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ABSTRACT

Reinforcement Learning from Human Feedback (RLHF) involves training policy
models (PMs) and reward models (RMs) to align language models with human
preferences. Instead of focusing solely on PMs and RMs independently, we pro-
pose to examine their interactions during fine-tuning, introducing the concept of
seamlessness. Our study starts with observing the saturation phenomenon, where
continual improvements in RM and PM do not translate into RLHF progress. Our
analysis shows that RMs fail to assign proper scores to PM responses, resulting
in a 35% mismatch rate with human preferences, highlighting a significant dis-
crepancy between PM and RM. To measure seamlessness between PM and RM
without human effort, we propose an automatic metric, SEAM. SEAM quantifies
the discrepancies between PM and RM judgments induced by data samples. We
validate the effectiveness of SEAM in data selection and model augmentation.
Our experiments demonstrate that (1) using SEAM-filtered data for RL training
improves RLHF performance by 4.5%, and (2) SEAM-guided model augmentation
results in a 4% performance improvement over standard augmentation methods.

1 INTRODUCTION

Reinforcement learning from human feedback (RLHF) has emerged as a popular technique to optimize
and align a language model with human preferences (Stiennon et al., 2020; Nakano et al., 2021;
Menick et al., 2022; Glaese et al., 2022; Ouyang et al., 2022; Touvron et al., 2023; Achiam et al.,
2023; Bai et al., 2023; Rafailov et al., 2024). RLHF provides a natural solution for optimizing
non-differentiable, scalar objectives for language models and has been the centerpiece of recent
state-of-the-art large language models (LLMs) (Lu et al., 2022; Hejna III & Sadigh, 2023; Go et al.,
2023; Korbak et al., 2023; Achiam et al., 2023; OpenAI, 2023). In RLHF, a reward model (RM)
generates scalar rewards for a policy model (PM) generated outputs as supervision signals during
reinforcement learning. Since policy gradient methods (Schulman et al., 2017) optimize based on such
signal, the PM and RM inevitably dictate the behavior of the resultant RLHF model. As such, the
properties of RMs (or PMs) and their impact on RLHF models have become points of interest for the
community (Gao et al., 2023; Zhu et al., 2023; Dong et al., 2023; Gao et al., 2023; Shen et al., 2023).
Unlike prior work that examines the individual capabilities of each model, in this work, we introduce
and explore the concept of seamlessness between the PM and RM, focusing on their interactions.

Our study begins with the observation of a saturation phenomenon in the RLHF process (§3): beyond
a certain threshold, improvements in the quality of the RM and PM do not translate into increased
RLHF performance (Figure 1). To understand this phenomenon, we explore whether the RM can
assign appropriate scalar rewards to responses r generated by the PM prompted by instruction I . This
inquiry addresses the seamlessness between the RM and PM. Although the RM performs well on
standard preference benchmarks, it struggles to evaluate PM-generated responses effectively. This is
demonstrated by a 35% mismatch rate between reward scores and human preferences, indicating a
significant, persistent discrepancy between the RM and PM as reflected in the reinforcement learning
(RL) training data. This discrepancy does not diminish even as the PM and RM are individually
optimized according to their respective evaluation paradigms, thus disrupting their seamlessness.
Remarkably, when we remove instructions from the RL dataset that contribute to this discrepancy and
re-conduct RLHF, we observe an improvement in RLHF performance. This outcome suggests that
enhancing the seamlessness between PM and RM benefits the overall RLHF process.
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Figure 1: We introduce the concept of Seamlessness to measure the discrepancies between reward
and policy models as supported by human evaluation. To automate measuring the Seamlessness, we
propose SEAM, an automated method for estimating seamlessness between PM and RM. We validate
its effectiveness through two experimental settings: data selection and augmentation.

Based on these findings, we define the seamlessness between the PM and RM as detailed in §5
and introduce an automated estimation method, SEAM, available in three computational variants:
SEAMAdv, SEAMContrast, and SEAMGPT. Such methods remove the reliance on manual effort
traditionally required for measuring seamlessness. Essentially, SEAM evaluates the risk associated
with each data sample when employed in RLHF processes, considering the specifics of the given
PM and RM. Additionally, we give two experimental scenarios to demonstrate how SEAM can be
effectively utilized to improve the real-world RLHF process. (1) Data Selection: We compute the
SEAM score for each sample and exclude those with low scores for RL training data selection. This
strategy underscores a “less is more” phenomenon (Zhou et al., 2024), whereby RLHF performance is
enhanced when using this filtered dataset compared to the unfiltered dataset. Additionally, removing
low-score samples helps mitigate the “saturation phenomenon”. (2) Model augmentation: During
RLHF, we explore the PM and RM failure modes and subsequently strengthen them based on identified
weaknesses. We calculate the SEAM score for each data sample throughout the RL training phase.
Samples exhibiting low SEAM scores are then selected as targets for data augmentation to enhance
the capabilities of the PM and RM specifically for these challenging samples. The results show that the
SEAM score effectively functions as a diagnostic metric within the RLHF framework. The primary
contributions of this paper are three-fold:

• We shift focus from the individual capacities of the reward model (RM) and policy model (PM)
to explore their interplay and a noted saturation phenomenon in RM/PM quality. Our analysis
identifies a discrepancy between RM and PM that cannot be resolved merely by scaling up.

• We conceptualize the seamlessness between PM and RM and introduce SEAM, an automatic
estimation method that quantifies the seamlessness between PM and RM in a data-centric manner.

• We empirically design two experimental scenarios to demonstrate how SEAM can be leveraged to
improve RLHF training: (1) Data selection and (2) Model augmentation. Our results validate the
effectiveness of SEAM under such scenarios.

2 RELATED WORK AND BACKGROUND

RLHF in Language Models. In earlier studies, reinforcement learning (RL) has been applied across
various domains, such as machine translation (Sokolov et al., 2016; Kreutzer et al., 2018; Nguyen
et al., 2017), dialogue generation (Li et al., 2016; Yi et al., 2019; Keneshloo et al., 2019), and text

2
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Figure 2: We examine the relation between the RLHF performance and the quality of PMs and RMs,
measured by QPM and QRM , respectively. We can see a “saturation phenomeno”: the continual
improvements of RM/PM do not translate into RLHF improvements.
generation (Li et al., 2018; Ziegler et al., 2019; Shi et al., 2018; Stiennon et al., 2020), often employing
modeling reward as automatic evaluation metrics like BLEU (Papineni et al., 2002) or using simulated
feedback (Nguyen et al., 2017; Keneshloo et al., 2019). While integrating RL and language models
has been extensively explored, significant advancements in RLHF with LLMs for general language
tasks have only recently emerged (Ouyang et al., 2022; Touvron et al., 2023; Achiam et al., 2023; Bai
et al., 2023; Rafailov et al., 2024). In RLHF, human feedback is collected to train a reward model,
which then serves as a surrogate for human feedback during the training process, providing scalar
evaluative feedback to the policy model (see detailed background of RLHF in Appendix A). In RLHF,
RL algorithms (e.g., PPO (Schulman et al., 2017)) are particularly suitable for training PM and RM.

Reward Hacking. In RLHF, a critical issue closely related to our research is “reward hacking”, as
identified in prior studies (Askell et al., 2021; Pan et al., 2021; Skalse et al., 2022; Shen et al., 2023).
This phenomenon arises from discrepancies between the reward model (RM) and actual human
preferences (Gao et al., 2023; Lambert & Calandra, 2023). Although optimizing towards maximizing
the rewards may initially appear beneficial, it ultimately leads the trained policy to exploit loopholes in
the RM, securing high rewards without achieving the intended objectives. This degrades performance,
complicates the selection of effective checkpoints, and may produce outputs that do not genuinely
reflect human preferences (Singhal et al., 2023). Such misalignments increase tendencies towards
sycophancy (Perez et al., 2023), reinforcing social biases (Santurkar et al., 2023; Ziems et al., 2024)
and pose safety risks (Ngo et al., 2022; Carlini et al., 2024; Shen et al., 2024). A key distinction of our
work is its focus on the discrepancies between RM and PM, which we term ‘seamlessness’, as
opposed to the traditional focus on discrepancies between reward models and human values.

3 THE SATURATION PHENOMENON REFLECTED IN RLHF QUALITY

In this section, we conduct experiments to investigate the relationship between the RLHF outcomes
and the quality of PM/RM.

Experimental Setup. We follow the experimental configuration of StackLLaMa (Beeching et al.,
2023) due to the proven success of its PPO and data settings for RLHF. Our framework employs
the LLaMa2-7B model as the base model for both the reward and policy models. To explore the
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effects of the quality of RM and PM, we change the volume of training data, enabling us to produce a
spectrum of model strengths for both PM and RM. We develop ten variants each for RMs and PMs.
Each pairing of PM and RM is then subjected to the RLHF technique, resulting in hundreds of unique
RLHF models. Further details on implementation and setup are provided in Appendix C.

Quality Metrics. We employ two metrics1 to assess the quality of the PM and RM: QPM (PM
quality) and QRM (RM quality). In our experiments on StackExchange, QPM measures how well
the policy model generates answers to StackExchange questions. We use 1000 samples from the
StackExchange test split, with responses generated by the LLM evaluated by GPT-4 on a scale from 1
(worst) to 10 (best), similar to the MT-Bench scale. On the other hand, QRM evaluates the accuracy
of the reward model in predicting human preferences on the StackExchange preference benchmark
test split. Additional details are provided in Appendix C.

Results. We show the correlation between the in-domain performance (QPM and QRM ) of RLHF
models and the quality of RMs and PMs, as illustrated in Figure 2. Our primary observation is that
while the quality of RMs and PMs generally positively correlates with the in-domain performance of
RLHF models, a saturation effect is evident. Beyond a certain quality threshold, additional RM or PM
quality improvements yield no further enhancements in the in-domain performance of RLHF models.

4 ANALYZING THE ORIGIN OF SATURATION PHENOMENON

SFT ( p) Preference ( r) RL ( rl)

PM
RM

100% 97% 96%

98% 100% 98%

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Figure 3: Cross-validation of PM and RM quality
using different datasets(3 random seeds). The per-
formance of RM and PM remains consistent across
benchmarks. (e.g., on Drl, the PM achieves 96%
of its performance on Dp.)

This section investigates the saturation phe-
nomenon within RLHF, particularly from the
perspective of potentially noisy supervision sig-
nals. The RLHF process comprises three primary
stages: (1) policy modeling, (2) reward model-
ing, and (3) RL training. Initially, we conduct
a sanity check on our PM and RM under our
experimental settings to confirm their capacity
for transferability across different data subsets.
As shown in §4.1, the results indicate that both
the PM and the RM exhibit adequate general-
ization. During the RL training stage, however,
we observe that the RM struggles to effectively
evaluate many of the responses generated by the
PM (§4.2). By removing data that reflects this
discrepancy between RM and PM, we find that
RLHF performance improves (§4.3).

4.1 A SANITY CHECK ON PM AND RM

We hypothesize that the observed saturation phenomenon may be due to the capacity of RM or PM
can not be transferred to data used in other stages (e.g., the policy model can generate high-quality
responses towards SFT instructions but fails to respond to the RL instructions). Thus, we conducted
a sanity check on both models to answer the following two questions: (1) Q1: whether the RM
consistently distinguishes between better and worse responses as per the instructions used in SFT
and RL training and (2) Q2: whether the PM sustains its generation quality with instructions from
the RL dataset. We prepare the SFT dataset Dp, the preference benchmark Dr, and the RL dataset
Drl. Specifically, the PM and RM were trained on the train splits of Dp and Dr, respectively. We
then employed cross-validation techniques to assess the PM’s performance across the test split of the
preference and RL datasets. Similarly, we tested the RM on the test split of the SFT and RL datasets.
Experimental details are deferred to Appendix C.

The results are shown in Figure 3. We trained five models each for the PM and RM, subsequently
performing cross-validation. The key observation is that the performance of both PM and RM remains
consistent across various in-domain datasets. This consistency indicates that PM and RM do not
have significant generalization issues under our experimental setup. Besides, it also answers our two
questions: (1) Given a well-trained PM that performs well on the evaluation set of Dp, it can also

1We do not use the KL divergence between the outputs from the reference and policy models, as there is no
clear correlation between model quality and such KL divergence.
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respond with similar quality to the instructions in Drl; (2) Given a well-trained RM that performs well
on the evaluation set of Dr, it can also perform similarly well on distinguishing the golden and worse
response in Dp and Drl.

4.2 DISCREPANCY BETWEEN RM AND PM DURING RL TRAINING

7.5 5.0 2.5 0.0 2.5 5.0 7.5
Reward Preference

Reward Preference v.s. Human Preference

Agreement
Mismatch
Human Prefer Response A
Human Prefer Response B

Figure 4: Agreement between reward and hu-
man preference is evaluated by comparing two
responses (A and B) from two different policy
models. The blue points indicate agreement be-
tween the reward and human preferences, while
the red points represent mismatches. However,
the results show that the RM fails to assign a
proper score to the generation from PM.

During the RL training stage, the PM is prompted
by instructions from the RL dataset Drl to gen-
erate responses ri. The RM then evaluates these
responses, which assigns reward scores to guide
the RL training process. Our empirical analysis
reveals two key findings (Figure 3), given a high-
quality PM and RM: (1) the RM can effectively
discriminate between golden and suboptimal re-
sponses of instructions within Drl, and (2) the PM
can generate high-quality responses to instructions
from Drl. Thus, we investigate the RM’s capacity
to evaluate the PM’s responses to Drl since there
might be a distribution shift between the responses
generated from PM and those in the dataset.

Directly evaluating the RM capability to accurately
assign scores to responses generated by the PM
conditioned on an instruction Ii has significant
challenges since the standard reward modeling
cast the preference regression problem into a clas-
sification problem. To address this, we employ
a comparative analysis. We select two PMs of
differing qualities (ranked 1 and 5 in previous ex-
periments §3) and prompt each PM with instructions from the dataset Drl (we sample a total of
1,000 instructions). We collect the responses and organize them into pairs for evaluation. Each pair of
responses is evaluated by two methods: (1) human judgment and (2) RM evaluation using the rank
1 RM from §3 to determine if even our best RM faces issues. To investigate the matching degree
between RM and human preferences, we present pairs of responses (A and B) from the two PMs to
human annotators without revealing the originating model. Human annotators are asked to annotate
their preference between the two options. Similarly, we determine RM preferences based on their
assigned reward scores.

The results, as shown in Figure 4, reveal a mismatch rate of approximately 40%, showing that the RM
has some inability to accurately assign scores that reflect the true quality of responses generated by the
PM. Also, we can observe a discrepancy between PM and RM - the RM can not well judge the quality
of the responses generated from PM. This discrepancy can introduce noise into the RL training process,
leading to the accumulation of incorrect gradients during RL optimization. Besides, we show that such
discrepancies can not be resolved by scaling up the model (Appendix B). Consequently, a natural
strategy to enhance the RLHF process is removing instructions from Drl that exhibit discrepancies
between the RM and PM. This approach aims to reduce the noise in the RL training procedure,
potentially improving overall model performance.

4.3 LESS CAN BE MORE: A CASE STUDY OF DATA SELECTION FOR RL TRAINING

Based on the insights from §4.2, we remove instructions that lead to discrepancies between the
PM and RM. We then use this refined dataset for RL training and compare its performance against
that achieved using the full Drl dataset. As per the experimental settings described in §4.2, we
employ both models at rank= 1 for RL training. The results, presented in Figure 5, demonstrate a
statistically significant improvement in RLHF performance (p<0.05) after removing data that causes
discrepancies between the PM and RM. This case study illustrates a ‘less is more’ phenomenon in RL
training data: removing data that causes the discrepancy between PM and RM can enhance overall
RLHF performance. However, this selective data filtering process is challenging to generalize due
to its dependence on human annotation. Currently, there is no formal concept to characterize such
data-driven discrepancies adequately. Consequently, we will discuss these in §5.

5
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5 SEAM: AN AUTOMATIC ESTIMATION FOR SEAMLESSNESS
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Figure 5: Compared to the RLHF per-
formance of the full dataset, filter low-
SEAM data further improves RLHF (3
random seeds).

As shown in §4, removing data that leads to discrepancies
between the PM and the RM improves RLHF performance.
Currently, our approach depends on manual human assess-
ments to determine the alignment between the PM and RM
for specific datasets, a process that hinders full automation.
This section first explores the concept of ‘seamlessness’ in
RL training data. Then, we propose SEAM, an automated
method designed to quantify the seamlessness of each data
point, potentially enabling a more efficient and systematic
tool to enhance RLHF training.

5.1 CONCEPT OF THE SEAMLESSNESS

Generally, our concept of ‘seamlessness’ is proportional to
the PM likelihood of a data point that causes discrepancies
between the policy and the reward model. Therefore, seamlessness includes not only the probability
of misjudgment by the reward model but also the generative distribution of the policy model
when conditioned on given data. The formal definition of seamlessness is provided in Definition 1.
Considering that it is implausible to iterate the space of all responses r, we provide a discretization
form for seamlessness in Equation 2.

Definition 1. (Definition of Seamlessness) Given an instruction I ∈ Drl, a reward model Rθ and a
policy model πSFT. We denote the distribution of the response r from πSFT as Pr(·|I, πSFT), we
also denote the data distribution that hacks Rθ as Ph(·|Rθ), which means the data that leads to
reward misjudgement. Then, the seamlessness of the instruction I is defined as follows:

S(I,Rθ, π
SFT) =

∫
r∼Ph

Pr

(
r | I, πSFT

)
· ϵ(r,Rθ) dPh (1)

where ϵ(r,Rθ) denotes the magnitude of RM misjudgement.

Since the term defined in Definition 1 is intractable, we propose SEAM, an estimation for the
seamlessness between RM and PM reflected through data. Following the notations in Definition 1, we
define a sample set X that contains N samples ri ∼ Ph(·|Rθ) to represent the hacking distribution.
Then, we present the discretization form of the seamlessness as follows:

SEAM(I,Rθ, π
SFT) =

∑
ri∈X

Pr

(
ri | I, πSFT

)
· ϵ(ri, Rθ) (2)

In fact, our analyses in §4 use a similar method to Equation 2 to quantify the seamlessness between
PM and RM. But under the formulation in §4, the ϵ(ri, Rθ) refers to the mismatch degree between
reward and human preferences, which inevitably incorporate the human efforts.

5.2 AUTOMATIC ESTIMATION FOR SEAMLESSNESS

A significant practical challenge in our previous method of measuring seamlessness is the difficulty in
automating the process. In this part, we introduce several automated estimation methods designed to
quantify the seamlessness of data. Specifically, we propose three variants based on their corresponding
designs to construct the sample set X (Equation 2): SEAMContrast, SEAMGPT, SEAMAdv.

SEAMContrast In the SEAMContrast method, we implement the ‘Contrast Instruction’ strategy (Shen
et al., 2023) to automatically construct the sample set X . Specifically, for each instruction and
its golden response pair (I, r) in the dataset Drl, we retrieve 30 semantically relevant but distinct
instructions I∗, along with their corresponding golden responses r∗, from a large SFT dataset (each
pair in this dataset comprises an instruction and its golden response). We then use r∗ to form new
pairs, assessing whether the reward model can effectively distinguish between the quality of the
original pair I ◦ r and the newly constructed pair I ◦ r∗. It is guaranteed that the quality of I ◦ r is
superior to I ◦ r∗, providing a reliable ground truth for evaluating RM performance. We define the

6
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magnitude of RM misjudgments, ϵ(ri, Rθ), as follows:

ϵ(ri, Rθ) = max {Rθ(I ◦ r∗)−Rθ(I ◦ r), 0} (3)

SEAMGPT In the SEAMGPT method, we use GPT-4 (Achiam et al., 2023) to construct the sample
set X . Specifically, for each instruction and its golden response pair (I, r) in the dataset Drl, we
prompt GPT-4 to produce worse-quality responses r∗. Similarly, we use r∗ to form new pairs, assessing
whether the reward model can effectively distinguish between the quality of the original pair I ◦ r and
the newly constructed pair I ◦ r∗. We reuse the magnitude defined in Equation 3.

SEAMAdv In the SEAMAdv method, we use the adversarial attack to generate adversarial sentences
that construct the sample set X . Specifically, for each instruction and its golden response pair (I, r) in
the dataset Drl, we use adversarial attacks (Ren et al., 2019) to produce responses r∗ that hacks the
reward model, such that Rθ(I ◦ r∗) > Rθ(I ◦ r). Similarly, we follow the misjudgment term defined
in Equation 3.

Length penalty term We introduce the operation to remove length bias. This operation targets
the bias introduced by the length of response r, primarily affected by the exponential decrease in
probability with increasing sequence length. To mitigate this, we implement a length normalization

operation on the log probability of the response. This is formally represented as
logPr(ri|I,πSFT)

len(ri)
,

where logPr(ri | I, πSFT) denotes the logarithm of the probability that the policy model assigns to
generating the response ri given the instruction I .

6 THEORETICAL ANALYSIS

The SEAM method aims to enhance model performance by filtering out instructions that lead
to responses difficult for the reward model (RM) to evaluate reliably. We analyze how filtering
instrcutions can improve the performance of the policy model obtained through reinforcement learning
with human feedback (RLHF).

Let the parameter space Π contain the ground-truth distribution P(r|I) = Pr(r|I;πDATA) for some
πDATA ∈ Π. For simplicity, we assume that all the distributions in this section have common support.
We model RLHF as a two-step optimization process: (1) RM optimization and (2) PM optimization.

Step 1. RM Optimization Let QI(·) be the distribution of instructions. Then, the RM is obtained
by minimizing the following loss (Ouyang et al., 2022):

−E I∼QI (·)
r∼Pr(·|I;πDATA)

r′∼Pr(·|I;πSFT)

[
log σ

(
R(I ◦ r)−R(I ◦ r′)

)]
, (4)

where σ is the sigmoid function. Assume that the class of RMs R contains R(I, r) = Z(I) +
log{Pr(r|I;πDATA)/Pr(r|I;πSFT)}, where Z(I) is any function of I . Let R∗ ∈ R be the minimizer
of the loss in equation 4.

Step 2. PM Optimization We consider the following reward maximization problem (Jaques et al.,
2017; 2020; Rafailov et al., 2024):

max
π∈Π

E I∼QI (·)
r∼Pr(·|I;πDATA)

[R∗(I, r)]− βEI∼QI (·)DKL(Pr(·|I;π)∥Pr(·|I;πSFT)), (5)

where β > 0. The solution to this maximization problem is denoted by πRLHF ∈ Π.

6.1 INSTRUCTION FILTERING VIA SEAM

SEAM selectively removes instructions that yield responses difficult to evaluate by the RM. Since this
corresponds to filtering out samples where Pr(r|I;πSFT) is large, while Pr(r|I;πDATA) is small, the
SEAM method can be seen as filtering out samples where the KL divergence between the responses
generated by πDATA and πSFT is large. For the economy of notation, for any divergence D, we denote
D(π∥π′|I) as D(Pr(·|I;π)∥Pr(·|I;π′)).

7
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For η > 0, let Iη represent the set of “good” instructions, where the KL divergence between the
responses generated by πDATA and πSFT is small: Iη = {I : DKL(π

DATA∥πSFT|I) ≤ η}. Suppose that
we could train a policy model that mirrors πRLHF on good instructions and πSFT otherwise. In other
words, assume there exists some π̃RLHF ∈ Π such that

Pr(r|I; π̃RLHF) =

{
Pr(r|I;πRLHF) if I ∈ Iη ,
Pr(r|I;πSFT) otherwise.

We note that in contrast to our practical approach, the theory assumes post-filtering of instructions
after training on the full dataset, which simplifies the understanding of model behavior by deriving the
effect of ‘bad’ instructions on the alignment between the policy model (PM) and reward model (RM).

Let Q′
I(·) be any distribution of instructions to test the performance of the PMs. Denote Dα as the

Rényi divergence of order α.

Proposition 1. For any β ∈ (0, 1) and η > 0, if PI∼Q′
I(·)(I ̸∈ Iη) > 0, maxI D∞(πDATA∥πSFT|I) <

∞, and minI ̸∈Iη
DKL(π

DATA∥πSFT|I) > 0 hold, then,

lim inf
β↓0

EI∼Q′
I
(·)
[
DKL(π

DATA∥πRLHF|I)
]
− EI∼Q′

I
(·)
[
DKL(π

DATA∥π̃RLHF|I)
]

EI∼Q′
I
(·)[DKL(πDATA∥πRLHF|I)] > 0.

Proposition 1 shows that the RLHF model with instruction filtering performs strictly better than the
RLHF model without instruction filtering when (1) β is sufficiently small, and (2) PM with π̃SFT is
uniformly different from data generating process πDATA. More details are deferred to Section F in the
appendix.

7 SEAM FOR RL TRAINING DATA SELECTION

In this section, we employ three SEAM variants as indicators to filter RL training data and evaluate
the corresponding effectiveness.

7.1 EXPERIMENTAL SETUP

Since this is a data-centric experiment, we follow the previous RLHF setup outlined in Appendix C.
For SEAMContrast, we utilize SimCSE (Gao et al., 2021) as the embedding model to retrieve the
top 30 instructions from a StackExchange dataset containing over 1 million instruction-response
pairs, with cosine similarity values in the interval [0.8, 0.9]. For SEAMGPT, we select GPT-4-0613
to generate 30 lower-quality responses using the prompt shown in Prompt 2. For SEAMAdv, we
employ TextAttack (Morris et al., 2020) to perform adversarial attacks on the reward model. For each
instruction, we generate 30 adversarial responses.

For the models, we reuse the policy model and reward model checkpoints from §3 to calculate each
SEAM variant across the RL dataset. Subsequently, we filter out 20% of the RL dataset based on the
value of each SEAM variant, respectively. We then compare the RLHF performance using the full
and filtered datasets based on the evaluation paradigm used in §3. Specifically, we add a baseline
(LLaMa) that uses the perplexity computed by LLaMa2-7B and filters the high perplexity data.
7.2 RESULTS

The results are presented in Figure 6, showcasing performance based on the top-5 RMs and PMs,
where the saturation phenomenon occurs (§3). The key observations are as follows:

(1) Training on SEAM-filtered RL data further improves RLHF performance: Compared to RLHF on
the full Drl, conducting RL training on the filtered Drl enhances RLHF performance. This finding
empirically validates that data with low SEAM values negatively impacts the RL training stage in
RLHF. Additionally, randomly removing the same amount of RL training data does not yield benefits,
indicating that the effectiveness of SEAM is not merely due to a reduction in data size.

(2) Training on SEAMGPT-filtered RL data alleviates the saturation phenomenon: We observe that as
the quality of RM (PM) increases, conducting RLHF on the data filtered by SEAMGPT continues to
improve performance to a certain extent. Compared to the case of full data training, the saturation
phenomenon is mitigated by filtering data with low SEAMGPT values.

8
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Figure 6: RLHF performance when using SEAM to filter 20% of the RL dataset Drl. After filtering
out the low-SEAM data, we observe an improvement in RLHF performance compared to using the
full Drl. The effectiveness of the three SEAM variants is ranked as follows: GPT > Contrast >
Adv. Specifically, we also observe that randomly removing 20% RL data does not bring statistically
significant performance changes.

SEAM ATTACK LIKELIHOOD

SEAMGPT - -1.81
SEAMContrast - -3.07

SEAMAdv

GA -9.32
BA -9.17

PWWS -9.87

Table 1: Per-sentence log-likelihood (with length
penalty) from the top-ranked PM (rank 1) for sentences
in the sample set X (Equation 2) computed using the
three estimation variants of SEAM. The sentences cre-
ated by SEAMAdv exhibit significantly lower likeli-
hoods, indicating their unnaturalness.

In general, the performance of the three
SEAM variants is ranked as follows: GPT
> Contrast > Adv. In this section, we
analyze the limitations of these variants
through case studies and a straightforward
analysis. Under the setup in Equation 2, a
low likelihood indicates that, given the in-
struction I , the PM is unlikely to generate
the response r∗ ∈ X , leading to issues in
estimating seamlessness.

For SEAMAdv, we found that the adver-
sarial sentences generated for estimating
SEAM have a much lower likelihood in the
PM compared to the other two methods, as shown in Table 1. Compared to the other two variants, the
sentences generated by SEAMAdv are significantly less likely to be sampled from the PM. Although
such adversarial sentences can consistently hack the RM, they do not represent the PM’s natural
outputs, indicating a lack of representativeness. This is because adversarial attacks tend to introduce
non-coherent perturbations to the response r, significantly impacting fluency. We present typical cases
in Appendix D. For SEAMContrast, a similar low-likelihood problem exists, although it is less severe
than with SEAMAdv.

8 SEAM FOR RLHF MODEL AUGMENTATION

This section demonstrates how SEAM can augment models that target to increase seamlessness
between PM and RM.

9
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8.1 EXPERIMENTAL SETUP

We maintain our previous RLHF setup and use the same implementation of SEAM. The key difference
between this experiment and the one in §7 is that, after computing SEAM for the RL dataset, we
augment the PM and RM by adding the data augmented based on such low-SEAM data points in Drl,
rather than filtering them.

For each SEAM variant, we select the lowest 20% of the data based on their SEAM scores and
generate augmented data to enhance the RM and PM. Specifically, for each low-SEAM instruction Ii
and its corresponding golden response ri, we apply the ’Contrast Instruction’ strategy (Shen et al.,
2023) to create five augmented data samples for each instruction-response pair. These samples are
then added to the training set of the PM. Similarly, we use the same method for the RM to generate
five augmented preference data samples for each low-SEAM instruction Ii, which are incorporated
into the RM’s training data. We assess the RLHF performance using the augmented PM and RM. To
ensure a fair comparison, we add two baselines: (1) Random: we randomly select 20% of Drl and
apply the same augmentation method. The RLHF performance of the PM and RM augmented by both
SEAM and random selection is then evaluated. (2) Full Aug: For each data sample in Drl, we apply
augmentation methods based on all of them, and add the augmented data to train PM and RM.

8.2 RESULTS

Original Seam Random Full Aug
5.5

5.6

5.7

5.8

5.9

ID
 P
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fo

rm
an

ce
 (R

LH
F)

Figure 7: Performance comparison be-
tween model augmentation w/ and w/o
SEAM. ‘Original’ means RLHF with no
model augmentation.

As shown in Figure 7, the results illustrate the effectiveness
of using SEAM to guide model augmentation. Augment-
ing the PM and RM with data specifically selected by
SEAM demonstrates greater benefits than augmentations
using randomly selected RL data and achieves comparable
performance towards Full Aug. This indicates that the RL
data chosen by SEAM is closely related to the weaknesses
of the RM and PM combination during RLHF. Addressing
these specific weaknesses through targeted data augmen-
tation effectively improves the identified issues. Overall,
this validates that SEAM can serve as a signal to improve
RM and PM in terms of their brittleness during RLHF.

9 LIMITATIONS

One limitation of our framework is that it is restricted to offline RLHF experiments rather than being
tested in an online RLHF scenario. In online RLHF, the RM and PM are updated continuously based
on real-time feedback from user interactions, offering a more dynamic and realistic setting. Despite
this, we propose that SEAM can still be effectively utilized by segmenting the online RLHF into a
series of offline RLHF cycles. At the beginning of each cycle, the same analyses for data selection
and model augmentation could be applied. This adaptation would allow us to extend the benefits of
SEAM to more practical, real-world applications. Another limitation of our framework is inherent in
the SEAM metric, which assesses the seamlessness of data only comparatively rather than absolutely.
Consequently, while we can selectively filter portions of data (e.g., the lowest 20%), we cannot
establish a definitive threshold to categorize data as good or bad outright. However, to understand
the impact of different filtering rates more thoroughly, we have conducted an analysis detailed in
Appendix E, where we see 20% is a practical choice.

10 CONCLUSION

In this paper, we explored the concept of seamlessness between policy and reward models within
Reinforcement Learning from Human Feedback (RLHF), uncovering significant discrepancies
between the models as reflected in the data. We introduced SEAM, an automated method to
quantify this seamlessness, demonstrating its practical benefits for improving RLHF outcomes. Our
findings emphasize the critical interplay between policy and reward models, contributing to a deeper
understanding of RLHF dynamics. We hope our insights will guide future research toward developing
more effective and nuanced RLHF strategies.
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A PRELIMINARIES: A THREE-STAGE PARADIGM FOR RLHF

A RLHF practice includes three stages: policy modeling, reward modeling, and RL training, which
involve three benchmarks: an SFT dataset Dp, a preference benchmark Dr, and an RL dataset Drl.

Policy model. Following the setup (Ouyang et al., 2022), we obtain the policy model (PM) by
supervised fine-tuning (SFT) the base version of LLM. Given an SFT dataset Dp, each instance in
the dataset consists of an instruction and its golden response. Then, we train the LLM on Dp with
language modeling loss to obtain the PM: πSFT.

Reward model. Following the conventional setup (Ouyang et al., 2022), we are given a dataset
of human preferences Dr. Each instance in this dataset (Ii, r+i , r

−
i ) is comprised of an instruction

prompt Ii, a pair of responses r+i , r
−
i where r+i is preferred over r−i by humans. On this labeled data,

RM Rθ is trained to assign a higher scalar reward to human-preferred r+i over non-preferred r−i in
the context of Ii. This can be achieved by minimizing the ranking loss L, where σ is the sigmoid
function and Ii ◦ r+i is the concatenation of Ii and r+i .

L(θ) = −E(Ii,r+i ,r−i )∼Dh

[
log

(
σ
(
Rθ(Ii ◦ r+i

)
−Rθ

(
Ii ◦ r−i )

))]
. (6)

Reinforcement Learning. The last stage of RLHF is reinforcement learning. Specifically, a per-
token KL penalty from the SFT model at each token is used to mitigate over-optimization of the
reward model, and the value function is initialized from the RM. We maximize the following combined
objective function J (ϕ) in RL training based on PPO algorithm (Schulman et al., 2017; Ouyang et al.,
2022), RL training dataset Drl and pre-training dataset Dpre:

J (ϕ) = E(I,r)∼D
πRL
ϕ

[
Rθ(I ◦ r)− β log

(
πRL
ϕ (r | I)/πSFT(r | I)

)]
where πRL

ϕ is the learned RL policy parameterized by ϕ initialized from a pretrained supervised
trained model πSFT. The first term encourages the policy πRL

ϕ to generate responses that have higher
reward scores. The second term represents a per-token KL reward controlled by coefficient β between
πRL
ϕ and πSFT to mitigate over-optimization toward the reward.

B THE DISCREPANCY DOES NOT VANISH AS SCALING UP

Model Match Rate PM performance RM performance

LLaMa2-7B 60.5% 66.1 5.24
LLaMa2-13B 60.7% 66.9 5.30
LLaMa2-70B 60.4% 67.6 5.35

Table 2: The scaling tendency of our base model for training PM and RM, from 7B to 70B. We
observe that the performance of PM and RM improves as the model scales up but find the match rate
toward human preference remains nearly the same.

As demonstrated in §4.2, there is a notable discrepancy between the PM and RM: the RM fails to
appropriately assign reward scores to responses generated by the PM. In this section, we explore the
impact of scaling the base model on these discrepancies by reanalyzing the data discussed in §4.2.
The findings, presented in Table 2, reveal that while the capacities of the PM and RM improve with
an increase in the size of the base model (LLaMa2), the preference matching rate remains nearly
consistent across different model scales. These results confirm that merely scaling up the model size
does not address the underlying discrepancy between the RM and PM.

C IMPLEMENTATION DETAILS OF RLHF

C.1 TRAINING DETAILS

• Standard fine-tuning (SFT): The base model chosen is LLaMa2-7B. We created 10 PMs of increasing
quality by varying the training data amounts at 50, 100, 250, 500, 800, 1500, 2500, 5000, and 10000,
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plus a baseline pretrained model without SFT. The configuration employed includes the AdamW
(Kingma & Ba, 2014) optimizer with a learning rate of 1e-4, 10 warmup steps, and training facilitated
by LoRA.

• Reward model (RM): Training of the RM utilized the SFT model as the base model. De-
pending on the SFT model’s quality rank, StackExchange pairwise preference data of subset 50, 100,
500, 2500, 5000, 10000, 20000, 50000, and 100000 were employed to train 9 RMs. With an additional
pretrained model replaced with a randomly initialized classifier head, in total we create 10 RMs with
increasing accuracy. Training employed LoRA, with AdamW optimizer and learning rate 2e-5.

• Reinforcement learning with PPO: PPO is used for each PM-RM pairing, generating hun-
dreds of unique RLHF models. The RL prompts are from the StackExchange question dataset and
remain consistent across all RLHF implementations. The SFT model served as the reference model,
utilizing the reward scores from the RM as supervision. All PPO training has the configuration of
LoRA with a learning rate of 1.4e-5, a batch size of 32, and 200 PPO steps.

Prompt 1. (Prompt used in RLHF/PM evaluation)

[System]

Please act as an impartial judge and evaluate the quality of the response provided by an AI assistant
to the user question displayed below. Your evaluation should consider factors such as the helpfulness,
relevance, accuracy, depth, creativity, and level of detail of the response. Begin your evaluation by
providing a short explanation. Be as objective as possible. After providing your explanation, please
rate the response on a scale of 1 to 10 by strictly following this format: "[[rating]]", for example:
"Rating: [[5]]".

[Question]
{question}

[The Start of Assistant’s Answer]
{answer}
[The End of Assistant’s Answer]

C.2 EVALUATION DETAILS

For the evaluation details, we detail the setup of the generator (i.e., PM and RLHF model) and classifier
(i.e., RM), respectively.

• Reward model: the reward model is evaluated on the corresponding test split of the preference
benchmark based on accuracy (i.e., whether the RM can distinguish the better and worse response
in the context of the given instruction.)

• Policy and RLHF model: we follow the general principle of MT-Bench (Zheng et al., 2023).
Specifically, we use their instruction (Prompt 1) to prompt GPT-4 for measuring the quality of the
responses from the policy and RLHF models. GPT-4 will assign a quality score, ranging from 0 to
10, to measure the quality of the response.

C.3 SANITY CHECK SETUP

In the sanity check for the capacity of the RM and PM, our primary objective is to verify that both
models maintain comparable performance across different stages of the training process. Specifically,
we aim to ensure that: (1) the RM consistently distinguishes between better and worse responses as
per the instructions used in SFT and RL training; (2) the PM sustains its generation quality with
instructions from the RL training dataset.

To achieve this, we utilize the Stack-Exchange dataset’s three segments (SFT, Preference, RL), dividing
each into train, dev, and test splits. For the RM, the data distribution is 100,000/20,000/20,000, and
for the PM, it is 20,000/2,000/2,000. We prepare the dataset in a format where each instruction is
paired with a corresponding high-quality answer and a lower-quality candidate, ensuring the data’s
compatibility for training both the RM and PM. The training configurations adhere to the setup
described in Appendix C.
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D IMPLEMENTATION DETAILS OF SEAM

D.1 PROMPT USED IN SEAMGPT

We use GPT-4 to generate worse-quality responses in SEAMGPT, based on the prompt detailed in
Prompt 2.

Prompt 2. (Prompt used in SEAMGPT)

[System]

Using the question and its correct answer provided below, generate 30 distinct answers that are of
lower quality. Each response should include one or more of the following characteristics: factual
inaccuracies, misunderstandings of the core question, irrelevant information, or grammatical errors.
The answers should vary in their mistakes to cover a range of common errors seen in similar topics.
Format the responses as separate paragraphs for each answer.

[Question]
{question}

[Answer]
{answer}

[The Start of Assistant’s Answer]
{answer}
[The End of Assistant’s Answer]

D.2 CASES OF SEAMADV

We employed several adversarial attack strategies to challenge the integrity of the reward model (RM).
Specifically, for each instruction along with its corresponding better response r+ and worse response
r−, these adversarial attacks introduce a perturbation α to r−. The goal is for r− + α to receive a
higher reward score than r+, thereby compromising the RM. The attacks we utilized include GA
(Wang et al., 2019), Bert-Attack (Li et al., 2020), PWWS (Ren et al., 2019), KATG (Shen et al., 2022),
and TextFooler (Jin et al., 2020). However, a common limitation of these methods is that they tend to
produce sentences with extremely low likelihood according to the policy model. Below, we present
some examples illustrating the discrepancies between the original responses and those generated by
the adversarial attacks.

D.3 SETUP OF SEAMCONTRAST

Using a human preference dataset, we have divided it into training, development, and testing sets. The
reward model is trained on the training set and ceases training once it attains optimal performance on
the development set. Subsequently, it is evaluated on the test set. Our CONTRAST INSTRUCTIONS are
built upon the test set in each benchmark. We establish a similarity threshold range to ensure the
retrieved instruction differs from the original one ([0.8, 0.9]). Only instructions falling within this
similarity range are retrieved.

D.4 HUMAN EVALUATION

Since we aim to compute the degree of match between the reward outputs and human preferences, we
enlist multiple human annotators to assess the quality of responses to Stack Exchange questions. Each
annotator is kept unaware of the model that generated the responses, and then they are asked to give
the index of the response with better quality based on tools like search engines. Since the evaluation
relates to Stack Exchange, each annotator has expertise in computer science.
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Figure 8: The effects of filter rate in RL data selection.

E EXTRA ANALYSIS OF LOW-SEAM DATA

E.1 THE EFFECTS OF THE FILTERING RATE

We vary the filter rate as follows {10%, 20%, 30%, 40%, 60%, 80%}, and re-conduct the experiments
in §7 with the rank 1 PM and RM. The results, as shown in Figure 8, demonstrate the relationship
between the filter rate of data samples and the in-domain RLHF performance across various thresholds.
Notably, increasing the filter rate initially enhances RLHF performance, with a peak observed at
approximately 40%. Beyond this threshold, further increases in the filter rate result in a gradual
decline in performance. This trend indicates an optimal range for filtering out low-seam score samples
to maximize RLHF effectiveness, thereby illustrating the critical trade-off between data quantity and
quality. Based on this observation, we set the filtering rate as 20%.

E.2 THE OVERLAP RATE BETWEEN LOW-SEAM DATA ON DIFFERENT COMBINATIONS.

Following the previous setup, we examine the overlap rate of the 20% low-SEAM data across three
model combinations: (1) rank 5 PM with rank 5 RM, (2) rank 3 PM with rank 3 RM, and (3) rank
1 PM with rank 1 RM. We aim to assess whether the low-SEAM data varies significantly among
different model pairings. The results, illustrated in Table 3, reveal that the overlap rate between model
combinations is generally high, exceeding 60%. Notably, the overlap rate increases as the differences
between the models decrease.

Model Combo rank = 1 rank = 3 rank = 5

rank = 1 -
rank = 3 72% -
rank = 5 64% 69% -

Table 3: The overlap rate between the 20% low-SEAM data on different model combinations, where a
rank of 1 denotes using the rank 1 PM and rank 1 RM in the combination.

F DETAILS OF THEORETICAL ANALYSIS

In this section, we provide the results and proofs of the theoretical analysis in Section 6.

To ease notation, define

d1/β(I) := D1/β(Pr(·|I;πDATA)∥Pr(·|I;πSFT)),

d1(I) := DKL(Pr(·|I;πDATA)∥Pr(·|I;πSFT)),

d∞(I) := sup
r

log
Pr(r|I;πDATA)

Pr(r|I;πSFT)
.
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We first introduce the following lemma to bound DKL(Pr(·|I;πDATA)∥Pr(·|I;πRLHF)) from below.

Lemma 1. For any 0 < β < 1,

DKL(Pr(·|I;πDATA)∥Pr(·|I;πRLHF)) ≥
(
1

β
− 1

)
d1/β(I)− d1(I)

d1/β(I)
d1(I).

Next we restate Proposition 1.

Proposition 2 (Restatement of Proposition 1). For any 0 < β < 1 and η > 0,

EI∼Q′
I(·)

[
DKL(Pr(·|I;πDATA)∥Pr(·|I;πRLHF))

]
− EI∼Q′

I(·)
[
DKL(Pr(·|I;πDATA)∥Pr(·|I; π̃RLHF))

]
≥

{(
1

β
− 1

)
minI ̸∈Iη

{d1/β(I)− d1(I)}
maxI ̸∈Iη

d1/β(I)
− 1

}
· η · PI∼Q′

I(·)(I ̸∈ Iη). (7)

Furthermore, if

PI∼Q′
I(·)(I ̸∈ Iη) > 0, max

I
d∞(I) < ∞, min

I ̸∈Iη

d1(I) > 0, (8)

then,

lim inf
β↓0

EI∼Q′
I
(·)
[
DKL(Pr(·|I;πDATA)∥Pr(·|I;πRLHF))

]
− EI∼Q′

I
(·)
[
DKL(Pr(·|I;πDATA)∥Pr(·|I; π̃RLHF))

]
EI∼Q′

I
(·)[DKL(Pr(·|I;πDATA)∥Pr(·|I;πRLHF))]

> 0.

Note that since Rényi divergence of order α is monotonically increasing with its order (Van Erven &
Harremos, 2014), the right hand side of equation 7 is always non-negative.

F.1 PROOFS OF THEORETICAL RESULTS

Proof of Lemma 1. We divide the proof into 3 steps.

Step 1. We first prove the following under the setup in Section 6:

Pr(r|I;πRLHF) ∝ Pr(r|I;πSFT)1−1/βPr(r|I;πDATA)1/β . (9)

Consider RM optimization in equation 4. From Lemma C.2 of Chen et al. (2024), the minimum value
of the loss in equation 4 is achieved by

R∗(I, r) = Z(I) + log

(
Pr(r|I;πDATA)

Pr(r|I;πSFT)

)
, (10)

where Z(I) is any function of I .

From Peters & Schaal (2007); Peng et al. (2019); Korbak et al. (2022); Go et al. (2023), PM
optimization problem in equation 5 has a closed-form solution πRLHF ∈ Π satisfying

Pr(r|I;πRLHF) =
1

H(I)
Pr(r|I;πSFT) exp

(
β−1R∗(I, r)

)
,

where H(I) =
∫
Pr(r|I;πSFT) exp

(
β−1R∗(I, r)

)
dr is a normalizing constant. Hence

Pr(r|I;πRLHF) =
1

H(I)
Pr(r|I;πSFT) exp

(
1

β
log

(
Pr(r|I;πDATA)

Pr(r|I;πSFT)

)
+

1

β
Z(I)

)
=

1

H(I)
exp

(
1

β
Z(I)

)
Pr(r|I;πSFT)1−1/βPr(r|I;πDATA)1/β . (11)

This completes Step 1.
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Step 2. In this step, we explicitly write the KL distance between Pr(r|I;πDATA) and Pr(r|I;πRLHF)
using equation 11 in Step 1. Observe that

DKL(Pr(·|I;πDATA)∥Pr(·|I;πRLHF))

=

∫
Pr(r|I;πDATA) log

Pr(r|I;πDATA)

Pr(r|I;πRLHF)
dr

=

∫
Pr(r|I;πDATA) logPr(r|I;πDATA) dr

−
∫

Pr(r|I;πDATA)

{(
1− 1

β

)
logPr(r|I;πSFT) +

1

β
logPr(r|I;πDATA)− logH(I) +

1

β
Z(I)

}
dr

= logH(I)− 1

β
Z(I) +

(
1− 1

β

)
DKL(Pr(·|I;πDATA)∥Pr(·|I;πSFT)). (12)

By definition of H(I), we have

logH(I) = log

∫
Pr(r|I;πSFT) exp

(
β−1R∗(I, r)

)
dr

= log

∫
{Pr(r|I;πSFT)}1−1/β{Pr(r|I;πDATA)}1/β exp

(
1

β
Z(I)

)
dr

=
1

β
Z(I) + log

∫
{Pr(r|I;πSFT)}1−1/β{Pr(r|I;πDATA)}1/β dr .

Combined with equation 12, we have

DKL(Pr(·|I;πDATA)∥Pr(·|I;πRLHF))

= log

∫
{Pr(r|I;πSFT)}1−1/β{Pr(r|I;πDATA)}1/β dr +

(
1− 1

β

)
DKL(Pr(·|I;πDATA)∥Pr(·|I;πSFT))

= log

∫ (
Pr(r|I;πDATA)

Pr(r|I;πSFT)

)1/β−1

Pr(r|I;πDATA) dr +

(
1− 1

β

)
DKL(Pr(·|I;πDATA)∥Pr(·|I;πSFT))

=

(
1

β
− 1

){
D1/β(Pr(·|I;πDATA)∥Pr(·|I;πSFT))−DKL(Pr(·|I;πDATA)∥Pr(·|I;πSFT))

}
,

(13)
where we used the definition of Rényi divergence. Since Rényi divergence is monotonically increasing
in α, the right hand side of equation 13 is non-negative for all β > 0.

Step 3. In this step, we bound DKL(Pr(·|I;πDATA)∥Pr(·|I;πRLHF)) from below. For the economy
of notation, define

δ(α) := Dα(Pr(·|I;πDATA)∥Pr(·|I;πSFT))

for α > 1. Since limα↓1 δ(α) = DKL(Pr(·|I;πDATA)∥Pr(·|I;πSFT)), we also define δ(1) for conve-
nience as:

δ(1) := DKL(Pr(·|I;πDATA)∥Pr(·|I;πSFT)).

Take any sufficiently small ϵ′. From the monotonicity of Rényi divergence, we have δ′(α) ≥ 0. This
implies that

log δ(α)− log δ(1 + ϵ′) =

∫ α

1+ϵ′

δ′(γ)

δ(γ)
dγ ≥ δ(α)− δ(1 + ϵ′)

δ(α)
.

Equivalently, we have δ(α)/δ(1 + ϵ′) ≥ exp(1− δ(1 + ϵ′)/δ(α)). Taking ϵ′ ↓ 0, we have

δ(α)− δ(1) ≥ δ(1) exp

(
1− δ(1)

δ(α)

)
− δ(1) ≥ δ(1)

(
1− δ(1)

δ(α)

)
,

where we used exp(x) ≥ 1 + x for all x. Combined with equation 13, we obtain

DKL(Pr(·|I;πDATA)∥Pr(·|I;πRLHF)) =

(
1

β
− 1

)
{δ(1/β)− δ(1)} ≥

(
1

β
− 1

)
δ(1/β)− δ(1)

δ(1/β)
δ(1)

when 1/β > 1. This completes the proof. ■
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Proof of Proposition 2. From Lemma 1, we have

DKL(Pr(·|I;πDATA)∥Pr(·|I;πRLHF)) ≥
(
1

β
− 1

)
minI ̸∈Iη

{d1/β(I)− d1(I)}
maxI ̸∈Iη

d1/β(I)
d1(I)

for I ̸∈ Iη . This implies that

EI∼Q′
I(·)

[
DKL(Pr(·|I;πDATA)∥Pr(·|I;πRLHF))

]
− EI∼Q′

I(·)
[
DKL(Pr(·|I;πDATA)∥Pr(·|I; π̃RLHF))

]
= EI∼Q′

I(·)
[{
DKL(Pr(·|I;πDATA)∥Pr(·|I;πRLHF))−DKL(Pr(·|I;πDATA)∥Pr(·|I;πSFT))

}
1{I ̸∈ Iη}

]
≥

{(
1

β
− 1

)
minI ̸∈Iη

{d1/β(I)− d1(I)}
maxI ̸∈Iη d1/β(I)

− 1

}
EI∼Q′

I(·)
[
DKL(Pr(·|I;πDATA)∥Pr(·|I;πSFT))1{I ̸∈ Iη}

]
≥

(
1

β
− 1

)
1

maxI ̸∈Iη d1/β(I)

{
min
I ̸∈Iη

{d1/β(I)− d1(I)} −
β

1− β
max
I ̸∈Iη

d1/β(I)

}
ηPI∼Q′

I(·)(I ̸∈ Iη),

(14)

where we used the fact that DKL(Pr(·|I;πDATA)∥Pr(·|I;πRLHF)) ≥ η for all I ̸∈ Iη. This gives the
first claim. From equation 14, with the monotonicity of Rényi divergence, we have

EI∼Q′
I(·)

[
DKL(Pr(·|I;πDATA)∥Pr(·|I;πRLHF))

]
− EI∼Q′

I(·)
[
DKL(Pr(·|I;πDATA)∥Pr(·|I; π̃RLHF))

]
≥

(
1

β
− 1

)
1

maxI ̸∈Iη
d∞(I)

{
min
I ̸∈Iη

{d1/β(I)− d1(I)} −
β

1− β
max
I ̸∈Iη

d1/β(I)

}
ηPI∼Q′

I(·)(I ̸∈ Iη).

(15)
Again from equation 13, we have

DKL(Pr(·|I;πDATA)∥Pr(·|I;πRLHF)) ≤
(
1

β
− 1

)
d1/β(I) ≤

(
1

β
− 1

)
max

I
d∞(I).

Therefore,
EI∼Q′

I(·)
[
DKL(Pr(·|I;πDATA)∥Pr(·|I;πRLHF))

]
− EI∼Q′

I(·)
[
DKL(Pr(·|I;πDATA)∥Pr(·|I; π̃RLHF))

]
DKL(Pr(·|I;πDATA)∥Pr(·|I;πRLHF))

≥ 1

{maxI d∞(I)}2

{
min
I ̸∈Iη

{d1/β(I)− d1(I)} −
β

1− β
max
I ̸∈Iη

d1/β(I)

}
ηPI∼Q′

I(·)(I ̸∈ Iη).

(16)
Since maxI d∞(I) < ∞, PI∼Q′

I(·)(I ̸∈ Iη) > 0, the right hand side of equation 16 is positive if

min
I ̸∈Iη

{
d1/β(I)− d1(I)

}
>

β

1− β
max
I ̸∈Iη

d1/β(I). (17)

Note that for any I ̸∈ Iη, Pr(r|I; θSFT)/Pr(r|I; θDATA) is almost surely not constant under r ∼
Pr(·|I; θDATA) since d1(I) ≥ minI ̸∈Iη d1(I) > 0. Thus d1/β(I) is strictly increasing as β decreases.
In addition, again from maxI ̸∈Iη

d∞(I) < ∞, the right hand side of equation 17 goes to 0 as β ↓ 0,
whereas the left hand side goes to minI ̸∈Iη

{d∞(I)− d1(I)} > 0. Therefore, the right hand side of
equation 15 is strictly increasing and positive for all β < β0 for some β0 ∈ (0, 1). This completes the
proof. ■

G BROADER IMPACT

Improved Human Model Alignment: Integrating SEAM into RLHF techniques enhances the alignment
between machine outputs and human values, leading to AI systems that are more ethical and responsive
to user needs. This improvement is critical for increasing trust and encouraging the adoption of AI
technologies across diverse sectors.

Increased Efficiency and Accessibility: Refining interactions between policy and reward models
optimizes the training processes and reduces the computational resources required, making AI
technologies more accessible and affordable. This democratization of AI could lead to broader
innovation and application.

Misuse in Content Generation: The enhancements that improve model quality and user experience
can also be exploited to create misleading information. Such misuse may pose risks of spreading
misinformation and violating privacy.
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Figure 9: Case comparisons between the original and adversarial responses generated by text attacks.
The differences are highlighted in RED.
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