question section
of the DNS response where the CNAME was found. In this example,
𝑞 = www.microsoft.com. By repeating this search for every CDN
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Figure 2: Overview of Domain Fronting Measurement System

domain 𝑐 ∈ 𝐿𝐶 , we derive the list 𝐷𝐶 of all domains visible from
our DNS dataset that are related to websites served by CDN 𝐶 .

3.3 Discovering CDN-served URLs
Once we have gathered the list of domains 𝐷𝐶 served by a CDN, as
explained above, we proceed to map URLs that point to actual web
objects under those domains. Namely, given a domain 𝑞 ∈ 𝐷𝐶 such
as assets.example.com, simply issuing a “GET /” HTTP(S) request
for the “root” path under domain𝑞 (i.e., https://assets.example.com/)
may not work (an HTTP 4xx message may be returned) without
specifying a full path to an existing resources under 𝑞. Therefore,
to find valid URLs we proceed as follows.

Given a domain 𝑞 ∈ 𝐷𝐶 such as assets.example.com, we first
compute its effective second-level domain (in this case, example.
com). Then, to find valid URLs under domain 𝑞, we have developed
a custom Chromium-based web crawler using Puppeteer[6]. Our
crawler is designed to visit and crawl a generic domain and capture
details of all network requests and responses issued by the browser
during the browsing session. This includes all requests related to
web objects located under the visited domain directly as well as
any of its subdomains. These allows us to discover a subset of full
URLs𝑈𝐶 for web objects served by the CDN. In the example above,
pointing our instrumented browser to https://example.com and
crawling its content allows to also discover web objects (i.e., their
full URL) hosted under domain assets.example.com, which is the
domain served by the CDN that we are interested in. To enable
consistent fronting testing results, among the 𝑈𝐶 URLs we only
retain those that correspond to static web resource, such as images,
.js and .css files, etc., for which their content remains stable across
multiple requests and can be used for our domain fronting testing
module.

3.4 Domain Fronting Tester
Given a CDN 𝐶 and the related domain names and URLs it serves,
which we discover as explained in Sections 3.3 and 3.2, the high-
level domain fronting testing process is relatively straightforward:
(1) select a domain name 𝑑 ∈ 𝐷𝐶 , (2) select a URL 𝑢 ∈ 𝑈𝐶 whose
domain 𝑑𝑢 is different from 𝑑 , (3) establish a TLS session with SNI
set to 𝑑 and (4) issue an HTTPS request for URL 𝑢 with the Host
header set to 𝑑𝑢 . If we are able to fetch a web object pointed by 𝑢
with no error, while the SNI points to 𝑑 , the test succeeds and the
CDN is prone to domain fronting.

Unfortunately, in practice, the process explained above is in-
sufficient. The reason is that we also need to make sure that the

object returned by the HTTPS request to 𝑢 is the same as the web
object that the CDN would serve in a normal transaction (i.e., one
in which URL 𝑢 is requested through the CDN without altering
the SNI). Furthermore, we need to verify that this process works
consistently for any paris of domains (𝑑,𝑑𝑢 ) that are served by the
CDN, to check whether all or only part of the CDN infrastructure
is prone to domain fronting.

Therefore, we refine the testing process as follows. First, given
a CDN 𝐶 , we randomly select up to 𝑁 chosen tuples consisting
of (𝑑𝑓 , 𝑑𝑡 , 𝑢𝑡 ), where 𝑑𝑓 is the front domain, 𝑑𝑡 ≠ 𝑑𝑓 is the target
domain, and 𝑢𝑡 is a URL under 𝑑𝑡 that is served by the CDN (notice
that 𝑑𝑡 and 𝑑𝑓 belong to the set 𝐷𝐶 , whereas 𝑢𝑡 ∈ 𝑈𝐶 ). The number
𝑁 depends on the cardinality of the sets 𝐷𝐶 and𝑈𝐶 .

For each selected tuple (𝑑𝑓 , 𝑑𝑡 , 𝑢𝑡 ), we proceed as follows:

• Step 1: Request Target URL with Target Host First, we
craft a regular HTTPS request for URL 𝑢𝑡 , so that both the
Host header and SNI are set to the same domain𝑑𝑡 . We then
store the response content (i.e., the requested web object),
𝑟𝑡 , and use it as a reference to validate the result of the next
test.

• Step 2: Request Traget URL with Front Domain and
Target Host In this step, we test domain fronting. Specifi-
cally, we issue an HTTPS request for URL𝑢𝑡 but set the TLS
SNI to the front domain 𝑑𝑓 (the Host header is set to 𝑑𝑡 ).
On receiving a valid response, we store it as 𝑟𝑣 and proceed
with the next step.

• Step 3: Request Target URL with Front Domain and
Front Host In this step, we craft a regular HTTPS request
for 𝑢𝑡 but we replace 𝑑𝑡 with 𝑑𝑓 . Namely, we set both the
Host header and the SNI to 𝑑𝑓 . We perform this step to
ensure that the requested URL is not available under the
fronting domain as well, since this would make the success
of fronting test invalid. We store the response as 𝑟 𝑓 .

Test Tuple Validation:While selecting the (𝑑𝑓 , 𝑑𝑡 , 𝑢𝑡 ) tuples for
testing, we apply additional filtering to avoid cases that would lead
to potential false positives. For instance, domain fronting may be
explicitly allowed between domains 𝑑𝑡 and 𝑑𝑓 if they are related to
one another, for instance because one is a subdomain of the other
or because the domains are owned by the same organization. In
these cases, our test may lead to successful fronting tests even if a
CDN proactively blocks domain fronting in general, when unrelated
domains are set in the SNI and Host field. In practice, we confirm
that domains𝑑𝑡 and𝑑𝑓 are related if: (i) they share the same effective
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second-level domain, in which case we refer to them as “sibling”
domains; or (ii) they are listed in a shared SSL certificate. To check
for this latter condition, we analyze valid SSL certificates for each
domain programmatically and check if 𝑑𝑡 and 𝑑𝑓 appear together
in the Subject Alternative Name field (e.g., if *.example-1.com
and *.example-2.net appear together in a valid SSL certificate, we
consider them to be owned by the same organization). This further
improves the confidence in the correctness of the results of our
domain fronting tester.

Fronting Test Validation: By analyzing the responses, we de-
termine that a single test was successful if (i) 𝑟𝑡 is a valid HTTP
response (no HTTP or SSL error); (ii) 𝑟𝑣 matches 𝑟𝑡 ; (iii) 𝑟 𝑓 is empty
(i.e., no web object was retrieved) or is different from 𝑟𝑡 . To compare
the content of each response, we compute and compare their SHA1
hash. We repeat these tests up to 𝑁 times per each CDN (each
test is based on a different randomly chosen tuple (𝑑𝑓 , 𝑑𝑡 , 𝑢𝑡 ), as
explained earlier).

4 MEASUREMENT RESULTS
In this section, we present our results. Overall, our findings reveal
that, despite domain fronting being known for a few years, there
still exist many CDNs that are prone to it. Specifically, 22 out of
30 CDNs we tested are prone to domain fronting. Notably, we also
observed successful domain fronting tests for popular CDNs such
as Fastly and Akamai, which serve thousands of highly ranked
domains (see Figure 3) that could be abused as fronting domains.

Besides detailed results regarding domain fronting, we also present
additional findings and insights related to domain names served
via CDNs, which can help understand the extent to which domain
fronting may be successfully abused in practice.

4.1 Domain Analysis Results
To build a list of domains served by different CDNs, we leverage
10 days of passive DNS traffic collected (with IRB approval) from
two large academic networks and via the ActiveDNS [24] project,
between March 20, 2023 and March 30, 2023. Specifically, we focus
on CNAME resource records, which are typically used to direct web
requests for domains served by CDNs to an edge CDN server (e.g.,
at the time of writing, querying for www.microsoft.com returns
a CNAME chain pointing to an Akamai edge server). We inspect
the CNAME resource records that match a large, manually curated
list of second-level domains (SLDs) used by CDNs (see Section 3.2).
To match the CNAME records against the list of CDN SLDs, we
use suffix matching. We then keep only those CNAME records that
match any of the SLDs in the curated list and discard the rest.

Now, let 𝐷 𝑓 be the set of fully qualified domain names (FQDNs)
for which at least one CNAME matched (via suffix matching) a
CDN-related SLD. Our next step is to discover full URLs (including
the full path to a web object) under those domains that are served by
a CDN. To facilitate this next step, we proceed as follows. First, let
𝐷𝑠 be the set of all effective second level domains (SLDs) extracted
from the FQDNs in 𝐷 𝑓 . We issue a “GET /” for each domain name
𝑑 ∈ 𝐷𝑠 and keep all domains forwhich the “GET /” request returned
a “200 OK” response. We call this reduced set 𝐷′

𝑠 (domain names
that return an error are filtered out). Overall, we found 38,567
domain names belonging to𝐷′

𝑠 . We then consider all FQDNs 𝑓 ∈ 𝐷 𝑓

whose effective SLD belongs to 𝐷′
𝑠 , and call this new reduced set

𝐷′
𝑓
. Namely, 𝐷′

𝑓
considers all subdomains of each domain in 𝐷′

𝑠

whose content we found to be served by a CDN. After this step, we
found 124,585 distinct FQDNs that are served by 38 different CDNs.
Figure 3 shows the distribution of domains we identified per each
CDN. As can be seen, most of the domains we collected are served
by major CDN providers, with Cloudfront being responsible for
serving 63% of the domains.
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Figure 3: Count of domains per CDN and their popularity
ranking.

Now, to discover full URLs served by CDNs, let 𝐶 represent one
of the 38 CDNs we discovered so far. We randomly select up to 100
SLDs from 𝐷′

𝑠 whose subdomains (at least one) or the SLD itself
are served by𝐶 , and call this set of domains 𝐷 (𝐶 )

𝑠 . For each domain
𝑑 ∈ 𝐷

(𝐶 )
𝑠 , we crawl the website pointed by 𝑑 and logs all HTTP

requests and responses issued by our instrumented browser while
rendering each web pages under 𝑑 . We then store all full URLs for
which a “200 OK” response was recorded in a set 𝑈𝐶 . Finally, we
reduce the set𝑈𝐶 by only keeping a url 𝑢 ∈ 𝑈𝐶 if its corresponding
domain name 𝑑𝑢 belongs to 𝐷 𝑓 , thus forming a smaller set of URLs
that we call𝑈 ′

𝐶
. In summary,𝑈 ′

𝐶
is a set of URLs that point to web

objects that are served by CDN𝐶 . Thus, at this point we know that
an HTTPS requests for a URL 𝑢′ ∈ 𝑈 ′

𝐶
will go through 𝐶’s CDN

infrastructure.
We repeat the above process for all 38 CDNs discovered so far. In

the end, we were able to find valid URLs for 30 out of the initial 38
5

*.example-1.com
*.example-2.net
www.microsoft.com


581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

CDNs. Specifically, we found 52,998 URLs related to 1,310 distinct
FQDNs served by those 30 different CDNs. For the remaining 8
CDNs, we were unable to find any full URL that we could use to
issue HTTPS requests and fetch a valid web object via the CDN. It
is possible that by crawling the web at large we could find URLs
served by those remaining 8 CDNs as well. However, crawling
the web in a non-targeted way can be quite time consuming and
expensive in terms of resources (e.g., log storage). Therefore, we
leave this enhancement step to future releases of our system.

Popular Domains: CDNs that host popular domains play a crucial
role in the success of domain fronting, primarily due to the reduced
risk of being blocked. When a popular domain is hosted by a CDN,
there is a higher chance that the IP addresses associated with the
CDN’s edge servers will be considered benign and permitted by
network security policies, even if those IP are shared by multiple
domains. This proves advantageous to actors (malicious or benign)
who leverage domain fronting as a means to mask their traffic and
evade detection. Therefore, we also explored the distribution of
popular (i.e., high rank) domains across the different CDNs.

To compute a domain’s popularity, we use the Tranco [27] pop-
ularity list, which has been widely used in other web measurement
studies. Specifically, we compute two different rankings for each
domain name, one based on its fully qualified domain name (FQDN)
and the other based on its effective second level domain (SLD) suffix.
Figure 3 shows the distribution of popular domains, belonging to
different ranking bands, served each CDN. Surprisingly, there are
26 CDNs that serve popular domains with 𝑟𝑎𝑛𝑘 <= 10𝑘 , based on
their SLD. Even if we consider the ranking of FQDN, we can find
22 different CDNs that serve content from popular domains with
𝑟𝑎𝑛𝑘 <= 500𝑘 . This shows that, contrary to what one may have
thought, highly popular domain names are not served only via the
most popular CDNs (e.g., Akamai, Cloudflare, Fastly, etc.). Instead,
the web content of some highly popular domains is served by less
well known CDNs as well.
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Figure 4: Count of malicious domains (detected by 2 or more
Virus Total Vendors) per CDN

Malicious Domains: As mentioned before, CDNs can be abused
for malicious purposes. Therefore, we also wanted to measure how
many domain names served by each CDN are known to bemalicious.
To this end, we check each domain against VirusTotal [8], and flag
domains that are labeled as malicious by different security vendors.
We found 11 CDNs that served domains labeled as malicious by
at least two different security vendors, and 27 CDNs serving one
or more malicious domains flagged by at least one security vendor
(see Figure 4).

4.1.1 Additional CDN Insights. To verify whether our method for
discovering CDN-served URLs produced consistent results across
different time windows, we conducted an additional experiment
based on analyzing DNS traffic spanning multiple days. Our ob-
jective was to examine whether specific FQDNs were consistently
associated with a single CDN throughout our DNS data collected
over 10 days. The findings revealed that 99.64% of the FQDNs consis-
tently mapped to (i.e., were served by) a single CDN, ensuring stable
measurement results. The small fraction (0.36%) of domains that
we found to be associated with different CDNs over time may be
related to the use of Multi-CDN services [17]. A domain subscribed
to such multi-CDN service could in real-time be associated with
different CDNs based on various metrics, such as latency, perfor-
mance overhead, proximity, demand and other factors. Considering
that that number of such cases was negligibly small, we discard
these domains from our dataset before conducting domain fronting
tests.

4.2 Domain Fronting Test Results
Equipped with a large set of URLs served by 30 different CDNs
(derived as explained in Section 4.1), we conducted our domain
fronting tests (see Section 3.4) on those 30 CDNs.

Table 1: Examples of DNS CNAME record

#CDNs
Discovered
via DNS

#CDNs with
Popular Domains
(SLD rank<=10k)

#CDNs with
Malicious
Domains

#CDNs for
Testing

#CDNs
Prone to

Domain Fronting
38 26 11 30 22

Figure 5 and Table 1 summarizes our results. We found that 22
out of 30 CDNs were prone to domain fronting, including some of
the most popular CDN networks, such as Akamai and Fastly. To
ensure that the results of our automated tests are accurate, we rely
on the results of multiple test cases with varying parameters for
each given CDN. In practice, for each CDN we generated multiple
tuples, (𝑑𝑓 , 𝑑𝑡 , 𝑢𝑡 ), which we used for testing domain fronting as
explained in Section 3.4. Because the number of all possible tuples
that we could form for each CDN can be very large, to reduce the
total time for the experiments and avoid causing any significant
load on CDN infrastructure, we set an upper bound on the number
of domain and URL combinations that we used for testing each
CDN. Specifically, we randomly select up to 25 domains per CDN
and up to 10 URLs per each domain.

Figure 5 shows the number of domains used for testing each
CDN and the number of domains that were involved in successful
domain fronting tuples. Overall, we found domain fronting to still
work in 73% (22 out of 30) of the CDNs we tested. Among these,
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there were 16 CDNs for which domain fronting tests were success-
ful for all the domains we tried. In other CDNs, we found that not
all domains could be used for successful domain fronting. Notably,
popular CDNs such as Fastly and Akamai resulted in successful
domain fronting tests for 100% and 52% of the tested domains, re-
spectively. On average, in case of all 22 CDNs prone to fronting,
domain fronting was successful for at least 50% of the tested do-
mains. Further, our results also indicate that 8 of the CDNs had
deployed mitigation measures against domain fronting throughout
their entire infrastructure. Specifically, cases where 100% of the
tests failed includes popular CDNs such as Cloudfront and Cloud-
flare, which is consistent with their public stance against domain
fronting. For a few CDNs (e.g., teridion, reblaze and inxy), the
number of domains we were able to discover and use for testing
was small (e.g., <= 5) and our tests may be insufficient to confirm
whether those CDNs have correctly implemented domain fronting
mitigation throughout their entire infrastructure. Another interest-
ing result is that, among the domains that we used in successful
fronting tests, some were related to potentially sensitive domains,
including www.census.gov.
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Figure 5: Number of tested domains per eachCDN and related
domain fronting test success rate.

4.2.1 Analysis of CDNs with Partially Successful Fronting Tests. To
verify our results we manually analyzed a subset of our domain

fronting tests. Especially, we focused on the 6 CDNs (shown in
Figure 5) whose domain fronting tests succeeded for only a portion
of all the test tuples (i.e., combinations of domains and URLs).

For instance, in case of Akamai, 13 of the 25 tested domains led to
successful domain fronting. Our manual analysis revealed that, in
all 12 cases that failed, the CDN servers used to provide the HTTP
response were different from the CDN servers involved in the 13
successful domain fronting tests. Similarly, in case of StackPath,
the 2 failed cases involved a CDN server not seen in any of the
remaining 15 successful tests. Another case is represented by Adobe.
In this case, all successful domain fronting tests involved CDN
servers with domain name under the adobeaemcloud.com zone,
whereas CDN servers with different names (e.g., under omtrdc.net,
which is also an SLD related to Adobe’s CDN) caused the domain
fronting tests to fail. This indicates that while some of these CDNs
have taken measures to mitigate domain fronting, they have not
been able to do so consistently across their entire infrastructure.
This insight was later partly confirmed during our responsible
disclosure process, which we describe in Section 5.

In rest of the 3 CDNs involving a total of 11 domains, the response
received was from a server belonging to a different CDN than the
tested CDN. This is commonly observed in less popular CDNs and
was found to be negligible(see section 4.1.1). This could be resolved
by expanding DNS data to obtain more testable domains.

5 DISCUSSION
Benefits of our proposed system: Our system to detect CDNs
that are prone to domain fronting can be beneficial to a diverse
group of stakeholders. First and foremost, Internet freedom activists
and journalists operating in regions with stringent internet censor-
ship rules could use our system to learn which CDNs allow domain
fronting and may be used bypass online restrictions, ensuring un-
interrupted access to global information. Second, cybersecurity
professionals and IT administrators would gain a better understand
of potential ways in which attackers may “hide” from monitoring
in their networks, and thus make more informed decisions on what
CDN traffic to prioritize for detailed (and computationally expen-
sive) inspection. Furthermore, CDN customers could themselves
leverage our system to assess and analyze if their business might
get affected as a collateral damage due to their CDN being prone to
domain fronting and help them make a more informed choice on
hosting services.
Challenges in Automated CDN Detection: In this project, our
system automatically analyzes DNS records to identify domains
whose web content is served by CDNs, provided the SLDs used
by the CDN infrastructure are known. However, discovering the
complete list of domains associated with each CDN and their SLDs
is non-trivial. First, to the best of our knowledge, there are no public
datasets of such CDN SLDs. Furthermore, by design, CDNs distrib-
ute content across a myriad of servers globally to optimize load
times and provide redundancy. This distributed and dynamic na-
ture inherently makes complete CDN infrastructure enumeration
difficult. An alternate option is to use CDNFinder [11], a system
that takes websites or domains as input and returns a list of CDNs
serving those sites. CDNFinder employs multiple techniques, such
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as pre-defined lists, HTML rewrite and IP-to-ASN mapping. How-
ever, CDNFinder is not suitable for our project, because we need to
identify a wide range of CDNs, instead of focusing only on popular
CDNs as in CDNFinder. Also, an initial analysis of CDNFinder re-
sults led us to discover a significant number of false positives. In a
recent study [33], the authors focus on actively collecting DNS and
HTTP based measurements to detect CDNs used by a given web-
site. Similar to CDNFinder, this involves crawling large numbers
of non-targeted set of domains that may or may not be associated
with CDNs.
Domain Fronting Mitigation at CDNs: Cloudflare, a prominent
CDN provider, offers an insightful example of how CDNs typically
handle incoming web requests, which has implications for domain
fronting [12]. As explained in the cited article, Cloudflare handles
web requests using a multi-tiered system that includes two separate
reverse proxies, a TLS proxy and a business logic proxy. When an
incoming HTTPS connection reaches Cloudflare’s infrastructure, it
first encounters the TLS proxy, which is responsible for terminating
the TLS connection. Then, subsequent HTTP requests are processed
by the business logic proxy. In the context of domain fronting, the
SNI is processed by the first reverse proxy, whereas the Host field in
HTTP requests is processed by the second one. This may be one of
the reasons whymany CDNs do not block domain fronting, because
it may be costly to adapt the underlying CDN infrastructure to make
sure the two reverse proxy collaborate to check for consistency
between the SNI and the Host field. In fact, our study revealed that,
for some CDNs, only part of the CDN infrastructure is not prone to
domain fronting. Based on discussions with CDN operators (as part
of our disclosure process), we were told that only “new customers”
(presumably served by newer infrastructure) are “protected” against
domain fronting.
Ethical Considerations: It is important to note that our analysis
of passive DNS traffic from two different academic networks was
approved by the respective institutions. We only inspected DNS
traffic to extract CNAME records and to map domain names to
resolved IP addresses. Any other network traffic information was
discarded. Also, it is worth noting that, to test CDNs for domain
fronting, we only establish a limited number of HTTPS connec-
tion at a very low rate, and that all HTTP requests we issued are
typical request for web objects. Therefore, we are confident that
our measurements had no measurable impact on either the CDN
infrastructure or the origin servers behind the CDNs.
Responsible Disclosure: We have already disclosed our findings
to two large CDNs: Fastly and Akamai. Fastly has responded by
acknowledging their awareness about the possibility of domain
fronting within their CDN infrastructure. They mentioned that
they have started to prevent domain fronting by default in their
newer CDN service offerings, and that they deal with it on a case-
by-case basis for other scenarios. We are awaiting a response from
Akamai and we plan to continue our disclosure process to share our
results with all other CDNs that we found to be prone to domain
fronting.

6 RELATEDWORKS
In this section, we discuss studies related to domain fronting and
similar techniques. Fifield et al. were the first to introduce Domain

Fronting in [18], which included results related to manually test-
ing the capabilities of a small number of popular CDNs. To test
whether domain fronting was possible, the authors registered their
own domains and manually subscribed them to each of the CDNs
being tested. Unlike their mostly manual testing approach, our pro-
posed method is developed to conduct domain fronting tests at a
large scale while also avoiding the need to register any new domain
names. This greatly reduces manual efforts and costs associated
with hosting domains and acquiring CDN services. A subsequent
paper [32] proposes a different technique, named “domain shadow-
ing,” that can be used to abuse CDNs in combination with domain
fronting. In [32], the authors highlight the threat faced by domain
manipulation techniques that further serves as a motivation for our
work, which sheds light on CDNs that are still prone to domain
fronting. In addition, the focus of [32] is on domain shadowing,
while we measure the prevalence of domain fronting. Yet another
work [2] proposes a technique named “domain borrowing,” which
represents another way of abusing CDNs that is different from
domain fronting.

Censorship circumvention, which is one of the applications of
domain fronting,has also been studied from different angles [16, 19,
23, 26, 34]. These works primarily discuss applications of TLS in
censorship and associated evasion tactics.

There also exists a number of studies [22, 28, 31] that show-
case different methods related to abusing CDN infrastructure. Such
works, in addition to recent reports of in-the-wild attacks that
leverage domain fronting [10, 14, 25], demonstrate the growing
threat posed by CDN abuse and the importance of automatically
discovering potential vulnerabilities or paths of abuse in CDNs.

While working on this paper, we became aware of a very recent
concurrent study [15] that was uploaded on arxiv.org in July
2023, which presents an approach to measure domain fronting that
is similar to ours. To the best of our knowledge, [15] remains a
non-peer reviewed paper at the time of this submission. While it
partially overlaps with the our work, it did not in any way influence
our research. We conducted the research described in this paper
concurrently to [15]. In fact, we previously submitted an earlier
version of this paper to another venue in May 2023, before [15]
was uploaded to arxiv.org. Although this paper is an improved
resubmission, the core of the paper is the same as the earlier version
and we can provide evidence of this to the PC Chairs, if required,
to prove that the two studies were done concurrently.

7 CONCLUSION
In this work, we successfully developed a measurement system that
can be used to discover domain names and URLs that are served
by a CDN, and to perform automated domain fronting tests to
determine what CDNs are still prone to domain fronting. Through
our evaluation, we discovered 22 CDNs that are prone to domain
fronting, including highly popular CDNs such as Akamai and Fastly.
The outcomes of our research offer valuable insights on CDNs and
highlight the need for further efforts to prevent domain fronting
abuse.
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