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Abstract

Large Language Models (LLMs) have demon-001
strated considerable cross-lingual alignment002
and generalization ability. Current research003
primarily focuses on improving LLMs’ cross-004
lingual generalization capabilities. However,005
there is still lacks of research on the intrin-006
sic mechanisms of how LLMs achieve cross-007
lingual alignment. From the perspective of re-008
gion partitioning, this paper conducts several009
investigations on the linguistic competence of010
LLMs. We discover a core region in LLMs that011
corresponds to linguistic competence, account-012
ing for approximately 1% of the total model013
parameters. Removing this core region by set-014
ting parameters to zero results in a significant015
performance decrease across 30 different lan-016
guages. Furthermore, this core region exhibits017
significant dimensional dependency, perturba-018
tions to even a single parameter on specific019
dimensions leading to a loss of linguistic com-020
petence. Moreover, we discover that distinct021
regions exist for different monolingual families,022
and disruption to these specific regions substan-023
tially reduces the LLMs’ proficiency in those024
corresponding languages. Our research also in-025
dicates that freezing the core linguistic region026
during further pre-training can mitigate the is-027
sue of catastrophic forgetting (CF), a common028
occurrence observed during further pre-training029
of LLMs. Overall, exploring the LLMs’ func-030
tional regions provides insights into the foun-031
dation of their intelligence.032

1 Introduction033

Over the years, the field of Natural Language Pro-034

cessing (NLP) has been at the forefront of under-035

standing the core principles of intelligence. The036

emergence of Large Language Models (LLMs)037

such as GPT-4 (OpenAI, 2023), PaLM 2(Anil et al.,038

2023), and LLaMA 2(Touvron et al., 2023), show-039

cases a significant breakthrough. Thanks to unpar-040

alleled scales of model architecture and the vast-041

ness of training data, these LLMs now exhibit ex-042
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Figure 1: Three main findings of our experiments: (1)
Identification of core language regions within the LLMs,
where removals lead to linguistic competence loss; (2)
Discovery of monolingual regions, where removals
cause significant proficiency loss in specific languages;
(3) Optimization of freezing core regions during further
pre-training decelerates language forgetting.

ceptional linguistic competence and can execute 043

complex tasks requiring abstract knowledge (Dong 044

et al., 2023) and reasoning (Cobbe et al., 2021). 045

Previous research has revealed that LLMs nat- 046

urally capture cross-linguistic similarities in their 047

representation space, facilitating zero-shot cross- 048

lingual transfer(Pires et al., 2019; Wu and Dredze, 049

2019; Xu et al., 2023). The model is fine-tuned on 050

one language, enabling the acquisition of compara- 051

ble capabilities in another language(Muennighoff 052

et al., 2023; Ye et al., 2023), and exhibits the phe- 053
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nomenon of code-switching when generating con-054

text, switching between languages within a single055

utterance(Khanuja et al., 2020; Zhao et al., 2024).056

Attempts to improve LLMs’ cross-lingual general-057

ization abilities have been successful through pa-058

rameter and information transfer learning(Üstün059

et al., 2020; Choenni et al., 2023), aligning lan-060

guages compulsorily(Sherborne and Lapata, 2022;061

Shaham et al., 2024) and utilizing in-context learn-062

ing techniques(Winata et al., 2021; Tanwar et al.,063

2023). However, a detailed research of underly-064

ing the internal mechanisms of how LLMs possess065

cross-linguistic alignment capability remains elu-066

sive.067

To delve deeper into the intrinsic mechanisms068

of LLMs’ linguistic competence, this paper focus069

on the LLMs’ parameter importance and investi-070

gate the linguistic regions of LLMs based on 30071

distinct languages’ performance, with the purpose072

of figuring out the following questions:073

Q1: Does a core linguistic region exist within074

LLMs that facilitates cross-lingual generaliza-075

tion? Through pre-training across six languages076

and measurement of parameter importance (Sec-077

tion 2.2), we discover a core region in LLMs corre-078

sponding to linguistic competence, which accounts079

for approximately 1% of the model’s total param-080

eters. As shown at the top of Figure 1, removing081

this region (setting parameters to zero) consistently082

lead to a significant decline in performance across083

30 test languages (Section 3.2).084

Furthermore, by visualizing the core linguistic085

region (Figure 2), we observe that the linguistic086

core region of LLMs exhibits significant dimen-087

sional dependency. In certain dimensions, only per-088

turbing a single parameter could lead to the model089

losing its linguistic competence (Section 3.3).090

Q2: Beyond the core multilingual region091

within LLMs , do distinct monolingual (or mono-092

lingual family) regions exist that specifically in-093

fluence individual languages? While LLMs pos-094

sess strong multilingual capabilities, we discover095

that each individual language (or language family)096

encompasses independent regions within the LLMs.097

As shown in the middle of Figure 1, the analysis098

of the Russian sentences identifies a particular lin-099

guistic region that likewise exerts influence both on100

the Russian and Ukrainian language, both of which101

belong to the Slavic group (Section 3.4).102

Q3: If and how core linguistic regions affect103

further pre-training, how to utilize it to opti-104

mize further pre-training? After pre-training,105

core linguistic parameter regions of the LLMs are 106

established for multilingual alignment. Notable 107

shifts in these regions potentially lead to a decline 108

in model lingual capabilities. Our findings reveal 109

that freezing this core region can mitigate the issue 110

of catastrophic forgetting(McCloskey and Cohen, 111

1989; Kemker et al., 2018), a common occurrence 112

observed during further pre-training of LLMs. As 113

shown at the bottom of Figure 1, we investigate 114

the impact of selectively freezing 5% key param- 115

eters of all parameters fine-tuning during further 116

pre-training, compared to the full-scale fine-tuning 117

technique. Findings indicate that this method facil- 118

itated comparable or even more efficient learning 119

of the target language, while concurrently deceler- 120

ating the rate of language attrition for previously 121

learned languages (Section 3.5). Significantly, our 122

methodology is compatible with the data-replay 123

techniques(Robins, 1995), with no necessity for 124

integrating extra components into the model. Un- 125

like regularization methods(Srivastava et al., 2014; 126

Goodfellow et al., 2014), our approach restricts to 127

a minimal core region in LLMs. 128

The main contributions of our work are summa- 129

rized as follows: 130

• We discover that LLMs possess a core linguis- 131

tic region, and removing this region (setting 132

parameters to zero) results in a significant loss 133

of the model’s linguistic capabilities. Further- 134

more, perturbations to specific dimensions or 135

even a single parameter can lead to a substan- 136

tial decline in the model’s linguistic abilities. 137

• We observe that distinct monolingual regions 138

exist in LLMs for different languages (or lan- 139

guage families). Removing a specific mono- 140

lingual region causes a significant deteriora- 141

tion in the linguistic capabilities within that 142

language (or language family). 143

• We perform further pre-training for specific 144

languages within the core linguistic region 145

of LLMs frozen, achieving comparable or 146

even superior performance in the target lan- 147

guage while mitigating catastrophic forgetting 148

in non-target languages. 149

2 Background and Metric 150

2.1 Model Pre-training 151

Pre-training is a crucial process by which LLMs 152

acquire linguistic competence and gain general 153
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knowledge about the real world. Formally, given a154

large corpus D, the training objective is to find the155

optimal θ, minimize the following loss L:156

L(D, θ) =
∑
x∈D

∑
i

log pθ(xi|x1, ..., xi−1), (1)157

where x = {x1, ..., xn} denotes an input token158

sequence and θ denotes parameters of the model.159

2.2 Parameter Importance160

Drawing upon the observations of linguistic align-161

ments, we propose that particular parameters re-162

gions within the model exert significant influence163

on its inherent language alignment capabilities.164

Evaluating parameter sensitivity is a crucial met-165

ric for determining the significance of parameters166

in model pruning(Sanh et al., 2020; Liang et al.,167

2021; Zhang et al., 2022). If removing a parameter168

(zero-out) significantly affects the loss, the model169

is sensitive to it. More specifically, given a large170

corpus D and θ = [θ1, θ2, . . . , θd] ∈ Rd as the pa-171

rameters of a model, with each θj ∈ R denoting172

the j-th parameter, the training objective is to mini-173

mize loss L(D, θ) (defined in 2.1). The importance174

of each θ is denoted as I(θ) ∈ Rd, where its j-th175

index Ij(θ) signifies the importance for θj .176

Under an independent and identically distributed177

data (i.i.d.) assumption, the importance of a param-178

eter Ij(θ) is measured by the increase in prediction179

loss when it is removed, calculated as the abso-180

lute difference between prediction losses with and181

without the parameter(θj):182

Ij(θ) = |L(D, θ)− L(D, θ|θj = 0)| . (2)183

Calculating Ij(θ) for each parameter, as out-184

lined in 2, is computationally expensive because185

it involves d distinct versions of the network com-186

puting, for each removed parameter. This becomes187

particularly challenging as the number of model188

parameters, d, grows to hundreds of billions. How-189

ever, according to the Taylor expansion formula for190

L at θj = 0:191

L(D, θ) = L(D, θ|θj = 0)

+
∂L
∂θj

(θj − 0) +
1

2!

∂2L
∂θ2j

(θj − 0)2 + · · · ,
(3)192

we can estimate Ij(θ) with its first-order Taylor ex-193

pansion, eliminating the requirement for d distinct194

networks computation:195

Ij(θ) ≈ |gjθj | , (4)196

where gj =
∂L
∂θj

are elements of the parameter gra- 197

dient g, and the importance is easily calculated 198

since the gradient g can be obtained from back- 199

propagation. 200

3 Experiments 201

3.1 Experimental Setup 202

To localize the functional regions corresponding 203

to linguistic competence within LLMs and ana- 204

lyze their nature, we perform language further 205

pre-training (next token prediction) on various lan- 206

guages and observe the relationship between inter- 207

nal parameter removal and external output quality. 208

We utilize LLaMA-2-7B/13B (Touvron et al., 2023) 209

as our model instance, as it stands out as one of the 210

most notable state-of-the-art open-source LLMs in 211

current academia. 212

Our experimental dataset comprises materials 213

from Chinese platforms like Zhihu and Wechat, En- 214

glish sources from Arxiv and Falcon, and a corpus 215

including books from 28 languages, totaling 30 lan- 216

guages in all. Six languages, namely Arabic, Span- 217

ish, Russian, Chinese, Korean, and Vietnamese, 218

are chosen for language further pre-training and 219

region localization, with 100, 000 samples for each 220

(distinct from the samples in the test set). All 30 221

languages are employed for model testing and func- 222

tional region analysis, with the specific languages 223

and token count detailed in A. We use perplexity 224

(PPL) as the criterion for evaluating the linguistic 225

competence of a language model. 226

3.2 Core Linguistic Competence Region 227

In this section, we conduct further pre-training ex- 228

periments on LLaMA-2 across six languages, aim- 229

ing to explore and identify core parameter regions 230

associated with linguistic competence. Specifically, 231

according to Equation 4, we cumulatively compute 232

I∗(θ) = ΣI(θ) values across six different lan- 233

guages’ training, positing that the set of parameters 234

exhibiting maximal importance score I∗(θ) during 235

the language further pre-training may have a strong 236

correlation with the model’s linguistic competence, 237

and we provide both logical and empirical evidence 238

to support this hypothesis. 239

Logical Evidence The phenomenon of code- 240

switching suggests that the LLMs can align lan- 241

guages and may possess core linguistic regions. 242

As discussed in Section 2.2, if a parameter θj is 243

crucial for the LLMs’ core linguistic competence, 244

the model should be sensitive to θj , shown by a 245

3



Languages LLaMA-2 3% Removal

Base Top Bottom Random

Arabic
6.771 127208.250 6.772 7.895
6.261 102254.758 6.316 7.112

Chinese
8.652 295355.5 8.565 9.837
7.838 84086.906 7.806 8.619

Italian
14.859 58908.879 14.860 17.341
13.694 47375.844 13.730 15.207

Japanese
10.888 322031.406 10.896 12.535
10.072 75236.031 10.137 11.661

Korean
4.965 125345.359 4.967 5.649
4.724 90768.844 4.743 5.241

Persian
6.509 81959.719 6.511 7.628
6.205 92201.812 6.229 7.009

Portuguese
15.318 47763.059 15.319 17.297
13.667 51498.402 13.982 15.376

Russian
12.062 170776.750 12.064 13.728
11.048 112574.609 10.948 11.757

Spanish
17.079 51940.859 17.082 18.98
16.351 54005.891 16.138 17.292

Ukrainian
9.409 120719.938 9.409 10.875
8.295 116287.305 8.297 9.076

Vietnamese
5.824 40126.527 5.824 6.614
5.471 42336.426 5.437 5.995

Table 1: LLaMA-2 perplexity on 11 languages with 3%
removal ratio. The 13B model is gray-filled while the
7B model is unfilled. ‘Top’ and ‘Bottom’ respectively
indicate the N parameters with the highest and lowest
cumulative I∗

j (θ) during the further pre-training across
the six languages. ‘Random’ denotes the randomly se-
lecting N while ‘Base’ represents no removal. Here, N
equals 3% of the total number in each parameter matrix.

significant increase on the loss L when θj is re-246

moved, severely impairing the LLMs’ linguistic247

performance. Conversely, other parameters impact248

rarely on core linguistic capabilities.249

Empirical Evidence 1 Table 1 illustrates that250

even a 3% removal on the ‘Top’ region leads to251

a substantial increase in perplexity (PPL), reach-252

ing over 40, 000 across 11 languages, indicating253

a complete loss of linguistic competence. In con-254

trast, removing the ‘Bottom’ region is comparable255

to non-removal ‘Base’ in model PPL, and a ‘Ran-256

dom’ removal of equal magnitude has no signifi-257

cant impact on the model’s linguistic competence.258

Moreover, refer to Appendix B, additional exper-259

iments with reducing training samples to 10, 000260

or adjusted the region selection ratio to 1% and261

5% yield consistent findings: removing the ‘Top’262

region deprives LLaMA-2 of its capability across263

all 30 languages. This suggests the model’s linguis-264

tic competence is directly influenced by the ‘Top’265

region, while removing the ‘Bottom’ and ‘Random’266

region don’t have a significant direct impact on lan-267

Testing
Dataset

(Language)

# Training
Samples
(Chinese)

Removal Ratio = 1%

Top &
Freeze

Bottom &
Freeze

Top &
Unfreeze

Wechat
(Chinese)

0K 254772480 6.452 254772480
2K 674.076 6.052 6.05
5K 292.499 6.053 6.058
10K 116.859 6.305 6.303
20K 20.722 6.556 6.559
50K 9.129 6.18 6.175
200K 6.246 5.581 5.604

Falcon
(English)

0K 4244070 14.02 4244070
2K 158431.282 14.507 14.445
5K 343498 15.732 15.415
10K 175567.219 15.878 15.875
20K 32505.828 18.689 18.952
50K 12455.038 29.029 31.583
200K 5301.527 488.429 448.804

Table 2: Removing-freezing analysis at 1% removal
ratio in different regions of LLaMA-2-7B. ‘Top/Bottom’
denotes the removal region, while ‘Freeze/Unfreeze’
indicates whether the corresponding region is frozen
after removal.

guage capabilities. See Appendix B for evaluations 268

on 30 languages and further experiments. 269

Empirical Evidence 2 In the experiment corre- 270

sponding to Table 2, we initially zero out various 271

regions within LLaMA. Consistent with the find- 272

ings from Table 1, removing the ‘Top’ region leads 273

to a loss of linguistic competence, whereas the ‘Bot- 274

tom’ region don’t. However, in this experiment, we 275

sought to ascertain if LLaMA could reacquire its 276

lost cross-lingual generalization competence. Thus, 277

we train on different amounts of Chinese Zhihu cor- 278

pus and evaluate on Chinese Wechat and English 279

Falcon corpora. The results indicate that unlike 280

the ‘Bottom’ region, if the ‘Top’ region is removed 281

and frozen, the model have to relearn basic lan- 282

guage rules in other regions based on the provided 283

Chinese Zhihu corpus, but these rules are inher- 284

ently biased towards Chinese. Consequently, while 285

its proficiency in Chinese is restored, the English 286

perplexity remains high (5301.527). If the ‘Top’ 287

region is removed but not frozen, the model can 288

rebuild its linguistic competence in-place. As its 289

proficiency in Chinese is restored, so is its profi- 290

ciency in English. This implies that the ‘Top’ re- 291

gion encodes generalizable fundamental linguistic 292

competence. When ‘Top’ region is zeroed-out and 293

frozen, other regions significantly adapt to regain 294

core linguistic competence. Similar conclusions 295

can be obtained with an expanded removal ratio 296

5%. For further details, see Appendix C. 297
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Figure 2: Visualization of the linguistic competence region (the ‘Top’ 5% region). The scale from 0 to 1 (after
normalization) represent the proportion of parameters within a 3× 3 vicinity that belong to the Top region.

Model
Size

# Training
Samples

Nd
Attn.o(row), Attn.k/q/v+FFN.down(column)

Top Middle Bottom Random

7B

100K 1 848.326 6.447 6.447 6.48
100K 3 72594.445 6.455 6.458 6.487
100K 5 48001.992 6.461 6.463 6.495
100K 10 62759.516 6.478 6.48 6.529

13B

100K 1 5218.1 5.857 5.857 5.856
100K 3 37344.078 5.863 5.858 5.985
100K 5 41840.613 5.867 5.86 5.89
100K 10 465740.125 5.879 5.869 6.992

13B

10K 1 23120.977 5.859 5.856 5.865
10K 3 28816.867 5.862 5.86 5.875
10K 5 73268.289 5.866 5.862 5.878
10K 10 592922.25 5.879 5.871 5.993

Table 3: Perplexity of LLaMA-2 after removing certain
dimensions in the Attention and Feedforward layers.
Here, Nd denotes the number of dimensions to remove,
’Top’, ’Middle’, and ’Bottom’ refer to the dimensions
with the most, moderate, and least cumulated Iθ during
further pre-training. ’Random’ denotes an equivalent
number of dimensions chosen randomly for comparison.

3.3 Dimensional Dependence298

To provide a more intuitive revelation of the spatial299

distribution characteristics of the linguistic com-300

petence region within the model, we visualize the301

‘Top’ region. As shown in Figure 2, whether in302

the attention mechanism layer or the feed-forward303

layer, the linguistic region displays a distinct con-304

centration in both the rows and columns of the ma-305

trices. Such distribution features seem to imply that306

the model’s linguistic competence is concentrated307

in specific dimensions.308

Structured Removal Instead of discretely re-309

moving different unstructured parameters, we selec-310

tively remove structured certain rows or columns311

for each matrix, especially those dimensions en-312

compassing a significant number of ‘Top’ region313

parameters, termed as ‘Top’ dimensions. As illus-314

trated in Table 3, we attempt to remove the columns 315

of FFN.down and Attn.k/q/v, as well as the rows of 316

Attn.o. The results indicate that removing just these 317

‘Top’ dimensions leads to a substantial decline in 318

the model’s linguistic competence. However, dis- 319

turbances to the ‘Middle’ ,‘Bottom’ and ‘Random’ 320

dimensions do not yield noticeable effects. Select- 321

ing the dimensional region only from the Attention 322

matrix or inverting rows and columns removals 323

lead to similar findings, as described in D. 324

Single Dimension Perturbation Here, we ex- 325

plore whether a specific dimension significantly 326

impact the model’s linguistic competence. As il- 327

lustrated in Figure 3, we iterate through the key 328

dimensions mentioned in Section 3.3, attempting 329

to perturb the same dimension (random initializa- 330

tion) across all Transformer layers. The results 331

indicate that the impact of dimensions 2100 and 332

4743 on the LLaMA-2-13B substantially surpassed 333

other dimensions, even when compared to the other 334

three in the ‘Top5’ dimensions. In contrast, per- 335

turbing two randomly selected dimensions, 2800 336

and 4200, yield linguistic performance almost in- 337

distinguishable from the unperturbed state. 338

Single Parameter Perturbation We discover 339

that even a slight modification to a single parameter 340

in a model with over 13 billion parameters can lead 341

to a significant decline in its output quality. In Ta- 342

ble 4, merely resetting the 2100-th parameter in the 343

‘Input_LayerNorm’ module of the 1-st layer to its 344

initial value causes LLaMA-2-13B’s PPL value to 345

skyrocket from 5.865 to 83224.078. If this weight 346

parameter is multiplied by 10, the PPL value also 347

rises to 4363.462. This suggests that even minor 348

changes to a single parameter can cause the model 349
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Figure 3: Perplexity of the LLaMA-2-13B when perturb-
ing the same single dimension (Att.O and FFN.down
matrices) across all layers. ‘Topk’ represents the top
k dimensions that disrupt the model the most. ‘Ran-
dom selected’ refers to a randomly chosen dimension.
‘Original’ indicates that no dimensions are disrupted.

to lose nearly all of its linguistic competence. How-350

ever, randomly altering the parameters at dimen-351

sions 2800 and 4200 doesn’t noticeably impact the352

model. For more details, refer to Appendix E.353

Output Under Perturbations To visually illus-354

trate the impact of the linguistic competence region355

on the model’s output quality, we use "Fudan Uni-356

versity is located in" as a premise and observe the357

model’s outputs under different parameter perturba-358

tions. The results are shown in Figure 4. Compared359

to randomly selected dimension 4200-th, perturb-360

ing model on 2100-th dimension significantly leads361

to model loses its linguistic competence, producing362

error or even nonsensical strings.363

3.4 Monolingual Family Region364

In this section, we wonder if LLMs possess dis-365

tinct regions within an individual language (or lan-366

guage family). Unlike the core linguistic regions367

described in Section 3.2, a monolingual family368

region only has a strong correlation with certain369

languages, and removing it will only cause sig-370

nificant influence on LLMs’ proficiency in those371

corresponding languages.372

Region Localization Different from Section 3.2,373

we initially identify and select the 1% ‘Top’ and374

‘Bottom’ regions for each of the six languages (Ara-375

bic, Spanish, Russian, Chinese, Korean, and Viet-376

Perturbation Parameter Perplexity

- - 5.865
Reset 1 L1-N2100 83224.078
Reset 1 L1-N2800 5.860
Reset 1 L1-N4200 5.858
Mul 10 L1-N2100 4363.462
Mul 10 L1-N2800 5.859
Mul 10 L1-N4200 5.864

Table 4: Perplexity of LLaMA-2-13B on Chinese when
perturbing a single weight parameter. Here, ‘Reset 1’
represents resetting the parameter to 1 (the initial value
before pre-training), ‘Mul 10’ represents multiplying
the parameter by 10. ‘L1’ represents 1-st layers. ‘N’
represents the ‘Input_LayerNorm’ module, followed by
the perturbed dimension.

namese) according to Equation 4, then deduplicate 377

these regions. For the target language region, we 378

exclude any regions that overlap with the ‘Top’ 379

and ‘Bottom’ regions of the other five languages, 380

aiming to eliminate the core regions and critical 381

dimension corresponding to the model’s fundamen- 382

tal linguistic abilities. We denote L, S and S∗ as 383

the total set of six languages and the ‘Top/Bottom’ 384

regions before and after deduplication, respectively. 385

Language l’s own region S∗
l is computed as fol- 386

lows: 387

S∗
l = Sl −

⋃
l′∈L\{l}

Sl′ . (5) 388

Region Removal Unlike removing core regions 389

or dimensions in Section 3.2 and 3.3, we discover 390

that removing monolingual regions will only signif- 391

icantly affect the ability of the target languages and 392

their closely related languages with similar letter 393

elements or sentence structure. For example, if we 394

remove only the region S∗
Russian for Russian alone, 395

selected from 10, 000 (10K) or 100, 000 (100K) 396

samples respectively, as shown in Table 5, only 397

Russian itself and Ukrainian have significant in- 398

creases in PPL when removing ‘Top’ region. We 399

speculate this to the fact that Russian and Ukrainian 400

are relatively similar in terms of sentence struc- 401

ture and constituents, both belonging to the Slavic 402

group. A similar phenomenon is observed if re- 403

movals are changed to the regions for each of other 404

five languages, see Appendix F for more details. 405
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Mul by 4 on L1-N2100 (PPL 257.7 on Chinese):
Fudan University is located in Tertian, ancis located
tet tet at tete tette tett ten ten teent teth, tat, tat, tate,
tat, ta.162 words for,

Mul by 4 on L1-N4200 (PPL 5.858 on Chinese):
Fudan University is located in Shanghai, China. The
university was established in 1905. It is accredited
by Ministry of Education, People‘s Republic of
China. 

Figure 4: Comparison of linguistic competence. Ex-
panding a single parameter to four times leads to error
language competence in LLaMA-2-13B, a 13 billion-
parameter LLM.

3.5 Further Pre-training Optimization406

In this section, we demonstrate that stabilizing407

the core linguistic regions identified in Section408

3.2 mitigates the catastrophic forgetting (CF) is-409

sue(McCloskey and Cohen, 1989; Kemker et al.,410

2018) in LLMs, while preserving performance411

comparable to full-scale fine-tuning in target lan-412

guage proficiency. Our experimental setup involves413

further pre-training LLaMA-2-7B on 100,000 Ara-414

bic sentences, with a batch size of 256, a maximum415

token count of 512, and learning rates (lr) and416

5e−5 or 5e−6, employing perplexity (PPL) as the417

evaluation criterion.418

Full-scale Model Fine-tuning Traditional full-419

scale fine-tuning, when increasing the learning rate,420

enhances learning in the target language but ag-421

gravates forgetting in non-target languages. To422

counteract this forgetting, it is often essential to423

incorporate a portion of data from these other lan-424

guages. As depicted on the left side of Figure 5425

in line Blue, increasing lr from 5e−6(dotted blue426

line) to 5e−5 (solid blue line) under full-scale fine-427

tuning boosts the acquisition of the target language428

(Arabic), while accelerates the forgetting rate of429

the non-target languages (English and Chinese) si-430

multaneously, shown in the middle and right side.431

Freeze Core Regions Fine-tuning We hypoth-432

esize that CF problem occurs due to the amplifi-433

cation of parameter adjustments when increasing434

the learning rate, which leads to significant shifts435

in the core linguistic region, adversely affecting436

language alignment. To mitigate this, we protect437

the core linguistic region and key dimensions by438

freezing the ‘Top 5%’ core language area for fine-439

tuning, as shown by the red line in Figure 5. At440

Languages Russian (10K) Russian (100K)

Base Top Bottom Top Bottom

Arabic 6.771 7.105 6.785 7.071 6.787
Chinese 8.562 8.927 8.593 8.878 8.599
Italian 14.859 16.155 14.931 16.274 14.935
Japanese 10.888 11.212 10.931 11.119 10.951
Korean 4.965 5.19 4.972 5.149 4.974
Persian 6.509 6.93 6.506 6.894 6.515
Portuguese 15.318 16.51 15.247 16.421 15.247
Russian 12.062 28.93 12.141 41.381 12.137
Spanish 17.079 18.07 17.224 17.894 17.211
Ukrainian 9.409 18.147 9.43 22.622 9.435
Vietnamese 5.824 6.086 5.872 6.079 5.873

Table 5: LLaMA-2-7B perplexity on 11 languages with
a Russian region removal. Here, ‘Arabic’ and ‘Persian’
are gray-filled while others are unfilled, ‘Top’ and ‘Bot-
tom’ are deduplicated, and ‘Base’ is unchanged. Values
with greater changes compared to the other regions’ re-
movals are in bold.

a lr of 5e−6 (dotted line), the difference between 441

freezing fine-tuning and full-scale fine-tuning is 442

minimal. However, when the lr increases to 5e−5 443

(solid line), freezing fine-tuning not only facili- 444

tates faster learning in the target language (achiev- 445

ing better performance in Arabic PPL: 3.557 vs. 446

3.566), but also significantly reduces the forgetting 447

of non-target languages (showing improvements in 448

English and Chinese PPL: 18.796 vs. 20.557 and 449

90.84 vs. 563.423 , respectively). 450

The potential reason for this phenomenon may 451

lie in the preservation of the core regions within 452

the cross-lingual alignment competence. Restrict- 453

ing the magnitude of updates in the core region’s 454

parameters is a future strategy we intend to employ. 455

Notably, unlike regularization methods(Srivastava 456

et al., 2014; Goodfellow et al., 2014), such ap- 457

proaches restricts to a minimal core region in 458

LLMs, and can be implemented alongside blend- 459

ing previous data, retraining the entire network, 460

or possibly only the final layers, without adding 461

additional components to the model. 462

4 Realated Work 463

Neuron Importance Estimating Several works 464

have empirically estimated neuron importance. An 465

effective importance metric is to utilize parame- 466

ter magnitude(Zhu and Gupta, 2018; Renda et al., 467

2020; Zafrir et al., 2021). However, such a simple 468

approach may inadequately measure a weight’s im- 469

pact on model output. Another importance metric 470

is to estimate sensitivity of parameters, essentially 471
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Figure 5: Perplexity of LLaMA-2 across Arabic, English, and Chinese when training on 100,000 Arabic sentences.
Blue represents full-scale fine-tuning, and red denotes fine-tuning with the ‘Top 5%’ of the model parameters frozen.
Dashed lines indicate a learning rate (lr) of 5e-6, and solid lines represent lr of 5e-5. We find fine-tuning with the
‘Top 5%’ region frozen during further pre-training effectively mitigates forgetting of non-target languages while
maintaining target language acquisition.

approximates the change in loss when a parameter472

is zeroed out(Molchanov et al., 2019; Sanh et al.,473

2020; Liang et al., 2021; Sapkota and Bhattarai,474

2023). These studies all focus on pruning unim-475

portant parameters through parameter importance476

estimation. In this work, we select the most cru-477

cial parameters to unveil the core linguistic and478

monolingual regions.479

Cross-lingual Transfer Multilingual language480

models exhibit significant zero-shot and few-481

shot cross-lingual transferability across diverse482

tasks(Pires et al., 2019; Wu and Dredze, 2019;483

Xu et al., 2023). Fine-tuned on one language en-484

ables model to obtain comparable capabilities in an-485

other language(Muennighoff et al., 2023; Ye et al.,486

2023), often displaying code-switching behavior487

in context generation(Khanuja et al., 2020; Zhao488

et al., 2024). While enhancements in cross-lingual489

generalization through parameter and information490

transfer learning(Üstün et al., 2020; Choenni et al.,491

2023), compulsory language alignment(Sherborne492

and Lapata, 2022; Shaham et al., 2024) and in-493

context learning techniques(Winata et al., 2021;494

Tanwar et al., 2023) have been effective, compre-495

hensive understanding of the internal mechanisms496

enabling cross-linguistic alignment in large lan-497

guage models (LLMs) is still lacking.498

Linguistic Abilities Probing Researchers have499

investigated the mechanisms underlying strong500

cross-lingual performance. Prior works have shown501

that multilingual multilingual language models502

rely on a shared subword vocabulary and joint503

pre-training across multiple languages(Pires et al.,504

2019; Cahyawijaya et al., 2023; Wu and Dredze,505

2019). However, new insights highlight these mod-506

els’ capacity for learning universal semantic ab- 507

stractions(Artetxe et al., 2020; Chi et al., 2020) 508

and demonstrate that mBERT(Devlin et al., 2019) 509

embeddings of similar words in similar sentences 510

across languages are approximately aligned al- 511

ready(Cao et al., 2020; Conneau et al., 2020; Xu 512

et al., 2022). Analysis from a hierarchical per- 513

spective reveals that classifiers linked to different 514

BERT(Devlin et al., 2019) layers assess seman- 515

tic features through varied probe tasks(Lin et al., 516

2019; Jawahar et al., 2019). In this work, we in- 517

troduce a parameter partitioning perspective within 518

LLMs, identifying core linguistic and monolingual 519

regions, which underpin cross-lingual alignment 520

and language-specific characteristics, respectively. 521

5 Conclusion 522

This paper explores the pivotal role of certain pa- 523

rameters in Large Language Models (LLMs), iden- 524

tifying a core region essential for multilingual align- 525

ment and generalization. Removing this region 526

causes a complete loss of linguistic ability in LLMs. 527

Further more, we discover that this core region 528

is concentrated in specific dimensions, perturbing 529

only one dimension can cause a significant decrease 530

in language ability. Moreover, beyond the core 531

linguistic regions, we observe that monolingual 532

regions exist within LLMs that affect specific lan- 533

guages. Importantly, we note that the catastrophic 534

forgetting phenomenon during further pre-training 535

may be related to drastic changes in core linguistic 536

regions, as freezing this part during further pre- 537

training alleviates the issue substantially. Our anal- 538

ysis and findings provide new perspectives and ex- 539

planations for LLMs’ linguistic competence. 540
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Limitations541

In this paper, while we discover the core lin-542

guistic region and distinct monolingual regions543

within Large Language Models (LLMs), our work544

presents two notable limitations. First, our exper-545

iments are based on LLaMA-2-7B/13B, and it re-546

mains to be further determined whether the same547

phenomenon are observable in larger or differently548

architected models. Despite this, our focus on549

LLaMA-2-7B/13B reveals the existence of linguis-550

tic regions within the model, providing an expla-551

nation for the model’s linguistic capabilities. Sec-552

ondly, we optimize full-scale fine-tuning through553

the freezing operation, which is not suited to exten-554

sive datasets. A more feasible approach is to limit555

the magnitude of parameter updates, which is the556

direction of our future experiments. Nevertheless,557

it is important to emphasize that slowing down for-558

getting through freezing core region suggests that559

in further pre-training, the core region is different560

from the other regions. Range of variation ampli-561

tude in core region should be smaller to maintain562

the cross-lingual generalization capabilities of the563

model. Additionally, while our study focuses on564

linguistic regions, beyond language, knowledge is565

a higher-level semantic representation, which is a566

critical direction for us to explore in the future.567
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(630), Swedish (1450236), Tamil (2920808), Turk-881

ish (2484186), Ukrainian (455720), Vietnamese882

(3606202).883

B Evaluation on 30 Languages884

The regions are localized from six languages: Ara-885

bic, Spanish, Russian, Chinese, Korean, and Viet-886

namese.887

Removal 3% ratio (100K) LLaMA-2 perplexity888

on 30 languages when the removal ratio is 3% ratio,889

with 100, 000 samples for each language. Refer to890

Table 14 for more details.891

Removal 3% ratio (10K) LLaMA-2 perplexity892

on 30 languages when the removal ratio is 3% ratio,893

with reduced 10, 000 samples for each language.894

Refer to Table 15 for more details.895

Removal 1% and 5% ratio (100K) LLaMA-2-896

7B perplexity on 30 languages when the removal897

ratio is changed to 1% and 5% ratio, with 100, 000898

equivalent samples for each language. Refer to899

Table 16 for more details.900

C Remove and Freeze Fine-tuning901

In Table 6, we expand removing-freezing ratio to902

5% for LLaMA-2-7B fine-tuning, and also observe903

that removing the ‘Top 5%’ regions destroys the904

original cross-lingual generalization competence.

Testing
Dataset

(Language)

# Training
Samples
(Chinese)

Removal Ratio = 5%

Top &
Freeze

Bottom &
Freeze

Top &
Unfreeze

Wechat
(Chinese)

0K 204630.063 6.454 204630.063
2K 816.94 6.057 6.05
5K 302.806 6.039 6.054
10K 167.891 6.285 6.315
20K 57.355 6.525 6.56
50K 18.92 6.154 6.173
200K 8.8 5.582 5.584

Falcon
(English)

0K 66877.711 14.027 66877.711
2K 248218.656 14.486 14.44
5K 476895.25 14.831 15.074
10K 467330.656 16.248 16.334
20K 131648.75 18.579 18.743
50K 25494.166 29.576 29.377
200K 6948.663 321.353 504.645

Table 6: Removing-freezing analysis at 5% removal
ratio in different regions of LLaMA-2-7B. ‘Top/Bottom’
denotes the removal region, while ‘Freeze/Unfreeze’
indicates whether the corresponding region is frozen
after removal.

905

D Attn. Dimensional Removal Evaluation 906

Figure 6 (left) illustrates that the columns of the 907

Attn.k/q/v matrices in the attention layer, as well 908

as the rows of the Attn.o matrix, correspond to 909

different attention head parameters. Conversely, 910

the rows of the Attn.k/q/v matrices and the columns 911

of the Attn.o matrix are closely associated with 912

features in the representation space. 913

We remove the ‘Top’ dimensions in the atten- 914

tion layer, and the results is displayed in Tables 915

7 and 8. Table 7 reveals that removing the ‘Top’ 916

dimensions continues to produce more detrimental 917

effects than other dimensions. The visualizations 918

in Figure 2 show that these dimensions are largely 919

concentrated in a few attention heads, suggesting 920

that some attention heads contribute more signifi- 921

cantly to the model’s linguistic competence. Table 922

8 indicates that the removals under the second set- 923

ting cause more damage than the first. Considering 924

that, in the second setting, the ‘Top’ dimensions in 925

the matrix directly interact with the corresponding 926

features in the representational space, we can con- 927

jecture that these features are tightly linked with 928

the model’s linguistic competence. 929

Input Embedding

RMSNorm

Attention

RMSNorm

FeedForward

RMSNorm

+

Head

H
ea

d

RMSNorm

+

Input Embedding

+

+

Head

H
ea

d

Figure 6: One can see from the left that each row of
the Attn.o (Wo) corresponds to a particular attention
head, and each column of the Attn.q/k/v (Wq/k/v) ma-
trix corresponds to one as well. On the right, one can
observe the perturbation applied to one weight within
RMSNorm, which can be seen as affecting a column of
the FFN.down and the Attn.o.

E Single Parameter Perturbation 930

In a Transformer block, each column in the Attn.o 931

and the MLP.down matrix of the feed-forward layer 932

can be considered as the input weights of a neuron. 933

Thus, perturbing a column can be seen as disturbing 934

the input weights of a neuron. Viewed from another 935

angle, if we disturb the output activation value of 936

this neuron, a similar effect should be observed. 937
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Model
Size

# Training
Samples

Nd
Attn.o(row), Attn.k/q/v(column)

Top Middle Bottom Random

7B

100K 1 9.731 6.448 6.445 6.471
100K 3 25.82 6.449 6.445 6.474
100K 5 62.794 6.452 6.446 6.482
100K 10 875.016 6.456 6.446 6.504

13B

100K 1 10.899 5.857 5.856 5.856
100K 3 44.384 5.858 5.855 5.98
100K 5 33.52 5.861 5.856 5.884
100K 10 118.968 5.863 5.857 5.966

13B

10K 1 8.094 5.856 5.855 5.864
10K 3 21.561 5.857 5.855 5.866
10K 5 111.766 5.858 5.856 5.865
10K 10 108.133 5.861 5.857 5.977

Table 7: Perplexity of LLaMA-2 after removing certain
dimensions (zeroed-out) in the attention (Attn) layers.
Here, Nd denotes the number of dimensions to remove,
’Top’, ’Middle’, and ’Bottom’ refer to the dimensions
with the most, moderate, and least cumulated Iθ during
further pre-training across six languages, respectively.
’Random’ denotes an equivalent number of dimensions
chosen at random for comparison.

Model
Size

# Training
Samples

Nd
Attn.o(column), Attn.k/q/v(row)

Top Middle Bottom Random

7B

100K 1 167.804 6.446 6.446 6.446
100K 3 68554.102 6.446 6.447 6.448
100K 5 4259.861 6.449 6.447 6.449
100K 10 68170.25 6.454 6.452 6.449

13B

100K 1 17.609 5.855 5.856 5.856
100K 3 313.178 5.857 5.856 5.863
100K 5 526.464 5.858 5.856 5.857
100K 10 5841.446 5.859 5.858 5.852

13B

10K 1 17.03 5.855 5.856 5.857
10K 3 206.225 5.856 5.856 5.858
10K 5 1110.781 5.857 5.856 5.86
10K 10 9600.097 5.859 5.858 5.874

Table 8: Perplexity of LLaMA-2 after removing certain
dimensions in attention (Attn) layers. Different from
Table 7, in this table, the columns of the Attn.O and the
rows of the Attn.K/Q/V are removed.

Within LLaMA, there is a specific module called938

RMSNorm, where each dimension is associated939

with a weight. Perturbations to these weights can940

be regarded as disturbances to the output activation941

values of the corresponding neurons (In Figure 6942

(right), we visually demonstrate how RMSNorm943

affects a column of the Attn.o and the FFN.down944

matrix).945

F Individual Language Family Region946

Tables 9-13 demonstrate LLaMA-2-7B perplex-947

ity after removing Arabic, Spanish, Chinese, Ko-948

rean, and Vietnamese regions, respectively. The949

region is obtained by removing the intersections950

with other languages’ respective regions from the951

1% ‘Top/Bottom’ regions, selected from 10,000952

or 100,000 sentences during further pre-training 953

according to Equation 4. 954

Languages Arabic (10K) Arabic (100K)

Base Top Bottom Top Bottom

Arabic 6.771 81.659 6.785 135.02 6.786
Chinese 8.562 9.309 8.593 9.165 8.588
Italian 14.859 16.61 14.959 16.366 14.919
Japanese 10.888 12.238 10.932 11.956 10.923
Korean 4.965 5.534 4.972 5.442 4.969
Persian 6.509 34.142 6.52 43.414 6.508
Portuguese 15.318 16.909 15.262 16.86 15.239
Russian 12.062 13.708 12.145 13.781 12.141
Spanish 17.079 18.543 17.24 18.314 17.2
Ukrainian 9.409 11.243 9.433 11.225 9.439
Vietnamese 5.824 6.412 5.874 6.335 5.871

Table 9: LLaMA-2-7B perplexity on 11 languages with
an Arabic region removal. Here, ‘Arabic’ and ‘Persian’
are gray-filled while others are unfilled, ‘Top’ and ‘Bot-
tom’ are deduplicated, and ‘Base’ is unchanged. Values
with greater changes compared to the other regions’ re-
movals are in bold.

Languages Spanish (10K) Spanish (100K)

Base Top Bottom Top Bottom

Arabic 6.771 7.158 6.788 7.15 6.789
Chinese 8.562 8.984 8.594 8.971 8.596
Italian 14.859 21.292 14.933 27.004 14.95
Japanese 10.888 11.376 10.913 11.426 10.933
Korean 4.965 5.169 4.967 5.167 4.972
Persian 6.509 6.906 6.484 6.945 6.529
Portuguese 15.318 21.217 15.249 26.877 15.256
Russian 12.062 13.039 12.133 13.252 12.141
Spanish 17.079 38.876 17.224 64.513 17.225
Ukrainian 9.409 10.027 9.439 10.082 9.439
Vietnamese 5.824 6.136 5.875 6.145 5.877

Table 10: LLaMA-2-7B perplexity on 11 languages with
a Spanish region removal. Here, ‘Spanish’, ‘Italian’ and
‘Portuguese’ are gray-filled while others are unfilled,
and values with greater changes compared to the other
regions’ removals are in bold.
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Languages Chinese (10K) Chinese (100K)

Base Top Bottom Top Bottom

Arabic 6.771 7.161 6.79 7.714 6.784
Chinese 8.562 10.899 8.592 12.079 8.586
Italian 14.859 16.041 14.939 15.881 14.932
Japanese 10.888 12.265 10.922 12.878 10.904
Korean 4.965 5.343 4.974 5.341 4.960
Persian 6.509 6.92 6.519 6.865 6.516
Portuguese 15.318 16.285 15.27 16.241 15.26
Russian 12.062 12.887 12.136 12.973 12.145
Spanish 17.079 18.068 17.216 17.974 17.219
Ukrainian 9.409 10.144 9.439 10.207 9.447
Vietnamese 5.824 6.261 5.878 6.296 5.870

Table 11: LLaMA-2-7B perplexity on 11 languages
with a Chinese region removal. Here, ‘Chinese’ and
‘Japanese’ are gray-filled while others are unfilled, and
values with greater changes compared to the other re-
gions’ removals are in bold.

Languages Korean (10K) Korean (100K)

Base Top Bottom Top Bottom

Arabic 6.771 7.259 6.791 7.316 6.783
Chinese 8.562 9.14 8.594 9.173 8.594
Italian 14.859 15.91 14.941 15.791 14.938
Japanese 10.888 13.273 10.919 15.062 10.932
Korean 4.965 8.364 4.971 13.128 4.971
Persian 6.509 7.38 6.522 7.574 6.522
Portuguese 15.318 16.113 15.259 15.984 15.26
Russian 12.062 12.758 12.138 12.827 12.136
Spanish 17.079 17.981 17.214 17.858 17.225
Ukrainian 9.409 10.065 9.434 10.108 9.442
Vietnamese 5.824 6.188 5.874 6.177 5.874

Table 12: LLaMA-2-7B perplexity on 11 languages with
a Korean region removal. Here, ‘Korean’ and ‘Japanese’
are gray-filled while others are unfilled, and values with
greater changes compared to the other regions’ removals
are in bold.

Languages Vietnamese (10K) Vietnamese (100K)

Base Top Bottom Top Bottom

Arabic 6.771 7.435 6.785 7.341 6.789
Chinese 8.562 9.576 8.589 9.372 8.592
Italian 14.859 16.979 14.952 16.497 14.937
Japanese 10.888 12.027 10.946 11.814 10.941
Korean 4.965 5.44 4.97 5.335 4.979
Persian 6.509 7.315 6.501 7.243 6.521
Portuguese 15.318 17.159 15.249 16.805 15.258
Russian 12.062 13.107 12.141 13.007 12.144
Spanish 17.079 18.801 17.244 18.369 17.233
Ukrainian 9.409 10.316 9.447 10.217 9.433
Vietnamese 5.824 24.382 5.872 27.817 5.874

Table 13: LLaMA-2-7B perplexity on 11 languages
with a Vietnamese region removal. Here, ‘Vietnamese’
is gray-filled while others are unfilled, and values with
greater changes compared to the other regions’ removals
are in bold.
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Languages LLaMA-2-7B 3% (100K) LLaMA-2-13B 3% (100K)

Base Top Bottom Random Base Top Bottom Random

Arabic 6.771 127208.250 6.772 7.895 6.261 102254.758 6.316 7.112
Chinese 8.652 295355.5 8.565 9.837 7.838 84086.906 7.806 8.619
Czech 19.834 62692.367 19.835 24.005 17.744 56102.227 17.650 20.485
Danish 8.372 47654.156 8.372 9.929 7.402 47213.586 7.401 8.278
Dutch 16.959 48478.594 16.959 20.121 15.64 46303.559 15.572 18.295
English 7.653 16573.422 7.653 8.359 7.447 25212.217 7.234 7.821
Finnish 7.566 45711.992 7.566 8.934 6.887 48811.242 6.861 7.826
French 13.605 48268.211 13.605 15.003 12.765 45674.492 12.573 13.682
German 18.355 64015.117 18.356 15.404 17.29 51692.125 16.973 18.972
Greek 3.832 224595.781 3.833 4.527 3.599 80657.891 3.599 4.146
Hungarian 16.365 52828.691 16.363 20.039 14.756 58107.137 14.834 17.633
Indonesian 44.269 33121.945 44.318 48.175 37.909 51611.625 37.838 38.548
Italian 14.859 58908.879 14.860 17.341 13.694 47375.844 13.730 15.207
Japanese 10.888 322031.406 10.896 12.535 10.072 75236.031 10.137 11.661
Korean 4.965 125345.359 4.967 5.649 4.724 90768.844 4.743 5.241
Malay 66.581 22603.727 66.843 74.167 46.885 40468.750 46.912 58.947
Malayalam 5.133 373710.188 5.134 6.396 4.972 16990.266 4.972 5.654
Norwegian 14.425 31526.176 14.427 17.854 13.142 45820.109 13.139 15.041
Persian 6.509 81959.719 6.511 7.628 6.205 92201.812 6.229 7.009
Polish 12.629 66906.469 12.629 14.843 11.414 55923.156 11.311 12.987
Portuguese 15.318 47763.059 15.319 17.297 13.667 51498.402 13.982 15.376
Romanian 10.893 43498.008 10.895 13.061 9.652 54986.055 9.693 10.969
Russian 12.062 170776.750 12.064 13.728 11.048 112574.609 10.948 11.757
Spanish 17.079 51940.859 17.082 18.98 16.351 54005.891 16.138 17.292
Swahili 75.908 29234.168 75.892 89.380 70.519 48802.227 70.402 81.216
Swedish 14.714 49425.969 14.714 17.258 13.229 48622.266 13.337 14.933
Tamil 4.162 381070.844 4.162 5.04 4.028 111060.516 4.049 4.488
Turkish 11.214 46986.391 11.215 13.765 9.834 50303.562 9.763 11.374
Ukrainian 9.409 120719.938 9.409 10.875 8.295 116287.305 8.297 9.076
Vietnamese 5.824 40126.527 5.824 6.614 5.471 42336.426 5.437 5.995

Table 14: LLaMA-2 perplexity on 30 languages with 3% removal ratio. ‘100K’ means that the region is selected
from 100,000 samples. ‘Top’ and ‘Bottom’ respectively indicate the N parameters with the highest and lowest
cumulative I∗

j (θ) during the further pre-training across the six languages. ‘Random’ denotes the randomly selecting
N while ‘Base’ represents no removal. Here, N equals 3% of the total number in each parameter matrix.
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Languages LLaMA-2-7B 3% (10K) LLaMA-2-13B 3% (10K)

Base Top Bottom Random Base Top Bottom Random

Arabic 6.771 115398.328 6.772 7.895 6.261 88678.016 6.315 7.112
Chinese 8.652 369027.531 8.564 9.837 7.838 70912.242 7.806 8.619
Czech 19.834 78480.219 19.837 24.005 17.744 53699.43 17.655 20.485
Danish 8.372 46503.742 8.373 9.929 7.402 39408.91 7.401 8.278
Dutch 16.959 55704.191 16.961 20.121 15.64 41159.938 15.572 18.295
English 7.653 15738.043 7.654 8.359 7.447 23678.322 7.234 7.821
Finnish 7.566 46616.094 7.568 8.934 6.887 47002.539 6.861 7.826
French 13.605 44385.668 13.609 15.003 12.765 38755.539 12.678 13.682
German 18.355 84497.234 18.361 21.404 17.29 43319.586 17.02 18.972
Greek 3.832 147740.5 3.833 4.527 3.599 70136.242 3.6 4.146
Hungarian 16.365 52652.363 16.367 20.039 14.756 48407.305 14.735 17.633
Indonesian 44.269 39055.945 44.267 48.175 37.909 36912.34 37.929 38.548
Italian 14.859 54297.523 14.865 17.341 13.694 42515.969 13.69 15.207
Japanese 10.888 358722.188 10.891 12.535 10.072 68055.984 10.118 11.661
Korean 4.965 102918.828 4.966 5.649 4.724 65209.328 4.736 5.241
Malay 66.581 23501.082 67.158 74.167 46.885 35517.879 47.191 58.947
Malayalam 5.133 314088.969 5.136 6.396 4.972 131629.438 4.971 5.654
Norwegian 14.425 38111.27 14.431 17.854 13.142 38500.664 13.138 15.041
Persian 6.509 78203.031 6.51 7.628 6.205 98292.281 6.22 7.009
Polish 12.629 81373.273 12.633 14.843 11.414 52403.461 11.393 12.987
Portuguese 15.318 47779.789 15.321 17.297 13.667 41184.457 13.86 15.376
Romanian 10.893 45836.578 10.897 13.061 9.652 51766.957 9.694 10.969
Russian 12.062 227916.828 12.061 13.728 11.048 103490.719 11.004 11.757
Spanish 17.079 57679.461 17.087 18.98 16.351 40338.426 16.265 17.292
Swahili 75.908 42977.977 75.93 89.38 70.519 40400.949 70.443 81.216
Swedish 14.714 55893.812 14.717 17.258 13.229 45396.66 13.301 14.933
Tamil 4.162 447989.969 4.162 5.04 4.028 141214.188 4.052 4.488
Turkish 11.214 57037.605 11.215 13.765 9.834 41566.105 9.791 11.374
Ukrainian 9.409 168085.672 9.408 10.875 8.295 94307.312 8.296 9.076
Vietnamese 5.824 36374.734 5.825 6.614 5.471 31730.328 5.467 5.995

Table 15: LLaMA-2 perplexity on 30 languages with 3% removal ratio. ‘10K’ means that the region is selected
from 10,000 samples. Here, we reduce training samples to 10, 000 during further pre-training across six languages.
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Languages LLaMA-2-7B 1% (100K) LLaMA-2-7B 5% (100K)

Base Top Bottom Random Base Top Bottom Random

Arabic 6.771 67579496 6.77 7.021 6.771 112504.609 6.774 10.823
Chinese 8.652 120887480 8.561 8.818 8.652 156026.938 8.565 12.775
Czech 19.834 24343856 19.835 21.176 19.834 96580.281 19.845 24.797
Danish 8.372 1631186.625 8.372 8.775 8.372 82876.266 8.375 13.565
Dutch 16.959 6845146 16.963 18.056 16.959 79497.211 16.961 27.01
English 7.653 512756 7.654 7.851 7.653 46197.477 7.656 9.289
Finnish 7.566 4727027.5 7.567 7.948 7.566 60183.328 7.56 13.005
French 13.605 4768049 13.608 14.198 13.605 87642.109 13.611 19.076
German 18.355 17940508 18.357 19.724 18.355 106160.992 18.364 28.772
Greek 3.832 14242545 3.833 3.972 3.832 141320.578 3.835 6.45
Hungarian 16.365 130584 16.366 17.35 16.365 77265.188 16.369 30.376
Indonesian 44.269 1654245 44.347 49.476 44.269 83353.344 44.298 64.743
Italian 14.859 5265871.5 14.863 15.607 14.859 83076.164 14.865 22.6
Japanese 10.888 28104000 10.88 11.196 10.888 124647.633 10.895 16.619
Korean 4.965 16449047 4.965 5.095 4.965 59954.559 4.967 7.831
Malay 66.581 7875206 66.673 78.545 66.581 51824.859 66.751 90.933
Malayalam 5.133 7151096 5.133 5.359 5.133 182008.484 5.137 7.905
Norwegian 14.425 4223085 14.429 15.35 14.425 79399.109 14.434 23.621
Persian 6.509 2233196 6.507 6.782 6.509 107342.734 6.511 10.236
Polish 12.629 6547834.5 12.631 13.36 12.629 88912.945 12.632 21.372
Portuguese 15.318 6249820 15.319 15.927 15.318 78851.766 15.324 22.608
Romanian 10.893 5251915.5 10.895 11.526 10.893 71228.375 10.899 19.21
Russian 12.062 17596800 12.061 12.067 12.062 102639.602 12.066 18.504
Spanish 17.079 8220832.5 17.084 18.029 17.079 96575.547 17.084 24.007
Swahili 75.908 7875009 75.845 83.963 75.908 77765.133 75.8 131.709
Swedish 14.714 4712167.5 14.716 15.534 14.714 81574.734 14.717 22.628
Tamil 4.162 20660974 4.162 4.265 4.162 173728.312 4.164 5.881
Turkish 11.214 4489915 11.214 11.882 11.214 58347.055 11.218 19.76
Ukrainian 9.409 11689088 9.409 9.811 9.409 90008.312 9.414 14.807
Vietnamese 5.824 2235468 5.825 6.018 5.824 54187.02 5.825 9.015

Table 16: LLaMA-2-7B perplexity on 30 languages with 1% and 5% removal ratio. ‘100K’ means that the region is
selected from 100,000 samples. Here, we change the removal ratio from 3% to 1% and 5%.
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