
Under review as submission to TMLR

Hybrid Federated Learning for Feature & Sample Hetero-
geneity: Algorithms and Implementation

Anonymous authors
Paper under double-blind review

Abstract

Federated learning (FL) is a popular distributed machine learning paradigm dealing with dis-
tributed and private data sets. Based on the data partition pattern, FL is often categorized
into horizontal, vertical, and hybrid settings. All three settings have many applications,
but the hybrid FL remains relatively less explored, because it deals with the challenging
situation where both the feature space and the data samples are heterogeneous. Hybrid FL
combines the advantages of both horizontal and vertical FL, addressing some of their indi-
vidual limitations such as the same-features requirement of the former and the same-entities
requirement of the latter. This work designs a novel mathematical model that effectively
allows the clients to aggregate distributed data with heterogeneous, and possibly overlap-
ping features and samples. Our main idea is to partition each client’s model into a feature
extractor part and a classifier part, where the former can be used to process the input
data, while the latter is used to perform the learning from the extracted features. The het-
erogeneous feature aggregation is done through building a server model, which assimilates
local classifiers and feature extractors through a carefully designed matching mechanism.
A communication-efficient algorithm is then designed to train both the client and server
models. Finally, we conducted numerical experiments on multiple image classification data
sets to validate the performance of the proposed algorithm. To our knowledge, this is the
first formulation and algorithm developed for hybrid FL.

1 Introduction

Federated Learning (FL) is an emerging distributed machine learning (ML) framework which enables het-
erogeneous clients – such as organizations or mobile devices – to collaboratively train ML models (Konečnỳ
et al., 2016; Yang et al., 2019). The development of FL aims to address practical challenges in distributed
learning, such as feature and data heterogeneity, high communication cost, and data privacy requirement.

The challenge due to heterogeneous data is particularly evident in FL. The most well-known form of hetero-
geneous data is sample heterogeneity (SH), where the distributions of training samples are different across
the clients (Kairouz et al., 2021; Bonawitz et al., 2019). Severe SH can cause common FL algorithms such as
FedAvg to diverge (Khaled et al., 2019; Karimireddy et al., 2020b). Recently, better-performing algorithms
and system architectures for distributed ML (including FL) under SH include Karimireddy et al. (2020b);
Li et al. (2018); Wang et al. (2020); Fallah et al. (2020); Vahidian et al. (2021).

Figure 1: The heterogeneous data distribution
in a medical diagnosis example.

Besides SH, another form of heterogeneity is feature heterogene-
ity (FH). Traditionally, we say the samples are FH if we can
partition them into subsets that bear distinct features. In the
FL setting, when the sample subsets of different clients have
different, but not necessarily distinct, features, we call it FH.
That is, under FH, different clients have unique and possibly
also common features. FH and SH arise in ML tasks such as
collaborative medical diagnosis (Ng et al., 2021), recommen-
dation system (Yang et al., 2020), and graph learning (Zhang

1

Under review as submission to TMLR

Table 1: Examples of applications that generate heterogeneous data

Application Client Feature Blocks Sample
Medical Diagnosis clinic output of different diagnostic devices patient
Recommendation System retailer record of different product categories customer
Social Network SNS provider user activity & relationship SNS user

(a) Heterogeneous data on clients (b) HFL data usage (c) VFL data usage

Figure 2: The data distribution patterns of a) heterogeneous client data; b) HFL and c) VFL.
et al., 2021), where the data collected by different clients have
different, and possibly overlapping features and sample IDs.
Next, we provide a few examples.

Medical diagnosis application (see Figure 1). The clients are clinics, and they collect data samples from
patients. Each clinic may have a different set of diagnostic devices, e.g., clinic A has MRI and ultrasound,
while clinic B has MRI and electrocardiographs (ECG). FH arises as the feature set of each sample collected
by clinic A may partially overlap with that done by clinic B. Besides FH, SH also arises as multiple clinics
may not have the chance of treating the same patient and each patient usually visit only a subset of clinics.

Recommendation system (Yang et al., 2020; Zhan et al., 2010). In this case, the clients are large retailers,
and they collect samples (such as shopping records) from their customers. The retailers share a subset of
common products and a subset of common customers.

A third example pertains to an application of learning over multiple social networks (Zhang et al., 2021; Guo
& Wang, 2020). Here the clients are social network providers (e.g., Twitter, Facebook), and the samples are
the set of participating users, their activities and relations. We summarize these three examples in Table. 1.

In the previous three applications, client data can be heterogeneous in both feature and sample. Surprisingly,
none of the existing FL algorithms can fully handle such data. Rather, Horizontal FL (HFL) and Vertical
FL (VFL) methods can handle data with only one heterogeneity, the former with SH and the latter with
FH. By keeping only the common features (and ignoring the other features), we can avoid FH and apply an
HFL method. By keeping only the common samples (and discarding the remaining samples), we can avoid
SH and apply a VFL method. Clearly, they both waste data.

Consider the HFL algorithms (Konečnỳ et al., 2016; Karimireddy et al., 2020b;a; Dinh et al., 2021). The
clients perform multiple local model updates, and the server averages those updates and broadcasts the new
model to the clients. This scheme works when the clients share the same model and their data share an
identical set of features (see Figure 2b for an illustration); otherwise, the server cannot average their models.

Consider the Vertical FL (VFL) algorithms (Liu et al., 2019; Chen et al., 2020). They split the model
into blocks. Each client processes a subset of the blocks while the server aggregates the processed features
to compute training losses and gradients. They require all the clients to have the same set of samples
(see Figure 2c); otherwise, they cannot compute the loss and its gradient.

According to Yang et al. (2019); Rahman et al. (2021), the FL setting with heterogeneous feature and samples
is referred to as hybrid FL. To develop a hybrid FL method, we must address the following challenges:

1. Global and local inference requires global and local models. Hybrid FL makes it possible for a
client to make its local inference and also for all the clients (or the server) to make a global inference. The

2

Under review as submission to TMLR

former requires only the features local to a client; the latter requires all the features and training a global
model at the server.

2. Limited data sharing. In typical HFL, the clients do not share their local data or labels during training.
In VFL, the labels are either made available by the clients to the server (Chen et al., 2020) or stored in a
designated client (Liu et al., 2019). A hybrid FL system may be subject to a “no sharing” requirement, so
it is desirable to develop a method in which the server has no access to any data, including the labels.

3. Sample synchronization. A technical challenge with VFL is that the server wants the clients to draw
the same mini-bath of samples at each iteration. This challenge is exacerbated in hybrid FL since not all
the clients will have the same samples. Therefore, to avoid idling clients, a hybrid FL method should allow
uncoordinated sample draws.

Our contributions: Towards addressing the previous challenges, this work proposes a novel model and its
training method. We summarize our contribution as follows.

1. We propose a new hybrid FL approach. For each client, the model consists of a feature extractor and
a subsequent classifier. The clients collaborate and share their knowledge through building a model at the
server that assimilates local classifiers and feature. The assimilation is achieved by a matching mechanism
inspired by the non-parametric modeling idea in Yurochkin et al. (2019). This approach enables both global
and local inferences and can handle data with both SH and FH. To our knowledge, this is the first concrete
hybrid FL model in the literature.

2. We develop a hybrid FL algorithm that enables knowledge transfer among the clients. The algorithm
maintains data locality, so the server does not access clients’ data, and it allows uncoordinated sample draws
by the clients.

3. We evaluated the performance of the hybrid FL algorithm on a number of real datasets. The learned
model achieved an accuracy that was comparable to that of a centrally trained model.

1.1 Related work

Federated graph learning (FGL) is applied to molecular classification (He et al., 2021), relation or node
classification for social networks (Zhang et al., 2021; Ng et al., 2021) and financial network (Suzumura
et al., 2019). In the first application, the graphs are relatively small and the clients have large amount of
graphs (Zhang et al., 2021; He et al., 2021). In the last two application scenarios, the clients possess partial
yet overlapping data of a single large graph, including partial node and edge information (Zhang et al., 2021).
However, existing FGL algorithms mainly focus on the first application scenario (He et al., 2021) and fail to
deal with the latter two scenarios. So we cannot apply them to our hybrid FL setting.

HFL has a popular algorithm FedAvg (Konečnỳ et al., 2016), which adopts the computation-then-
aggregation strategy. The clients locally perform a few steps of model updates, and then the server ag-
gregates the updated local models and averages them before sending the updated global model back to the
clients. Beyond model averaging, PFNM (Yurochkin et al., 2019) and FedMA (Wang et al., 2020) use a
parameter-matching-based strategy and FedGKT (He et al., 2020) uses a knowledge distillation strategy to
get better global model performance, and they do not require the global model to have the same size as the
local models. All HFL algorithms assume their data have the same set of features.

Personalized FL (PFL) has been studied as a potential way to tackle different levels of task heterogeneity.
MAML (Jiang et al., 2019; Fallah et al., 2020) uses meta-learning to build global model that can fast adapt
to heterogeneous data distribution; FedProx (Li et al., 2018) and LG-FedAvg (Hanzely & Richtárik, 2020)
regularize the distance between the local models and the global model. MOCHA (Smith et al., 2017)
and FedU (Dinh et al., 2021) combine multi-task learning with FL to train models for personalized tasks.
FedPer (Arivazhagan et al., 2019) separates the model into base+personalized layers to decouple the common
and personal knowledge. However, most of the algorithms assume that all local models take the same input
size and format.

3

Under review as submission to TMLR

2 Problem Formulation

In this section, we first provide a mathematical characterization of the heterogeneous data distributions of
interest to this work. We then propose a unified hybrid FL model.

Notation: Due to the nature of hybrid FL, we must carefully set up its notation. We denote the all one
(column) vector of length d as 1d; the identity matrix of size d as Id; the positive integer set {1, 2, . . . , N}
as [N]. Feature selection below uses a selector matrix of dimension d1 × d2, which belongs to the following
set: Data description: See Figure 3a for an illustration of a dataset with three clients, where the client
datasets has no fully overlapped sample or feature, so neither HFL nor VFL can be used. We consider a
hybrid FL system with M clients indexed by m ∈ [M], and they collaborate to accomplish the same task.
For convenience, we index the server as m = 0.

First, assume that each sample can have at most d0 feature blocks, and the ith block has the set Di of
features, i ∈ [d0]; client m has a set of dm feature blocks indexed by Im, that is, we write ⟨Dim

⟩im∈Im
and

write the feature space of client m as Xm =
∏

im∈Im
Dim

, which is a Cartesian product of the subset of the
feature blocks possessed by client m. Similarly, we denote the “full feature” space as X0 =

∏d0
i=1Di, which

is the Cartesian product of all feature blocks.

Second, client m holds a private dataset with index set Nm and the samples (xm,n, yn) for n ∈ Nm, where
xm,n ∈ Xm denotes the features of the nth sample on client m, and yn denotes the label of the nth sample.
Collecting all the clients’ data together, we can define the (virtual) global dataset to have sample index set
N0 = [N], with samples (x0,n, yn) where x0,n ∈ X0 denotes the “full feature” of the nth sample (for the
precise relation between the full featured x0,n and the local sample xm,n, please see the property P2 below).

The dataset defined above satisfy the following properties.

P1) The global index set is the union of the clients’ index sets:

N0 =
M⋃

m=1
Nm, which implies Nm ⊆ N0.

P2) For a given client m, the features of the nth sample is a sub-vector of the “full features”. That is, there
exists a selector matrix Pm such that it can map the global feature x0,n to xm,n:

xm,n = Pmx0,n, for some Pm ∈ S(dm, d0), (1)

where Pm as a selector matrix that selects the feature blocks on client m from the full feature.

Remark 1. (Data structures of HFL and VFL) The data structure that the HFL deals with can be viewed
as a special case of what has been described above, where the clients have fully overlapping features, i.e.,
d0 = 1, Pm = 1, ∀m ∈ [M]; Similarly, the data structure for VFL can be viewed as a special case that the
clients have fully overlapping sample indices, i.e., Nm = N0, ∀m ∈ [M]. □

Model design: With the above description of data, we are ready to present the proposed hybrid FL model
and the corresponding optimization problem.

Client and server model design: Similar to VFL, we split the ML model into feature extractors and
classifiers. Each feature extractor takes a feature block as input and extracts an intermediate feature as
output; the classifier takes the concatenated intermediate features of multiple feature extractors as input
and outputs the prediction.

As illustrated by Figure 3b, on client m, the feature extractor him
(θm,im

; ·) for input feature block Dim
is

parameterized by θm,im
for all im ∈ Im. The feature extractors can have different neural network archi-

tectures (e.g., CNN for CT/MRI images, LSTM/Transformer for medical records, and 1-D CNN for ECG
data). We denote the concatenated feature extractors and its parameters as:

Hm(Θm; ·) := [him(θm,im ; ·)]im∈Im , and Θm := [θm,im]im∈Im . (2)

The classifier Fm(wm; ·) is parameterized by wm, and we denote the prediction loss function as ℓ(·, ·). The
data processing procedure on client m is described as follows:

4

Under review as submission to TMLR

(a) Data partition pattern and notations. (b) Block structure of client and server models

Figure 3: The partitioned data and notations, and the structure of the client and server models with heterogeneous
feature extractors and classifiers.
(1) The features xm,n of the nth sample are passed to the feature extractors {him

(θm,im
; ·)}im∈Im

;
(2) The classifier Fm(wm; ·) makes the prediction based on the concatenated output of the feature extractors
Hm(Θm; xm,n);
(3) The prediction Fm(wm; Hm(Θm; xm,n)) and the true label yn together evaluates the loss ℓ(·, ·).

With the specified data processing procedure, the prediction loss on client m is defined as:

fm(Θm, wm) := 1
|Nm|

∑
n∈Nm

ℓ(Fm(wm; Hm(Θm; xm,n)), yn). (3)

Additionally, the server will have a model with full feature extractors, concatenated with a classifier; see
the top figure in Fig. 3b. This model structure covers a wide range of ML models for classification and
regression problems, e.g., image classification, language processing, and recommendation system.

Remark 2. (Local and server models). A few remarks are ready. First, although the construction of the
client model has been partly motivated by the model splitting idea from VFL, one key difference with VFL
is that each client holds a complete model, capable of performing local inference without communication to
the server. Second, it is important to have a separate server model, because: 1) in case a test data with
“full feature” comes in, the server can deal with it; 2) in case a new client comes who needs to process a
new subset of features, it can directly download the corresponding feature extractors from the server, which
significantly reduces the complexity of building the local model; and most importantly 3) the server’s model
is instrumental in helping the clients to learn from each other’s data (as we will see shortly). □

At this point, we have defined the models and the prediction loss for each individual client. A key question
is: how the client can effectively collaborate and leverage each other’s data to train high-quality server/client
models? Unlike HFL, where all clients share the same model, the clients in this problem have local models
(i.e., feature extractors and classifiers) of different sizes to deal with feature heterogeneity. Therefore, one
cannot directly perform the conventional model averaging.

Model matching: To enable effective collaboration among the clients, our idea is to properly match different
parts of the model, by imposing a number of carefully designed regularizers.

First, it is natural to assume that when client m and m′ share the same feature block Di, the corresponding
feature extractors hi(θm,i; ·) should produce the same output, that is θm,i ≈ θ0,i ≈ θm′,i. Therefore, we
impose the following regularizer for the feature extractors, which matches the ith feature extractor at user
m with the corresponding extractor at the server:

rm,1(Θm, Θ0) :=
∑

i∈Im

1
2 ∥θm,i − θ0,i∥2 = 1

2 ∥Θm − PmΘ0∥2
, (4)

where Pm is the data selection matrix defined in (1) and Θm concatenates parameters defined in (2).

5

Under review as submission to TMLR

We then design the regularizer for the classifiers. As the classifiers on different clients share partially
overlapping input and identical output space, we model the client’s classifiers wm as some “pruned” versions
of the server-side classifier w0, but with unknown pruning pattern. More specifically, assume that wm ∈
Rdm,w , w0 ∈ Rd0,w , we impose the following regularizer for the classifier:

rm,2(wm, Πm, w0) = 1
2 ∥wm −Πmw0∥2

, s.t. Πm ∈ S(dm,w, d0,w), (5)

where Πm is a selection matrix defining the unknown pruning pattern. It is important to note that, the
pruning pattern matrices Πm’s are unknown and need to be optimized. On the contrary, when in the
definition of the feature extractor regularizer (4), the matrix data selection matrices Pm’s are fixed, and they
are defined by the data partitioning pattern. Detailed discussion about the structure of the constraints on
the pruning matrix Πm’s and the regularizer rm,2 are given in Appendix A.1

Overall problem formulation: By combining the models discussed in the previous two subsections, we
arrive at the following training problem:

min
{Θm,wm}M

m=0,{Πm}M
m=1

M∑
m=1

pm (fm(Θm, wm) + µ1 · rm,1(Θm, Θ0) + µ2 · rm,2(wm, Πm, w0)) ,

s.t. Πm ∈ S(dm,w, d0,w), ∀m ∈ [M],

(6)

where µ1, µ2 are hyper-parameters for the regularizers; pm’s are the weights for each local problem satisfying∑M
m=1 pm = 1, with common choices pm = 1

M or pm = |Nm|
|N | .

Remark 3. (Relation with HFL). When d0 = 1, that is, there is only a single feature block across all the
clients, then the data structure can be handled by the conventional HFL. Below let us discuss the relations
between our model (6) and some popular HFL models. First note that when d0 = 1, the feature extractor
regularizer (4) reduces to rm,1(Θm, Θ0) = 1

2 ∥Θm −Θ0∥2.

1) Reduction to FedMA (Wang et al., 2020) and Sub-FedAvg (Vahidian et al., 2021). If we set
Θm = I, i.e., the features are directly processed by the wm’s, then (6) is equivalent to the problem solved
by FedMA and Sub-FedAvg.

2) Reduction to FedProx (Li et al., 2018) and LG-FedAvg (Hanzely & Richtárik, 2020). By
setting wm = I.pm = 1

M and letting Θm directly predict the labels, the problem reduces to

min
{Θm}M

m=0

1
M

M∑
m=1

(fm(Θm) + µ1 · rm,1(Θm, Θ0)), (7)

which is equivalent to the formulation solved by FedProx and LG-FedAvg.

3) Reduction to FedAvg. Further by letting µ1 →∞ in (7), the regularizer enforce Θm’s to achieve exact
consensus, the problem reduces to the one solved by FedAvg.

4) Reduction to FedPer (Arivazhagan et al., 2019). By letting µ2 = 0 and µ1 → ∞ in (6), the
regularizer on wm’s is removed and Θm’s achieve exact consensus. In this case, Θm serves as the base layers
while wm’s serve as the personalized layers, which is equivalent to the model design of FedPer. □

Remark 4. (Relation with VFL). VFL assumes that the clients cannot perform prediction independently, so
it directly trains a global model with the local data (Liu et al., 2019; Chen et al., 2020). In contrast, we
assume that each client has sufficient features for independent training and construct a local model, which
is further used to construct a global model. This way, we avoid data sharing and sample synchronization
issues that often limit VFL use in practice. □

3 Algorithm Design

In this section, we propose a training algorithm for the proposed Hybrid FL formulation (6). This algorithm
will alternate between the server-side updates and the client-side updates. To proceed, we will first split

6

Under review as submission to TMLR

Algorithm 1 Hybrid Federated Matching Algorithm (HyFEM)
1: Input: w0

0, Θ0
0, {Π0

m}M
m=1, η, T, Q, P

2: for t = 0, . . . , T − 1 do
3: for client m = 1, . . . , M in parallel do
4: Θt,Q

m , wt,Q
m ←ClientUpdate

(
Θt

0, Πt
m, wt

0, Q, η)
)

// Local perturbed SGD solving (8)
5: Sends client model Θt,Q

m , wt,Q
m to server

6: for server do
7: Θt+1

0 ←
(∑M

m=1 pmP T
mPm

)−1 (∑M

m=1 pmP T
mΘt,Q

m

)
//Exact minimization for (10)

8: wt+1
0 , {Πt+1

m }M
m=1 ←ModelMatching

(
{wt,Q

m , Πt
m}M

m=1, P
)

// Solving (11)
9: Distributes server model wt+1

0 , Θt+1
0 , {Πt+1

m }M
m=1 to clients

10: Output: {wT
m, ΘT

m}M
m=0, {ΠT

m}M
m=1

(6) into a server-side problem and a client-side problem, and then develop algorithms to optimize each part.
One key consideration in our algorithm design is to ensure that the server-side model is optimized without
directly accessing any clients’ data.

Problem splitting: Notice that the problem contains parameter blocks {Θm}M
m=1, {wm}M

m=1, Θ0, w0 and
{Πm}M

m=1. First we divide the parameters into two groups: 1) the server-side parameters Θ0, w0, and
{Πm}M

m=1 and 2) the client-side parameters {Θm}M
m=1 and {wm}M

m=1.

By fixing the server-side parameters, (6) decomposes into m independent problems, one for each client. The
problem related to client m is given by:

min
Θm,wm

fm(Θm, wm) + µ1 · rm,1(Θm, Θ0) + µ2 · rm,2(wm, Πm, w0). (8)

Similarly, by fixing the client-side parameters, the fm’s in (6) become constants, and the problem reduces
to the following server-side problem:

min
Θ0,w0,{Πm}M

m=1

M∑
m=1

pm (µ1 · rm,1(Θm, Θ0) + µ2 · rm,2(wm, Πm, w0)) ,

s.t. Πm ∈ S(dm,w, d0,w), ∀m ∈ [M].

(9)

The above problem can be naturally separated into two sub-problems. The first sub-problems is:

min
Θ0

M∑
m=1

pm · rm,1(Θm, Θ0), (10)

and the second one is:

min
w0,{Πm}M

m=1

M∑
m=1

pm · rm,2(wm, Πm, w0), s.t. Πm ∈ S(dm,w, d0,w), ∀m ∈ [M]. (11)

Algorithm design: We propose a block coordinate descent type algorithm called Hybrid Federated
Matched Averaging (HyFEM) in Algorithm 1 to solve (6) with the above problem splitting strategy and
the sub-routines are given by Algorithm 2 in Appendix A.2. In global iteration t, the clients first performs
Q local perturbed SGD steps on problem (8) to optimize client models wt

m, Θt
m (line 1− 7 in Algorithm 2);

then the server aggregates the updated client models, updates global feature extractors by optimizing (10)
that has a closed-form solution as line 7 in Algorithm 1, and match the classifiers by optimizing (11); finally,
the server distributes the models and the selection matrices to clients.

The major step in the algorithm is solving the sub-problem (11). We optimize it by the ModelMatching
procedure described in line 8 − 14 of Algorithm 2 in Appendix A.2: 1) for each client index m′, construct
the server model wt,p

0 without the impact of the selected client; 2) apply the Hungarian algorithm to solve a
parameter assignment problem and obtain Πt,p+1

m′ in at most O((dm,w)3) run-time complexity Kuhn (1955).
With few rounds of updates, we obtain the server classifier and the selection matrices for each client. This
procedure is inspired by the model matching algorithms Wang et al. (2020); Yurochkin et al. (2019) for

7

Under review as submission to TMLR

matching parameters in deep neural networks of the same size. Our matching algorithm is a non-trivial
extension to the existing model matching algorithm. Because the server-side and client-side models do not
share the exact same functionality, we cannot replace the client-side models with the server-side model.
Such a special property introduces some significant challenges for model matching. The detailed matching
procedure is included in Appendix A.2.

Remark 5. Although Algorithm 1 seems to be complicated, it can be viewed as a problem with three
parameter blocks L(x, y, z), where x is the collection of {wm, Θm}M

m=1; y is the collection of {Πm}M
m=1 and

z is {w0, Θ0}. Then the update can be viewed as follows:

x+ ← x− η∇̃xL(x, y, z)︸ ︷︷ ︸
Q times

, y+ ← arg min
y∈Range(y)

L(x+, y, z), z+ ← arg min
z
L(x+, y+, z), (12)

where ∇̃xL(·) denotes the stochastic partial gradient estimation w.r.t. x. □

Theorem 1 (Informal) Suppose that for each m ∈ [M], fm has Lipschitz continuous gradients w.r.t.
[Θm, wm] and that w0 has a fixed dimension. Then with stepsize η = O(1/

√
QT) and client update Q = O(T),

by running Algorithm 1, the expected gradient norm square w.r.t. {Θm, wm}M
m=1 converges with rate O(1/T)

and the successive update difference
∥∥wt+1

0 − wt
0
∥∥2+

∥∥Θt+1
0 −Θt

0
∥∥2 converges with rate O(1/T). Alternatively,

if we assume the solution to {Πm}M
m=1 for sub-problem (11) is unique, and we update client models with one-

step gradient descent, then Algorithm 1 asymptotically converges to the first-order stationary point of (6).

Remark 6. Theorem 1 is a non-trivial extension of the convergence results for traditional BCD-type al-
gorithms. The major challenges in the analysis of HyFEM are: 1) it runs multiple, yet fixed number of
stochastic gradient updates on (potentially nonconvex) blocks {Θm, wm}M

m=1, which results in non-strictly
decrease; 2) the problem w.r.t. block {Πm}M

m=1 is nonconvex and non-smooth and does not has a unique
global minima. Such a setting is different from existing work on BCD-type algorithms. The detailed con-
vergence statement and its proofs are given in Appendix B. □

We highlight the merits of the proposed approach: 1) Unlike the typical VFL formulations (Liu et al., 2019;
Chen et al., 2020), our approach keeps the data at the clients. Hence, the local problems are fully separable.
There is no sample-drawing synchronization needed during local updates; 2) By utilizing the proposed model
matching technique, we can generate a global model at the server, which makes use of full features. This
makes the inference stage flexible: the clients can use either partial features (by using its local parameters
(Θm, wm)) or the full features by requesting (Θ0, w0) from the server or letting the server do the inference.

Although we formulate the problem by adopting the idea of model splitting from VFL and model prun-
ing/matching from HFL, optimizing (5) is still a non-trivial procedure. Specifically, we can only train
clients’ classifiers wm’s of different sizes, and construct unknown server’s classifier w0 with wm’s and find
Πm’s, while existing algorithms either require w0 to be given (Vahidian et al., 2021), or wm’s to have the
same size (Wang et al., 2020; Yurochkin et al., 2019).

4 Numerical Experiments

To evaluate the proposed algorithms, we have conducted experiments on a number of standard datasets,
and compared the results with several baselines including centralized training and stand-alone local training
(without any client-server communication). Since existing FL algorithms cannot be applied to our setting
that the client features are only partial overlapped, we do not compare HyFEM with other FL algorithms
in this section. However, we put an additional set of experiments in Appendix C comparing HyFEM and
FedProx with less heterogeneous features.

Dataset & data splitting: We consider the ModelNet40, Cifar-10, and EuroSAT datasets, the details of
which are explained below. We also consider an additional multi-modal dataset, we refer the readers to
Appendix C.3 for details.

ModelNet40 (Wu et al., 2015): ModelNet40 is a multiview object classification dataset that has 12
views from different angles as 12 feature blocks for each object. The dataset has N0 = 40, 000 samples

8

Under review as submission to TMLR

Table 2: Experiment settings for each dataset. d0, dm denote the # of feature blocks; N0,Nm denote the #
of samples; M denotes the number of clients.

Dataset d0 Classes N0 Client M dm Classes/client Nm

ModelNet40:1 4 40 40k 4 3 20 20k
ModelNet40:2 12 40 40k 8 6 15 15k
Cifar-10 12 10 50k 9 6-8 5 25k
EuroSAT 12 10 27k 9 6-8 5 13.5k

(a) ModelNet40:1 (b) ModelNet40:2 (c) Cifar-10 (d) EuroSAT

Figure 4: Test accuracy of server model trained with HyFEM compared with centralized training and stand-alone
training for a) ModelNet40:1, b) ModelNet40:2, c) Cifar-10, and d) EuroSAT datasets.
from 40 classes. Cifar-10 (Krizhevsky, 2009): Cifar-10 is an image classification dataset with N =
50, 000 samples from 10 classes. We manually split each image into (top left,top right,bottom left,bottom
right)×(red,green,blue) blocks, resulting in total d0 = 12 feature blocks. EuroSAT (Helber et al., 2019):
EuroSAT is a land cover classification satellite image dataset with N0 = 27, 000 samples from 10 classes, and
the images are split into 12 feature blocks the same as Cifar-10.

In the training phase of each task, we manually assign a few feature blocks and classes to each client, so
that the clients have partially overlapping features and samples and exhibit FH and SH. The settings are
summarized in Table 2. It is worth pointing out that in setting ModelNet40:2, 12.08% of the data have
never been used by any of the clients during training, and in all settings, there is no feature or sample that
is shared by all clients, so VFL and HFL algorithms cannot be applied. We conduct two sets of experiments
on ModelNet40 dataset where setting 1 uses d0 = 4 views and setting 2 uses full d0 = 12 views. The first
setting has less features, so the classifiers are smaller and the matching procedure is easier and expected to
be more accurate. Thus the performance of the server model should be closer to the model obtained with
centralized training. In the second setting, the matching procedure is more complex than that of the first
setting and should result in worse server model performance. The illustration of the data assignment pattern
is given in Appendix C.2.

In the testing phase, the clients evaluate their model on all testing samples with corresponding feature blocks
used in training phase. We average over the accuracies obtained by the clients to obtain the averaged local
accuracy. The global accuracy is evaluated using the matched server model on all testing samples with full
features.

Training settings: In the experiments, we use the MLP model with one hidden layer as the classifier
fm(wm; ·). We use the CNN part of ResNet-18 followed by one pooling layer as the feature extractors for
Cifar-10 and EuroSAT dataset; we use the CNN part of ResNet-34 followed by one pooling layer as the feature
extractors for ModelNet40 dataset. We use the following experiment settings as comparison: Centralized
training: we train a full-sized server model with all data. This setting serves as the performance upper
bound among all trained model. Stand-alone training: each client trains a client model only with local
data, and without any communication. This setting serves as the baseline (and the performance lower bound)
of HyFEM. In all settings, we fix the total number of updates (i.e., T ·Q = 4096, with T = 128, Q = 32) for
fair comparison and tune the learning rate to achieve the optimal performance for each experiment separately.

Numerical results: The global accuracy is shown in Figure 4 under different settings. We can see that
HyFEM algorithm can train a server model with higher accuracy than stand-alone training in all settings.
Moreover, the server models can achieve comparable performance as models obtained with centralized train-

9

Under review as submission to TMLR

(a) ModelNet40:1 (b) ModelNet40:2 (c) Cifar-10 (d) EuroSAT

Figure 5: Averaged test accuracy of all clients trained with HyFEM compared with centralized training and stand-
alone training for a) ModelNet40:1, b) ModelNet40:2, c) Cifar-10, and d) EuroSAT datasets.
ing, even none of the client has full features or full classes of the data. HyFEM can deal with data with
SH and FH. As expected, in setting ModelNet40:2, the server model accuracy is lower than in setting Mod-
elNet40:1, because the matching problem is harder for larger classifiers and 12.08% of the data have never
been used by any of the clients compared with centralized training.

The average client accuracy is shown in Figure 5 for different settings. Client models have lower testing
accuracies compared with server models. This is reasonable as the client models are trained with partial
features and biased data with partial classes. We also observe that the stand-alone accuracy under setting
ModelNet40:1 is higher than ModelNet40:2, as each client has more samples. However, the accuracy im-
provement with HyFEM under setting ModelNet40:1 is less than setting ModelNet40:2, as the latter one
uses more features. Nevertheless, HyFEM algorithm can train much better client models than stand-alone
training even the clients do not share the same input space and classes. By using global model matching
algorithm, the local classifiers can share knowledge with other clients on unseen classes and deal with SH.

5 Conclusions

We propose a hybrid FL framework that handles a general collaborative-learning scenario with partially over-
lapped features and samples. We first clarify how the data are partitioned in hybrid FL scenario and propose
a generic problem formulation. We then show that the proposed formulation covers a number of horizontal
and personalized FL settings, and develop a BCD based HyFEM algorithm to solve the proposed problem.
Finally our numerical results on a number of image classification datasets demonstrate that the HyFEM
algorithm enables clients with partial features and samples to achieve performance that is comparable to
centralized training with full features.

References
Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Federated

learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.

Nan Bai, Pirouz Nourian, Renqian Luo, and Ana Pereira Roders. Heri-graphs: A workflow of creating
datasets for multi-modal machine learning on graphs of heritage values and attributes with social media,
2022. URL https://arxiv.org/abs/2205.07545.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov,
Chloe Kiddon, Jakub Konecny, Stefano Mazzocchi, H Brendan McMahan, et al. Towards federated learning
at scale: System design. arXiv preprint arXiv:1902.01046, 2019.

Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin. Vafl: a method of vertical asynchronous federated
learning. arXiv preprint arXiv:2007.06081, 2020.

Canh T Dinh, Tung T Vu, Nguyen H Tran, Minh N Dao, and Hongyu Zhang. Fedu: A unified framework
for federated multi-task learning with laplacian regularization. arXiv preprint arXiv:2102.07148, 2021.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A meta-learning
approach. arXiv preprint arXiv:2002.07948, 2020.

10

https://arxiv.org/abs/2205.07545

Under review as submission to TMLR

Zhiwei Guo and Heng Wang. A deep graph neural network-based mechanism for social recommendations.
IEEE Transactions on Industrial Informatics, 17(4):2776–2783, 2020.

Filip Hanzely and Peter Richtárik. Federated learning of a mixture of global and local models. arXiv preprint
arXiv:2002.05516, 2020.

Chaoyang He, Murali Annavaram, and Salman Avestimehr. Group knowledge transfer: Federated learning
of large cnns at the edge. Advances in Neural Information Processing Systems, 33:14068–14080, 2020.

Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie, Lichao Sun, Lifang He, Liangwei
Yang, Philip S Yu, Yu Rong, et al. Fedgraphnn: A federated learning system and benchmark for graph
neural networks. arXiv preprint arXiv:2104.07145, 2021.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset and deep
learning benchmark for land use and land cover classification. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 2019.

Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kannan. Improving federated learning personaliza-
tion via model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open
problems in federated learning. Foundations and Trends® in Machine Learning, 14(1-2):1–210, 2021.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich,
and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algorithms in federated learning.
arXiv preprint arXiv:2008.03606, 2020a.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. pp. 5132–
5143, 2020b.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. First analysis of local GD on heterogeneous
data. arXiv preprint arXiv:1909.04715, 2019.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University of Tront,
2009.

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics quarterly, 2
(1-2):83–97, 1955.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated
optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127, 2018.

Yang Liu, Yan Kang, Xinwei Zhang, Liping Li, Yong Cheng, Tianjian Chen, Mingyi Hong, and Qiang Yang.
A communication efficient vertical federated learning framework. arXiv preprint arXiv:1912.11187, 2019.

Dianwen Ng, Xiang Lan, Melissa Min-Szu Yao, Wing P Chan, and Mengling Feng. Federated learning: a
collaborative effort to achieve better medical imaging models for individual sites that have small labelled
datasets. Quantitative Imaging in Medicine and Surgery, 11(2):852, 2021.

KM Jawadur Rahman, Faisal Ahmed, Nazma Akhter, Mohammad Hasan, Ruhul Amin, Kazi Ehsan Aziz,
AKM Muzahidul Islam, Md Saddam Hossain Mukta, and AKM Najmul Islam. Challenges, applications
and design aspects of federated learning: A survey. IEEE Access, 9:124682–124700, 2021.

11

Under review as submission to TMLR

Meisam Razaviyayn, Mingyi Hong, and Zhi-Quan Luo. A unified convergence analysis of block successive
minimization methods for nonsmooth optimization. SIAM Journal on Optimization, 23(2):1126–1153,
2013.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated multi-task learning.
In Advances in Neural Information Processing Systems, pp. 4424–4434, 2017.

Toyotaro Suzumura, Yi Zhou, Natahalie Baracaldo, Guangnan Ye, Keith Houck, Ryo Kawahara, Ali Anwar,
Lucia Larise Stavarache, Yuji Watanabe, Pablo Loyola, et al. Towards federated graph learning for
collaborative financial crimes detection. arXiv preprint arXiv:1909.12946, 2019.

Saeed Vahidian, Mahdi Morafah, and Bill Lin. Personalized federated learning by structured and unstruc-
tured pruning under data heterogeneity. In 2021 IEEE 41st International Conference on Distributed
Computing Systems Workshops (ICDCSW), pp. 27–34. IEEE, 2021.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni. Federated
learning with matched averaging. In International Conference on Learning Representations (ICLR), 2020.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao.
3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 1912–1920, 2015.

Liu Yang, Ben Tan, Vincent W Zheng, Kai Chen, and Qiang Yang. Federated recommendation systems. In
Federated Learning, pp. 225–239. Springer, 2020.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept and
applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19, 2019.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and Yasaman
Khazaeni. Bayesian nonparametric federated learning of neural networks. In International Conference on
Machine Learning, pp. 7252–7261, 2019.

Justin Zhan, Chia-Lung Hsieh, I-Cheng Wang, Tsan-Sheng Hsu, Churn-Jung Liau, and Da-Wei Wang.
Privacy-preserving collaborative recommender systems. IEEE Transactions on Systems, Man, and Cyber-
netics, Part C (Applications and Reviews), 40(4):472–476, 2010.

Huanding Zhang, Tao Shen, Fei Wu, Mingyang Yin, Hongxia Yang, and Chao Wu. Federated graph learning–
a position paper. arXiv preprint arXiv:2105.11099, 2021.

12

Under review as submission to TMLR

A Heterogeneous Model Matching Algorithm

In this section, we describe the details for the model matching algorithm. First, we describe the motivation
behind the design of the classifiers’ regularizer (5), which encourage wm’s to be matched together to construct
w0 is designed. Then we present the detailed version of line 8−14 in Algorithm 2 for optimizing the regularizer
(11).

A.1 Regularizer Design

Recall the regularizer for the classifiers is given by:

rm,2(wm, Πm, w0) = 1
2 ∥wm −Πmw0∥2

, s.t. Πm ∈ S(dm,w, d0,w),

where dm,w, d0,w are the dimensions of wm, w0 and Πm is a selection matrix corresponds to the unknown
pruning pattern. In this section, we motivate why such a regularizer is used, and how the selection matrices
Πm’s are constructed.

We note that the proposed matching method is a non-trivival extension of the neural matching
method (Yurochkin et al., 2019) (designed for horizontal FL) to the case of hybrid FL. In Yurochkin et al.
(2019), the author considered the horizontal FL setting where the sizes and the functionalities of all the
clients’ models as well as the server’s model are identical, so after matching, the clients can use the matched
server-side model directly as their new model. However, in the considered hybrid FL setting, the input
dimension of each of the client’s inference block can be very different, and the serve-side and client-side mod-
els do not share the exact same functionality. Therefore we cannot replace the client-side models with the
server-side model. Such a special property of the hybrid FL problem introduces some significant challenges
for the matching procedure. This is the main reason that in our proposed algorithm, the matching matrices
and the client/server models have to be iteratively optimized.

Suppose that for each client m, its classifier fm(wm; ·) has L layers; then the inference block has the following
structure:

y = σm,L(wm,L · σm,L−1(wm,L−1 . . . σm,1(wm,1vm) . . .)), (13)

where σm,l(·) represents the element-wise nonlinear activation function of layer l; wm,l’s are the weight
matrices of layer l, and vm is the input of the classifier which is the stacked output of the feature extractors,
i.e., vm = Hm(Θm; x). Then wm = {wm,l}L

l=1; see Figure 6 for an illustration. Let us further define the
server’s output of feature extractors, activation functions and weights as v0 {σ0,l(· · ·)}L

l=1 similarly as above.

Note that giving a selection matrix with appropriate shape Π ∈ S, left multiply the weight matrix wm,l by
ΠT (ΠT wm,l) results in selecting the rows of wm,l, which is equivalent to selecting the output neurons of the
lth layer. And right multiply the weight matrix wm,l by Π (wm,lΠ) results in selecting the columns of wm,l,
which is equivalent to selecting the input neurons of the lth layer.

The goal is to match wm,l’s with the corresponding parameters w0,l at the server. Below, we discuss how
the first layer, the middle layers and the last layer are matched.

First, recall that the input of the classifiers have the following relation:

Hm(Θm; xm) = PmH0(Θ0; x0), thatis,vm = Pmv0,

where Pm is the selection matrix defined by the feature overlapping pattern between xm and x0. Then, let
us multiply P T

m on both sides of the above equation, we obtain

P T
mPmv0 = P T

mvm. (14)

Note that P T
mvm basically pads zeros in the missing feature indices of the vm, so that it matches the size

of v0. Let us define Πm,1 = Pm. By utilizing the fact that Pm ∈ S(dm, d0) is a selection matrix, it holds
PmP T

m = Idm , then we have the following relation:

σm,1((wm,1Πm,1)(ΠT
m,1vm)) = σm,1(wm,1vm).

13

Under review as submission to TMLR

This process expands the input vm to the same size as v0, while keeping the output of the first layer
unchanged; see Fig. 7 for an illustration of this process.

Next, we would like to find a selection matrix Πm,2 ∈ S that compresses the output of the first layer of the
server to match the output of the first layer of client m, as follows:

σm,1((wm,1Πm,1)(ΠT
m,1vm)) ≈ Πm,2 · σ0,1(w0,1v0). (15)

This output matching relation imposes the following assumption on the model parameters:

wm,1 = Πm,2w0,1ΠT
m,1. (16)

To see why (16) implies (15), we can plug (16) into the left hand side of (16), and obtain:

σm,1((wm,1Πm,1)(ΠT
m,1vm)) = σm,1((Πm,2w0,1ΠT

m,1Πm,1)(ΠT
m,1vm))

(i)= Πm,2 · σ0,1((w0,1ΠT
m,1Πm,1)(ΠT

m,1vm))
= Πm,2 · σ0,1((w0,1ΠT

m,1Πm,1)(ΠT
m,1Πm,1v0))

= Πm,2 · σ0,1(w0,1ΠT
m,1Πm,1v0)

(ii)
≈ Πm,2 · σ0,1(w0,1v0),

(17)

where (i) comes from the fact that projection only changes the order and pads zeros to the output, so applying
element-wise activation before or after the projection does not affect the final output; in (ii) we use the fact
that ΠT

m,1Πm,1 is a diagonal matrix with 1’s and 0’s on diagonal that can be approximated by a identity
matrix. The above discussion suggests that, if (16) holds approximately, then (15) holds approximately.
As a result, we design the regularizer on the first layer between client m and the server, by approximately
enforcing (16) as

1
2
∥∥wm,1 −Πm,2w0,1ΠT

m,1
∥∥2

.

Let us now analyze the constraint for Πm,2. First, since the dimension of w0,1 is larger or equal to that
of wm,1 for each client m, we require that each coordinate of wm,1 is matched to one coordinate in w0,1.
Therefore we need Πm,2 to satisfy 1 = Πm,21. Further, each coordinate in w0,1 should match to a coordinate
in at least one clients m ∈ [M]’s wm,1, so this means

∑M
m=1 1T Πm,2 ≥ 1. The above process is illustrated in

Fig. 8.

For the lth middle layer, its input is the output of the previous layer. By fixing the projection matrices
{Πm,l}M

m=1 that match the output of the (l − 1)th layer at each client to the output of the (l − 1)th layer
at the server, the matching problem for the lth middle layer takes the same form as the matching problem
for the input layer: the output of the previous layer σm,l−1(·) corresponds to the input vm; the projection
matrices {Πm,l}M

m=1 correspond to the input projection matrices {Πm,1}M
m=1; the goal is to find the projection

matrices {Πm,l+1}M
m=1 that match the output of the lth layer at each client to the output of the same layer

as the server.

By using the same argument that we used for the input layer, we design the regularizer on the lth middle
layer between client m and the server as

1
2
∥∥wm,l −Πm,l+1w0,lΠT

m,l

∥∥2
.

For the last layer, the output at each client is the same as the server, which are the predicted label. Therefore,
the projection matrix of the output for the last layer are identity matrices, and we design the regularizer for
the last layer as

1
2
∥∥wm,L − w0,LΠT

m,L

∥∥2
.

Next, by vectorizing wm,l’s we have following relation:

vec(Πm,l+1w0,lΠT
m,l) = (Πm,l ⊗Πm,l+1)vec(w0,l),

14

Under review as submission to TMLR

Algorithm 2 Sub-routines for Algorithm 1
1: ClientUpdate(Θt

0, Πt
m, wt

0, Q, η)
2: Initialize: Θt,0

m ← PmΘt
0, wt,0

m ← Πt
mwt

0
3: for q = 0, . . . , Q− 1 do
4: Uniformly sample n ∈ Nm

5: Θt,q+1
m ← Θt,q

m − η
(
∇Θm ℓ(Fm(wt,q

m ; Hm(Θt,q
m ; xm,n)), yn) + µ1(Θt,q

m − PmΘt
0)
)

6: wt,q+1
m ← wt,q

m − η
(
∇wm ℓ(Fm(wt,q

m ; Hm(Θt,q
m ; xm,n)), yn) + µ2(wt,q

m −Πt
mwt

0)
)

7: Output: Θt,Q
m , wt,Q

m

8: ModelMatching({wt,Q
m , Πt

m}M
m=1, wt

0, P)
9: for p = 0, . . . , P − 1 do

10: for m′ = 1, . . . , M in parallel do
11: ŵt,p

0 ←
(∑

m ̸=m′ pm(Πt,p
m)T Πt,p

m

)−1 (∑
m ̸=m′ pm(Πt,p

m)T wt,Q
m

)
12: Πt,p+1

m′ ← arg minΠm′ rm′,2(wt,Q
m′ , Πm′ , ŵt,p

0), // Using Hungarian algorithm

13: wt+1
0 ←

(∑M

m=1 pm(Πt,P
m)T Πt,P

m

)−1 (∑M

m=1 pm(Πt,P
m)T wt,Q

m

)
, Πt+1

m ← Πt,P
m

14: Output: wt+1
0 , {Πt+1

m }M
m=1

where ⊗ denotes the Kronecker product. Therefore the regularizer for each layer can be rewritten as

1
2 ∥vec(wm,l)− (Πm,l ⊗Πm,l+1)vec(w0,l)∥2

.

Finally we can stack the sub-vector {vec(wm,l)}L
l=1 into wm, and define the projection matrix of the long

vector as
Πm := diag((Πm,1 ⊗Πm,2), . . . , (Πm,L ⊗ I)).

Again, Πm is a block diagonal matrix, and it is easy to verify that it satisfies the following conditions:

ΠT
m1 = 1,

M∑
m=1

1Πm ≥ 1; Πm ≥ 0. (18)

Finally, we obtain the final formulation of the regularizer

rm,2(wm, Πmw0) = 1
2 ∥wm −Πmw0∥2

, ∀ m ∈ [M]

where Πm’s satisfy: Πm ∈ S(dw,m, dw,0),
M∑

m=1
1T

dw,m
Πm ≥ 1T

dw,0
.

(19)

A.2 Optimization Procedure

In this subsection, we describe the detailed procedures in line 8−14 of Algorithm 2 to optimize the classifier
matching problem (5) or its more detailed formulation (19). The procedure with more details is given in
Algorithm 3.

We iteratively solve the matching problem (11) for P iterations. In each iteration, we randomly pick a client
m′ to match it with the server’s classifier from the first layer to the last layer.

For the first L− 1 layers, we first fix Πm′,l−1 and construct an assignment cost matrix Cl that computes the
cost to match jth row in client m′ to ith row in the server of layer l for all (i, j). The element Cl(i, j) of the
cost matrix is defined as:

Cl(i, j) =
{

dist1(w0,lΠT
m,l−1[i], wm,l[j]) w0,lΠT

m,l−1[i] ̸= 0
dist2(wm,l[j]) otherwise,

(20)

where w0,lΠT
m,l−1[i] and wm,l[j] denote the ith and jth row of the matrices, dist1 is the similarity cost for

matching wm,l[j] to an existing row, and dist2 is the dimension penalty to match wm,l[j] to a new row in

15

Under review as submission to TMLR

Algorithm 3 Model Matching Procedure
1: ModelMatching
2: Input: {wt,Q

m , Πt
m}M

m=1, wt
0, P

3: for p = 0, . . . , P − 1 do
4: Uniformly sample m′ ∈ [M]

5: wt,p
0 ←

(∑
m ̸=m′ pm(Πt,p

m)T Πt,p
m

)−1 (∑
m ̸=m′ pm(Πt,p

m)T wt,Q
m

)
6: for l = 1, . . . , L− 1: do
7: Construct cost matrix Cl with (20).
8: Πt,p+1

m′,l
← arg minΠm′

∑
i,j

Πm′ (i, j) · Cl(i, j), // Using Hungarian algorithm

9: wt+1 ←
(∑M

m=1 pm(Πt,P
m)T Πt,P

m

)−1 (∑M

m=1 pm(Πt,P
m)T wt,Q

m

)
, Πt+1

m ← Πt,P
m

10: Output: wt+1
0 , {Πt+1

m }M
m=1

w0,l. One specification of the cost functions is PFNM (Yurochkin et al., 2019) that uses the MAP loss of
the Beta-Bernoulli process, where dist1 is based on the Gaussian prior and dist2 follows the Indian Buffet
process prior. Then we can solve the assignment problem to obtain Πm′,l with the celebrated Hungarian
algorithm (Kuhn, 1955).

Note that for the first layer, the matching pattern Πm,0 is given by Πm,0 = Pm. And we do not need to
match the output layer.

B Convergence Analysis

In this section, we analyze the convergence property of Algorithm 1. We first make the following assumptions
on the problem:

A 1 (Block Lipschitz Gradient) For each parameter blocks in {wm, Θm}M
m=1, there exists an Lm such

that the following holds:∥∥∇Θmfm(Θm, wm)−∇Θ′
m

fm(Θ′
m, w′

m)
∥∥+

∥∥∇wmfm(Θm, wm)−∇w′
m

fm(Θ′
m, w′

m)
∥∥

≤ Lm (∥Θm −Θ′
m∥+ ∥wm − w′

m∥) , ∀ Θm, Θ′
m, wm, w′

m,

A 2 (Lower Bounded Loss) There exist finite lower bounds for each client classification loss, i.e.,

∃ fm > −∞, s.t. fm(Θm, wm) ≥ fm, ∀Θm, wm, m.

A 3 (Bounded Variance) The stochastic partial gradient estimation has bounded variance σ2
Θ and σ2

w,
i.e.,

En ∥∇Θm
ℓ(Fm(wm; Hm(Θm; xm,n)), yn)−∇Θm

fm(wm, Θm)∥2 ≤ σ2
Θ,∀ Θm, wm, ∀ m ∈ [M],

En ∥∇wmℓ(Fm(wm; Hm(Θm; xm,n)), yn)−∇wmfm(wm, Θm)∥2 ≤ σ2
w,∀ Θm, wm, ∀ m ∈ [M].

We can abstract HyFEM to a BCD-type algorithm by redefining the model parameters and the problem as
follows:

1. Define x := [Θ1; . . . ; ΘM ; w1; . . . ; wM], y := [vec(Π1); . . . , vec(ΠM)], and z := [Θ0; w0].

2. Define L(x, y, z) :=
∑M

m=1 pm (fm(Θm, wm) + µ1 · rm,1(Θm, Θ0) + µ2 · rm,2(wm, Πm, w0)) .

Then the optimization problem (6) can be simplified as:

min
x,y,z
L(x, y, z), s.t. y ∈ Range(y). (21)

16

Under review as submission to TMLR

Moreover, the algorithm can be simplified as:

xt,q+1 = xt,q − η∇̃xL(xt,q, yt, zt), forq = 0, . . . , Q− 1 (22a)
yt+1 = arg min

y∈Range(y)
L(xt,Q, y, zt), (22b)

zt+1 = arg min
z
L(xt,Q, yt+1, z), (22c)

where we assume xt+1,0 = xt+1 = xt,Q and ∇̃xL(·) denotes the stochastic partial gradient of x.

We make the following assumptions to problem (21).

A 4 (Block Lipschitz Gradient) L is block smooth, and for parameter x and z, there exists positive
constants Lx, Lz and Cx such that the following holds:

∥∇xL(x, y, z)−∇x′L(x′, y, z)∥ ≤ Lx ∥x− x′∥ ,∀ x, x′, z,∀y ∈ Range(y).
∥∇xL(x, y, z)−∇xL(x, y, z′)∥ ≤ Cx ∥z− z′∥ ,∀ z, z′, x,∀y ∈ Range(y).

A 5 (Block Strong Convexity of z) For parameter z, there exists a positive constant µ such that the
following holds:

L(x, y, z′) ≥ L(x, y, z) + ⟨∇zL(x, y, z), z′ − z⟩+ µ

2 ∥z
′ − z∥2

,∀ x, z, z′,∀y ∈ Range(y).

A 6 (Unbiased Stochastic Partial Gradient) The stochastic partial gradient of x is unbiased:

E ∇̃xL(x, y, z) = ∇xL(x, y, z),∀ x, z,∀y ∈ Range(y).

A 7 (Bounded Variance of Stochastic Partial Gradient) The stochastic partial gradient of x has
bounded variance σ2:

E
∥∥∇̃xL(x, y, z)−∇xL(x, y, z)

∥∥2 ≤ σ2,∀ x, z,∀y ∈ Range(y).

A 8 (Lower Bounded Function) The problem L is bounded from below, i.e.,

∃L > −∞, s.t. L(x, y, z) ≥ L, ∀x, z,∀y ∈ Range(y).

A 9 (Compact Constraint Set) For parameter y, the constraint set Range(y) is compact.

Note that in A4 and A5, we only assume blocks x, z are smooth, and only block z is strongly convex while
block y can be non-smooth and non-convex and x can potentially be non-convex. Further we assume that
∇xL is smooth w.r.t. z, which is non-standard, but we can prove that it hold for problem (6). The rest
assumptions A6-A9 are common assumptions when analyzing stochastic algorithms. Further we can verify
that the above assumptions hold for the original problem (6).

Lemma 1 Suppose (6) satisfies assumptions A1-A3, then it satisfies A4-A9 with the constants in the as-
sumptions given as:

Lx = max
m
{pmLm + max{µ1, µ2}}, Cx = max{µ1, µ2},

µ ≥ min
m
{pm} ·min{µ1, µ2}, σ2 = σ2

Θ + σ2
w, L =

M∑
m=1

pmfm.

The proof is given in Section B.2.

Then we have the following result:

17

Under review as submission to TMLR

Theorem 2 Suppose the problem (21) satisfies A4-A9 and run (22) for T iterations with stepsize η ≤
min{ 1

Lx
, 8µ

5C2
x
}. Then the sequence {xt,q, yt, zt}T

t=0 generated by (22) satisfies:

1
TQ

T −1∑
t=0

E

(
µ

η

∥∥zt+1 − zt
∥∥2 +

∥∥∇xL(xt+1, yt+1, zt)
∥∥2 +

Q∑
q=0

∥∥∇xL(xt,q, yt, zt)
∥∥2
)

≤ 10
TQη

(
L(x0, y0, z0)− L

)
+
(

5Lxη + 2L2
xη2

Q

)
σ2,

(23)

and ∥∇zL(xt, yt, zt)∥2 = 0, ∀t ∈ [T].

This result indicates that by setting Q = T, η =
√

2(L(x0,y0,z0)−L)
LxQT σ2 , the right-hand-side (RHS) of (23)

becomes 10σ
√

2(L(x0,y0,z0)−L)Lx
T + 2Lx(L(x0,y0,z0)−L)

T 3 = O(1
T). Let us analyze the left-hand-side (LHS) terms

of (23). First, we have

1
TQ

T −1∑
t=0

E
µ

η

∥∥zt+1 − zt
∥∥2 = µ

T

T −1∑
t=0

E
∥∥zt+1 − zt

∥∥2 = O
(

1
T

)
,

indicating that E
∥∥zt+1 − zt

∥∥2 = O
(1

T

)
. Second, we have

1
TQ

T −1∑
t=0

E

(∥∥∇xL(xt+1, yt+1, zt)
∥∥2 +

Q∑
q=0

∥∥∇xL(xt,q, yt, zt)
∥∥2
)

= O
(

1
T

)
,

where the LHS is the sum of T (Q + 2) terms of ∥∇xL∥2 divide by TQ, which also indicates that
E ∥∇xL(xt,q, yt, zt)∥2 = O

(1
T

)
. Together we have that algorithm (22) finds a stationary solution of (21)

w.r.t. x, z with rate O
(1

T

)
. Combining Theorem 2 with Lemma 1, we have that by running Algorithm 1,

parameters {wm, Θm}M
m=0 converges to their stationary point of (6), while {Πm}M

m=1 stays in a compact set.

Alternatively, if we assume the solution to y is unique, and update on x is a one-step gradient descent, i.e.,
Q = 1 and

xt+1 = xt − η∇xL(xt, yt, zt),

then by applying (Razaviyayn et al., 2013, Theorem 2), Algorithm 1 asymptotically converges to the first-
order stationary point of (6).

B.1 Proof for Theorem 2

We begin with proving the following descent result:

Et L(xt+1, yt+1, zt+1)− L(xt, yt, zt) ≤ −η

2

Q−1∑
q=0

Et
∥∥∇xL(xt,q, yt, zt)

∥∥2

− µ

2
∥∥zt+1 − zt

∥∥2 + QLxη2σ2

2 ,

(24)

where we denote the expectation conditioned on the information up to iteration t as Et. First, we write the
LHS of the above equation into three terms as below:

L(xt+1, yt+1, zt+1)− L(xt, yt, zt) =
(
L(xt+1, yt+1, zt+1)− L(xt+1, yt+1, zt)

)
+
(
L(xt+1, yt+1, zt)− L(xt+1, yt, zt)

)
+
(
L(xt+1, yt, zt)− L(xt, yt, zt)

)
.

(25)

We bound the three terms on the RHS of the above equation separately.

18

Under review as submission to TMLR

1) The first term
(
L(xt+1, yt+1, zt+1)− L(xt+1, yt+1, zt)

)
can be bounded by applying A5:

L(xt+1, yt+1, zt+1)− L(xt+1, yt+1, zt)
A5
≤ −

〈
∇Lz(xt+1, yt+1, zt+1), zt − zt+1〉− µ

2
∥∥zt+1 − zt

∥∥2

(a)= −µ

2
∥∥zt+1 − zt

∥∥2
,

(26)

where in (a) uses update rule (22c) that by exact minimization ∇zL(xt+1,yt+1,zt+1) = 0.

2) By the update rule (22b), the second term
(
L(xt+1, yt+1, zt)− L(xt+1, yt, zt)

)
can be bound by

L(xt+1, yt+1, zt)− L(xt+1, yt, zt) ≤ 0. (27)

3) The third term
(
L(xt+1, yt, zt)− L(xt, yt, zt)

)
can be further decompose into:

L(xt+1, yt, zt)− L(xt, yt, zt) = L(xt,Q, yt, zt)− L(xt,0, yt, zt)

=
Q−1∑
q=0

(
L(xt,q+1, yt, zt)− L(xt,q, yt, zt)

)
,

(28)

where the first inequality uses the definition that xr,Q = xr+1 and xr,0 = xr. Then we bound each term in
the summation as:

L(xt,q+1, yt, zt)− L(xt,q, yt, zt)
A4
≤
〈
∇xL(xt,q, yt, zt), xr,q+1 − xr,q

〉
+ Lx

2
∥∥xt,q+1 − xt,q

∥∥2

(22a)= −η
〈
∇xL(xt,q, yt, zt), ∇̃xL(xt,q, yt, zt)

〉
+ Lxη2

2
∥∥∇̃xL(xt,q, yt, zt)

∥∥2
.

(29)

Taking expectation on (t, q), we have:

Et,q L(xt,q+1, yt, zt)− L(xt,q, yt, zt)

≤ −η
〈
∇xL(xt,q, yt, zt),Et,q ∇̃xL(xt,q, yt, zt)

〉
+ Lxη2

2 Et,q
∥∥∇̃xL(xt,q, yt, zt)

∥∥2

(a)= η
∥∥∇xL(xt,q, yt, zt)

∥∥2 + Lxη2

2
∥∥∇xL(xt,q, yt, zt)

∥∥2

+ Lxη2

2 Et,q
∥∥∇̃xL(xt,q, yt, zt)−∇xL(xt,q, yt, zt)

∥∥2

A7
≤ −

(
η − Lxη2

2

)∥∥∇xL(xt,q, yt, zt)
∥∥2 + Lxη2σ2

2 ,

(30)

where (a) first applies the fact that E(X2) = (EX)2 + E((X − E(X))2) to the second therm, then applies
A6 to the first and the second term.

By picking η ≤ 1
Lx

and substituting (30) to (28), we have:

Et L(xt+1, yt, zt)− L(xt, yt, zt) ≤ −η

2

Q−1∑
q=0

Et
∥∥∇xL(xt,q, yt, zt)

∥∥2 + QLxη2σ2

2 . (31)

Then we substitute (26), (27) and (31) back to (25), then we obtain (24).

19

Under review as submission to TMLR

To prove Theorem 2, we need to further bound
∥∥∇xL(xt+1, yt, zt)

∥∥2 and
∥∥∇xL(xt+1, yt+1, zt)

∥∥2. We bound
them as follows. Term

∥∥∇xL(xt+1, yt, zt)
∥∥2 can be bound as:

Et,Q−1 ∥∥∇xL(xt+1, yt, zt)
∥∥2 (a)
≤ 2

∥∥∇xL(xt,Q−1, yt, zt)
∥∥2

+ Et,Q−1 2
∥∥∇xL(xt,Q, yt, zt)−∇xL(xt,Q−1, yt, zt)

∥∥2

A4
≤ 2L2

x Et,Q−1 ∥∥xt,Q − xt,Q−1∥∥2 + 2
∥∥∇xL(xt,Q−1, yt, zt)

∥∥2

(22a)= 2L2
xη2 Et,Q−1 ∥∥∇̃xL(xt,Q−1, yt, zt)

∥∥2 + 2
∥∥∇xL(xt,Q−1, yt, zt)

∥∥2

A7
≤
(
2 + 2L2

xη2) ∥∥∇xL(xt,Q−1, yt, zt)
∥∥2 + 2L2

xη2σ2,

(32)

where in (a) we add and subtract ∇xL(xt,Q−1, yt, zt) and apply Cauchy–Schwarz inequality. Similarly, term∥∥∇xL(xt+1, yt+1, zt)
∥∥2 can be bound as:

∥∥∇xL(xt+1, yt+1, zt)
∥∥2 (a)
≤ 2

∥∥∇xL(xt+1, yt+1, zt)−∇xL(xt+1, yt+1, zt+1)
∥∥2

+ 2
∥∥∇xL(xt+1, yt+1, zt+1)

∥∥2

A4
≤ 2C2

x
∥∥zt+1 − zt

∥∥2 + 2
∥∥∇xL(xt+1, yt+1, zt+1)

∥∥2
, (33)

where in (a) we add and subtract ∇xL(xt+1, yt+1, zt+1) and apply Cauchy–Schwarz inequality.

Then we sum the above results as (24)× 2 + (32)× η
5 + (33)× η

5 and obtain the following:

2Et L(xt+1, yt+1, zt+1)− 2L(xt, yt, zt) + η

5 Et,Q−1 ∥∥∇xL(xt+1, yt, zt)
∥∥2

+ η

5
∥∥∇xL(xt+1, yt+1, zt)

∥∥2 ≤ −η

Q−1∑
q=0

Et
∥∥∇xL(xt,q, yt, zt)

∥∥2 − µ
∥∥zt+1 − zt

∥∥2

+ QLxη2σ2 + 2C2
xη

5
∥∥zt+1 − zt

∥∥2 + 2η

5
∥∥∇xL(xt+1, yt+1, zt+1)

∥∥2

+ 2η + 2L2
xη3

5
∥∥∇xL(xt,Q−1, yt, zt)

∥∥2 + 2L2
xη3σ2

5 .

(34)

Rearrange the terms, notice that we choose η ≤ 1
Lx

, so that 2η + 2L2
xη3 ≤ 4η, we have:

η

5

Q∑
q=0

Et
∥∥∇xL(xt,q, yt, zt)

∥∥2 + η

5 Et
∥∥∇xL(xt+1, yt+1, zt+1)

∥∥2 +
(

µ− 2C2
xη

5

)∥∥zt+1 − zt
∥∥2

≤ 2
(
L(xt, yt, zt)− Et L(xt+1, yt+1, zt+1)

)
+
(

2L2
xη3

5 + QLxη2
)

σ2.

(35)

Sum the above equation from t = 0 to T − 1, choose µ− 2C2
xη

5 ≥ µ
5 (η ≤ 8µ

5C2
x

), and devide both side by ηQT
5 ,

then Theorem 2 is proved.

B.2 Proof for Lemma 1

In this section, we verify the assumptions A4-A9 for the original problem (6) under assumptions A1-A3.

20

Under review as submission to TMLR

Recall that we have the following corresponcance:

x := [Θ1; . . . ; ΘM ; w1; . . . ; wM], y := [vec(Π1); . . . , vec(ΠM)], z := [Θ0; w0],

L(x, y, z) :=
M∑

m=1
pm (fm(Θm, wm) + µ1 · rm,1(Θm, Θ0) + µ2 · rm,2(wm, Πm, w0)) ,

rm,1(Θm, Θ0) = 1
2 ∥Θm − PmΘ0∥2

,

rm,2(wm, Πm, w0) = 1
2 ∥wm −Πmw0∥2

, s.t. Πm ∈ S(dw,m, dw,0),
M∑

m=1
1T

dw,m
Πm ≥ 1T

dw,0
.

1) For A4, we have

∇xL(x, y, z) =
[

pm∇Θm
fm(Θm, wm) + pmµ1(Θm − PmΘ0)

pm∇wm
fm(Θm, wm) + pmµ2(wm −Πmw0)

]M

m=1
.

Therefore we have the following bound:

∥∇xL(x, y, z)−∇xL(x′, y, z)∥

=
M∑

m=1
pm ∥∇Θmfm(Θm, wm) + µ1Θm −∇Θmfm(Θ′

m, w′
m)− µ1Θ′

m∥

+
M∑

m=1
pm ∥∇wm

fm(Θm, wm) + µ2wm −∇wm
fm(Θ′

m, w′
m)− µ2w′

m∥

≤
M∑

m=1
pm (∥∇Θmfm(Θm, wm)−∇Θmfm(Θ′

m, w′
m)∥+ µ1 ∥Θm −Θ′

m∥)

+
M∑

m=1
pm (∥∇wm

fm(Θm, wm)−∇wm
fm(Θ′

m, w′
m)∥+ µ2 ∥wm − w′

m∥)

A1
≤

M∑
m=1

pm ((Lm + µ1) · ∥Θm −Θ′
m∥+ (Lm + µ2) · ∥wm − w′

m∥)

≤ max
m
{pmLm + max{µ1, µ2}}

M∑
m=1

(∥Θm −Θ′
m∥+ ∥wm − w′

m∥)

= Lx ∥x− x′∥ .

where we obtain Lx = maxm{pmLm + max{µ1, µ2}}. Also, we have

∥∇xL(x, y, z)−∇xL(x, y, z′)∥ =
M∑

m=1
pm (µ1 ∥Pm(Θ0 −Θ′

0)∥+ µ2 ∥Πm(w0 − w′
0)∥)

≤
M∑

m=1
pm (µ1 ∥Pm∥ ∥Θ0 −Θ′

0∥+ µ2 ∥Πm∥ ∥w0 − w′
0∥)

(a)=
M∑

m=1
pm (µ1 ∥Θ0 −Θ′

0∥+ µ2 ∥w0 − w′
0∥)

(b)
≤ max{µ1, µ2} (∥Θ0 −Θ′

0∥+ ∥w0 − w′
0∥)

= Cx ∥z− z′∥ .

where in (a) we use the fact that Pm ∈ S(dm, d0), Πm ∈ S(dw,m, dw,0) are selection matrices so that ∥Pm∥ =
1, ∥Πm∥ = 1; (b) uses the fact that

∑M
m=1 pm = 1. Therefore A4 is verified.

21

Under review as submission to TMLR

2) Next, we verify A5. We proceed by directly computing the second derivitive of z:

∇2
zL(x, y, z)

=
M∑

m=1
pm

[
∇2

Θ0
µ1 · rm,1 + µ2 · rm,2 ∇Θ0∇w0µ1 · rm,1 + µ2 · rm,2

∇Θ0∇w0µ1 · rm,1 + µ2 · rm,2 ∇2
w0

µ1 · rm,1 + µ2 · rm,2

]

=
[

µ1 ·
∑M

m=1 pmP T
mPm 0

0 µ2
∑M

m=1 pmΠT
mΠm

]
.

Then we analyze the range of the eigenvalues of this matrix. First we know that Πm, Pm’s are selection
matricies, therefore P T

mPm, ΠT
mΠm are diagonal matricies, indicating that ∇2

zL(x, y, z) is also a diagonal
matrix.

For the first block µ1 ·
∑M

m=1 pmP T
mPm, we have that Pm’s are the feature selection matrix, i.e.,

xm = Pmx0, xm ∈ Xm =
∏

i∈Im

Di, x0 ∈ X0 =
d0∏

i=1
Di.

It is clear that if client m has the ith feature, then the ith diagonal entry of P T
mPm is P T

mPm(i, i) = 1, and
P T

mPm(i, i) = 0 otherwise. That is, the following holds:

P T
mPm(i, i) =

{
1, i ∈ Im,

0, i /∈ Im.

Further we have that the full feature space X0 is the union of the clients’ feature spaces, i.e.,
⋃

m∈[M] Im =
[d0]. Therefore, we have

1
T
d0

M∑
m=1

P T
mPm ≥ 1

T
d0

, and min
i∈[d0]

M∑
m=1

pmP T
mPm(i, i) ≥ min

m
{pm}.

Similarly, the constraint on Πm’s that
∑M

m=1 1T
dw,m

Πm ≥ 1T
dw,0

indicates that the following holds:

min
i∈[dm,0]

M∑
m=1

pmΠT
mΠm(i, i) ≥ min

m
{pm}.

Therefore, the Hessien matrix ∇2
zL(x, y, z) is positive definite, with smallest eigenvalue µ ≥ minm{pm} ·

min{µ1, µ2}. Thus A5 is verified.

3) A6 holds true as in Algorithm 1, we uniformly samples n ∈ Nm for all m ∈ [M], therefore

En∇Θmℓ(Fm(wm; Hm(Θm; xm,n)), yn) = ∇Θmfm(Θm, wm),
En∇wmℓ(Fm(wm; Hm(Θm; xm,n)), yn) = ∇wmfm(Θm, wm),

Further, from A3, we can obtain A7 with σ2 = σ2
Θ + σ2

w.

4) To verify A8, we apply A2 that:

L(x, y, z) =
M∑

m=1
pm (fm(Θm, wm) + µ1 · rm,1(Θm, Θ0) + µ2 · rm,2(wm, Πm, w0))

(a)
≥

M∑
m=1

pmfm(Θm, wm)
A2
≥

M∑
m=1

pmfm := L,

22

Under review as submission to TMLR

Client index m Assigned features Im Assigned class #
1 1,2,3 25
2 1,2,3 25
3 1,3,4 25
4 1,3,4 25
5 1,3 25
6 1,3 25

Table 3: The data assignment pattern for MultiView40 dataset. Note that 6.88% of data has never been
used.

Client index m Assigned features Im Assigned classes
1 1,2,3 1–5
2 1,2,3 6–10
3 1,3,4 1–5
4 1,3,4 6–10
5 1,3 1–5
6 1,3 6–10

Table 4: The data assignment pattern for Cifar-10 and EuroSAT dataset.
where (a) uses the fact that rm,1(Θm, Θ0) = 1

2 ∥Θm − PmΘ0∥2 ≥ 0 and rm,2(wm, Πm, w0) =
1
2 ∥wm −Πmw0∥2 ≥ 0.

5) A9 directly comes from the constraint on Πm’s that

Πm ∈ S(dw,m, dw,0),
M∑

m=1
1T

dw,m
Πm ≥ 1T

dw,0
,

which is a compact set.

At this point, we have verified A4-A9 for problem (6) with Algorithm 1, and the corresponding constants
are summarized below:

Lx = max
m
{pmLm + max{µ1, µ2}}, Cx = max{µ1, µ2},

µ ≥ min
m
{pm} ·min{µ1, µ2}, σ2 = σ2

Θ + σ2
w, L =

M∑
m=1

pmfm.

This completes the proof for Lemma 1.

C Additional Numerical Experiments

In this section, we include additional sets of numerical experiments. In the first set of additional experiments,
we reduce the feature heterogeneity of the data on the clients by allowing clients to have common features,
so that HFL algorithms such as FedProx and FedAvg applies. Further, we include an additional multi-modal
dataset with both image and text features.

C.1 Comparison with HFL

In this section, we conduct numerical experiments to compare FedProx (Li et al., 2018) with HyFEM. In
the experiments, we split the features into d0 = 4 blocks for the datasets and assign the first and the third
blocks as the common blocks for all M = 6 clients. Then we can apply FedProx to train a model with the
overlapped features and compare with the models trained with HyFEM with more features. The detailed
data assignment patterns for different datasets are described in Table 3 - 4. Note that in MultiView40
dataset, there are 6.88% of the data has never been used by HyFEM and 50% of the data has never been

23

Under review as submission to TMLR

used by FedProx. For Cifar-10 and EuroSAT datasets, all data has been used by at least one client with
HyFEM while 50% of the data are dropped by FedProx.

For Cifar-10 and EuroSAT datasets, we split each image into (top left, top right, bottom left, bottom right)
total d0 = 4 feature blocks. For MultiView40 dataset, we choose four views of different angles of the objects
as the full feature space. The total communication round is T = 64 and local update # Q = 32 are fixed
for all experiments. We conducted line search on the learning rate η and µ2 for the algorithms to obtain the
best performance.

The results for the datasets are shown in Figure 9 and Figure 10. From the results, we can see that the
models trained with HyFEM can obtain better performance than FedProx. This is because HyFEM is able
to use more data than FedProx by using heterogeneous models.

C.2 Data Partitioning Pattern

In this subsection, we provide the data partitioning patterns for each settings. Notice that in Figure 11(b),
and Figure 12(a), the black boxes with 0 inside them indicate that the corresponding feature block of the
samples in this class has not been used for training by any of the clients.

C.3 Experiments on HeriGraph Dataset

HeriGraph (Bai et al., 2022) dataset is a multi-modal dataset for heritage site classification. This dataset
consists of total N0 = 41, 621 samples from 9 classes. Each sample has at most d0 = 4 preprocessed feature
blocks, including one text feature block and three different image feature blocks. Note that not all samples
have all features. For example, only 25, 325 samples have text features, and the rest do not. We will include
the result for this dataset in the revised manuscript.

In the experiments, we use the MLP model with one hidden layer as the classifier fm(wm; ·). We use MLP
of different sizes as feature extractors for each feature block. We set client number M = 6, client feature
block number dm = 2 and each client has 6 out of 9 classes.

The result is shown in Figure 13. The server model trained with HyFEM has comparable performance as
the centralized trained model. The average performance of the clients’ models has worse performance than
full model due to lack of full features and classes, but the accuracy is 20% higher than the models obtained
with stand-alone training.

24

Under review as submission to TMLR

Figure 6: Illustration of the layer structure of the inference blocks on the clients, for the L = 3 case.

Figure 7: Aligning the input of the first layer by rearranging and padding the corresponding coordinates of
the input vm and the first layer wm,1.

Figure 8: Aligning the output of the first layer by rearranging and padding the corresponding coordinates
of the first layer wm,1.

25

Under review as submission to TMLR

(a) ModelNet40 (b) Cifar-10 (c) EuroSAT

Figure 9: Test accuracy of server model trained with HyFEM compared with FedProx for a) ModelNet40, b) Cifar-
10, and c) EuroSAT datasets.

(a) ModelNet40 (b) Cifar-10 (c) EuroSAT

Figure 10: Averaged test accuracy of client models trained with HyFEM compared with FedProx for a) ModelNet40,
b) Cifar-10, and c) EuroSAT datasets.

26

Under review as submission to TMLR

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

1

2

3

4

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

(a) ModelNet40:1

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

1

2

3

4

5

6

7

8

9

10

11

12

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

4

4

4

3

3

3

3

4

3

4

3

4

3

4

3

3

3

3

3

3

0

0

0

1

1

1

2

2

2

1

1

1

2

1

2

2

2

1

0

1

1

2

1

2

2

2

1

2

1

2

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1

2

2

2

1

0

1

1

2

1

0

0

0

1

1

1

1

1

1

0

0

0

2

2

2

1

1

1

2

2

2

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

1

1

1

2

2

2

1

1

1

2

2

2

1

1

1

0

0

0

1

1

1

1

1

1

2

2

2

2

1

2

1

2

1

2

1

0

0

0

1

1

1

1

1

1

0

0

0

1

2

1

2

1

2

1

2

1

2

1

2

1

2

0

1

0

2

1

1

1

2

2

2

1

1

1

2

2

2

0

0

0

1

1

1

0

0

0

1

1

1

2

1

2

1

2

1

2

0

1

0

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

2

2

2

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

2

2

2

1

2

0

1

0

1

1

1

0

0

0

2

2

2

1

1

1

1

2

1

2

1

2

0

1

0

2

2

1

2

2

2

2

1

2

0

1

0

1

2

1

2

1

2

2

2

2

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

1

1

1

1

1

1

0

0

0

2

2

2

1

1

1

2

2

2

1

1

1

2

2

2

2

2

2

1

2

1

2

1

2

2

2

2

2

1

1

1

0

0

0

2

2

2

1

1

1

2

1

2

1

2

1

2

0

1

0

0

1

0

2

1

2

2

2

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

2

1

2

1

2

1

2

2

2

1

1

1

1

1

1

0

0

0

0

0

0

2

2

2

2

2

2

1

1

1

1

1

1

1

2

1

1

0

1

1

2

1

1

0

1

(b) ModelNet40:2

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

11

12

3

3

3

3

3

3

4

3

3

3

3

3

3

4

3

4

3

4

3

3

3

3

3

3

4

3

3

3

4

3

3

4

3

3

3

3

4

3

3

3

3

3

3

3

3

4

4

3

3

3

3

3

3

3

3

4

3

4

3

3

3

3

1

2

2

2

1

2

2

2

2

2

1

2

1

2

2

1

2

2

2

1

2

2

2

2

2

2

1

2

1

2

2

2

2

2

2

1

2

2

1

2

2

2

1

2

2

2

1

2

2

2

2

2

2

1

2

2

2

1

(c) Cifar-10 & EuroSAT

Figure 11: The illustration of how many clients (the numbers in boxes) possess the training data of each feature
block in each class for the settings in Section 4, with a) ModelNet40:1 with d0 = 4 features, M = 4 clients, and 40
classes; b) ModelNet40:2 with d0 = 12 features, M = 8 clients, and 40 classes; c) Cifar-10 & EuroSAT with d0 = 12
features, M = 9 clients, and 10 classes. The x-axis of each plot is the class axis and y-axis is the feature axis.

27

Under review as submission to TMLR

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

1

2

3

4

6

6

4

4

5

5

4

4

4

4

4

4

4

4

5

5

4

4

5

5

6

6

5

5

6

6

4

4

4

4

5

5

4

4

4

4

5

5

4

4

5

5

5

5

2

2

3

0

3

1

3

2

3

0

2

1

2

1

3

2

3

1

2

2

3

1

3

1

3

1

3

1

3

2

3

1

2

1

3

1

3

1

2

1

1

1

2

1

3

1

3

1

2

0

2

0

1

1

2

0

2

2

2

1

2

0

2

2

2

1

2

0

1

1

1

2

2

2

1

2

2

2

1

2

2

1

2

2

1

1

3

0

3

1

2

2

2

0

2

1

2

1

3

1

3

1

1

1

2

2

1

2

3

0

3

2

3

2

3

0

(a) ModelNet40

1 2 3 4 5 6 7 8 9 10

1

2

3

4

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

(b) Cifar-10 & EuroSAT

Figure 12: The illustration of how many clients (the numbers in boxes) possess the training data of each feature
block in each class for the settings in Appendix C.1, with a) ModelNet40 with d0 = 4 features, M = 6 clients, and
40 classes; c) Cifar-10 & EuroSAT with d0 = 4 features, M = 6 clients, and 10 classes. The x-axis of each plot is the
class axis and y-axis is the feature axis.

(a) Server (b) Client

Figure 13: Test accuracy of a) server model, b) client models trained with HyFEM compared with Centralized
training and stand-alone training for HeriGraph dataset.

28

	Introduction
	Related work

	Problem Formulation
	Algorithm Design
	Numerical Experiments
	Conclusions
	Heterogeneous Model Matching Algorithm
	Regularizer Design
	Optimization Procedure

	Convergence Analysis
	Proof for Theorem 2
	Proof for Lemma 1

	Additional Numerical Experiments
	Comparison with HFL
	Data Partitioning Pattern
	Experiments on HeriGraph Dataset

