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ABSTRACT

In today’s era, whatever we can measure at scale, we can optimize. So far, mea-
suring the interpretability of units in deep neural networks (DNNs) for computer
vision still requires direct human evaluation and is not scalable. As a result, the
inner workings of DNNs remain a mystery despite the remarkable progress we
have seen in their applications. In this work, we introduce the first scalable method
to measure the per-unit interpretability in vision DNNs. This method does not
require any human evaluations, yet its prediction correlates well with existing
human interpretability measurements. We validate its predictive power through
an interventional human psychophysics study. We demonstrate the usefulness of
this measure by performing previously infeasible experiments: (1) A large-scale
interpretability analysis across more than 70 million units from 835 computer
vision models, and (2) an extensive analysis of how units transform during training.
We find an anticorrelation between a model’s downstream classification perfor-
mance and per-unit interpretability, which is also observable during model training.
Furthermore, we see that a layer’s location and width influence its interpretability.

1 INTRODUCTION
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Fig. 1: Definition of the Machine Interpretability Score. A. We build on top of the established
task definition proposed by Borowski et al. (2021) to quantify the per-unit interpretability via human
psychophysics experiments. The task quantifies how well participants understand the sensitivity
of a unit by asking them to match strongly activating query images to strongly activating visual
explanations of the unit. See Fig. 9 for examples. B. Crucially, we remove the need for humans and
fully automate the evaluation: We pass the explanations and query images through a feature encoder
to compute pair-wise image similarities (DreamSim) before using a (hard-coded) binary classifier
to solve the underlying task. Finally, the Machine Interpretability Score (MIS) is the average of the
predicted probability of the correct choice over N tasks. C. The MIS proves to be highly correlated
with human interpretability ratings and allows fast evaluations of new hypotheses.

With the arrival of the first non-trivial neural networks, researchers got interested in understanding
their inner workings (Krizhevsky et al., 2012; Mahendran & Vedaldi, 2015). For one, this can be
motivated by scientific curiosity; for another, a better understanding might lead to building more
reliable, efficient, or fairer models. While the performance of neural networks has seen a remarkable
improvement over the last few years, our understanding of information processing has progressed
more slowly. Nevertheless, understanding how complex models — e.g., language models (Bricken
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et al., 2023) or vision models (Olah et al., 2017; Zimmermann et al., 2023) — work is still an active
and growing field of research, coined mechanistic interpretability (Olah, 2022). A common approach
in this field is to divide a network into atomic units, hoping they are easier to comprehend. Here,
atomic units might refer to individual neurons or channels of (convolutional) layers (Olah et al.,
2017), or general vectors in feature space (Elhage et al., 2022; Klindt et al., 2023). Besides this
approach, mechanistic interpretability also includes the detection of neural circuits (Cammarata et al.,
2020; Elhage et al., 2022) or analysis of global network properties (Nanda et al., 2023).

The goal of understanding the inner workings of a neural network is inherently human-centric:
Irrespective of what tools have been used, in the end, humans should have a better comprehension
of the network. However, human evaluations are time-consuming and costly due to their reliance
on human labor (Zimmermann et al., 2023). This results in slower research progress, as validating
novel hypotheses takes longer. Removing the need for human labor by automating the evaluation can
open up multiple high-impact research directions: One benefit is that it enables the creation of more
interpretable networks by explicitly optimizing for interpretability — after all, what we can measure
at scale, we can optimize. Moreover, it allows more efficient research on explanation methods and
might increase the overall understanding of neural networks. While efforts to build such measures for
language models exist (Bills et al., 2023), there is no common approach yet for vision models.

The present work is the first to introduce a fully automated interpretability measure (Fig. 1A & C): the
Machine Interpretability Score (MIS). By leveraging the latest advances in image similarity functions
aligned with human perception, we obtain a measure that is strongly predictive of human-perceived
interpretability (Fig. 1C). We verify our measure through both correlational and interventional
experiments. By removing the need for human labor, we can scale up existing evaluations by multiple
orders of magnitude. Finally, we demonstrate potential workflows and use cases of our MIS.

2 RELATED WORK

Mechanistic Interpretability While the overall field of explainable AI tries to increase our un-
derstanding of neural networks, multiple subbranches with different foci exist (Gilpin et al., 2018).
One of these branches, mechanistic interpretability, aims to improve our understanding of neural
networks by understanding their building blocks (Olah, 2022). An even more fine-grained branch
aims to interpret individual units of vision models (Bau et al., 2017; Zhou et al., 2018; Bau et al.,
2020; Morcos et al., 2018; Olah et al., 2017). We focus exclusively on this branch of research. This
line of research for artificial neural networks was, arguably, inspired by similar efforts in neuroscience
for biological neural networks (Hubel & Wiesel, 1962; Barlow, 1972; Quiroga et al., 2005).

Different studies set out to understand the behavior and sensitivity of individual units of vision
networks – here, a unit can, e.g., be (the spatial average of) a channel in a convolutional neural
network (CNN) or a neuron in a multilayer perceptron (MLP). The level of understanding obtained
for a unit is commonly called the per-unit interpretability; by averaging over a representative subset of
units in the network, one obtains the per-model interpretability (Borowski et al., 2021; Zimmermann
et al., 2023). With the recent progress in vision-language modeling, a few approaches started using
textual descriptions of a unit’s behavior (Hernandez et al., 2022; Kalibhat et al., 2023). However,
the majority still uses visual explanations which are either synthesized by performing activation
maximization through, e.g., gradient ascent (Olah et al., 2017; Erhan et al., 2009; Mahendran &
Vedaldi, 2015; Nguyen et al., 2014; Mordvintsev et al., 2015; Yosinski et al., 2015; Nguyen et al.,
2017), or strongly activating dataset examples (Olah et al., 2017; Borowski et al., 2021).

With the onset of large language models (LLMs) and the increasing interest in them, there is also
now an increasing interest in mechanistic interpretability of them (e.g., Elhage et al., 2021; Olsson
et al., 2022; Bricken et al., 2023).

Quantifying Interpretability Rigorous evaluations, including falsifiable hypothesis testing, are
critical for research on interpretability methods (Leavitt & Morcos, 2020). This also encompasses
the need for human-centric evaluations (Borowski et al., 2021; Kim et al., 2022). Nevertheless,
such human-centric evaluations of interpretability methods are only available in some sub-fields.
Specifically for the type of interpretability we are concerned about in this work, i.e., the per-unit
interpretability of vision models, two methods for quantifying the helpfulness of explanations to
humans were introduced before: Borowski et al. (2021) presented a two-alternative-forced-choice
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(2-AFC) psychophysics task that requires participants to determine which of two images elicits higher
activation of the unit in question, given visual explanations (i.e., images that strongly activate or
deactivate the unit, see Fig. 1A) of the unit’s behavior. Zimmermann et al. (2021) extended this
paradigm to quantify how well participants can predict the influence of interventions in the form of
occlusions in images. While these studies used their paradigms to evaluate the usefulness of different
interpretability methods, Zimmermann et al. (2023) leveraged them to compare the interpretability of
multiple models. Due to the reliance on human experiments, they could only probe the interpretability
of 767 units from nine models. We now automatize this evaluation to scale it up by multiple orders of
magnitude to more than 70 million units across 835 models.

Automating Interpretability Research To increase the efficiency of interpretability research and
scale it to large modern-day networks, the concept of automated interpretability was proposed, first
in the domain of natural language processing (Bills et al., 2023). This approach uses an LLM to
generate textual descriptions of the behavior of units in another LLM. Follow-up work by Huang et al.
(2023), however, pointed out potential problems regarding the correctness of the explanations. To
benchmark future fully automated interpretability tools, acting as independent agents, Schwettmann
et al. (2023) introduced a synthetic benchmark suite inspired by the behavior of neural networks. In
computer vision, there are also efforts to automate interpretability research (Hernandez et al., 2022;
Zimmermann et al., 2023). Hernandez et al. (2022) and Oikarinen & Weng (2022) map visual to
textual explanations of a unit’s behavior using automated tools, hoping to increase the efficiency of
evaluations. Zimmermann et al. (2023) introduced the ImageNet Mechanistic Interpretability (IMI)
dataset, containing per-unit interpretability annotations from humans for 767 units, meant to foster
research on automating interpretability evaluations.

3 METHOD

We now introduce our fully automated interpretability measure, Machine Interpretability Score (MIS),
visualized in Fig. 1. Borowski et al. (2021) proposed a psychophysical experiment for quantifying the
per-unit interpretability of vision models, i.e., how well humans can infer the sensitivity of a unit in a
vision model from visual explanations. Here, a unit can be a channel in a CNN, commonly averaged
over space, a neuron in an MLP, or arbitrary linear combinations of different units. The experiment
uses a 2-AFC task design (see Fig. 1A) to measure how well humans understand a unit by probing
how well they can predict which of two extremely activating (query) images yields a higher activation,
after seeing visual explanations. Specifically, two sets of explanations are displayed: highly and
weakly activating images, called positive and negative explanations, respectively. See Appx. A.1 for
a more detailed task description. We build on top of this paradigm but replace human participants
with machines, resulting in a fully automated interpretability metric that requires no humans.

Definition of the Machine Interpretability Score Let I denote the space of valid input images for
a model. For a specific explanation method and a unit in question, we denote the unit’s positive and
negative visual explanations as sets of images E+ ⊆ I and E− ⊆ I , respectively. Further, let Q+ ⊆ I
and Q− ⊆ I be the sets of query images with the most extreme (positive and negative) activations.
The task by Borowski et al. (2021) can now be expressed as: Given explanations E+ and E− and two
queries q+ ∈ Q+ and q− ∈ Q−, which of the two queries matches E+ and which E− more closely?
An intuitive way to solve this binary task is to compare each query with every explanation and to
match the query images to the sets of explanations based on the images’ similarities.

To formalize this, we introduce a perceptual (image) similarity function f : I × I → R computing
the scalar similarity of two images (Zhang et al., 2018), and an aggregation function a : RK → R
reducing a set of K similarities to a single one. This allows us to define the function s : I ×IK → R
that quantifies the similarity of a single query image to a set of explanations:

s(q, E) := a ({ f(q, e) | e ∈ E }) . (1)
To decide whether a single query image is more likely to be the positive one, we can compute whether
it is more similar to the positive than the negative explanations. We can compute this now for both
the positive and the negative query images and get:

∆+(q
+, E+, E−) = s(q+, E+)− s(q+, E−), (2)

∆−(q
−, E+, E−) = s(q−, E+)− s(q−, E−). (3)
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The classification problem will be solved correctly if the similarity of q+ to E+ relative to E− is
stronger than those of q−. This means we can define the probability of solving the binary classification
problem correctly as

p(q+,q−, E+, E−) := σ
(
α ·

(
∆+(q

+, E+, E−)−∆−(q
−, E+, E−)

))
(4)

where σ denotes the sigmoid function and α is a free parameter to calibrate the classifier’s confidence.

We define the Machine Interpretability Score (MIS) as the predicted probability of making the right
choice, averaged over N tasks for the same unit. Across these different tasks, the query images
q+,q− vary to cover a wider range of the unit’s behavior. If the explanation method used is stochastic,
it is advisable to also average over different explanations:

MIS =
1

N

N∑
i

p(q+
i ,q

−
i , E

+
i , E−

i ). (5)

The MIS is not a general property of a unit but depends on the method used to generate explanations.
One might define a general score by computing the maximum MIS over multiple explanation methods.

Choice of Hyperparameters. We use the current state-of-the-art perceptual similarity, DreamSim
(Fu et al., 2023), as f . See Appx. B for a sensitivity study on this choice. DreamSim models
the perceptual similarity of two images as the cosine similarity of the images’ representations
from (multiple) computer vision backbones. These were first pre-trained with, e.g., CLIP-style
training (Radford et al., 2021) and then fine-tuned to match human annotations for image similarities
of pairs of images. We use the mean to aggregate the distances between a query image and multiple
explanations to a single scalar, i.e., a(x1, . . . , xK) := 1/K

∑K
i xi. To choose α, we use the

interpretability annotations of IMI Zimmermann et al. (2023): We optimize α over a randomly
chosen subset of just 5% of the annotated units to approximately match the value range of human
interpretability scores, resulting in α = 0.16. Note that α is, in fact, the only free parameter of our
metric, resulting in very low chances of overfitting the metric to the IMI dataset. We use the same
strategy as Borowski et al. (2021); Zimmermann et al. (2021) and Zimmermann et al. (2023) for
generating new tasks (see Appx. A.2). As they used up to 20 tasks per unit, we average over N = 20.
See Appx. C for a sensitivity study.

4 RESULTS

This section is structured into two parts: First, we validate our Machine Interpretability Score (MIS) by
showing that it is well correlated with existing interpretability annotations. Then, we demonstrate what
type of experiments become feasible by having access to such an automated interpretability measure.
Our experiments use the best-working — according to human judgements (Borowski et al., 2021) —
visual explanation method, dataset examples, for computing the MIS. We demonstrate the applicability
of our method to other interpretability methods (e.g., feature visualizations) in Appx. D. Note that
different explanation methods might require different hyperparameters for computing the MIS. Both
query images and explanations are chosen from the training set of ImageNet-2012 (Russakovsky
et al., 2015). When investigating layers whose feature maps have spatial dimensions, we consider the
spatial mean over a channel as one unit (e.g., Borowski et al., 2021). We ignore units with constant
activations from our analysis as there is no behavior to understand (see Appx. E for details).

4.1 VALIDATING THE MACHINE INTERPRETABILITY SCORE

We validate our MIS measure by using the interpretability annotations in the IMI dataset (Zimmer-
mann et al., 2023), which will be referred to as Human Interpretability Scores (HIS). The per-unit
annotations are responses to the 2-AFC task described in Sec. 3, averaged over ≈ 30 participants.
IMI contains scores for a subset of units for nine models.1

1Zimmermann et al. (2023) investigate nine different models but test two of them in multiple settings,
resulting in 14 distinct experimental conditions to compare.
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Fig. 2: Validation of the MIS. Our proposed Machine Interpretability Score (MIS) explains existing
interpretability annotations (Human Interpretability Score, HIS) from IMI (Zimmermann et al., 2023)
well. (A) MIS Explains Interpretability Model Rankings. The MIS reproduces the ranking of
models presented in IMI while being fully automated and not requiring any human labor, as evident
by the strong correlation between MIS and HIS. Similar results are found for the interpretability
afforded by another explanation method in Appx. D. (B) MIS Explains Per-unit Interpretability
Annotations. The MIS also explains individual per-unit interpretability annotations. We show the
calculated MIS and the recorded HIS for every unit in IMI and find a high correlation matching
the noise ceiling at ρ = 0.80 (see Appx. B). (C) MIS Allows Detection of (Non-) Interpretable
Units. We use the MIS to perform a causal intervention and determine the least (hardest) and
most (easiest) interpretable units in a GoogLeNet and ResNet-50. Using the psychophysics setup
of Zimmermann et al. (2023), we measure their interpretability and compare them to randomly
sampled units. Strikingly, the psychophysics results match the predicted properties: Units with the
lowest MIS have significantly lower interpretability than random units, which have significantly lower
interpretability than those with the highest MIS. Errorbars denote the 95% confidence interval.

4.1.1 MIS EXPLAINS EXISTING DATA

First, we reproduce the main result of Zimmermann et al. (2023): A comparison of nine models in
terms of their the per-unit interpretability. We plot the HIS and MIS values (averaged over all units in
a model) in Fig. 2A and find very strong correlations (Pearson’s r = 0.98 and Spearman’s r = 0.94).
Reproducing the model ranking is strong evidence for the validity of the metric, as no information
about these rankings was explicitly used to create our new measure.

Next, we can zoom in and look at individual units instead of per-model averages. Fig. 2B shows
MIS and HIS for all units of IMI. The left figure clearly shows a strong correlation (Pearson’s and
Spearman’s r = 0.80). The interpretability scores in IMI are a (potentially noisy) estimate over a
finite number of annotators. We estimate the ceiling performance due to noise (sampling 30 trials
from a Bernoulli distribution) to equal a Pearson’s r = 0.82 (see Appx. B for details). The right
figure shows an alternative visualization, which bins the units according to their MIS and averages the
HIS to reduce this noise — highlighting that the two scores correlate strongly. We can conclude that
the MIS explains existing interpretability annotations well - both on a per-unit and per-model level.

4.1.2 MIS MAKES NOVEL PREDICTIONS

While the previous results show a strong relation between MIS and human-perceived interpretability,
they are of a descriptive (correlational) nature. To further test the match between MIS and HIS, we
now turn to a causal (interventional) experiment: Instead of predicting the interpretability of units
after a psychophysics evaluation produced their human scores, we now compute the MIS before
conducting the psychophysics evaluation. We perform our experiment for two models: GoogLeNet
and a ResNet-50. For each model, IMI contains interpretability scores for 96 randomly chosen units.
We look at all the units not tested so far and find the 42 units yielding the highest (Easiest, average of
0.99 for both models) and lowest (Hardest, average of 0.63 and 0.59, respectively) MIS, respectively.
Then, we use the same setup as Zimmermann et al. (2023) and perform a psychophysical evaluation
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Fig. 3: Comparison of the Average Per-unit MIS for Models. We substantially extend the analysis
of Zimmermann et al. (2023) from a noisy average over a few units for a few models to all units of
835 models. The models are compared regarding their average per-unit interpretability (as judged by
MIS); the shaded area depicts the 5th to 95th percentile over units. We see that all models fall into an
intermediate performance regime, with stronger changes in interpretability at the tails of the model
ranking. Models probed by Zimmermann et al. (2023) are highlighted in red.

on Amazon Mechanical Turk with 236 participants. We compare the (newly) recorded HIS for the
three groups of units in Fig. 2C. The results are very clear again: As predicted by the MIS, the HIS
is highest for the easiest and lowest for the hardest units. Further, the HIS is close to the pre-hoc
determined MIS given above. This demonstrates the strong predictive power of the MIS and its ability
to be used for formulating novel hypotheses.

4.2 ANALYZING & COMPARING HUNDREDS OF MODELS

After confirming the validity of the MIS, we now change gears and show use cases for it, i.e.,
experiments and analyses that were truly infeasible before due to the high cost, both time and money,
of human evaluations.

4.2.1 COMPARISON OF MODELS

Zimmermann et al. (2023) investigated whether model or training design choices influence the
interpretability of vision models. Although they invested a considerable amount of money in this
investigation (≥ 12 000USD), they could only compare nine models via a subset of units. We now
scale up this line of work by two orders of magnitude and investigate all units of 835 models, almost
all of which come from the well-established computer vision library timm (Wightman, 2019). These
models differ in architecture and training datasets but were all at least fine-tuned on ImageNet. See
Appx. F for a list of models. Putting this scale into perspective, achieving the same scale by scaling up
previous human psychophysics experiments would amount to absurd costs (≥ 1B USD). Following
previous work, we ignore the first and last layers of each model (Zimmermann et al., 2023).

When sorting the models according to their average MIS (Fig. 3) they span a value range of ≈
0.80− 0.91. The strongest differences across models are present at the tails of the ranking. Note that
GoogLeNet is ranked as the most interpretable model, resonating with the community’s interest in
GoogLeNet as it is widely claimed to be more interpretable. The shaded area denotes the 5th to 95th
percentile of the distribution across units. This reveals a strong difference in the variability of units
for different models; further, as the upper end of the MIS is similar across models (≈ 95%), most of
the change in the average score seems to stem from a change in the lower end, with decreasing width
of the per-unit distribution for higher model rank.

To investigate the difference in how the MIS of units is distributed between different models, we
select 15 exemplary models and visualize their per-unit MIS distribution in Fig. 4B. Those models
were chosen according to the distance between 5th and 95th percentile (five with highest, average, and
lowest distance). While models with low and medium variability have unimodal left-skewed distribu-
tions, the ones with high variability have a rather bimodal distribution. Note that the distribution’s
second, stronger mode has a similar mean and shape to the overall distribution for models with low
variability. The first mode is placed at a value range slightly above 0.5, corresponding to the task’s
chance level, indicating mostly uninterpretable units. This suggests that a subset of uninterpretable
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Fig. 4: (A) Relation Between ImageNet Accuracy and MIS. The average per-unit MIS of a model
is anticorrelated with the model’s ImageNet classification accuracy. (B) Distribution of per-unit
MIS. Distribution of the per-unit MIS for 15 models, chosen based on the size of the error bar in
Fig. 3: lowest (top), medium (middle), and highest variability (bottom row). While most models have
an unimodal distribution, those with high variability have a second mode with lower MIS.
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Fig. 5: Comparison of the Average Per-unit MIS for Different Layer Types and Models. We show
the average interpretability of units from the most common layer types in vision models (BatchNorm,
Conv, GroupNorm, LayerNorm, Linear). We follow Zimmermann et al. (2023) and restrict our
analysis of Vision Transformers to the linear layers in each attention head. While not every layer
type is used by every model, we still see some separation between types (see Fig. 16 for significance
results): Linear and convolutional layers mostly outperform normalization layers. Models are sorted
by average per-unit interpretability, as in Fig. 3.

units (see Fig. 22 for examples) can explain most of the models’ differences in average MIS. We
analyze this further in Fig. 19, where we compare the models in terms of their worst units. We see a
similar shape as in Fig. 3, but with a larger value range used, resulting in stronger model differences.

Previous work analyzed a potential correlation between interpretability and downstream classification
performance. However, in a limited evaluation, it was found that better classifiers are not necessarily
more interpretable (Zimmermann et al., 2023). A re-evaluation of this question is performed in Fig. 4A
and paints an even darker picture: Here, better performing ImageNet classifiers are less interpretable
(Pearson’s r = −0.5 and Spearman’s r = −0.55).

Among training procedures and architecture, the analyzed models also differ in the required resolution
of their input. While previous work focused only on models with a single resolution (Zimmermann
et al., 2023), we can now see whether the resolution influences interpretability. However, Fig. 17
suggests that there is no influence.

4.2.2 COMPARISON OF LAYERS

Next, we can zoom into the results of Fig. 3 and investigate whether there are differences between
different layers. First, we are interested in testing whether the layer type is important, e.g., are
convolutional more interpretable than normalization or linear layers? In Fig. 5, we sort the models by
their average MIS over all layer types but show individual points for each of the five most common
types (Conv, Linear, BatchNorm, LayerNorm, and GroupNorm). The number of points per model
may vary, as not all models contain layers of all types. The figure shows a benefit of Conv over
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Fig. 6: (A) Deeper Layers are More Interpretable. Average MIS per layer as a function of the
relative depth of the layer within the network, grouped by layer types. For type, the values are
grouped into 30 bins of equal count based on the relative depth; values shown correspond to the bin
average. (B) Wider Layers are More Interpretable. Average MIS per layer as a function of the
relative width of the layer compared to all layers of the same type in the network, grouped by layer
types. For each type, the values are grouped into 5 bins, as above.

BatchNorm layers, which themselves are better than LayerNorm layers. Linear layers, if present,
outperform both Batch- and LayerNorm as well as Conv layers. While the differences are small, they
are statistically significant due to the large number of scores collected (see Fig. 16).

Second, we analyze whether the location of a layer inside a model plays a role, e.g., are earlier
layers more interpretable than later ones? The average per-unit MIS (for each layer type) is shown
in Fig. 6A as a function of the relative depth of the layer. A value of zero corresponds to the first
and a value of one to the last layer analyzed. The scores are averaged in bins of equal count defined
by the relative layer depth to enhance readability. The resulting curves all follow a similar, almost
sinusoidal, pattern: They start high, decrease in the first fifth, then increase steadily until they drop in
the last tenth again.

Third, it is interesting to probe the influence of the width of layers on their average interpretability.
Based on the superposition hypothesis (Elhage et al., 2022; Olah et al., 2020; Arora et al., 2018; Goh,
2016), one might expect wider layers to be more interpretable as features do not have to form in
superposition (i.e., as polysematic units) but can arise in a disentangled form (i.e., as monosemantic
units). Fig. 6B shows the relation between MIS and relative layer width. We use the relative
rather than the absolute width to reduce the influence of the overall model and show the results of
models with different architectures on the same axis. Note that, nevertheless, there might be other
confounding factors correlated with the width, e.g., the layer depth. While we only see a moderate
correlation for BatchNorm layers, we find a stronger one for Conv/Linear layers. It is unclear what
causes this difference in behavior. However, we see this as a hint that one way to increase a model’s
interpretability is to increase the width (and not the number) of layers.

4.3 HOW DOES THE MIS CHANGE DURING TRAINING?

In the last set of experiments, we demonstrate how the MIS can be used to analyze models in a
fine-grained way and obtain insights into their training dynamics. For this, we train a ResNet-50 on
ImageNet-2012, following the training recipe A3 of Wightman et al. (2021), for 100 epochs.

Fig. 8 shows how the average per-unit MIS (left) changes during training. Notably, the initial MIS
(of the untrained network) is already substantially above chance level. Nevertheless, during the first
epoch, the MIS increases drastically to values around 0.93. During the rest of the training, the score
slowly decays. This indicates non-trivial dynamics of feature learning, which we analyze in Fig. 7.
When showing the MIS as a function of top-1 accuracy during training (right), a strong anticorrelation
(ignoring the first points) becomes evident. This aligns with the anticorrelation shown in Fig. 4A.

To better understand the dynamics through the training — most importantly during the first epoch
— we zoom in to find out which units cause this strong change in MIS. Fig. 7 shows the change
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Fig. 7: Change of Interpretability per Layer During Training. To better understand the peak in
interpretability after the first training epoch found in Fig. 8, we display the change in MIS during
the first epoch, averaged over each layer. Note that layers are sorted by depth from left to right,
and different colors encode different layer types. While the change in interpretability is moderately
correlated with a layer’s depth, we consistently see big improvements for the last BatchNorm layer of
each block (i.e., BatchNorm-*-*-3). For a visualization covering the full training, see Fig. 18.
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Figure 8: Interpretability During Training.
For a ResNet-50 trained for 100 epochs on Im-
ageNet, we track the MIS and accuracy after
every epoch (epoch 0 refers to initialization).
While the MIS improves drastically in the first
epoch, it decays during the rest of the train-
ing (left). This results in an antiproportional
relation between MIS and accuracy (right).

in MIS during the first epoch for each layer separately (ordered by their depth within the network).
Surprisingly, we see that the change in MIS is dominated by a set of BatchNorm layers, namely the
last ones of each ResNetBlock, whose MIS increases drastically. Moreover, we detect a small trend of
later layers improving more strongly than earlier ones but generally do not see a difference between
Conv and BatchNorm layers.

5 CONCLUSION

This paper presented the first fully automated interpretability metric for vision models — the machine
interpretability score (MIS) — which is experimentally shown to be well aligned with human
interpretability labels. We verified the alignment through both correlational and interventional
experiments. We expect our MIS to enable experiments previously considered infeasible due to the
costly reliance on human evaluations. To stress this, we demonstrated the metric’s usefulness for
formulating and testing new hypotheses about a network’s behavior: Based on the largest comparison
of vision models in terms of their per-unit interpretability so far, we investigated potential influences
on their interpretability, such as a layer’s depth and width. Most importantly, we find an anticorrelation
between a model’s downstream performance and its per-unit interpretability. Further, we performed
the first detailed analysis of how the perceived interpretability changes during training.

While this paper considerably advances the state of interpretability evaluations, there are some open
questions and potential future research directions. Most importantly, the performance of our MIS on a
per-unit level is close to the noise ceiling determined by the limited number of human interpretability
annotations available. This means that future changes in the MIS measure (e.g., based on other
image perceptual similarities) might require additional human labels to determine the significance
of performance improvements. Additional human labels could also be leveraged to improve the
MIS by following Fu et al. (2023) to fine-tune the image similarity directly on human judgments.
In another direction, using vision language models for computing the MIS could be interesting as
this might also provide a textual description of a unit’s sensitivity (Hernandez et al., 2022). Finding
a differentiable approximation of the MIS will be valuable for explicitly training models to be
interpretable (Zimmermann et al., 2023). Note that while this paper looked at the interpretability
of channels and neurons, it can also be used for analyzing arbitrary directions in activation space.
Thus, we expect the MIS to also be valuable for researchers generally looking for more interpretable
representations of (artificial) neural activations (e.g., Graziani et al., 2023). Finally, exploring whether
this concept of interpretability quantification can be expanded to LLMs is an exciting direction.
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Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training
procedure in timm. arXiv preprint arXiv:2110.00476, 2021. Cited on page 8.

Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. Understanding neural
networks through deep visualization. In Deep Learning Workshop, International Conference on
Machine Learning (ICML), 2015. Cited on page 2.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The Unreasonable
Effectiveness of Deep Features as a Perceptual Metric. In 2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pp.
586–595. Computer Vision Foundation / IEEE Computer Society, 2018. doi: 10.1109/CVPR.2018.
00068. Cited on pages 3 and 15.

Bolei Zhou, Yiyou Sun, David Bau, and Antonio Torralba. Revisiting the importance of individual
units in cnns via ablation. CoRR, abs/1806.02891, 2018. URL http://arxiv.org/abs/
1806.02891. Cited on page 2.

Roland S. Zimmermann, Judy Borowski, Robert Geirhos, Matthias Bethge, Thomas Wallis, and
Wieland Brendel. How well do feature visualizations support causal understanding of cnn activa-
tions? In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, volume 34, pp. 11730–11744. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/file/618faa1728eb2ef6e3733645273ab145-Paper.pdf. Cited on pages 3,
4, and 14.

Roland S. Zimmermann, Thomas Klein, and Wieland Brendel. Scale alone does not improve
mechanistic interpretability in vision models. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=OZ7aImD4uQ.
Cited on pages 2, 3, 4, 5, 6, 7, 9, 14, and 17.

13

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
http://arxiv.org/abs/1806.02891
http://arxiv.org/abs/1806.02891
https://proceedings.neurips.cc/paper_files/paper/2021/file/618faa1728eb2ef6e3733645273ab145-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/618faa1728eb2ef6e3733645273ab145-Paper.pdf
https://openreview.net/forum?id=OZ7aImD4uQ


To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

A DESCRIPTION OF THE 2-AFC TASK

A.1 TASK DESIGN

Our proposed MIS builds on the 2-AFC task designed by Borowski et al. (2021) to conduct human
psychophysics experiments. An example of such a task is given in Fig. 9.

This task aims to probe how well (human) participants can detect the sensitivity of a unit of a
neural network based on visual explanations of it. Understanding the unit’s sensitivity should allow
participants to distinguish between a stimulus eliciting highly activating from one yielding low
activation. Therefore, the task shows the participants two such images, called query images, and asks
them to pick the image eliciting higher activation. To solve the task, participants also see two sets of
visual explanations: Positive explanations describe the patterns the unit activates strongly for, while
negative activations show patterns the unit weakly responds to. For solving this task, there are two
potential strategies: Participants can either recognize a common pattern of the positive explanations
in one of the query images, making this the correct choice. Or they detect a common pattern of
the negative explanations in a query image, making the other one the right choice. See Borowski
et al. (2021); Zimmermann et al. (2021) or Zimmermann et al. (2023) for alternative descriptions and
visualizations of the task.

Negative Explanations Positive Explanations

Queries

Negative Explanations Positive Explanations

Queries

Fig. 9: Examples of the 2-AFC Task. For two different units of GoogLeNet one task each is shown.
Every task contains a set of negative (left) and positive (right) visual explanations describing which
visual feature the unit is sensitive to. In the center, two query images in the form of strongly and
weakly activating dataset examples are shown, respectively. This means that each one of the two
query images corresponds to the positive and the other to the negative explanations. The task is now
to choose which query image corresponds to the positive ones.

A.2 TASK CONSTRUCTION

For constructing tasks, we follow Zimmermann et al. (2023). Specifically, this means that we use
K = 9 (positive and negative) explanations in each task. We restrict explanations to natural dataset
examples to reduce complexity but note that the same setup can also be applied to other visual
explanations, such as feature visualizations. To choose query images and explanations, we proceed as
follows: For each unit, we determine the N · (K + 1) most and least activating images, respectively.
Out of these, the N ·K most extreme images are used as explanations, the others as query images.
The N · K potential explanation images are uniformly distributed across tasks according to their
elicited activation level (see (Borowski et al., 2021; Zimmermann et al., 2023) for more details).

14



To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

B INFLUENCE OF THE UNDERLYING PERCEPTUAL SIMILARITY ON THE
MACHINE INTERPRETABILITY SCORE

As stated in Sec. 3, we used DreamSim (Fu et al., 2023) as the underlying perceptual similarity
f for all experiments shown so far. We now repeat the experiments on IMI in Sec. 4.1.1 with
two alternative similarity measures: LPIPS (Zhang et al., 2018) and DISTS (Ding et al., 2022).
While all three measures are based on learned image features, DreamSim leverages an ensemble
of modern vision models trained on larger datasets compared to LPIPS and DISTS, which use
AlexNet (Krizhevsky et al., 2012) and VGG16 (Simonyan & Zisserman, 2015) trained on ImageNet,
respectively. According to Fu et al. (2023), DreamSim clearly outperforms LPIPS and DISTS on
image similarity benchmarks.

When comparing MIS based on DreamSim with one based on LPIPS and DISTS on a per-model
level (see Fig. 10) one sees very similar results and strong correlations between each MIS and HIS.
This might suggest that the choice of the similarity function to use has little influence on the quality
of MIS. The picture, however, changes when zooming in and looking at per-unit interpretability
(see Fig. 12). Now, it becomes evident that the MIS based on DreamSim outperforms that based on
LPIPS and DISTS, indicated by the higher correlation and smaller spread of the point cloud. We,
therefore, conclude that DreamSim is the best perceptual similarity available for computing machine
interpretability scores.
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Fig. 10: LPIPS and DISTS Perform Similarly as DreamSim when Comparing Models. We
compare DreamSim with two earlier perceptual similarity metrics, LPIPS and DISTS. All three lead
to similar results on IMI (cf. Fig. 2A). See Fig. 12 for comparing these similarity functions on a
per-unit level. standard deviation.

Noise Ceiling of Annotations in IMI To put the difference in performance between the perceptual
similarities on a per-unit level into context, we estimate the noise ceiling of the data: As the HIS for a
single unit is a (potentially) noisy estimate over (up to 30) human decisions, it has some uncertainty.
To take this into account, we run a statistical simulation, in which we model individual human
responses as binary decisions from a Bernoulli distribution whose mean equals the unit’s HIS. We can
now simulate human decisions by sampling from the distribution. Then, we compute the correlation
between MIS and simulated HIS and repeat the process 1 000 times. The resulting noise ceiling is
compared to the correlations obtained when using LPIPS, DISTS, and DreamSim in Fig. 11. We see
that DreamSim’s performance is very close to the noise ceiling for estimating the per-unit human
interpretability.

C SENSITIVITY OF THE MIS ON THE NUMBER OF TASKS

As described in Sec. 3, we compute the MIS by averaging over N = 20 tasks. This choice was
initially motivated by previous work by Borowski et al. (2021). We investigate now how this choice
influences the MIS. For this, we perform two experiments for GoogLeNet (see Fig. 13). First, we
use the method for constructing tasks described before in Appx. A.2 to create 20 tasks per unit and
then compute how the MIS changes when only using the first i = 1, . . . , 19 tasks compared to all
20. While this setting is straightforward to analyze, it does not reflect how the number of tasks
influences the MIS computation in practice: Using the task creation above, the chosen number of
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Fig. 11: Best Perceptual Similarity Approaches Noise Ceiling. Considering the noise ceiling,
caused by the inherent uncertainty of the HIS, the best perceptual similarity (DreamSim) shows an
almost perfect performance. The black bar and shaded area show the mean correlation and standard
deviation over 1 000 simulations, respectively.
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Fig. 12: LPIPS and DISTS Perform Worse than DreamSim when Comparing Individual Units.
We compare DreamSim with two earlier perceptual similarity metrics, LPIPS and DISTS. While
LPIPS and DISTS perform similarly to DreamSim on a per-model level of IMI (cf. Fig. 12), they
lead to worse performance on a per-unit level.

tasks influences the creation of all tasks, e.g., adding one more task changes which images are used
for previous tasks. Therefore, in the second experiment, we again measure how the MIS changes
when using i = 1, . . . , 19 tasks compared to 20, but recreate all tasks when increasing their number.
For both settings, we see that the residual converges to zero, with a slower convergence in the more
realistic setting.
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(a) New tasks do not influence earlier tasks.
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(b) New tasks influence earlier tasks.

Fig. 13: Convergence of MIS. We investigate how MIS changes depending on the number of tasks
N that it is computed over. Here, we distinguish between two settings. In (a), we simulate that
adding another task does not change the selection of query images and explanations in earlier tasks;
in (b), this is not the case. While the former is easier to analyze due to a reduced level of randomness,
note that the latter is the more relevant setting in practice. For both cases, we visualize the average
absolute difference in MIS estimated for < 20 and N = 20 tasks.
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D APPLYING MIS FOR DIFFERENT EXPLANATION METHODS

The experiments in Sec. 4 compute the MIS for one type of explanation, namely strongly activating
dataset examples. We now demonstrate that the same approach easily generalizes to other visual
explanations: feature visualizations. We do not tune any hyperparameters but re-use the same as
presented in Sec. 3 for dataset examples as explanations. In Fig. 14 we repeat the experiment from
Fig. 2A and again see a strong correlation between MIS and HIS.
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Fig. 14: MIS Generalizes Well to Other Explanation Types. We find a high correlation between
MIS and HIS for other explanation types (feature visualizations). See Fig. 2A for the corresponding
results for using natural dataset examples as explanations.

E ANALYSIS OF CONSTANT UNITS

After training a network, it might happen that some of its units effectively become non-active/constant
for any relevant image. We here call a unit constant if the difference between maximally and minimally
elicited activation by the entire ImageNet-2012 training set is less than 10−8. As mentioned at the
beginning of Sec. 4, we excluded those units in our analysis, as they do not present any interesting
behavior that is worth understanding. Note that this does not mean that it will not be interesting to
understand why such units exist. In Fig. 15, we display the ratio of constant units for each model. For
most models, we see a low number of constant units: Specifically, we see that out of the 835 models
investigated, 256 do not contain any constant units, 89 contain more than 1% and 22 more than 5%.
Note that we here used the same notion of units as in the rest of the paper, meaning that we take the
spatial mean of feature maps with spatial dimensions (e.g., for convolutional layers).
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Fig. 15: Ratio of Constant Units. We compute the ratio of units constant with respect to the input
(over the training set of ImageNet-2012) for all models considered. While the ratio is low for most
models, it becomes large for a few models.

F DETAILS ON MODELS

In addition to the 9 models investigated by Zimmermann et al. (2023) (GoogLeNet, ResNet-50, Clip ResNet-50,
Robust (L2) ResNet-50, DenseNet-101, WideResNet-50, Clip ViT-B32. ViT-B32), we include one more model suggested by them (Robust (L2)
ResNet-50) and 825 models from timm (Wightman, 2019):
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xcit tiny 12 p16 224.fb in1k, vit tiny patch16 384.augreg in21k ft in1k, pit xs 224.in1k, repghostnet 111.in1k, regnetz c16 evos.ch in1k,
poolformer m48.sail in1k, repghostnet 080.in1k, volo d3 448.sail in1k, vit base patch16 224.augreg in21k ft in1k, regnety 320.tv2 in1k,
densenet121.ra in1k, mobilenetv3 large 100.ra in1k, repghostnet 150.in1k, seresnext26ts.ch in1k, regnety 160.swag ft in1k, hr-
net w40.ms in1k, convnext small.in12k ft in1k, vit base patch16 224.sam in1k, seresnextaa101d 32x8d.sw in12k ft in1k 288,
vit tiny r s16 p8 384.augreg in21k ft in1k, regnety 320.pycls in1k, cs3darknet m.c2ns in1k, vit tiny patch16 224.augreg in21k ft in1k,
resnet101c.gluon in1k, convnextv2 atto.fcmae ft in1k, flexivit base.600ep in1k, xcit small 12 p16 384.fb dist in1k, mo-
bilenetv2 050.lamb in1k, flexivit base.300ep in1k, resnext50 32x4d.tv in1k, resnet152.tv in1k, seresnext26d 32x4d.bt in1k,
fbnetv3 g.ra2 in1k, poolformer s36.sail in1k, resnext101 32x8d.tv in1k, rexnet 130.nav in1k, efficientvit b2.r224 in1k, con-
vnext small.fb in22k ft in1k 384, resnet50 gn.a1h in1k, eva02 small patch14 336.mim in22k ft in1k, regnety 032.ra in1k,
res2net50d.in1k, convit small.fb in1k, regnetx 160.pycls in1k, convnextv2 large.fcmae ft in22k in1k 384, tf efficientnet b0.ns jft in1k,
pit ti 224.in1k, volo d1 384.sail in1k, xcit small 12 p8 384.fb dist in1k, dpn131.mx in1k, resnext101 64x4d.gluon in1k,
densenet169.tv in1k, resnet101d.ra2 in1k, repghostnet 200.in1k, resnet18.a2 in1k, xcit small 12 p16 224.fb in1k, pvt v2 b3.in1k,
dm nfnet f1.dm in1k, vit large patch32 384.orig in21k ft in1k, convnextv2 tiny.fcmae ft in22k in1k 384, gcresnet50t.ra2 in1k,
nf regnet b1.ra2 in1k, volo d1 224.sail in1k, resnet50.ram in1k, hrnet w18 small v2.ms in1k, convnext base.clip laion2b augreg ft in1k,
regnetx 160.tv2 in1k, sequencer2d l.in1k, convnext large.fb in22k ft in1k, botnet26t 256.c1 in1k, gc efficientnetv2 rw t.agc in1k,
wide resnet50 2.racm in1k, halonet50ts.a1h in1k, cspresnext50.ra in1k, resnetv2 50d evos.ah in1k, tf efficientnetv2 b3.in21k ft in1k,
resnet152.gluon in1k, lambda resnet26rpt 256.c1 in1k, fastvit sa24.apple dist in1k, xcit medium 24 p8 384.fb dist in1k,
repvit m0 9.dist 450e in1k, regnetx 320.pycls in1k, seresnextaa101d 32x8d.sw in12k ft in1k, efficientvit b2.r288 in1k, con-
vnext tiny.in12k ft in1k, xcit large 24 p16 384.fb dist in1k, resnetv2 50.a1h in1k, coatnet 0 rw 224.sw in1k, efficientnet es pruned.in1k,
dla60 res2net.in1k, efficientformer l7.snap dist in1k, cait xxs24 224.fb dist in1k, vit small patch16 224.augreg in21k ft in1k,
tf efficientnet cc b1 8e.in1k, efficientvit b1.r288 in1k, halonet26t.a1h in1k, mixnet m.ft in1k, hrnet w44.ms in1k, regnety 160.tv2 in1k,
xcit nano 12 p8 384.fb dist in1k, seresnext101 32x8d.ah in1k, efficientvit b2.r256 in1k, vit base patch16 clip 224.laion2b ft in12k in1k,
tf efficientnet lite2.in1k, deit3 small patch16 224.fb in1k, hrnet w18 ssld.paddle in1k, tf efficientnet b2.aa in1k, crossvit 15 dagger 240.in1k,
deit3 small patch16 224.fb in22k ft in1k, haloregnetz b.ra3 in1k, tf efficientnetv2 b0.in1k, eca nfnet l0.ra2 in1k,
twins pcpvt small.in1k, ecaresnet50t.ra2 in1k, fastvit sa12.apple dist in1k, skresnext50 32x4d.ra in1k, resnet50d.a2 in1k,
vit base patch32 clip 224.laion2b ft in1k, resnetblur50.bt in1k, vit base patch16 224.orig in21k ft in1k, resnet50.a1h in1k, hard-
corenas e.miil green in1k, coatnext nano rw 224.sw in1k, convnext base.clip laiona augreg ft in1k 384, tresnet m.miil in1k 448,
resnet10t.c3 in1k, poolformerv2 m48.sail in1k, tf efficientnet b1.aa in1k, edgenext base.usi in1k, tf efficientnet es.in1k, tres-
net l.miil in1k 448, resnet152.a1h in1k, mixnet s.ft in1k, resnet50.am in1k, rexnet 100.nav in1k, xcit large 24 p8 224.fb dist in1k,
deit3 base patch16 224.fb in22k ft in1k, xcit tiny 24 p8 384.fb dist in1k, coat lite medium 384.in1k, focalnet small srf.ms in1k,
vit base patch8 224.augreg in21k ft in1k, convnext tiny hnf.a2h in1k, visformer small.in1k, vit small r26 s32 384.augreg in21k ft in1k,
vgg16 bn.tv in1k, eca nfnet l1.ra2 in1k, xcit small 12 p8 224.fb in1k, beitv2 base patch16 224.in1k ft in22k in1k, cs3edgenet x.c2 in1k,
vit base patch16 clip 384.laion2b ft in12k in1k, xcit small 12 p16 224.fb dist in1k, convformer b36.sail in1k 384, bat resnext26ts.ch in1k,
caformer b36.sail in1k, dla34.in1k, crossvit 18 dagger 240.in1k, tf efficientnetv2 s.in21k ft in1k, focalnet base srf.ms in1k, con-
vformer b36.sail in22k ft in1k 384, resnet34.tv in1k, resmlp 24 224.fb distilled in1k, convnext base.clip laion2b augreg ft in12k in1k,
caformer s18.sail in1k 384, resnetaa50.a1h in1k, beitv2 base patch16 224.in1k ft in1k, convformer m36.sail in22k ft in1k, in-
ception resnet v2.tf ens adv in1k, mobilenetv2 110d.ra in1k, resnext101 32x4d.fb swsl ig1b ft in1k, regnetx 008.tv2 in1k, con-
vnext small.in12k ft in1k 384, levit conv 128.fb dist in1k, volo d3 224.sail in1k, nest tiny jx.goog in1k, mobileone s2.apple in1k,
fastvit t8.apple dist in1k, halo2botnet50ts 256.a1h in1k, mobilenetv2 140.ra in1k, caformer m36.sail in1k, seresnet50.ra2 in1k, hard-
corenas d.miil green in1k, convformer b36.sail in1k, regnety 320.swag ft in1k, volo d4 448.sail in1k, tf efficientnet b2.ns jft in1k,
sebotnet33ts 256.a1h in1k, vit small patch32 224.augreg in21k ft in1k, vit base patch32 224.sam in1k, resnetv2 50d gn.ah in1k, mo-
bileone s4.apple in1k, coat small.in1k, tf mixnet l.in1k, resnet34.a2 in1k, regnetx 032.pycls in1k, resnetaa101d.sw in12k ft in1k,
lcnet 100.ra2 in1k, repvgg b1.rvgg in1k, crossvit 15 240.in1k, edgenext x small.in1k, repvit m1 5.dist 300e in1k, hard-
corenas a.miil green in1k, efficientformer l1.snap dist in1k, tf mobilenetv3 large 075.in1k, hrnet w18 small.ms in1k,
tf efficientnet b2.in1k, ghostnetv2 130.in1k, ecaresnet26t.ra2 in1k, fastvit s12.apple in1k, xcit tiny 12 p8 224.fb dist in1k, tres-
net m.miil in21k ft in1k, fastvit sa24.apple in1k, resnetrs200.tf in1k, convnextv2 nano.fcmae ft in1k, resnet50.ra in1k, resnet34.bt in1k,
regnety 002.pycls in1k, focalnet base lrf.ms in1k, dla102.in1k, regnetz e8.ra3 in1k, pvt v2 b0.in1k, xcit medium 24 p8 224.fb in1k,
regnety 640.seer ft in1k, resnet200d.ra2 in1k, caformer s36.sail in1k 384, deit3 small patch16 384.fb in22k ft in1k,
eca resnext26ts.ch in1k, vgg13.tv in1k, tf efficientnet lite0.in1k, resnet50.b1k in1k, dla60 res2next.in1k, repvit m1 1.dist 300e in1k,
convnext base.fb in22k ft in1k, tf efficientnet cc b0 4e.in1k, ese vovnet19b dw.ra in1k, resnetv2 152x2 bit.goog teacher in21k ft in1k,
deit base distilled patch16 384.fb in1k, resnet101d.gluon in1k, convnext large.fb in22k ft in1k 384, darknet53.c2ns in1k,
poolformerv2 s36.sail in1k, convformer m36.sail in22k ft in1k 384, gmlp s16 224.ra3 in1k, convformer s18.sail in1k, effi-
cientnet em.ra2 in1k, inception v3.gluon in1k, resmlp 12 224.fb in1k, tresnet l.miil in1k, ecaresnet101d pruned.miil in1k,
resnet152.a2 in1k, vit small patch32 384.augreg in21k ft in1k, inception v3.tf adv in1k, repghostnet 130.in1k, levit conv 384.fb dist in1k,
repvit m1 5.dist 450e in1k, efficientnet el.ra in1k, seresnet50.a2 in1k, pit s distilled 224.in1k, cspdarknet53.ra in1k,
tf efficientnet cc b0 8e.in1k, densenet201.tv in1k, resnext50 32x4d.a1 in1k, cs3sedarknet l.c2ns in1k, cait s24 384.fb dist in1k, spnas-
net 100.rmsp in1k, res2net50 14w 8s.in1k, repvgg d2se.rvgg in1k, regnetx 032.tv2 in1k, crossvit 18 dagger 408.in1k, pit b distilled 224.in1k,
cs3darknet focus l.c2ns in1k, resnet50.bt in1k, vgg11.tv in1k, convnextv2 femto.fcmae ft in1k, convnext nano.in12k ft in1k,
resnext101 64x4d.tv in1k, convnext nano.d1h in1k, cspresnet50.ra in1k, tf mixnet m.in1k, xcit tiny 12 p16 384.fb dist in1k,
seresnet50.a1 in1k, efficientnetv2 rw t.ra2 in1k, resnet152d.gluon in1k, regnety 032.tv2 in1k, inception resnet v2.tf in1k,
eva large patch14 196.in22k ft in1k, pvt v2 b1.in1k, convformer m36.sail in1k 384, densenet161.tv in1k, dla102x.in1k, ed-
genext small rw.sw in1k, regnety 016.tv2 in1k, convnextv2 base.fcmae ft in1k, vit large patch14 clip 336.laion2b ft in12k in1k,
levit conv 128s.fb dist in1k, hrnet w48.ms in1k, resnet101.a1h in1k, xcit medium 24 p8 224.fb dist in1k, resnetrs152.tf in1k,
convnextv2 nano.fcmae ft in22k in1k, convnextv2 tiny.fcmae ft in22k in1k, resnext50d 32x4d.bt in1k, gernet s.idstcv in1k, selec-
sls42b.in1k, repvit m3.dist in1k, resnest50d 1s4x24d.in1k, dpn98.mx in1k, xcit nano 12 p16 224.fb in1k, regnetx 016.pycls in1k,
xcit medium 24 p16 224.fb in1k, caformer s18.sail in1k, sehalonet33ts.ra2 in1k, tinynet c.in1k, xcit tiny 24 p16 224.fb dist in1k,
flexivit small.300ep in1k, resnext101 32x8d.tv2 in1k, convnextv2 base.fcmae ft in22k in1k 384, semnasnet 075.rmsp in1k,
res2net50 26w 4s.in1k, cait xxs24 384.fb dist in1k, mobilenetv2 120d.ra in1k, seresnext26t 32x4d.bt in1k, flexivit base.1200ep in1k,
res2net50 26w 6s.in1k, vit base patch16 clip 384.openai ft in12k in1k, nest base jx.goog in1k, ecaresnetlight.miil in1k,
repvgg b0.rvgg in1k, ecaresnet50t.a1 in1k, inception next tiny.sail in1k, regnety 032.pycls in1k, mixer b16 224.miil in21k ft in1k,
poolformer s12.sail in1k, vit base patch32 clip 384.openai ft in12k in1k, vit base patch32 384.augreg in21k ft in1k, effi-
cientvit b1.r224 in1k, vit base patch16 clip 384.laion2b ft in1k, deit small distilled patch16 224.fb in1k, efficientvit b0.r224 in1k,
resnest50d.in1k, regnety 120.pycls in1k, semnasnet 100.rmsp in1k, wide resnet50 2.tv in1k, xcit small 24 p16 224.fb in1k,
resnet101.a3 in1k, fastvit t12.apple in1k, tf efficientnet lite1.in1k, tinynet a.in1k, resmlp big 24 224.fb distilled in1k,
cs3se edgenet x.c2ns in1k, resnetv2 152x2 bit.goog teacher in21k ft in1k 384, resnext50 32x4d.tv2 in1k, efficient-
net b2.ra in1k, convformer s18.sail in22k ft in1k 384, caformer s18.sail in22k ft in1k 384, deit3 base patch16 224.fb in1k,
vit base patch32 clip 384.laion2b ft in12k in1k, vit medium patch16 gap 384.sw in12k ft in1k, sequencer2d s.in1k, mo-
bileone s0.apple in1k, edgenext base.in21k ft in1k, deit3 medium patch16 224.fb in1k, efficientformerv2 l.snap dist in1k,
lambda resnet50ts.a1h in1k, xception41p.ra3 in1k, resnext50 32x4d.a3 in1k, crossvit small 240.in1k, repvgg a1.rvgg in1k,
resnet51q.ra2 in1k, xcit small 24 p16 384.fb dist in1k, vit base patch32 clip 224.openai ft in1k, flexivit large.300ep in1k,
repvgg b3g4.rvgg in1k, resnext50 32x4d.a1h in1k, coat lite medium.in1k, vit base patch32 clip 448.laion2b ft in12k in1k,
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resnext50 32x4d.gluon in1k, repvgg b2.rvgg in1k, vit base patch16 rpn 224.sw in1k, mixer b16 224.goog in21k ft in1k,
resnet50.c2 in1k, lamhalobotnet50ts 256.a1h in1k, tiny vit 21m 512.dist in22k ft in1k, xcit large 24 p16 224.fb dist in1k,
repvgg a2.rvgg in1k, gernet l.idstcv in1k, mobilevitv2 050.cvnets in1k, convnextv2 base.fcmae ft in22k in1k, resnet18.a3 in1k,
ecaresnet50d.miil in1k, coat lite small.in1k, convnext xlarge.fb in22k ft in1k, mobilevitv2 075.cvnets in1k, cait s36 384.fb dist in1k,
efficientformerv2 s1.snap dist in1k, resnet18.fb swsl ig1b ft in1k, mobileone s1.apple in1k, resnet61q.ra2 in1k, tf efficientnetv2 b3.in1k,
mobilevitv2 175.cvnets in1k, convnext tiny.fb in22k ft in1k 384, crossvit tiny 240.in1k, caformer b36.sail in22k ft in1k 384,
resnet152d.ra2 in1k, convit base.fb in1k, tinynet b.in1k, deit3 large patch16 384.fb in22k ft in1k, regnetx 004 tv.tv2 in1k,
cait xxs36 384.fb dist in1k, convnext nano ols.d1h in1k, efficientnet lite0.ra in1k, inception v4.tf in1k, hrnet w18.ms in1k, ger-
net m.idstcv in1k, convformer s36.sail in22k ft in1k 384, deit tiny distilled patch16 224.fb in1k, deit small patch16 224.fb in1k,
vit large patch14 clip 336.laion2b ft in1k, crossvit 18 240.in1k, resnet26.bt in1k, resnet18.a1 in1k, deit3 base patch16 384.fb in22k ft in1k,
convformer s36.sail in1k, convnext small.fb in22k ft in1k, selecsls60b.in1k, efficientnet b0.ra in1k, focalnet tiny srf.ms in1k,
ecaresnet101d.miil in1k, regnetx 080.tv2 in1k, mobileone s3.apple in1k, mobilenetv3 rw.rmsp in1k, poolformerv2 m36.sail in1k, seresnex-
taa101d 32x8d.ah in1k, levit conv 192.fb dist in1k, focalnet tiny lrf.ms in1k, regnety 320.swag lc in1k, tresnet v2 l.miil in21k ft in1k,
seresnet50.a3 in1k, dla46x c.in1k, cs3darknet x.c2ns in1k, tf efficientnet b0.ap in1k, vit base patch16 224.augreg2 in21k ft in1k,
resnext101 32x8d.fb ssl yfcc100m ft in1k, xcit large 24 p8 384.fb dist in1k, tinynet e.in1k, cait xs24 384.fb dist in1k,
fastvit sa12.apple in1k, hrnet w64.ms in1k, regnety 016.pycls in1k, wide resnet101 2.tv2 in1k, beitv2 large patch16 224.in1k ft in22k in1k,
hrnet w30.ms in1k, resnet101.tv in1k, repvit m2.dist in1k, coatnet nano rw 224.sw in1k, flexivit small.1200ep in1k,
tf efficientnet b0.in1k, tf efficientnet b1.in1k, efficientformer l3.snap dist in1k, vit base patch16 384.augreg in21k ft in1k,
xcit tiny 24 p8 224.fb dist in1k, dla102x2.in1k, hardcorenas f.miil green in1k, regnety 064.ra3 in1k, resnext101 32x4d.gluon in1k,
tf efficientnetv2 b2.in1k, resnet32ts.ra2 in1k, xcit tiny 12 p8 384.fb dist in1k, inception v3.tv in1k, xcit large 24 p16 224.fb in1k, ecares-
net50t.a3 in1k, repvit m2 3.dist 450e in1k, fbnetv3 b.ra2 in1k, vit base patch8 224.augreg2 in21k ft in1k, cs3darknet l.c2ns in1k,
convnext base.clip laion2b augreg ft in12k in1k 384, regnety 160.deit in1k, regnety 160.pycls in1k, dla60x.in1k,
xcit tiny 24 p16 384.fb dist in1k, eva02 tiny patch14 336.mim in22k ft in1k, volo d2 224.sail in1k, regnety 160.swag lc in1k,
vit base patch32 clip 224.laion2b ft in12k in1k, tf mixnet s.in1k, repvit m1 0.dist 300e in1k, convnextv2 large.fcmae ft in1k,
resmlp 12 224.fb distilled in1k, xcit medium 24 p16 384.fb dist in1k, regnety 080 tv.tv2 in1k, dpn107.mx in1k, inception v3.tf in1k,
dpn68.mx in1k, efficientnet es.ra in1k, mnasnet 100.rmsp in1k, resnet101.tv2 in1k, res2next50.in1k, vit base patch16 clip 384.openai ft in1k,
tf efficientnet b1.ns jft in1k, flexivit small.600ep in1k, visformer tiny.in1k, resnet50.a1 in1k, dla60.in1k, regnetz d32.ra3 in1k,
senet154.gluon in1k, efficientnetv2 rw s.ra2 in1k, focalnet small lrf.ms in1k, seresnet33ts.ra2 in1k, fbnetc 100.rmsp in1k,
resnet18d.ra2 in1k, resnet34.a3 in1k, dla60x c.in1k, efficientnet b1 pruned.in1k, efficientformerv2 s2.snap dist in1k, resnet50s.gluon in1k,
resnet101.a2 in1k, regnety 040.ra3 in1k, convmixer 1536 20.in1k, regnety 008 tv.tv2 in1k, resnet152.a1 in1k, mixnet l.ft in1k,
gcresnext26ts.ch in1k, vit base patch16 clip 224.openai ft in1k, fastvit ma36.apple in1k, vgg16.tv in1k, gcresnext50ts.ch in1k,
xcit tiny 12 p16 224.fb dist in1k, regnety 008.pycls in1k, resmlp 36 224.fb distilled in1k, regnetz 040 h.ra3 in1k, incep-
tion next base.sail in1k, dm nfnet f0.dm in1k, resnet50.d in1k, efficientnet b2 pruned.in1k, resnet18.tv in1k, rexnet 150.nav in1k,
convnext large mlp.clip laion2b soup ft in12k in1k 320, ghostnetv2 160.in1k, vit small patch16 384.augreg in21k ft in1k, con-
vnext xlarge.fb in22k ft in1k 384, mobilenetv3 small 075.lamb in1k, regnetz d8 evos.ch in1k, dm nfnet f3.dm in1k, repvgg b3.rvgg in1k,
convnext large mlp.clip laion2b augreg ft in1k 384, dpn68b.mx in1k, resnext101 32x8d.fb wsl ig1b ft in1k, deit3 large patch16 384.fb in1k,
convformer s18.sail in1k 384, repghostnet 058.in1k, fastvit sa36.apple dist in1k, resnext50 32x4d.a2 in1k, regnetx 040.pycls in1k,
vit base r50 s16 384.orig in21k ft in1k, vit base patch16 clip 224.laion2b ft in1k, deit3 base patch16 384.fb in1k, tf efficientnetv2 s.in1k,
ecaresnet50t.a2 in1k, resnetrs50.tf in1k, gmixer 24 224.ra3 in1k, resnetaa50d.sw in12k ft in1k, tresnet xl.miil in1k, resnest101e.in1k,
regnetx 004.pycls in1k, mnasnet small.lamb in1k, repvgg a0.rvgg in1k, resnetv2 50x1 bit.goog in21k ft in1k, cait s24 224.fb dist in1k,
regnety 004.tv2 in1k, convnext base.fb in22k ft in1k 384, convnext tiny.fb in22k ft in1k, convnext tiny.in12k ft in1k 384,
eca halonext26ts.c1 in1k, resnet18.gluon in1k, fastvit s12.apple dist in1k, deit base patch16 224.fb in1k, hrnet w18.ms aug in1k,
resnet33ts.ra2 in1k, seresnext101 64x4d.gluon in1k, convnext small.fb in1k, convformer s36.sail in1k 384, pit ti distilled 224.in1k,
resnet50.tv2 in1k, nest small jx.goog in1k, resmlp 36 224.fb in1k, hrnet w18 small.gluon in1k, vit base patch16 384.augreg in1k,
resnet50.fb swsl ig1b ft in1k, poolformer m36.sail in1k, tf mobilenetv3 small 100.in1k, regnety 040.pycls in1k, gcresnet33ts.ra2 in1k,
resnet101s.gluon in1k, darknetaa53.c2ns in1k, poolformerv2 s12.sail in1k, resnext50 32x4d.fb ssl yfcc100m ft in1k, pool-
formerv2 s24.sail in1k, eca resnet33ts.ra2 in1k, repvit m2 3.dist 300e in1k, nf resnet50.ra2 in1k, convnext pico ols.d1 in1k,
caformer s36.sail in1k, regnetz 040.ra3 in1k, vit small r26 s32 224.augreg in21k ft in1k, resnext26ts.ra2 in1k, mixnet xl.ra in1k,
deit base patch16 384.fb in1k, repvit m1 0.dist 450e in1k, convmixer 1024 20 ks9 p14.in1k, regnety 064.pycls in1k,
resnet34.gluon in1k, res2net101 26w 4s.in1k, nfnet l0.ra2 in1k, resnet34d.ra2 in1k, convnextv2 nano.fcmae ft in22k in1k 384,
twins pcpvt base.in1k, resnetv2 101.a1h in1k, xcit nano 12 p8 224.fb dist in1k, xcit small 24 p8 224.fb dist in1k, resnet50.b2k in1k,
deit3 small patch16 384.fb in1k, hardcorenas c.miil green in1k, coat lite mini.in1k, resnet152.tv2 in1k, densenetblur121d.ra in1k,
hrnet w18 small v2.gluon in1k, vit base patch16 384.orig in21k ft in1k, xcit small 12 p8 224.fb dist in1k, convformer m36.sail in1k,
xcit nano 12 p16 384.fb dist in1k, resnet34.a1 in1k, convnext atto ols.a2 in1k, resnet14t.c3 in1k, twins pcpvt large.in1k,
resnest26d.gluon in1k, mobilenetv3 small 100.lamb in1k, efficientnet b3 pruned.in1k, vit small patch16 224.augreg in1k, con-
vnext tiny.fb in1k, resnet50d.a3 in1k, mobilevitv2 175.cvnets in22k ft in1k 384, deit3 medium patch16 224.fb in22k ft in1k,
seresnext101 32x4d.gluon in1k, hardcorenas b.miil green in1k, caformer m36.sail in22k ft in1k, ghostnetv2 100.in1k, ecares-
net50d pruned.miil in1k, caformer s36.sail in22k ft in1k 384, deit tiny patch16 224.fb in1k, fastvit sa36.apple in1k, regnety 320.seer ft in1k,
edgenext small.usi in1k, resmlp big 24 224.fb in22k ft in1k, regnety 160.lion in12k ft in1k, regnety 160.sw in12k ft in1k,
tf efficientnet b1.ap in1k, res2net50 48w 2s.in1k, eca botnext26ts 256.c1 in1k, xcit small 24 p8 224.fb in1k, crossvit 9 dagger 240.in1k,
coat lite tiny.in1k, resnetv2 101x1 bit.goog in21k ft in1k, convnext large mlp.clip laion2b augreg ft in1k, xcit nano 12 p16 224.fb dist in1k,
cs3darknet focus m.c2ns in1k, wide resnet50 2.tv2 in1k, vit base patch16 clip 224.openai ft in12k in1k, skresnet34.ra in1k,
repvgg b1g4.rvgg in1k, vgg19 bn.tv in1k, repghostnet 100.in1k, regnetv 064.ra3 in1k, mobilenetv2 100.ra in1k, convnext femto.d1 in1k,
resnet26t.ra2 in1k, regnetv 040.ra3 in1k, skresnet18.ra in1k, caformer m36.sail in22k ft in1k 384, vit base patch32 384.augreg in1k,
regnetz b16.ra3 in1k, hrnet w48 ssld.paddle in1k, resnest50d 4s2x40d.in1k, cait xxs36 224.fb dist in1k, regnetx 016.tv2 in1k,
xcit small 24 p8 384.fb dist in1k, vit tiny r s16 p8 224.augreg in21k ft in1k, coat mini.in1k, xcit small 24 p16 224.fb dist in1k,
caformer s36.sail in22k ft in1k, poolformer s24.sail in1k, resmlp big 24 224.fb in1k, regnetx 120.pycls in1k, regnetz d8.ra3 in1k,
resnet50d.ra2 in1k, repvit m1.dist in1k, eca nfnet l2.ra3 in1k, resnet50d.gluon in1k, seresnext50 32x4d.racm in1k,
vit small patch16 384.augreg in1k, coat tiny.in1k, xcit nano 12 p8 224.fb in1k, crossvit base 240.in1k, resnet50d.a1 in1k, con-
vformer s36.sail in22k ft in1k, convnextv2 large.fcmae ft in22k in1k, resnet50.tv in1k, resnet50.c1 in1k, pit xs distilled 224.in1k,
efficientnet b1.ft in1k, tf efficientnet el.in1k, hrnet w32.ms in1k, vit base patch16 224 miil.in21k ft in1k, cs3sedarknet x.c2ns in1k,
dpn68b.ra in1k, tf efficientnetv2 b1.in1k, regnety 004.pycls in1k, tf mobilenetv3 large minimal 100.in1k, resnetrs101.tf in1k,
ese vovnet39b.ra in1k, mixer l16 224.goog in21k ft in1k, repghostnet 050.in1k, repvgg b2g4.rvgg in1k, repvit m1 1.dist 450e in1k,
vit base patch32 224.augreg in21k ft in1k, tf mobilenetv3 large 100.in1k, pit s 224.in1k, caformer s18.sail in22k ft in1k,
wide resnet101 2.tv in1k, fastvit t12.apple dist in1k, convmixer 768 32.in1k, vit base patch32 224.augreg in1k, efficient-
formerv2 s0.snap dist in1k, resnest200e.in1k, levit conv 256.fb dist in1k, resnet18.fb ssl yfcc100m ft in1k, vgg13 bn.tv in1k,
resnet152c.gluon in1k, dla169.in1k, pvt v2 b4.in1k, crossvit 15 dagger 408.in1k, convnext femto ols.d1 in1k, convnext large.fb in1k,
regnetx 064.pycls in1k, fastvit t8.apple in1k, seresnet152d.ra2 in1k, vgg19.tv in1k, vgg11 bn.tv in1k, dm nfnet f2.dm in1k, seres-
next101d 32x8d.ah in1k, inception next base.sail in1k 384, lambda resnet26t.c1 in1k, resnetv2 152x2 bit.goog in21k ft in1k,
fastvit ma36.apple dist in1k, regnety 006.pycls in1k, regnety 080.pycls in1k, resnet50.fb ssl yfcc100m ft in1k, tf mobilenetv3 small 075.in1k,
regnetz c16.ra3 in1k, edgenext xx small.in1k, crossvit 9 240.in1k, xcit tiny 24 p8 224.fb in1k, regnety 080.ra3 in1k, effi-
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cientvit b1.r256 in1k, tinynet d.in1k, caformer b36.sail in1k 384, pvt v2 b2.in1k, resnet26d.bt in1k, convnext pico.d1 in1k,
pit b 224.in1k, convnextv2 pico.fcmae ft in1k, fbnetv3 d.ra2 in1k, flexivit large.1200ep in1k, resnet50c.gluon in1k, reg-
netx 080.pycls in1k, convnext base.fb in1k, tf efficientnet em.in1k, vit base patch16 224.augreg in1k, convit tiny.fb in1k,
resnext50 32x4d.fb swsl ig1b ft in1k, dm nfnet f4.dm in1k, resnet50.a3 in1k, convnext atto.d2 in1k, efficientnet el pruned.in1k,
volo d2 384.sail in1k, resnext101 32x4d.fb ssl yfcc100m ft in1k, repvit m0 9.dist 300e in1k, regnety 120.sw in12k ft in1k,
beit base patch16 384.in22k ft in22k in1k, mobilenetv3 large 100.miil in21k ft in1k, tf efficientnet b0.aa in1k, inception next small.sail in1k,
deit base distilled patch16 224.fb in1k, lcnet 075.ra2 in1k, xcit tiny 12 p8 224.fb in1k, resnet101.gluon in1k, dpn92.mx in1k,
resnet101.a1 in1k, selecsls60.in1k, beit base patch16 224.in22k ft in22k in1k, convnextv2 tiny.fcmae ft in1k, res2net50 26w 8s.in1k,
sequencer2d m.in1k, vit medium patch16 gap 256.sw in12k ft in1k, regnetx 008.pycls in1k, resnet50.a2 in1k, res2net101d.in1k,
vit large patch16 384.augreg in21k ft in1k, pvt v2 b2 li.in1k, regnetx 006.pycls in1k, xcit tiny 24 p16 224.fb in1k, pvt v2 b5.in1k,
resnext50 32x4d.ra in1k, resnest14d.gluon in1k, caformer m36.sail in1k 384, resnet50.gluon in1k, resnet152s.gluon in1k, flex-
ivit large.600ep in1k, resnetv2 50x1 bit.goog distilled in1k, resmlp 24 224.fb in1k, deit3 large patch16 224.fb in1k, seres-
next50 32x4d.gluon in1k, densenet121.tv in1k, resnet152.a3 in1k, ghostnet 100.in1k, tf efficientnet b2.ap in1k, regnetx 002.pycls in1k.
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Fig. 16: Differences Between Layer Types are Significant. We analyze and test for statistical
significances in the differences in MIS between different layer types (see Fig. 5. The reported
significance levels were computed using Conover’s test over the per-model and per-layer-type means
with Holm’s correction for multiple comparisons.
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Fig. 17: Influence of Input Resolution of MIS. We show the average MIS per model as a function
of the model’s input resolution. No trend is apparent; models with the same resolution yield different
interpretability levels.

20



To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

−0.2

0.0

0.2

0.4

0.6

Ch
an

ge
 in

 M
IS

 (0
 →

 9
9)

−0.2

0.0

0.2

0.4

0.6

Ch
an

ge
 in

 M
IS

 (0
 →

 1
)

1
0
0

1
0
1

1
0
1

1
0
2

1
0
2

1
0
3

1
0
3

1
0
0

1
0
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
3

1
1
3

1
2
1

1
2
1

1
2
2

1
2
2

1
2
3

1
2
3

2
0
1

2
0
1

2
0
2

2
0
2

2
0
3

2
0
3

2
0
0

2
0
1

2
1
1

2
1
1

2
1
2

2
1
2

2
1
3

2
1
3

2
2
1

2
2
1

2
2
2

2
2
2

2
2
3

2
2
3

2
3
1

2
3
1

2
3
2

2
3
2

2
3
3

2
3
3

3
0
1

3
0
1

3
0
2

3
0
2

3
0
3

3
0
3

3
0
0

3
0
1

3
1
1

3
1
1

3
1
2

3
1
2

3
1
3

3
1
3

3
2
1

3
2
1

3
2
2

3
2
2

3
2
3

3
2
3

3
3
1

3
3
1

3
3
2

3
3
2

3
3
3

3
3
3

3
4
1

3
4
1

3
4
2

3
4
2

3
4
3

3
4
3

3
5
1

3
5
1

3
5
2

3
5
2

3
5
3

3
5
3

4
0
1

4
0
1

4
0
2

4
0
2

4
0
3

4
0
3

4
0
0

4
0
1

4
1
1

4
1
1

4
1
2

4
1
2

4
1
3

4
1
3

4
2
1

4
2
1

4
2
2

4
2
2

4
2
3

4
2
3

Layer (Early → Late)

−0.2

0.0

0.2

0.4

0.6

Ch
an

ge
 in

 M
IS

 (1
 →

 9
9)

RN-Layer
Block
Layer

BatchNorm Conv

Fig. 18: Change of Interpretability per Layer During Training. Detailed version of Fig. 7.
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Fig. 19: Comparison of the Minimum of the Per-unit MIS for Models. While the mean of the
per-unit interpretability varies in a rather narrow value range (see Fig. 3), we investigate differences
in the distribution of scores. Specifically, we are interested in the effective width of the distribution,
i.e., how low does the minimal MIS per model go? To make the analysis robust against outliers, we
do not use the minimum but instead the 5th percentile. Note that this corresponds to the lower end of
the shaded area in Fig. 3. Compared to the average MIS, we see higher variability across models.
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(a) Clip ViT-B32, resblocks 3 mlp c proj, unit 573 (b) DenseNet201, block3 layer10 norm1, unit 138

(c) DenseNet201, block3 layer29 conv1, unit 39 (d) DenseNet201, block3 layer35 norm2, unit 123

Fig. 20: Visualization of Units for which MIS overestimates HIS. To showcase the shortcomings
of the MIS, we visualize four units for which the MIS predicts an interpretability that is higher than
the measured HIS in Fig. 2B. See Fig. 21 for the opposite direction. For each unit, we show the 20
most (right) and 20 least (left) activating dataset exemplars.
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(a) Clip ResNet-50, layer4 1 conv2, unit 430 (b) DenseNet201, block3 layer48 conv2, unit 21

(c) DenseNet201, block3 layer48 norm1, unit 1369 (d) ViT-B32, block0 norm2, unit 358

Fig. 21: Visualization of Units for which MIS underestimates HIS. To showcase the shortcomings
of the MIS, we visualize four units for which the MIS predicts an interpretability that is lower than
the measured HIS in Fig. 2B. See Fig. 20 for the opposite direction. For each unit, we show the 20
most (right) and 20 least (left) activating dataset exemplars.
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(a) ResMLP-36, blocks 10 linear tokens, unit 61 (b) ResMLP-24, blocks 0 mlp channels fc1, unit 110

(c) GMixer-24, blocks 5 mlp tokens fc1, unit 166 (d) ResMLP-12, blocks 7 linear tokens, unit 127

Fig. 22: Visualization of Hard Units from Models with High Variability. For the four models
with the highest variability in MIS (see Fig. 4B), we visualize one of the units with the lowest MIS
each. For each unit, we show the 20 most (right) and 20 least (left) activating dataset exemplars.
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