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Abstract

Deep neural networks (DNNs) excel on clean images but struggle with corrupted
ones. Incorporating specific corruptions into the data augmentation pipeline can im-
prove robustness to those corruptions but may harm performance on clean images
and other types of distortion. In this paper, we introduce an alternative approach that
improves the robustness of DNNs to a wide range of corruptions without compro-
mising accuracy on clean images. We first demonstrate that input perturbations can
be mimicked by multiplicative perturbations in the weight space. Leveraging this,
we propose Data Augmentation via Multiplicative Perturbation (DAMP), a training
method that optimizes DNNs under random multiplicative weight perturbations.
We also examine the recently proposed Adaptive Sharpness-Aware Minimization
(ASAM) and show that it optimizes DNNs under adversarial multiplicative weight
perturbations. Experiments on image classification datasets (CIFAR-10/100, Tiny-
ImageNet and ImageNet) and neural network architectures (ResNet50, ViT-S/16,
ViT-B/16) show that DAMP enhances model generalization performance in the
presence of corruptions across different settings. Notably, DAMP is able to train a
ViT-S/16 on ImageNet from scratch, reaching the top-1 error of 23.7% which is
comparable to ResNet50 without extensive data augmentations.1

1 Introduction

Deep neural networks (DNNs) demonstrate impressive accuracy in computer vision tasks when
evaluated on carefully curated and clean datasets. However, their performance significantly declines
when test images are affected by natural distortions such as camera noise, changes in lighting and
weather conditions, or image compression algorithms (Hendrycks and Dietterich, 2019). This drop in
performance is problematic in production settings, where models inevitably encounter such perturbed
inputs. Therefore, it is crucial to develop methods that produce reliable DNNs robust to common
image corruptions, particularly for deployment in safety-critical systems (Amodei et al., 2016).

To enhance robustness against a specific corruption, one could simply include it in the data aug-
mentation pipeline during training. However, this approach can diminish performance on clean
images and reduce robustness to other types of corruptions (Geirhos et al., 2018). More advanced
data augmentation techniques (Cubuk et al., 2018; Hendrycks et al., 2019; Lopes et al., 2019) have
been developed which effectively enhance corruption robustness without compromising accuracy
on clean images. Nonetheless, a recent study by Mintun et al. (2021) has identified a new set of
image corruptions to which models trained with these techniques remain vulnerable. Besides data

1Our code is available at https://github.com/trungtrinh44/DAMP
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(a) z = w⊤(x+ ϵ) (b) z = (w ◦ (1 + ϵ/x))⊤x (c) z = (w ◦ ξ)⊤x, ξ ∼ p(ξ)

Figure 1: Depictions of a pre-activation neuron z = w⊤x in the presence of (a) covariate shift ϵ,
(b) a multiplicative weight perturbation (MWP) equivalent to ϵ, and (c) random MWPs ξ. ◦
denotes the Hadamard product. Figs. (a) and (b) show that for a covariate shift ϵ, one can always find
an equivalent MWP. From this intuition, we propose to inject random MWPs ξ to the forward pass
during training as shown in Fig. (c) to robustify a DNN to covariate shift.

augmentation, ensemble methods such as Deep ensembles and Bayesian neural networks have also
been shown to improve generalization in the presence of corruptions (Lakshminarayanan et al., 2017;
Ovadia et al., 2019; Dusenberry et al., 2020; Trinh et al., 2022). However, the training and inference
costs of these methods increase linearly with the number of ensemble members, rendering them less
suitable for very large DNNs.

Contributions In this work, we show that simply perturbing weights with multiplicative random
variables during training can significantly improve robustness to a wide range of corruptions. Our
contributions are as follows:

• We show in Section 2 and Fig. 1 that the effects of input corruptions can be simulated during
training via multiplicative weight perturbations.

• From this insight, we propose a new training algorithm called Data Augmentation via
Multiplicative Perturbations (DAMP) which perturbs weights using multiplicative Gaussian
random variables during training while having the same training cost as standard SGD.

• In Section 3, we show a connection between adversarial multiplicative weight perturbations
and Adaptive Sharpness-Aware Minimization (ASAM) (Kwon et al., 2021).

• Through a rigorous empirical study in Section 4, we demonstrate that DAMP consistently im-
proves generalization ability of DNNs under corruptions across different image classification
datasets and model architectures.

• Notably, we demonstrate that DAMP can train a Vision Transformer (ViT) (Dosovitskiy
et al., 2021) from scratch on ImageNet, achieving similar accuracy to a ResNet50 (He et al.,
2016a) in 200 epochs with only basic Inception-style preprocessing (Szegedy et al., 2016).
This is significant as ViT typically requires advanced training methods or sophisticated
data augmentation to match ResNet50’s performance when being trained on ImageNet
from scratch (Chen et al., 2022; Beyer et al., 2022). We also show that DAMP can be
combined with modern augmentation techniques such as MixUp (Zhang et al., 2018) and
RandAugment (Cubuk et al., 2020) to further improve robustness of neural networks.

2 Data Augmentation via Multiplicative Perturbations

In this section, we demonstrate the equivalence between input corruptions and multiplicative weight
perturbations (MWPs), as shown in Fig. 1, motivating the use of MWPs for data augmentation.
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Figure 2: Depiction of how a corruption g affects the output of a DNN. Here xg = g(x). The
corruption g creates a shift δgx(0) = xg − x in the input x, which propagates into shifts δgx(h) in
the output of each layer. This will eventually cause a shift in the loss δgℓ. This figure explains why
the model performance tends to degrade under corruption.

2.1 Problem setting

Given a training data set S = {(xk, yk)}Nk=1 ⊆ X × Y drawn i.i.d. from the data distribution D,
we seek to learn a model that generalizes well on both clean and corrupted inputs. We denote G
as a set of functions whose each member g : X → X represents an input corruption. That is,
for each x ∈ X , g(x) is a corrupted version of x.2 We define g(S) := {(g(xk), yk)}Nk=1 as the
training set corrupted by g. We consider a DNN f : X → Y parameterized by ω ∈ W . Given a
per-sample loss ℓ : W × X × Y → R+, the training loss is defined as the average loss over the
samples L(ω;S) := 1

N

∑N
k=1 ℓ(ω,xk, yk). Our goal is to find ω which minimizes:

L(ω;G(S)) := Eg∼G [L(ω;g(S))] (1)

without knowing exactly the types of corruption contained in G. This problem is crucial for the
reliable deployment of DNNs, especially in safety-critical systems, since it is difficult to anticipate all
potential types of corruption the model might encounter in production.

2.2 Multiplicative weight perturbations simulate input corruptions

To address the problem above, we make two key assumptions about the corruptions in G:
Assumption 1 (Bounded corruption). For each corruption function g : X → X in G, there exists a
constant M > 0 such that ∥g(x)− x∥2 ≤ M for all x ∈ X .
Assumption 2 (Transferable robustness). A model’s robustness to corruptions in G can be indirectly
enhanced by improving its resilience to a more easily simulated set of input perturbations.

Assumption 1 implies that the corrupted versions of an input x must be constrained within a bounded
neighborhood of x in the input space. Assumption 2 is corroborated by Rusak et al. (2020), who
demonstrated that distorting training images with Gaussian noise improves a DNN’s performance
against various types of corruption. We further validate this observation for corruptions beyond
Gaussian noise in Section 4.1. However, Section 4.1 also reveals that using corruptions as data
augmentation degrades model performance on clean images. Consequently, we need to identify a
method that efficiently simulates diverse input corruptions during training, thereby robustifying a
DNN against a wide range of corruptions without compromising its performance on clean inputs.

One such method involves injecting random multiplicative weight perturbations (MWPs) into the
forward pass of DNNs during training. The intuition behind this approach is illustrated in Fig. 1.
Essentially, for a pre-activated neuron z = w⊤x in a DNN, given a corruption causing a covariate
shift ϵ in the input x, Figs. 1a and 1b show that one can always find an equivalent MWP ξ(ϵ,x):

z = w⊤(x+ ϵ) = (w ◦ ξ(ϵ,x))⊤x, ξ(ϵ,x) = 1 + ϵ/x (2)

where ◦ denotes the Hadamard product. This observation suggests that input corruptions can be
simulated during training by injecting random MWPs into the forward pass, as depicted in Fig. 1c,
resulting in a model more robust to corruption. We thus move the problem of simulating corruptions
from the input space to the weight space.

Here we provide theoretical arguments supporting the usage of MWPs to robustify DNNs. To this
end, we study how corruption affects training loss. We consider a feedforward neural network f(x;ω)

2For instance, if x is a clean image then g(x) could be x corrupted by Gaussian noise.
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of depth H parameterized by ω = {W(h)}Hh=1 ∈ W , which we define recursively as follows:

f (0)(x) := x, z(h)(x) := W(h)f (h−1)(x), f (h)(x) := σ(h)(z(h)(x)), ∀h = 1, . . . ,H (3)

where f(x;ω) := f (H)(x) and σ(h) is the non-linear activation of layer h. For brevity, we use x(h)

and x
(h)
g as shorthand notations for f (h)(x) and f (h)(g(x)) respectively. Given a corruption function

g, Fig. 2 shows that g creates a covariate shift δgx(0) := x
(0)
g − x(0) in the input x leading to shifts

δgx
(h) := x

(h)
g −x(h) in the output of each layer. This will eventually cause a shift in the per-sample

loss δgℓ(ω,x, y) := ℓ(ω,xg, y) − ℓ(ω,x, y). The following lemma characterizes the connection
between δgℓ(ω,x, y) and δgx

(h):

Lemma 1. For all h = 1, . . . ,H and for all x ∈ X , there exists a scalar C(h)
g (x) > 0 such that:

δgℓ(ω,x, y) ≤
〈
∇z(h+1)ℓ(ω,x, y)⊗ δgx

(h),W(h+1)
〉
F
+

C
(h)
g (x)

2
∥W(h)∥2F (4)

Here ⊗ denotes the outer product of two vectors, ⟨·, ·⟩F denotes the Frobenius inner product of two
matrices of the same dimension, ∥ · ∥F is the Frobenius norm, and ∇z(h)ℓ(ω,x, y) is the Jacobian of
the per-sample loss with respect to the pre-activation output z(h)(x) at layer h. To prove Lemma 1,
we use Assumption 1 and the following assumption about the loss function:
Assumption 3 (Lipschitz-continuous objective input gradients). The input gradient of the per-sample
loss ∇xℓ(ω,x, y) is Lipschitz continuous.

Assumption 3 allows us to define a quadratic bound of the loss function using a second-order
Taylor expansion. The proof of Lemma 1 is provided in Appendix A. Using Lemma 1, we prove
Theorem 1, which bounds the training loss in the presence of corruptions using the training loss under
multiplicative perturbations in the weight space:
Theorem 1. For a function g : X → X satisfying Assumption 1 and a loss function L satisfying
Assumption 3, there exists ξg ∈ W and Cg > 0 such that:

L(ω;g(S)) ≤ L(ω ◦ ξg;S) +
Cg

2
∥ω∥2F (5)

We provide the proof of Theorem 1 in Appendix B. This theorem establishes an upper bound for the
target loss in Eq. (1):

L(ω;G(S)) ≤ Eg∼G

[
L(ω ◦ ξg;S) +

Cg

2
∥ω∥2F

]
(6)

This bound implies that training a DNN using the following loss function:

LΞ(ω;S) := Eξ∼Ξ [L(ω ◦ ξ;S)] + λ

2
∥ω∥2F (7)

where the expected loss is taken with respect to a distribution Ξ of random MWPs ξ, will minimize the
upper bound of the loss L(ω; Ĝ(S)) of a hypothetical set of corruptions Ĝ simulated by ξ ∼ Ξ. This
approach results in a model robust to these simulated corruptions, which, according to Assumption 2,
could indirectly improve robustness to corruptions in G.

We note that the second term in Eq. (7) is the L2-regularization commonly used in optimizing DNNs.
Based on this proxy loss, we propose Algorithm 1 which minimizes the objective function in Eq. (7)
when Ξ is an isotropic Gaussian distribution N (1, σ2I). We call this algorithm Data Augmentation
via Multiplicative Perturbations (DAMP), as it uses random MWPs during training to simulate input
corruptions, which can be viewed as data augmentations.

Remark The standard method to calculate the expected loss in Eq. (7), which lacks a closed-form
solution, is the Monte Carlo (MC) approximation. However, the training cost of this approach scales
linearly with the number of MC samples. To match the training cost of standard SGD, Algorithm 1
divides each data batch into M equal-sized sub-batches (Line 6) and calculates the loss on each
sub-batch with different multiplicative noises from the noise distribution Ξ (Lines 7–9). The final
gradient is obtained by averaging the sub-batch gradients (Line 11). Algorithm 1 is thus suitable
for data parallelism in multi-GPU training, where the data batch is evenly distributed across M > 1
GPUs. Compared to SGD, Algorithm 1 requires only two additional operations: generating Gaussian
samples and point-wise multiplication, both of which have negligible computational costs. In our
experiments, we found that both SGD and DAMP had similar training times.
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Algorithm 1 DAMP: Data Augmentation via Multiplicative Perturbations

1: Input: training data S = {(xk, yk)}Nk=1, a neural network f(·;ω) parameterized by ω ∈ RP ,
number of iterations T , step sizes {ηt}Tt=1, number of sub-batch M , batch size B divisible by M ,
a noise distribution Ξ = N (1, σ2IP ), weight decay coefficient λ, a loss function L : RP → R+.

2: Output: Optimized parameter ω(T ).
3: Initialize parameter ω(0).
4: for t = 1 to T do
5: Draw a mini-batch B = {(xb, yb)}Bb=1 ∼ S.
6: Divide the mini-batch into M disjoint sub-batches {Bm}Mm=1 of equal size.
7: for m = 1 to M in parallel do
8: Draw a noise sample ξm ∼ Ξ.
9: Compute the gradient gm = ∇ωL(ω;Bm)

∣∣
ω(t)◦ξ.

10: end for
11: Compute the average gradient: g = 1

M

∑M
m=1 gm.

12: Update the weights: ω(t+1) = ω(t) − ηt
(
g + λω(t)

)
.

13: end for

3 Adaptive Sharpness-Aware Minimization optimizes DNNs under
adversarial multiplicative weight perturbations

In this section, we demonstrate that optimizing DNNs with adversarial MWPs follows a similar
update rule to Adaptive Sharpness-Aware Minimization (ASAM) (Kwon et al., 2021). We first
provide a brief description of ASAM and its predecessor Sharpness-Aware Minimization (SAM)
(Foret et al., 2021):

SAM Motivated by previous findings that wide optima tend to generalize better than sharp ones
(Keskar et al., 2017; Jiang et al., 2020), SAM regularizes the sharpness of an optimum by solving the
following minimax optimization:

min
ω

max
∥ξ∥2≤ρ

L(ω + ξ;S) + λ

2
∥ω∥2F (8)

which can be interpreted as optimizing DNNs under adversarial additive weight perturbations. To
efficiently solve this problem, Foret et al. (2021) devise a two-step procedure for each iteration t:

ξ(t) = ρ
∇ωL(ω(t);S)∣∣∣∣∇ωL(ω(t);S)

∣∣∣∣
2

, ω(t+1) = ω(t) − ηt

(
∇ωL(ω(t) + ξ(t);S) + λω(t)

)
(9)

where ηt is the learning rate. Each iteration of SAM thus takes twice as long to run than SGD.

ASAM Kwon et al. (2021) note that SAM attempts to minimize the maximum loss over a rigid
sphere of radius ρ around an optimum, which is not suitable for ReLU networks since their parameters
can be freely re-scaled without affecting the outputs. The authors thus propose ASAM as an alternative
optimization problem to SAM which regularizes the adaptive sharpness of an optimum:

min
ω

max
∥T−1

ω ξ∥2≤ρ
L(ω + ξ;S) + λ

2
∥ω∥2F (10)

where Tω is an invertible linear operator used to reshape the perturbation region (so that it is not
necessarily a sphere as in SAM). Kwon et al. (2021) found that Tω = |ω| produced the best results.
Solving Eq. (10) in this case leads to the following two-step procedure for each iteration t:

ξ̂
(t)

= ρ

(
ω(t)

)2 ◦ ∇ωL(ω(t);S)∣∣∣∣ω(t) ◦ ∇ωL(ω(t);S)
∣∣∣∣
2

, ω(t+1) = ω(t) − ηt

(
∇ωL(ω(t) + ξ̂

(t)
;S) + λω(t)

)
(11)

Similar to SAM, each iteration of ASAM also takes twice as long to run than SGD.
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ASAM and adversarial multiplicative perturbations Algorithm 1 minimizes the expected loss in
Eq. (7). Instead, we could minimize the loss under the adversarial MWP:

Lmax(ω;S) := max
∥ξ∥2≤ρ

L(ω + ω ◦ ξ;S) + λ

2
∥ω∥2F (12)

Following Foret et al. (2021), we solve this optimization problem by using a first-order Taylor
expansion of L(ω + ω ◦ ξ;S) to find an approximate solution of the inner maximization:

argmax
∥ξ∥2≤ρ

L(ω + ω ◦ ξ;S) ≈ argmax
∥ξ∥2≤ρ

L(ω;S) + ⟨ω ◦ ξ,∇ωL(ω;S)⟩ (13)

The maximizer of the Taylor expansion is:

ξ̂(ω) = ρ
ω ◦ ∇ωL(ω;S)

∥ω ◦ ∇ωL(ω;S)∥2
(14)

Subtituting back into Eq. (12) and differentiating, we get:

∇ωLmax(ω;S) ≈ ∇ωL(ω̂;S) + λω = ∇ωω̂ · ∇ω̂L(ω̂;S) + λω (15)

= ∇ω̂L(ω̂;S) +∇ω

(
ω ◦ ξ̂(ω)

)
· ∇ω̂L(ω̂;S) + λω (16)

where ω̂ is the perturbed weight:

ω̂ = ω + ω ◦ ξ̂(ω) = ω + ρ
ω2 ◦ ∇ωL(ω;S)
∥ω ◦ ∇ωL(ω;S)∥2

(17)

Similar to Foret et al. (2021), we omit the second summand in Eq. (16) for efficiency, as it requires
calculating the Hessian of the loss. We then arrive at the gradient formula in the update rule of ASAM
in Eq. (11). We have thus established a connection between ASAM and adversarial MWPs.

4 Empirical evaluation

In this section, we assess the corruption robustness of DAMP and ASAM in image classification tasks.
We conduct experiments using the CIFAR-10/100 (Krizhevsky, 2009), TinyImageNet (Le and Yang,
2015), and ImageNet (Deng et al., 2009) datasets. For evaluation on corrupted images, we utilize the
CIFAR-10/100-C, TinyImageNet-C, and ImageNet-C datasets provided by Hendrycks and Dietterich
(2019), as well as ImageNet-C (Mintun et al., 2021), ImageNet-D (Zhang et al., 2024), ImageNet-
A (Hendrycks et al., 2021), ImageNet-Sketch (Wang et al., 2019), ImageNet-{Drawing, Cartoon}
(Salvador and Oberman, 2022), and ImageNet-Hard (Taesiri et al., 2023) datasets, which encapsulate
a wide range of corruptions. Detail descriptions of these datasets are provided in Appendix E. We
further evaluate the models on adversarial examples generated by the Fast Gradient Sign Method
(FGSM) (Goodfellow et al., 2014). In terms of architectures, we use ResNet18 (He et al., 2016a) for
CIFAR-10/100, PreActResNet18 (He et al., 2016b) for TinyImageNet, ResNet50 (He et al., 2016a),
ViT-S/16, and ViT-B/16 (Dosovitskiy et al., 2021) for ImageNet. We ran all experiments on a single
machine with 8 Nvidia V100 GPUs. Appendix F includes detailed information for each experiment.

4.1 Comparing DAMP to directly using corruptions as augmentations

In this section, we compare the corruption robustness of DNNs trained using DAMP with those
trained directly on corrupted images. To train models on corrupted images, we utilize Algorithm 2
described in the Appendix. For a given target corruption g, Algorithm 2 randomly selects half the
images in each training batch and applies g to them. This random selection process enhances the
final model’s robustness to the target corruption while maintaining its accuracy on clean images. We
use the imagecorruptions library (Michaelis et al., 2019) to apply the corruptions during training.

Evaluation metric We use the corruption error CEf
c (Hendrycks and Dietterich, 2019) which

measures the predictive error of classifier f in the presence of corruption c. Denote Ef
s,c as the error

of classifier f under corruption c with corruption severity s, the corruption error CEf
c is defined as:

CEf
c =

( 5∑
s=1

Ef
s,c

)/( 5∑
s=1

Efbaseline
s,c

)
(18)
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Figure 3: DAMP improves robustness to all corruptions while preserving accuracy on clean
images. Results of ResNet18/CIFAR-100 experiments averaged over 5 seeds. The heatmap shows
CEf

c described in Eq. (18) (lower is better), where each row corresponds to a tuple of training
(method, corruption), while each column corresponds to the test corruption. The Avg column
shows the average of the results of the previous columns. none indicates no corruption. We use the
models trained under the SGD/none setting (first row) as baselines to calculate the CEf

c . The last five
rows are the 5 best training corruptions ranked by the results in the Avg column.

For this metric, lower is better. Here fbaseline is a baseline classifier whose usage is to make the error
more comparable between corruptions as some corruptions can be more challenging than others
(Hendrycks and Dietterich, 2019). For each experiment setting, we use the model trained by SGD
without corruptions as fbaseline.

Results We visualize the results for the ResNet18/CIFAR-100 setting in Fig. 3. The results for the
ResNet18/CIFAR-10 and PreActResNet18/TinyImageNet settings are presented in Figs. 5 and 6 in
the Appendix. Figs. 3, 5 and 6 demonstrate that DAMP improves predictive accuracy over plain SGD
across all corruptions without compromising accuracy on clean images. Although Fig. 3 indicates that
including zoom_blur as an augmentation when training ResNet18 on CIFAR-100 yields better results
than DAMP on average, it also reduces accuracy on clean images and the brightness corruption.
Overall, these figures show that incorporating a specific corruption as data augmentation during
training enhances robustness to that particular corruption but may reduce performance on clean images
and other corruptions. In contrast, DAMP consistently improves robustness across all corruptions.
Notably, DAMP even enhances accuracy on clean images in the PreActResNet18/TinyImageNet
setting, as shown in Fig. 6.

4.2 Comparing DAMP to random additive perturbations

In this section, we investigate whether additive weight perturbations can also enhance corruption
robustness. To this end, we compare DAMP with its variant, Data Augmentation via Additive
Perturbations (DAAP). Unlike DAMP, DAAP perturbs weights during training with random additive
Gaussian noises centered at 0, as detailed in Algorithm 3 in the Appendix. Fig. 7 in the Appendix
presents the results of DAMP and DAAP under different noise standard deviations, alongside standard
SGD. Overall, Fig. 7 shows that across different experimental settings, the corruption robustness of
DAAP is only slightly better than SGD and is worse than DAMP. Therefore, we conclude that MWPs
are better than their additive counterparts at improving robustness to corruptions.

4.3 Benchmark results

In this section, we compare DAMP with Dropout (Srivastava et al., 2014), SAM (Foret et al., 2021),
and ASAM (Kwon et al., 2021). For SAM and ASAM, we optimize the neighborhood size ρ by
using 10% of the training set as a validation set. Similarly, we adjust the noise standard deviation σ
for DAMP and the drop rate p for Dropout following the same procedure. For hyperparameters and
additional training details, please refer to Appendix F.

CIFAR-10/100 and TinyImageNet. Fig. 4 visualizes the predictive errors of DAMP and the
baseline methods on CIFAR-10/100 and TinyImageNet, with all methods trained for the same number
of epochs. It demonstrates that DAMP consistently outperforms Dropout across various datasets and
corruption severities, despite having the same training cost. Notably, DAMP outperforms SAM under
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Figure 4: DAMP surpasses SAM on corrupted images in most cases, despite requiring only half
the training cost. We report the predictive errors (lower is better) averaged over 5 seeds. A severity
level of 0 indicates no corruption. We use the same number of epochs for all methods.

Table 1: DAMP surpasses the baselines on corrupted images in most cases and on average. We
report the predictive errors (lower is better) averaged over 3 seeds for the ResNet50 / ImageNet
experiments. Subscript numbers represent standard deviations. We evaluate the models on IN-{C, C,
A, D, Sketch, Drawing, Cartoon, Hard}, and adversarial examples generated by FGSM. For FGSM,
we use ϵ = 2/224. For IN-{C, C}, we report the results averaged over all corruption types and
severity levels. We use 90 epochs and the basic Inception-style preprocessing for all experiments.

Method Clean
Error (%) ↓

Corrupted Error (%) ↓

FGSM A C C Cartoon D Drawing Sketch Hard Avg

Dropout 23.60.2 90.70.2 95.7<0.1 61.70.2 61.6<0.1 49.60.2 88.9<0.1 77.41.3 78.30.3 85.80.1 76.6
DAMP 23.8<0.1 88.30.1 96.2<0.1 58.60.1 58.7<0.1 44.4<0.1 88.7<0.1 71.10.5 76.30.2 85.30.2 74.2
SAM 23.2<0.1 90.40.2 96.60.1 60.20.2 60.70.1 47.60.1 88.30.1 74.8<0.1 77.50.1 85.80.3 75.8

ASAM 22.80.1 89.70.2 96.80.1 58.90.1 59.20.1 45.5<0.1 88.70.1 72.30.1 76.40.2 85.20.1 74.7

most corruption scenarios, even though SAM takes twice as long to train and has higher accuracy on
clean images. Additionally, DAMP improves accuracy on clean images over Dropout on CIFAR-100
and TinyImageNet. Finally, ASAM consistently surpasses other methods on both clean and corrupted
images, as it employs adversarial MWPs (Section 3). However, like SAM, each ASAM experiment
takes twice as long as DAMP given the same epoch counts.

ResNet50 / ImageNet Table 1 presents the predictive errors for the ResNet50 / ImageNet setting
on a variety of corruption test sets. It shows that DAMP consistently outperforms the baselines in
most corruption scenarios and on average, despite having half the training cost of SAM and ASAM.

ViT-S16 / ImageNet / Basic augmentations Table 2 presents the predictive errors for the ViT-S16 /
ImageNet setting, using the training setup from Beyer et al. (2022) but with only basic Inception-style
preprocessing (Szegedy et al., 2016). Remarkably, DAMP can train ViT-S16 from scratch in 200
epochs to match ResNet50’s accuracy without advanced data augmentation. This is significant as ViT
typically requires either extensive pretraining (Dosovitskiy et al., 2021), comprehensive data aug-
mentation (Beyer et al., 2022), sophisticated training techniques (Chen et al., 2022), or modifications
to the original architecture (Yuan et al., 2021) to perform well on ImageNet. Additionally, DAMP
consistently ranks in the top 2 for corruption robustness across various test settings and has the best
corruption robustness on average (last column). Comparing Tables 1 and 2 reveals that ViT-S16 is
more robust to corruptions than ResNet50 when both have similar performance on clean images.

ViT / ImageNet / Advanced augmentations Table 3 presents the predictive errors of ViT-S16
and ViT-B16 on ImageNet with MixUp (Zhang et al., 2018) and RandAugment (Cubuk et al., 2020).
These results indicate that DAMP can be combined with modern augmentation techniques to further
improve robustness. Furthermore, using DAMP to train a larger model (ViT-B16) yields better results
than using SAM/ASAM to train a smaller model (ViT-S16), given the same amount of training time.
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Table 2: ViT-S16 / ImageNet (IN) with basic Inception-style data augmentations. Due to the high
training cost, we report the predictive error (lower is better) of a single run. We evaluate corruption
robustness of the models using IN-{C, C, A, D, Sketch, Drawing, Cartoon, Hard}, and adversarial
examples generated by FGSM. For IN-{C, C}, we report the results averaged over all corruption types
and severity levels. For FGSM, we use ϵ = 2/224. We also report the runtime of each experiment,
showing that SAM and ASAM take twice as long to run than DAMP and AdamW given the same
number of epochs. DAMP produces the most robust model on average.

Method #Epochs Runtime Clean
Error (%) ↓

Corrupted Error (%) ↓

FGSM A C C Cartoon D Drawing Sketch Hard Avg

Dropout 100 20.6h 28.55 93.47 93.44 65.87 64.52 50.37 91.15 79.62 88.06 87.19 79.30
200 41.1h 28.74 90.95 93.33 66.90 64.83 51.23 92.56 81.24 87.99 87.60 79.63

DAMP 100 20.7h 25.50 92.76 92.92 57.85 57.02 44.78 88.79 69.92 83.16 85.65 74.76
200 41.1h 23.75 84.33 90.56 55.58 55.58 41.06 87.87 68.36 81.82 84.18 72.15

SAM 100 41h 23.91 87.61 93.96 55.56 55.93 42.53 88.23 69.53 81.86 85.54 73.42
ASAM 100 41.1h 24.01 85.85 92.99 55.13 55.64 40.74 89.03 67.80 81.47 84.31 72.55

Table 3: ViT / ImageNet (IN) with MixUp and RandAugment. We train ViT-S16 and ViT-B16
on ImageNet from scratch with advanced data augmentations (DAs). We evaluate the models on
IN-{C, C, A, D, Sketch, Drawing, Cartoon, Hard}, and adversarial examples generated by FGSM.
For FGSM, we use ϵ = 2/224. For IN-{C, C}, we report the results averaged over all corruption
types and severity levels. These results indicate that: (i) DAMP can be combined with modern DA
techniques to further enhance robustness; (ii) DAMP is capable of training large models like ViT-B16;
(iii) given the same amount of training time, it is better to train a large model (ViT-B16) using DAMP
than to train a smaller model (ViT-S16) using SAM/ASAM.

Model Method #Epochs Runtime Clean
Error (%) ↓

Corrupted Error (%) ↓

FGSM C A C Cartoon D Drawing Sketch Hard Avg

ViT
S16

Dropout 500 111h 20.25 62.45 40.85 84.29 44.72 34.35 86.59 56.31 71.03 80.87 62.38
DAMP 500 111h 20.09 59.87 39.30 83.12 43.18 34.01 84.74 54.16 68.03 80.05 60.72
SAM 300 123h 20.17 59.92 40.05 83.91 44.04 34.34 85.99 55.63 70.85 80.18 61.66

ASAM 300 123h 20.38 59.38 39.44 83.64 43.41 33.82 85.41 54.43 69.13 80.50 61.02

ViT
B16

Dropout 275 123h 20.41 56.43 39.14 82.85 43.82 33.13 87.72 56.15 71.36 79.13 61.08
DAMP 275 124h 19.36 55.20 37.77 80.49 41.67 31.63 87.06 52.32 67.91 78.69 59.19
SAM 150 135h 19.84 61.85 39.09 82.69 43.53 32.95 88.38 55.33 71.22 79.48 61.61

ASAM 150 136h 19.40 58.87 37.41 82.21 41.18 30.76 88.03 51.84 69.54 78.83 59.85

5 Related works

Dropout Perhaps most relevant to our method is Dropout (Srivastava et al., 2014) and its many
variants, such as DropConnect (Wan et al., 2013) and Variational Dropout (Kingma et al., 2015).
These methods can be viewed as DAMP where the noise distribution Ξ is a structured multivariate
Bernoulli distribution. For instance, Dropout multiplies all the weights connecting to a node with a
binary random variable p ∼ Bernoulli(ρ). While the main motivation of these Dropout methods is to
prevent co-adaptations of neurons to improve generalization on clean data, the motivation of DAMP
is to improve robustness to input corruptions without harming accuracy on clean data. Nonetheless,
our experiments show that DAMP can improve generalization on clean data in certain scenarios, such
as PreActResNet18/TinyImageNet and ViT-S16/ImageNet.

Ensemble methods Ensemble methods, such as Deep ensembles (Lakshminarayanan et al., 2017)
and Bayesian neural networks (BNNs) (Graves, 2011; Blundell et al., 2015; Gal and Ghahramani,
2016; Louizos and Welling, 2017; Izmailov et al., 2021; Trinh et al., 2022), have been explored as
effective defenses against corruptions. Ovadia et al. (2019) benchmarked some of these methods,
demonstrating that they are more robust to corruptions compared to a single model. However, the
training and inference costs of these methods increase linearly with the number of ensemble members,
making them inefficient for use with very large DNNs.

Data augmentation Data augmentations aim at enhancing robustness include AugMix (Hendrycks
et al., 2019), which combines common image transformations; Patch Gaussian (Lopes et al., 2019),
which applies Gaussian noise to square patches; ANT (Rusak et al., 2020), which uses adversarially
learned noise distributions for augmentation; and AutoAugment (Cubuk et al., 2018), which learns
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augmentation policies directly from the training data. These methods have been demonstrated to
improve robustness to the corruptions in ImageNet-C (Hendrycks and Dietterich, 2019). Mintun
et al. (2021) attribute the success of these methods to the fact that they generate augmented images
perceptually similar to the corruptions in ImageNet-C and propose ImageNet-C, a test set of 10 new
corruptions that are challenging to models trained by these augmentation methods.

Test-time adaptations via BatchNorm One effective approach to using unlabelled data to improve
corruption robustness is to keep BatchNorm (Ioffe and Szegedy, 2015) on at test-time to adapt the
batch statistics to the corrupted test data (Li et al., 2016; Nado et al., 2020; Schneider et al., 2020;
Benz et al., 2021). A major drawback is that this approach cannot be used with BatchNorm-free
architectures, such as Vision Transformer (Dosovitskiy et al., 2021).

6 Conclusion

In this work, we demonstrate that MWPs improve robustness of DNNs to a wide range of input
corruptions. We introduce DAMP, a simple training algorithm that perturbs weights during training
with random multiplicative noise while maintaining the same training cost as standard SGD. We
further show that ASAM (Kwon et al., 2021) can be viewed as optimizing DNNs under adversarial
MWPs. Our experiments show that both DAMP and ASAM indeed produce models that are robust
to corruptions. DAMP is also shown to improve sample efficiency of Vision Transformer, allowing
it to achieve comparable performance to ResNet50 on medium size datasets such as ImageNet
without extensive data augmentations. Additionally, DAMP can be used in conjunction with modern
augmentation techniques such as MixUp and RandAugment to further boost robustness. As DAMP is
domain-agnostic, one future direction is to explore its effectiveness in domains other than computer
vision, such as natural language processing and reinforcement learning. Another direction is to
explore alternative noise distributions to the Gaussian distribution used in our work.

Limitations Here we outline some limitations of this work. First, the proof of Theorem 1 assumes
a simple feedforward neural network, thus it does not take into accounts modern DNN’s components
such as normalization layers and attentions. Second, we only explored random Gaussian multiplicative
perturbations, and there are likely more sophisticated noise distributions that could further boost
corruption robustness.

Broader Impacts

Our paper introduces a new training method for neural networks that improves their robustness to input
corruptions. Therefore, we believe that our work contributes towards making deep leading models
safer and more reliable to use in real-world applications, especially those that are safety-critical.
However, as with other methods that improve robustness, our method could also be improperly used in
applications that negatively impact society, such as making mass surveillance systems more accurate
and harder to fool. To this end, we hope that practitioners carefully consider issues regarding fairness,
bias and other potentially harmful societal impacts when designing deep learning applications.
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A Proof of Lemma 1

Proof. Here we note that:

x(h) := f (h)(x) (19)

x(h)
g := f (h)(g(x)) (20)

δgℓ(ω,x, y) := ℓ(ω,xg, y)− ℓ(ω,x, y) (21)

δgx
(h) := x(h)

g − x(h) (22)

We first notice that the per-sample loss ℓ(ω,x, y) can be viewed as a function of the intermediate
activation x(h) of layer h (see Fig. 2). From Assumption 3, there exists a constant Lh > 0 such that:

∥∇
x
(h)
g

ℓ(ω,xg, y)−∇x(h)ℓ(ω,x, y)∥2 ≤ Lh∥δgx(h)∥2 (23)

which gives us the following quadratic bound:

ℓ(ω,xg, y) ≤ ℓ(ω,x, y) +
〈
∇x(h)ℓ(ω,x, y), δgx

(h)
〉
+

Lh

2
∥δgx(h)∥22 (24)

where ⟨·, ·⟩ denotes the dot product between two vectors. The results in the equation above have been
proven in Böhning and Lindsay (1988). Subtracting ℓ(ω,x, y) from both side of Eq. (24) gives us:

δgℓ(ω,x, y) ≤
〈
∇x(h)ℓ(ω,x, y), δgx

(h)
〉
+

Lh

2
∥δgx(h)∥22 (25)

Since the pre-activation output of layer h + 1 is z(h+1)(x) = W(h+1)f (h)(x) = W(h+1)x(h), we
can rewrite the inequality above as:

δgℓ(ω,x, y) ≤
〈
∇z(h+1)ℓ(ω,x, y)⊗ δgx

(h),W(h+1)
〉
F
+

Lh

2
∥δgx(h)∥22 (26)

where ⊗ denotes the outer product of two vectors and ⟨·, ·⟩F denotes the Frobenius inner product of
two matrices of similar dimension.

From Assumption 1, we have that there exists a constant M > 0 such that:

∥δgx(0)∥22 = ∥x(0)
g − x(0)∥22 = ∥g(x)− x∥22 ≤ M (27)

Given that x(1) = σ(1)
(
W(1)x(0)

)
, we have:

∥δgx(1)∥22 = ∥x(1)
g − x(1)∥22 ≤ ∥W(1)δgx

(0)∥22 (28)

Here we assume that the activate σ satisfies ∥σ(x)− σ(y)∥2 ≤ ∥x− y∥2, which is true for modern
activation functions such as ReLU. Since ∥δgx(0)∥22 is bounded, there exists a constant Ĉ(1)

g (x) such
that:

∥δgx(1)∥22 = ∥x(1)
g − x(1)∥22 ≤ ∥W(1)δgx

(0)∥22 ≤ Ĉ
(1)
g (x)

2
∥W(1)∥2F (29)

where ∥ · ∥F denotes the Frobenius norm. Similarly, as we have proven that ∥δgx(1)∥22 is bounded,
there exists a constant Ĉ(2)

g (x) such that:

∥δgx(2)∥22 = ∥x(2)
g − x(2)∥22 ≤ ∥W(2)δgx

(1)∥22 ≤ Ĉ
(2)
g (x)

2
∥W(2)∥2F (30)

Thus we have proven that for all h = 1, . . . ,H , there exists a constant Ĉ(h)
g (x) such that:

∥δgx(h)∥22 ≤ Ĉ
(h)
g (x)

2
∥W(h)∥2F (31)

By combining Eqs. (26) and (31) and setting C
(h)
g (x) = LhĈ

(h)
g (x), we arrive at Eq. (4).
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B Proof of Theorem 1

Proof. From Lemma 1, we have for all h = 0, . . . ,H − 1:

L(ω;g(S)) = 1

N

N∑
k=1

ℓ(ω,g(xk), yk) =
1

N

N∑
k=1

(
ℓ(ω,xk, yk) + δgℓ(ω,xk, yk)

)
(32)

≤ L(ω;S) + 1

N

N∑
k=1

〈
∇z(h+1)ℓ(ω,xk, yk)⊗ δgx

(h)
k ,W(h+1)

〉
F
+

Ĉ
(h)
g

2
∥W(h)∥2F (33)

where Ĉ
(h)
g = maxx∈S C

(h)
g (x). Since this bound is true for all h, we can take the average:

L(ω;g(S)) ≤ L(ω;S) + 1

H

H∑
h=1

1

N

N∑
k=1

〈
∇z(h)ℓ(ω,xk, yk)⊗ δgx

(h−1)
k ,W(h)

〉
F

+
Cg

2
∥ω∥2F (34)

where Cg = 1
H

∑H
h=1 Ĉ

(h)
g . The right-hand side of Eq. (34) can be written as:

L(ω;S) + 1

H

H∑
h=1

〈
1

N

N∑
k=1

∇z(h)ℓ(ω,xk, yk)⊗ δgx
(h−1)
k ,W(h)

〉
F

+
Cg

2
∥ω∥2F (35)

= L(ω;S) +
H∑

h=1

〈
∇W(h)L(ω;S),W(h) ◦ ξ(h)(g)

〉
F
+

Cg

2
∥ω∥2F (36)

≤ L(ω + ω ◦ ξ(g);S) + Cg

2
∥ω∥2F = L(ω ◦ (1 + ξ(g)) ;S) + Cg

2
∥ω∥2F (37)

where ξ(h)(g) is a matrix of the same dimension as W(h) whose each entry is defined as:

[
ξ(h)(g)

]
i,j

=
1

H

[∑N
k=1 ∇z(h)ℓ(ω,xk, yk)⊗ δgx

(h−1)
k

]
i,j[∑N

k=1 ∇z(h)ℓ(ω,xk, yk)⊗ x
(h−1)
k

]
i,j

(38)

The inequality in Eq. (37) is due to the first-order Taylor expansion and the assumption that the
training loss is locally convex at ω. This assumption is expected to hold for the final solution but
does not necessarily hold for any ω. Eq. (5) is obtained by combining Eq. (34) and Eq. (37).

C Training with corruption

Here we present Algorithm 2 which uses corruptions as data augmentation during training, as well as
the experiment results of Section 4.1 for ResNet18/CIFAR-10 and PreActResNet18/TinyImageNet
settings in Figs. 5 and 6.

D Training with random additive weight perturbations

Here, we present Algorithm 3 used in Section 4.2 which trains DNNs under random additive weight
perturbations and Fig. 7 comparing performance between DAMP and DAAP.

E Corruption datasets

CIFAR-10/100-C (Hendrycks and Dietterich, 2019) These datasets contain the corrupted versions
of the CIFAR-10/100 test sets. They contain 19 types of corruption, each divided into 5 levels of
severity.

TinyImageNet-C (Hendrycks and Dietterich, 2019) This dataset contains the corrupted versions
of the TinyImageNet test set. It contains 19 types of corruption, each divided into 5 levels of severity.
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Algorithm 2 Training with corruption

1: Input: training data S = {(xk, yk)}Nk=1, a neural network f(·;ω) parameterized by ω ∈ RP ,
number of iterations T , step sizes {ηt}Tt=1, batch size B, a corruption g such as Gaussian noise,
weight decay coefficient λ, a loss function L : RP → R+.

2: Output: Optimized parameter ω(T ).t
3: Initialize parameter ω(0).
4: for t = 1 to T do
5: Draw a mini-batch B = {(xb, yb)}Bb=1 ∼ S.
6: Divide the mini-batch into two disjoint sub-batches of equal size B1 and B2.
7: Apply the corruption g to all samples in B1: g(B1) = {(g(x), y)}(x,y)∈B1

.
8: Compute the gradient g = ∇ωL(ω;g(B1) ∪ B2).
9: Update the weights: ω(t+1) = ω(t) − ηt

(
g + λω(t)

)
.

10: end for
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Figure 5: DAMP improves robustness to all corruptions while preserving accuracy on clean
images. Results of ResNet18/CIFAR-10 experiments averaged over 3 seeds. The heatmap shows CEf

c
described in Eq. (18), where each row corresponds to a tuple of of training (method, corruption),
while each column corresponds to the test corruption. The Avg column shows the average of the
results of the previous columns. none indicates no corruption. We use the models trained under
the SGD/none setting (first row) as baselines to calculate the CEf

c . The last five rows are the 5 best
training corruptions ranked by the results in the Avg column.
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Figure 6: DAMP improves robustness to all corruptions while preserving accuracy on clean
images. Results of PreActResNet18/TinyImageNet experiments averaged over 3 seeds. The heatmap
shows CEf

c described in Eq. (18), where each row corresponds to a tuple of training (method,
corruption), while each column corresponds to the test corruption. The Avg column shows the
average of the results of the previous columns. none indicates no corruption. We use the models
trained under the SGD/none setting (first row) as baselines to calculate the CEf

c . The last five rows
are the 5 best training corruptions ranked by the results in the Avg column.

ImageNet-C (Hendrycks and Dietterich, 2019) This dataset contains the corrupted versions of
the ImageNet validation set, as the labels of the true ImageNet test set was never released. It contains
15 types of corruption, each divided into 5 levels of severity.
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Algorithm 3 DAAP: Data Augmentation via Additive Perturbations

1: Input: training data S = {(xk, yk)}Nk=1, a neural network f(·;ω) parameterized by ω ∈ RP ,
number of iterations T , step sizes {ηt}Tt=1, number of sub-batch M , batch size B divisible by M ,
a noise distribution Ξ = N (0, σ2IP ), weight decay coefficient λ, a loss function L : RP → R+.

2: Output: Optimized parameter ω(T ).
3: Initialize parameter ω(0).
4: for t = 1 to T do
5: Draw a mini-batch B = {(xb, yb)}Bb=1 ∼ S.
6: Divide the mini-batch into M disjoint sub-batches {Bm}Mm=1 of equal size.
7: for m = 1 to M in parallel do
8: Draw a noise sample ξm ∼ Ξ.
9: Compute the gradient gm = ∇ωL(ω;Bm)

∣∣
ω(t)+ξ

.
10: end for
11: Compute the average gradient: g = 1

M

∑M
m=1 gm.

12: Update the weights: ω(t+1) = ω(t) − ηt
(
g + λω(t)

)
.

13: end for
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Figure 7: DAMP has better corruption robustness than DAAP. We report the predictive errors
(lower is better) averaged over 5 seeds. None indicates no corruption. Mild includes severity levels 1,
2 and 3. Severe includes severity levels 4 and 5. We evaluate DAMP and DAAP under different noise
standard deviations σ. These results imply that the multiplicative weight perturbations of DAMP are
more effective than the additive perturbations of DAAP in improving robustness to corruptions.

ImageNet-C (Mintun et al., 2021) This dataset contains the corrupted versions of the ImageNet
validation set, as the labels of the true ImageNet test set was never released. It contains 10 types of
corruption, each divided into 5 levels of severity. The types of corruption in ImageNet-C differ from
those in ImageNet-C.

ImageNet-A (Hendrycks et al., 2021) This dataset contains natural adversarial examples, which
are real-world, unmodified, and naturally occurring examples that cause machine learning model
performance to significantly degrade. The images contain in this dataset, while differ from those in
the ImageNet validation set, stills belong to the same set of classes.

ImageNet-D (Zhang et al., 2024) This dataset contains images belong to the classes of ImageNet
but they are modified by diffusion models to change the background, material, and texture.

ImageNet-Cartoon and ImageNet-Drawing (Salvador and Oberman, 2022) This dataset con-
tains the drawing and cartoon versions of the images in the ImageNet validation set.

ImageNet-Sketch (Wang et al., 2019) This dataset contains sketch images belonging to the classes
of the ImageNet dataset.

ImageNet-Hard (Taesiri et al., 2023) This dataset comprises an array of challenging images,
curated from several validation datasets of ImageNet.
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F Training details

For each method and each setting, we tune the important hyperparameters (σ for DAMP, ρ for SAM
and ASAM) using 10% of the training set as validation set.

CIFAR-10/100 For each setting, we train a ResNet18 for 300 epochs. We use a batch size of
128. We use a learning rate of 0.1 and a weight decay coefficient of 5 × 10−4. We use SGD with
Nesterov momentum as the optimizer with a momentum coefficient of 0.9. The learning rate is kept
at 0.1 until epoch 150, then is linearly annealed to 0.001 from epoch 150 to epoch 270, then kept
at 0.001 for the rest of the training. We use basic data preprocessing, which includes channel-wise
normalization, random cropping after padding and random horizontal flipping. On CIFAR-10, we set
σ = 0.2 for DAMP, ρ = 0.045 for SAM and ρ = 1.0 for ASAM. On CIFAR-100, we set σ = 0.1 for
DAMP, ρ = 0.06 for SAM and ρ = 2.0 for ASAM. Each method is trained on a single host with 8
Nvidia V100 GPUs where the data batch is evenly distributed among the GPUs at each iteration (data
parallelism). This means we use the number of sub-batches M = 8 for DAMP.

TinyImageNet For each setting, we train a PreActResNet18 for 150 epochs. We use a batch size
of 128. We use a learning rate of 0.1 and a weight decay coefficient of 2.5 × 10−4. We use SGD
with Nesterov momentum as the optimizer with a momentum coefficient of 0.9. The learning rate is
kept at 0.1 until epoch 75, then is linearly annealed to 0.001 from epoch 75 to epoch 135, then kept
at 0.001 for the rest of the training. We use basic data preprocessing, which includes channel-wise
normalization, random cropping after padding and random horizontal flipping. We set σ = 0.2 for
DAMP, ρ = 0.2 for SAM and ρ = 3.0 for ASAM. Each method is trained on a single host with 8
Nvidia V100 GPUs where the data batch is evenly distributed among the GPUs at each iteration (data
parallelism). This means we use the number of sub-batches M = 8 for DAMP.

ResNet50 / ImageNet We train each experiment for 90 epochs. We use a batch size of 2048.
We use a weight decay coefficient of 1 × 10−4. We use SGD with Nesterov momentum as the
optimizer with a momentum coefficient of 0.9. We use basic Inception-style data preprocessing,
which includes random cropping, resizing to the resolution of 224× 224, random horizontal flipping
and channel-wise normalization. We increase the learning rate linearly from 8× 10−4 to 0.8 for the
first 5 epochs then decrease the learning rate from 0.8 to 8× 10−4 using a cosine schedule for the
remaining epochs. All experiments were run on a single host with 8 Nvidia V100 GPUs and we
set M = 8 for DAMP. We use p = 0.05 for Dropout, σ = 0.1 for DAMP, ρ = 0.05 for SAM, and
ρ = 1.5 for ASAM. We also use the image resolution of 224× 224 during evaluation.

ViT-S16 / ImageNet / Basic augmentations We follow the training setup of Beyer et al. (2022)
with one difference is that we only use basic Inception-style data processing similar to the
ResNet50/ImageNet experiments. We use AdamW as the optimizer with β1 = 0.9, β2 = 0.999 and
ϵ = 10−8. We clip the gradient norm to 1.0. We use a weight decay coefficient of 0.1. We use a batch
size of 1024. We increase the learning rate linearly from 10−6 to 10−3 for the first 10000 iterations,
then we anneal the learning rate from 10−3 to 0 using a cosine schedule for the remaining iterations.
We use the image resolution of 224× 224 for both training and testing. Following Beyer et al. (2022),
we make 2 minor modifications to the original ViT-S16 architecture: (1) We change the position
embedding layer from learnable to sincos2d; (2) We change the input of the final classification
layer from the embedding of the [cls] token to global average-pooling. All experiments were run on
a single host with 8 Nvidia V100 GPUs and we set M = 8 for DAMP. We use p = 0.10 for Dropout,
σ = 0.25 for DAMP, ρ = 0.6 for SAM, and ρ = 3.0 for ASAM.

ViT-S16 and B16 / ImageNet / MixUp and RandAugment Most of the hyperparameters are
identical to the ViT-S16 / ImageNet / Basic augmentations setting. With ViT-S16, we use p = 0.1 for
Dropout, σ = 0.10 for DAMP, ρ = 0.015 for SAM, and ρ = 0.4 for ASAM. With ViT-B16, we use
p = 0.1 for Dropout, σ = 0.15 for DAMP, ρ = 0.025 for SAM, and ρ = 0.6 for ASAM.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state our contributions and claims in the abstract and introduction
and back these claims and contributions with theoretical justifications and experimental
results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Section 6, which outlines the
shortcomings of our theoretical proofs and our experiments.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide full set of assumptions and complete proofs of the theoretical
result in Section 2 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all the details regarding our experiments in Appendix F. We also
describe the new algorithm that we propose in detail in Algorithm 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide our code on a public GitHub repository with instruction on how to
reproduce the experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all the details regarding our experiments in Appendix F and specify
sufficient details to understand the results in the main paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For Figs. 4 and 7, the error bars display 95% confidence intervals. For Table 1,
we report the standard deviation. For Figs. 3, 5 and 6, we cannot display the error bars since
these figures show heatmaps. For Tables 2 and 3, we does not report the error bars since we
ran each experiment once due to the high training cost and our limit in computing resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We state clearly in the paper that we run all experiments on a single machine
with 8 Nvidia V100 GPUs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics and confirm that the research in this
paper conforms with these guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss at the end of the paper the possible societal impact of the work in
this paper.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not release any new datasets or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
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safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite all the papers that produced the datasets and model architec-
tures used in this work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide our code in a public GitHub repository with documentation on
how to run the code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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