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ABSTRACT

Linear scalarization is a simple and widely-used technique that can be deployed in
any multiobjective setting to combine diverse objectives into one reward function,
but such heuristics are not theoretically understood. To that end, we perform a case
study of the multiobjective stochastic linear bandits framework with k objectives
and our goal is to provably scalarize and explore a diverse set of optimal actions
on the Pareto frontier, as measured by the dominated hypervolume. Even in this
elementary convex setting, the choice of scalarizations and weight distribution
surprisingly affects performance, and the natural use of linear scalarization with
uniform weights is suboptimal due to a non-uniform Pareto curvature. Instead, we
suggest the usage of the theoretically-inspired hypervolume scalarizations with
non-adaptive uniform weights, showing that it comes with novel hypervolume
regret bounds of Õ(dT−1/2 + T−1/k), with optimal matching lower bounds of
Ω(T−1/k). We support our theory with strong empirical performance of the hyper-
volume scalarization that consistently outperforms both the linear and Chebyshev
scalarizations in high dimensions.

1 INTRODUCTION

Optimization objectives are becoming more complex with many different components that must
be combined to perform precise tradeoffs in machine learning models. Starting from standard
`p regularization objectives in regression problems (Kutner et al., 2005) to increasingly multi-
component losses used in reinforcement learning (Sutton et al., 1998) and deep learning (LeCun et al.,
2015), many of these single-objective problems are phrased as a scalarized form of an inherently
multiobjective problem.

In addition, practioners often vary the weights of the scalarization method, with the main goal
of exploring the entire Pareto frontier, the set of optimal outputs with no way to improve on all
objectives simultaneously. Specifically, for some weights λ ∈ Rk, we have scalarization functions
sλ(y) : Rk → R that convert k multiple objectives F (a) := (f1(a), ..., fk(a)) over some parameter
space a ∈ A ⊆ Rd into a single-objective scalar. Optimization is then applied to this family of
single-objective functions sλ(F (x)) for various λ and since we construct sλ to be monotonically
increasing in all coordinates, xλ = arg maxa∈A sλ(F (a)) is on the Pareto frontier and the various
choices of λ recovers an approximation to the Pareto frontier (Paria et al., 2018). Due to its simplicity
of use, many multi-objective optimization algorithms use a heuristic-based scalarization strategy
to pick the scalarizer and weights, which efficiently splits the multi-objective optimization into
numerous single "scalarized" optimizations (Roijers et al., 2013).

While there are recent developments in specific multi-objective algorithms tailored to specific settings
such as ParEgo (Knowles, 2006) and MOEAD (Zhang and Li, 2007) for black-box optimization or
multivariate iteration for reinforcement learning (Yang et al., 2019), the appeal of scalarization still
remains as it generalizes to any optimization setting. For example, on the MUJOCO environment,
multi-objective reinforcement learning is often done on a combined reward function that simply
linearly penalizes the task reward with the negative action norm, as human-like behaviors are
usually efficient and low-energy (Abdolmaleki et al., 2021). Another example is performing neural
architecture search on loss functions that non-linearly combine possibly conflicting objectives, such
as accuracy and network size (Chen et al., 2020).
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However, despite the wide usage, the choice of weight distribution, reference point, and even the
scalarization functions themselves is diverse and largely various between different papers (Paria et al.,
2018; Nakayama et al., 2009; Zhang and Li, 2007). In fact, the popularly used linear scalarization
is known to be suboptimal in non-convex settings (Boyd and Vandenberghe, 2004; Emmerich and
Deutz, 2018) and cannot recover a concave Pareto frontier. For multi-armed bandits, scalarized
knowledge gradient methods empirically perform better with non-linear scalarizations (Yahyaa et al.,
2014). Recently, some works have come up with novel scalarizations that perform better empirically
(Aliano Filho et al., 2019; Schmidt et al., 2019) and others have tried to do comparisons between
different scalarizations with varying conclusions (Kasimbeyli et al., 2019). Some have also proposed
adaptively weighted approaches that have connections to gradient-based multi-objective optimization
(Lin et al., 2019), while other works have proposed piecewise linear scalarizations inspired by
economics (Busa-Fekete et al., 2017).

In this paper, we seek to understand, from a theoretical perspective, the optimal choice of scalarizations
and corresponding weights distribution to perform multiobjective optimization. To perform rigorous
analysis, we focus on the classical stochastic linear bandit problem in the multiobjective setting
(Lattimore and Szepesvári, 2020). For the single objective case, the standard average cumulative
regret bound for this problem is O(d/

√
T ), and this is known to be tight in the worst case (Dani et al.,

2008). For the multi-objective case, the notion of optimality becomes varied. Previous work by (Lu
et al., 2019) proved Pareto regret bounds of O(d

√
T ), but that only guarantees recovery of a single

point close to the Pareto frontier. Some minimize a notion of distance to the Pareto frontier, such as
the `∞ norm (Auer et al., 2016), although such approaches work in the finite multi-arm bandit setting
which mandates at least one pull of each arm. Paria et al. (2018) provides a Bayes regret bound with
respect to a scalarization-induced regret, but it is unclear how to choose the right scalarization or
weight distribution.

In recent years, a natural and widely used metric to measure progress is the hypervolume indicator,
which is the volume of the dominated portion of the Pareto set (Zitzler and Thiele, 1999; Shah and
Ghahramani, 2016). The hypervolume metric has become a gold standard because it has strict Pareto
compliance meaning that if set A is a subset of B and B has at least one Pareto point not in A,
then the hypervolume of B is greater than that of A. Zuluaga et al provides sub-linear hypervolume
regret bounds; however, they are exponential in k and its analysis only applies to a specially tailored
algorithm that requires an unrealistic classification step (Zuluaga et al., 2013). Most relevant is recent
work by (Golovin and Zhang, 2020) that introduces random hypervolume scalarizations and when
combined with standard generalization bounds, one can directly derive a O(kd/

√
T + T−1/O(k))

convergence bound for multiobjective linear bandits by using a linear kernel.

1.1 OUR CONTRIBUTIONS

As our theoretical toy model, we consider the classic stochastic linear bandit setting. For the single-
objective setting, in round t = 1, 2, ..., T , the learner chooses an action at ∈ Rd from the action set
A and receives a reward yt = 〈θ?, at〉+ ξt where ξt is i.i.d. 1-sub-Gaussian noise and θ? ∈ Rd is
the unknown true parameter vector. In the multi-objective stochastic linear bandit setting, the learner
instead receives a vectorized reward yt = Θ?at + ξt, where Θ? ∈ Rk×d is now a matrix of k true
parameters and ξt ∈ Rk is a vector of independent 1-sub-Gaussian noise. We also denote At ∈ Rd×t
to be the history action matrix, whose i-th column is ai, the action taken in round i. Similarly, yt is
defined analogously.

For any scalarization and weight distribution, we propose a new algorithm (Algorithm 1) for multi-
objective stochastic linear bandit that combines uniform exploration and exploitation via an UCB
approach to provably obtain scalarized Bayes regret bounds, which we then combine with the hyper-
volume scalarization to derive optimal hypervolume regret bounds. Specifically, for any scalarization
sλ, we show that our algorithm in the linear bandit setting has a scalarized Bayes regret bound of
Õ(Lpk

1/pdT−1/2 + T−1/k+1), where Lp is the Lipschitz constant of the sλ(·) in the `p norm. By
introducing a non-Euclidean analysis, we reduce and even completely remove the dependence on the
number of objectives, k, which had a polynomial dependence in previous regret bounds.

We emphasize that our novel measure of progress is neither the simple regret nor cumulative regret,
and is in fact even different from the Bayes regret definition in previous literature. However, it is
arguably the most realistic setting of regret as it generalizes to the multi-objective setting in the form
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of hypervolume regret, which is a measure of the hypervolume gap between the Pareto frontier and
the set of points found by the optimizer. Indeed, by applying our improved scalarized Bayes regret
bounds with hypervolume scalarizations, we derive improved hypervolume regret bounds.

Theorem 1 (Informal Restatement of Theorem 12). Let AT ⊆ A be the actions generated by T
rounds of Algorithm 1, then our hypervolume regret is bounded by:

HVz(Θ?A)−HVz(Θ?AT ) ≤ O

(
d

√
log(T )

T
+

1

T 1/(k+1)

)

We note that even for mild values of k, the dominating term in the convergence bound is theO(T−1/k)
term, which follows from controlling the metric entropy for L-Lipschitz functions in Rk. We prove
novel lower bounds showing one cannot hope for a better convergence rate due to the exponential
nature of our regret. Specifically, we show that the hypervolume regret of any algorithm after T
actions is at least Ω(T−1/(k−1)), demonstrating the necessity of the O(T−1/k) term up to small
constants in the denominator. As a corollary, we leverage the properties of hypervolume scalarization
to show that our scalarized Bayes regret bounds are tight.

Theorem 2 (Informal Restatement of Theorem 13). Any algorithm that outputs a set of T actions
AT must suffer hypervolume regret of at least

HVz(Θ?A)−HVz(Θ?AT ) = Ω(T−1/(k−1))

Guided by our theoretical analysis, we empirically evaluate a diverse combination of scalarizations and
weight distributions with our proposed algorithm for multiobjective linear bandits. Our experiments
show that for some settings of linear bandits, in spite of a convex Pareto frontier, applying linear or
Chebyshev scalarizations naively with various weight distributions leads to suboptimal hypervolume
progress, especially when the number of objective increase to exceed k ≥ 5. This is because the non-
uniform curvature of the Pareto frontier, exaggerated by the curse of dimensionality and combined
with a stationary weight distribution, hinders uniform progress in exploring the frontier. Although
one can possibly adapt the weight distribution to the varying curvature of the Pareto frontier, we
suggest remediating the issue by simply adopting the use of non-linear scalarizations that are more
robust to the choice of weight distribution and are theoretically sound.

We acknowledge that while there might be better performing multi-objective algorithms for this
specific linear bandit setting, such as Gaussian Processes (Williams and Rasmussen, 2006), we
focus only on comparing scalarizing algorithms as to demonstrate the general utility of hypervolume
scalarization as the optimal choice in various other settings, such as reinforcement learning. From
our analysis on this toy example, we recommend the use of hypervolume scalarizations, even when
the optimization is convex, as an efficient non-adaptive method to perform general multiobjective
optimization in high dimensions. We believe that this is especially relevant given the modern era of
learning algorithms that incorporates multiple objectives such as fairness, privacy, latency.

We summarize our contributions as follows:

• Introduce optimization algorithm for multiobjective linear bandits that achieves Õ(dT−1/2 +
T−1/k) hypervolume regret via a novel non-Euclidean regret analysis and metric entropy.

• Establish a tight lower bound on the hypervolume regret and Bayes regret of Ω(T−1/k) by
introducing a packing argument on the Pareto set.

• Empirically study the choice of scalarizations and weight distributions for finding a diverse
Pareto frontier in multi-objective linear bandits, promoting the adoption or experimentation
of hypervolume scalarizations in other arenas of multi-objective optimization, especially
when the number of objectives is high.

2 PROBLEM SETTING AND NOTATION

We assume, for sake of normalization, that ‖Θ?
i ‖ ≤ 1 and that ‖at‖ ≤ 1, where ‖ · ‖ denotes the `2

norm unless otherwise stated. Other norms that are used include the classical `p norms ‖ · ‖p and
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matrix norms ‖x‖M = x>Mx for a positive semi-definite matrix M. For a scalarization function
sλ(x), we will define smoothness with respect to the input, and analogously for λ. We say that sλ is
Lp-Lipschitz with respect to the `p norm on X if for x1, x2 ∈ X , |sλ(x1)−sλ(x2)| ≤ Lp‖x1−x2‖p.
We let Sk−1

+ = {y ∈ Rk | ‖y‖ = 1, y > 0} be the sphere restricted to the positive orthant and by
abuse of notation, we also let y ∼ Sk−1

+ denote that y is drawn uniformly on Sk−1
+ . Our usual settings

of the weight distribution D = Sk−1
+ will be uniform, unless otherwise stated.

We want to study the optimal choices of scalarization and weight distribution that generally maximizes
the expected rewards of each objective yi = (Θ?

i a) for i = 1, ..., k. Unlike single-objective
optimization, multi-objective optimization usually aims to discover the Pareto frontier of the problem.
For two outputs y, z ∈ Y ⊆ Rk, we say that y is Pareto-dominated by z if yi ≤ zi for all i and there
exists j such that yj < zj . A point is Pareto-optimal if no point in the output space Y can dominates
it. Let Y? denote the set of Pareto-optimal points in Y, which is also known as the Pareto frontier.

Our main progress metrics for multiobjective optimization is given by the standard hypervolume
indicator. For S ⊆ Rk compact, let vol(S) be the regular hypervolume of S with respect to the
standard Lebesgue measure.
Definition 3. For Y ⊆ Rk, we define the (dominated) hypervolume indicator of Y with respect to
reference point z as:

HVz(Y ) = vol({x |x ≥ z, x is dominated by some y ∈ Y })

Therefore, for a finite set Y ,HVz(Y ) can be viewed as the hypervolume of the union of the dominated
hyper-rectangles for each point yi ≥ z that has one corner at z and the other corner at yi. Note that our
definition also holds for non-finite set as a limiting integral. We can formally phrase our optimization
as trying to rapidly minimize the hypervolume (psuedo-)regret: HVz(Θ?A)−HVz(Θ?AT ), which
is 0 if and only if AT contains the Pareto frontier.

To study a diversity of scalarizations and weight distributions, an important measure of progress that
attempts to capture the requirement of diversity in the Pareto front is scalarized Bayes regret for some
scalarization function sλ. For some fixed scalarization with weights λ, sλ : Rk → R, we can define
the instantaneous scalarized (psuedo-)regret as

r(sλ, at) = max
a∈A

sλ(Θ?a)− sλ(Θ?at)

Since the scalarized regret is only a function of a single action at, it fails to capture the variety of
solutions that we would optimize for in the Pareto frontier. To capture some notion of diversity, we
must define progress with respect to a set of past actions At. Generalizing the scalarized regret
above, we can formulate the Bayes regret as an average of the scalarized regret over some distribution
of non-negative weight vectors, λ ∼ D. Specifically, we define the (scalarized) Bayes regret with
respect to a set of actions At to be:

BR(sλ,At) = E
λ∼D

[max
a∈A

sλ(Θ?a)− max
a∈At

sλ(Θ?a)] = E
λ∼D

[ min
a∈At

r(sλ, a)]

Unlike previous notions of Bayes regret in literature, we are actually calculating the Bayes regret
of a reward function that is maximized with respect to an entire set of actions At. Specifically, by
maximizing over all previous actions, this captures the notion that during multi-objective optimization
our Pareto set is always expanding. We will see later that this novel definition is the right one, as it
generalizes to the multi-objective setting in the form of hypervolume regret.

Finally, since our action set A is generic, we need some prior knowledge on A to allow for efficient
implementation of "uniform" exploration. Therefore, we assume that A contains an isotropic set of
actions and specifically, there is E ⊂ A with size |E| = O(d) such that

∑
i eie

>
i � 1

2I, where �
denotes the PSD ordering on symmetric matrices. We note that this assumption is not restrictive, as the
assumption and analysis can be fully relaxed by the study of optimal design for least squares estimators
(Lattimore and Szepesvári, 2020) and the Kiefer-Wolfrowitz Theorem (Kiefer and Wolfowitz, 1960),
which guarantees the existence and construction of an uniform exploration basis of small size.

2.1 SCALARIZATIONS FOR MULTIOBJECTIVE OPTIMIZATION

For multiobjective optimization, we generally only consider monotone scalarizers that have the
property that if y > z, then sλ(y) > sλ(z) for all λ. Note this implies that an unique optimal solution
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to the scalarized optimization is on the Pareto frontier. A common scalarization used widely in
practice is the linear scalarization: sλ(y) = λ>y for some chosen positive weights λ ∈ Rk. By
Lagrange duality and hyperplane separation of convex sets, one can show that any convex Pareto
frontier can be characterized fully by an optimal solution to max

y
sλ(y) for some weights.

Proposition 4. For any point y? on the Pareto frontier of a convex set Y , there exists λ > 0 such that
y? = arg max

y∈Y
λ>y.

However, it is known that linear scalarizations cannot recover the non-convex regions of Pareto fronts
since the linear structure of the level curves can only be tangent to the Pareto front in the protruding
convex regions (see Figure 1). To overcome this drawback, another scalarization that is proposed
is the Chebyshev scalarization: sλ(y) = min

i
λiyi. Indeed, one can show that the sharpness of the

scalarization, due to its minimum operator, can discover non-convex Pareto frontiers (for more details,
see Emmerich and Deutz (2018)).

Figure 1: Comparisons of the scalarized minimization solutions with various weights for a multiob-
jective problem with convex and non-convex Pareto fronts. The colors represent different weights;
the dots are scalarized optima and the corresponding dotted lines represent level curves of the linear
and non-linear scalarization, respectively. Linear scalarization does not have an optima in the concave
region of the Pareto front for any set of weights, but the non-linear scalarization, with its sharper level
curves, can discover the whole Pareto front. Plots reworked from Emmerich and Deutz (2018).

Proposition 5. For any point y? on the Pareto frontier of any set Y that lies in the positive orthant,
there exists λ > 0 such that y? = arg max

y∈Y
min
i
λiyi.

Next, we introduce a related scalarization known as the hypervolume scalarization, sλ(y) =
min
i

(yi/λi)
k. This scalarization has the special property that the expected scalarized value un-

der a uniform weight distribution on Sk−1
+ gives the dominated hypervolume, up to a constant scaling

factor.

Lemma 6 (Golovin and Zhang (2020)). Let Y = {y1, ..., ym} be a set of m points in Rk. Then, the
hypervolume of Y with respect to a reference point z is given by:

HVz(Y ) = ck E
λ∼Sk−1

+

[
max
y∈Y

sλ(y − z)
]

where sλ(y) = min
i

(max(0, yi/λi))
k and ck = πk/2

2k Γ(k/2+1)
constant depending only on k.
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Intuitvely, this lemma says that the optima of the hypervolume scalarization over some uniform choice
of weights will be diverse enough so as to capture the total dominated hypervolume of the Pareto set.
Furthermore, note that our scalarization function, similar to the Chebyshev scalarization, is a minimum
over coordinates and there is a one-to-one correspondence between the optima of the hypervolume
and Chebyshev scalarizations. To see this, note that since f(x) = xk is a monotone transform, we
can consider an equivalent scalarization (in terms of optima) that is given by s1/k

λ = min
i
yi/λi.

From this, we make the novel observation that the hypervolume scalarization is similar to the
Chebyshev scalarization but with inverse weights, which does affect the optimization performance.
For completeness, we show that the optima of hypervolume scalarization also spans the whole Pareto
front.
Lemma 7. For any point y? on the Pareto frontier of any set Y that lies in the positive orthant, there
exists λ > 0 such that y? = arg max

y∈Y
min
i

(yi/λi)
k.

3 MULTIOBJECTIVE STOCHASTIC LINEAR BANDITS

Upon first glance, maximizing for hypervolume in multiobjective linear bandits seems straightforward
via the greedy approach of finding the next point that maximizes the hypervolume gain. However,
because our observations are inherently noisy, it becomes hard to even statistically infer an unbiased
value of the hypervolume measure, let alone trying to optimize for the hypervolume gain. Therefore,
even in this simple setting, we turn to scalarized algorithms and present an algorithm that comes with
strong convergence guarantees for some generic fixed scalarization sλ, in terms of the scalarized
Bayes regret.

To get an intuition for the final algorithm, first consider the k = 1 case. In that case, our scalar-
ization is essentially no-op and our regret is given by for our sole parameter θ?: BR(sλ,At) =
maxa∈A〈θ?, a〉 −maxa∈AT

〈θ?, a〉 = mint〈θ?, a?〉 − 〈θ?, at〉
Note that the Bayes regret in the 1-D setting reduces to what is commonly known as the simple regret,
although this version of simple regret is even more robust to exploration as it is minimized across all
time steps T . In this setting, also known as pure exploration or best arm identification, it is shown
that playing a uniform exploration strategy (or some precomputed G-optimal design) does quite
competitively (Soare et al., 2014). In fact, one can show an information-theoretic lower bound that
matches the established upper bound of O(d/

√
T ) that is achieved from uniform exploration (Jedra

and Proutiere, 2020), suggesting that the dependence on d, T cannot be fundamentally improved in
our upper bounds.

In higher dimensions, a uniform exploration strategy does not naively work. This is because we
cannot simply output one best answer at the end but we need to output a diverse set of optima that
closely represent the Pareto frontier. Yet we can take advantage of the non-increasing nature of Bayes
regret to show that it often does hurt to explore, and it turns out that a simple strategy of evenly
balancing exploration and exploitation is optimal. Furthermore, since each objective is essentially
independent and provides a separate observed reward, we provide a careful analysis of the algorithm
can provide regret bounds that do not need to inherently scale with k in the cumulative scalarized
regret.

By using the confidence ellipsoids given by the UCB algorithm, we can determine each objective
parameter Θ?

i , up to a small error. Then, we can bound the scalarized regret as a function by
controlling the smoothness of the scalarization function with respect to small changes in each
objective. Naively doing this would be a O(k) regret bound since each objective has about O(d/

√
T )

uncertainty; however, by using a `p analysis, we can reduce the dependence on k when p is large.
Indeed, for the Chebyshev and the hypervolume scalarizations, which have very sharp level sets, it
turns out setting p =∞ gives the best regret analysis and eliminates the dependence on k.
Lemma 8. Consider running EXPLOREUCB (Algorithm 1) for T > max(k, d) iterations and for T
even, let aT be the action that maximizes the scalarized UCB in iteration T/2. Then, with probability
at least 1− δ, the instantaneous scalarized regret can be bounded by

r(sλ, aT ) ≤ 10k1/pLpd

√
log(k/δ) + log(T )

T
where Lp is the `p-Lipschitz constant for sλ(·).

6



Under review as a conference paper at ICLR 2023

Algorithm 1: EXPLOREUCB(T,D, sλ): Scalarized UCB for Linear Bandits
Input :number of maximum actions T , weight distribution D , scalarization sλ

1 Initialize iteration counter n = 1
2 repeat

// Play uniform exploration
3 Play action ei ∈ E for i ≡ n mod d
4 Sample λ ∼ D independently

// Define UCB as in Lemma 15
5 Let Cti be the confidence ellipsoid for Θi and let UCBi(a) = maxθ∈Ci

θ>a
// Play scalarized UCB maximizer

6 Play action that maximizes a∗ = argmaxa∈A sλ(UCBi(a))
7 Increment n← n+ 1
8 until number of actions exceed T

Finally, to connect the expected Bayes regret with the empirical average of scalarized regret, we must
show that the empirical running average concentrates uniformly to the mean across all functions of
the form f(λ) = max

a∈A
sλ(Θ?a). By appealing to standard bounds on Rademacher complexities for

Lispchitz function classes, we derive a O(T−1/(k+1)) generalization bound.
Theorem 9. Assume that for any a ∈ A, |sλ(Θ?a)| ≤ B for some B and sλ is Lλ-Lipschitz with
respect to the `2 norm in λ. With constant probability, the Bayes regret of running Algorithm 1 at
round T can be bounded by

BR(sλ,AT ) ≤ O

(
k1/pLpd

√
log(kT )

T
+

BLλ
T 1/(k+1)

)

3.1 CONNECTION TO HYPERVOLUME REGRET

In this section, we apply our general scalarized Bayes regret bounds onto our different choices of
scalarizations and for the hypervolume scalarization, we will use its unique property to translate
Bayes regret bounds into hypervolume regret bounds. We utilize the fact that if sλ is differentiable
everywhere except for a finite set, bounding Lipschitz constants is equivalent to bounding the dual
norm ‖∇sλ‖q, where 1/p+ 1/q = 1, which follows from mean value theorem, which we state as
Proposition 10.
Proposition 10. Let f : X → R be a continuous function that is differentiable everywhere except on
a finite set, then if ‖∇f(x)‖q ≤ Lp for all x ∈ X , f(x) is Lp-Lipshitz with respect to the `p norm.

Proving smoothness properties of our hypervolume scalarizations for any λ > 0 with λ normalized
on the unit sphere is non-obvious as sλ(y) depends inversely on λi so when λi is small, sλ might
change very fast. However, λi being small makes it unlikely that it becomes the minimum coordinate,
implying that it is not contributing to the scalarized value or its rate of change. We formalize this
intuition below with a given range bound on the values of y.
Lemma 11. Let sλ(y) = mini(yi/λi)

k be the hypervolume scalarization with ‖λ‖ = 1 and

0 < Bl ≤ yi ≤ Bu. Then, we may bound Lp ≤ Bk
u

Blkk/2−1 and Lλ ≤ Bk+1
u

Blk(k−1)/2 and |sλ| ≤ Bk
u

kk/2 .

Theorem 12. Let z ∈ Rk be a reference point such that over all a ∈ A, B = mina Θ?a − z
is positive. Then, with constant probability, running Algorithm 1 with sλ(y) as the hypervolume
scalarization and with D as the uniform distribution on S+ gives hypervolume regret bound of

HVz(Θ?A)−HVz(Θ?AT ) ≤ O

(
ck

(B + 2)k

Bkk/2−1
d

√
log(kT )

T
+ ck

(B + 2)2k+1

Bkk−1/2T 1/(k+1)

)

For k held constant, this becomes

HVz(Θ?A)−HVz(Θ?AT ) ≤ O

(
d

√
log(T )

T
+

1

T 1/(k+1)

)
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3.2 LOWER BOUND

The dominating factor in convergence upper bound is the O(T−1/(k+1)) dependence that seems to
be quite rather slow even for a mild values of k. This terms comes from the generalization error term
when empirically approximating the scalarized Bayes regret in high dimensions with T samples, in
contrast to the noise error term that decays much faster at a rate ofO(d/

√
T ). By constructing a lower

bound for with hypervolume scalarizations via a packing argument, we show that this dependence on
k in the convergence term is unavoidable for Bayes regret.

Specifically, we show that for hypervolume regret, any algorithm cannot achieve better than
O(T−1/(k−1)) regret, which matches the dominating factor in our algorithm up to a small con-
stant in the denominator. By using hypervolume scalarizations, we conclude by Theorem 12 that this
also implies a Ω(T−1/(k−1)) lower bound on the scalarized Bayes regret.
Theorem 13. There is a setting of objectives Θ? and A = {a : ‖a‖ = 1} such that for any actions
AT , the hypervolume regret at z = 0 after T rounds is

HVz(Θ?A)−HVz(Θ?AT ) = Ω(T−1/(k−1))

Corollary 14. Let sλ(y) be the hypervolume scalarizations with λ ∼ D uniform on Sk−1
+ . Then,

there is a setting of objectives Θ? and A = {a : ‖a‖ = 1} such that for any actions AT , the
scalarized Bayes regret after T rounds is

BR(sλ,AT ) = Ω(T−1/(k−1))

4 EXPERIMENTS

In this section, we empirically justify our theoretical results by running Algorithm 1 with multiple
scalarizations and weight distributions in different settings of the multiobjective stochastic linear
bandits. Our empirical results highlight the advantage of the hypervolume scalarization in maximizing
the diversity and hypervolume of the resulting Pareto front, especially when there are a mild number
of output objectives k. Our experiments are not meant to show that scalarization is the only or even
the best way to solve multiobjective linear bandits; rather, it is a toy example used to demonstrate the
importance of choosing optimal scalarizations and weight distributions for solving multiobjective
optimization in a variety of settings, such as reinforcement learning.

Figure 2: Comparisons of the optimization fronts with anti-correlated θ. The green dots represent the
frontier points of the 100 points the optimizer has suggested and they are not always Pareto optimal
(red). The lack of constant curvature in the convex Pareto front causes the linear scalarization to favor
points at the two endpoints of the frontier, while the Chebyshev favors points in the middle of the
frontier. The hypervolume scalarizations produce relatively diverse Pareto fronts.

We compare the three widely types of scalarizations that were previously mentioned: the linear,
Chebyshev, and the hypervolume scalarization. Note that we use slightly altered form of our
hypervolume scalarization as sλ(y) = min

i
yi/λi, which is a simply a monotone transform of the
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proposed scalarization and does not inherently affect the optimization. We set our reference point to
be z = −2 in k dimension space, since our action set of A = {a : ‖a‖ = 1} and our norm bound on
Θ? ensures that our rewards are in [−1, 1].

In conjuction with the scalarizer, we use our weight distribution D = S+, which samples vectors
uniformly across the unit sphere. In addition, we also compare this with the bounding box distribution
methods that were suggested by (Paria et al., 2018), which samples from the uniform distribution
from the min to the max each objective and requires some prior knowledge of the range of each
objective (Hakanen and Knowles, 2017). Given our reward bounds, we use the bounding box of
[−1, 1] for each of the k objectives. Following their prescription for weight sampling, we draw our
weights for the linear and hypervolume scalarization uniformly in [1, 3] and take an inverse for the
Chebyshev scalarization. We name this the boxed distribution for each scalarization, respectively.

To highlight the differences between the multiple scalarizations, we configure our linear bandits
parameters to be anti-correlated, which creates a convex Pareto front with non-uniform curvature.
Note that a perfect anti-correlated Pareto front would be linear, which would cause linear scalarizations
to always optimize at the end points. We start with simple k = 2 case and let θ0 be random and
θ1 = −θ0 + η, where η is some small random Gaussian perturbation (we set the standard deviation
to be about 0.1 times the norm of θi). We renormalize after the anti-correlation to ensure ‖Θ?‖ = 1.
We run our algorithm with inherent dimension d = 4 for T = 100, 200 rounds with k = 2, 6, 10.
Since our run is in k = 2 output dimensions, we can fully visualize the results and plot the Pareto
optimal points found for various scalarizations (see Figure 2).

Figure 3: Comparisons of the cumulative hypervolume plots with some anti-correlated θ. When the
output dimension increase, there is a clearer advantage to using the hypervolume scalarization over
the linear and Chebyshev scalarization. We find that the boxed weight distribution does consistently
worse than the uniform distribution.

As expected, we find the hypervolume scalarization consistently outperforms the Chebyshev and
linear scalarizations, with linear scalarization as the worst performing (see Figure 3). Note that when
we increase the output dimension of the problem by setting k = 10, the hypervolume scalarization
shows a more distinct advantage. The boxed distribution approach of (Paria et al., 2018) does
not seem to fare well and consistently performs worse than its uniform counterpart. While linear
scalarization provides relatively good performance when the number of objective k ≤ 5, it appears
that as the number of objectives increase in multi-objective optimization, more care needs to be put
into the design of scalarization and their weights due to the curse of dimensionality, since the regions
of non-uniformity will exponentially increase. We suggest that as more and more objectives are
being added to modern machine learning systems, using smart scalarizations is critical to an uniform
exploration of the Pareto frontier.
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