
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CLUSTERGEN: TOKEN GENERATION IN SUBLINEAR
TIME AND MEMORY WITH CLUSTERING KV CACHE

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite the significant success of large language models (LLMs), their extensive
memory requirements pose challenges for deploying them in long-context token
generation. The substantial memory footprint of LLM decoders arises from the
necessity to store all previous tokens in the attention module, a requirement im-
posed by key-value (KV) caching. In this work, our focus is on developing an
efficient compression technique for the KV cache. Empirical evidence indicates
a significant clustering tendency within key embeddings in the attention module.
Building on this key insight, we have devised a novel caching method with sublin-
ear complexity, employing online clustering on key tokens and online ℓ2 sampling
on values. The result is a provably accurate and efficient attention decoding al-
gorithm, termed CLUSTERGEN. Not only does this algorithm ensure a sublinear
memory footprint and sublinear time complexity, but we also establish a tight
error bound for our approach. Empirical evaluations on long-context question-
answering tasks demonstrate that CLUSTERGEN significantly outperforms exist-
ing and state-of-the-art KV cache compression methods in terms of performance
and efficiency.

1 INTRODUCTION

Large Language Models (LLMs) (Achiam et al., 2023; Touvron et al., 2023) play a crucial role
in various natural language processing applications, including dialog systems (Taori et al., 2023;
Chiang et al., 2023), coding assistance (Chen et al., 2021; Roziere et al., 2023), and image/video
generations from text (Radford et al., 2021; Ho et al., 2022). All of these models rely on the trans-
former architecture, with the attention mechanism serving as the key component.

To fully harness the capabilities of LLMs, they must demonstrate both efficiency and accuracy in
generating long sequences. In practical applications, deploying LLMs to generate tokens in an
autoregressive manner involves a sequential decoding process, where attention is dynamically ap-
plied to each newly generated token. This process effectively constructs the output sequence in a
streaming manner, one token at a time. Therefore, as the sequence grows, the model has to produce
contextually relevant and coherent content.

A common method for autoregressive attention decoding involves the use of key-value (KV)
caching, where key and value pairs from all preceding tokens are cached and reused to prevent
redundant computations. However, this approach faces memory constraints, particularly when han-
dling long sequences. In particular, the memory requirements and runtime for generating each new
token increase linearly with context size, posing a significant challenge for efficient processing of
extensive sequences. This linear scaling directly impedes practical applicability in real-world sce-
narios, such as chat systems, where large contexts are often encountered.

In this work, we delve into the primary computational and memory bottleneck of token generation.
We propose CLUSTERGEN, a novel approach designed to significantly reduce the memory and
runtime complexity of token generation, moving from conventional linear growth to sublinear scale.
To summarize, our goal is to answer the following question:

Can we approximate the attention output in decoding phase
in sublinear space/time complexity in context length?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1.1 RELATED WORK

Recent studies have underscored the need for efficient token generation, particularly with the rise of
long-range context datasets. Several recent works have developed efficient strategies for compress-
ing the KV cache. Zhang et al. (2023) proposed a greedy-type eviction algorithm that dynamically
keeps at most k ≪ n token embeddings based on the accumulated attention scores where they refer
to the Heavy Hitter Oracle (H2O). Liu et al. (2023a) empirically observed that tokens with initially
high attention scores tend to stay high during the future generation process. Motivated by this ob-
servation, the authors proposed a strategy that only keeps the most recent and pivotal tokens whose
attention scores are higher than a threshold. Ge et al. (2023) proposed an adaptive method of KV
cache compression which identifies the intrinsic structures of attention heads and uses them to deter-
mine the optimal compression policy. Xiao et al. (2023) observed that a simple eviction mechanism
that keeps only first few and last few tokens does not degrade much the decoding quality. They
additionally proposed a fine-tuning method to solve performance degradation from their method.
Liu et al. (2023b) developed an algorithm that reduces the generation latency by exploiting contex-
tual sparsity. In addition to algorithmic acceleration, there has also been a line of work optimizing
hardware resource configurations (Sheng et al., 2023; Hong et al., 2023). However, to the best of
our knowledge, none of these works have achieved an efficient method for KV cache with fully
sublinear-time memory space.

On the lower bound side, achieving subquadratic amortized runtime for producing output embed-
dings for n tokens in the worst-case instances is likely impossible without making assumptions about
the input tokens (Alman & Song, 2023; Sarlos et al., 2023). Therefore, to achieve fast runtime, it is
necessary to rely on certain assumptions about the input tokens.

1.2 STREAMING ATTENTION PROBLEM

Deployment of LLMs involves computing attention output in a streaming fashion, where at each
phase of token generation a triplet of vectors is given. More precisely, at i-th token generation
phase, three vectors qi,ki,vi ∈ Rd are streamed where they are called by query, key and value,
respectively. Suppose that n of tokens have been streamed so far either in prompt encoding or token
generation phase. The objective of streaming attention decoding is to compute the following:

Attn(qn,Kn,Vn) = softmax(Kn · qn)⊤ · Vn, (1)

where Kn,Vn ∈ Rn×d are matrices defined by stacking the keys and values in their respective
rows:

Kn :=

k⊤
1

k⊤
2
...

k⊤
n

 , Vn :=

v⊤
1

v⊤
2
...

v⊤
n

 . (2)

The output Attn(qn,Kn,Vn) is then used for predicting the next token and its token embedding
is applied to a transformer model and introduce a new stream pair (qn+1,kn+1,vn+1) is gener-
ated. However, storing these values and keys requires O(nd) memory, posing a significant space
complexity challenge for long-context models with large n.

1.3 OVERVIEW OF CONTRIBUTIONS

We propose CLUSTERGEN, an efficient method that accurately approximates the attention decoder’s
output in Eq. (1) while retaining only a small (sublinear) subset of keys and values in the cache. In
particular, CLUSTERGEN computes an estimator zn for Attn(qn,Kn,Vn) in sublinear time and
memory such that the error is bounded as follows:

∥zn −Attn(qn,Kn,Vn)∥2 ≤ ε ∥softmax(Kn · qn)∥2 ∥Vn∥op , (3)

where ∥·∥op represents the matrix operator norm. This error bound is in line with the spectral errors
studied in previous works (Zandieh et al., 2023; Han et al., 2024).

We begin by observing that Attn(qn,Kn,Vn) in Eq. (1) is the product of the softmax vector
softmax(Kn · qn) and value matrix Vn. This matrix-vector product can be approximated by sub-
sampling only O(ε−2d log n) key-value pairs according to the vector and matrix according to the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

squared norms of value tokens. This can be implemented in a streaming setting using some variants
of reservoir sampling.

The other major computational challenge is computing the partition function in the denominator of
the softmax function, i.e.,

∑
i∈[n] exp(⟨ki, qn⟩). To solve this, we construct a data structure that can

be stored in sublinear memory and efficiently approximate
∑

i∈[n] exp(⟨ki, qn⟩) up to 1 ± ε factor
for any query qn. Our method assumes that the key tokens can be covered by a sublinear number
of bounded diameter clusters. This assumption is indeed weaker than the one made in Han et al.
(2024), which in the decoding setting translates to having key tokens belong to only one cluster with
a bounded diameter, while our approach allows for any sublinear number of clusters. So, if the keys
are composed of bounded diameter clusters then we only need a small number of uniformly sampled
keys from each cluster to approximate the softmax normalizer efficiently and accurately. The central
task is to find these clusters in a streaming setting, and we achieve this using an algorithm that is
inspired by the streaming k-center algorithm of Charikar et al. (1997).

In Theorem 2.4 and Corollary 2.5 we demonstrate that if the keys can be clustered into some sub-
linear number m = n1−Ω(1) of clusters with some bounded diameters, then CLUSTERGEN operates
with sublinear O

(
ε−2md

)
= O

(
ε−2dn1−Ω(1)

)
memory and runtime and its output satisfies the ap-

proximation guarantee in Eq. (3). In Section 4, we empirically compare CLUSTERGEN to other KV
cache compression methods including the attention-score-based algorithm of Zhang et al. (2023) and
the deterministic eviction policy from Xiao et al. (2023). Our results confirm that CLUSTERGEN
outperforms these methods, particularly in question-answering tasks with various sequence lengths.

2 SUBLINEAR TIME AND MEMORY ALGORITHM

Our goal is to approximate the attention output in Eq. (1) with a space complexity that is sublinear
in context length n. To achieve this objective, we aim to design the following data structure (DS)
for efficiently approximating the streaming attention mechanism:

2.1 STREAMING ATTENTION DATA STRUCTURE

For every positive integer n and every stream of token triplets (q1,k1,v1), . . . , (qn,kn,vn) where
qi,ki,vi ∈ Rd, we aim to construct an efficient DS with the following properties:

• The required memory space is sublinear in n, i.e., o(n).

• Upon the arrival of a new triplet (qn+1,kn+1,vn+1) in the stream, the time complexity to update
is sublinear in n, i.e., o(n).

• Given such data structure, there exists an algorithm that outputs an estimator zn ∈ Rd in sublin-
ear time o(n) such that:∥∥zn − softmax(Kn · qn)⊤ · Vn

∥∥
2
≤ ε ∥softmax(Kn · qn)∥2 ∥Vn∥op . (4)

In the rest of this section, our focus is on developing an algorithm to satisfy the above properties.
Note that the attention output in Eq. (1), using the definition of softmax, is equivalent to the following
expression:

Attn(qn,Kn,Vn) =
exp(Kn · qn)⊤ · Vn∑

i∈[n] exp(⟨ki, qn⟩)
.

Thus, to compute the attention output we need to calculate:

1. The matrix-vector product between Vn and exp(Kn · qn).
2. The partition function

∑
i∈[n] exp(⟨ki, qn⟩).

Thus, our DS needs to efficiently approximate each of these two operations. The matrix-vector prod-
uct exp(Kn · qn)⊤ ·Vn can be approximated efficiently using standard sampling-based techniques.
Specifically, we make use of the row norm sampling approach (Drineas & Kannan, 2001; Cohen
et al., 2016). When multiplying two matrices A ∈ Rm×n and B ∈ Rn×p, we randomly sample
an i.i.d. index i ∈ [n] with probability proportional to the ℓ2 norm of the i-th row in B. Then, we

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

estimate A · B by the average of the product between i-th column in A and i-th row in B. With
this approximation, we need only O(ε−2d log n) samples to guarantee an ε multiplicative error in
spectral norm for exp(Kn ·qn)⊤ ·Vn. Luckily, it can be implemented in a streaming setting through
a variant of reservoir sampling (Vitter, 1985).

The more challenging task is the sublinear-time approximation of the partition function∑
i∈[n] exp(⟨ki, qn⟩). We construct a DS for computing this under the assumption that the keys

in the token stream are organized into o(n) of clusters. To be more precise, we introduce the follow-
ing notion of clusterability:
Definition 2.1 (Clusterability). For a positive integer m and a real-valued δ > 0, a dataset of
points x1,x2, . . .xn ∈ Rd is considered (m, δ)-clusterable if there exists a size-m partition
C1, C2, . . . Cm ⊆ {xi}ni=1 of the dataset satisfying the following conditions:

• Ci ∩ Cj = ∅ for every i ̸= j and
⋃m

j=1 Cj = {xi}ni=1.

• for every j ∈ [m] and every distinct pair y, z ∈ Cj , ∥y − z∥2 ≤ δ.

We demonstrate that under the assumption that the stream of keys k1,k2, . . .kn is (m, δ)-clusterable
as defined in Definition 2.1, with the number of clusters scaling sublinearly in stream length (m =
o(n)), it is possible to construct a DS with sublinear memory space. The procedure for this DS is
presented in Algorithm 1 which we refer to as CLUSTERGEN.

To verify this in the practical settings, we plot key embeddings from open-source LLMs in Sec-
tion 3.1 and observe that they are indeed well clusterable on their embedding space. This motivates
us to utilize an efficient stream clustering algorithm on key embeddings. In the remainder of this
section, we provide a detailed explanation for the execution of the algorithm while simultaneously
analyzing it through a series of lemmas.

2.2 MATRIX PRODUCT DATA STRUCTURE

Here, we focus on the UPDATEMATRIXPRODUCT primitive and establish its correctness by intro-
ducing invariants that are maintained throughout the stream processing. This primitive maintains
and updates a list of s elements denoted byM in CLUSTERGEN (Algorithm 1). Initially, this list is
filled with null values. After processing the first token tuple (q1,k1,v1), this list is populated with
s copies of the first key and value (k1,v1). The procedure UPDATEMATRIXPRODUCT performs a
variant of reservoir sampling upon observing any new token in the stream. At any iteration n of the
stream,M is ensured to contain s i.i.d. samples chosen at random from (k1,v1), . . . , (kn,vn) with
probabilities proportional to ∥ki∥22. More precisely, the following invariants hold:
Lemma 2.2 (Correctness of UPDATEMATRIXPRODUCT). For any positive integer s, at any itera-
tion n of the stream in Algorithm 1 the following properties are maintained:

1. µ =
∑

i∈[n] ∥vi∥22.

2. M is a list of s i.i.d. samples from {(k1,v1), . . . , (kn,vn)} where the probability distri-

bution for each element j ∈ [s] and i ∈ [n] is Pr [M(j) = (ki,vi)] =
∥vi∥2

2∑
l∈[n]∥vl∥2

2

.

The proof of the above lemma is deferred to Appendix A.1.

2.3 SOFTMAX NORMALIZER (PARTITION FUNCTION) DS

Here we delve into a detailed discussion of the UPDATESOFTMAXNORMALIZER primitive. This
primitive constructs and maintains a DS denoted by D, enabling accurate approximation of the par-
tition function in the softmax denominator for any query. A crucial requirement for the efficiency of
this primitive is that the key tokens must be (m, δ)-clusterable, as per Definition 2.1. Our algorithm
locates and stores a subsampled representation of each cluster in D in a small memory. Particularly,
to achieve sublinear memory complexity, instead of keeping all keys in each cluster which would
require O(n) memory space, we maintain only a random subset of t samples from each cluster.

Initially, D is an empty set. As new tokens in the stream are processed, new clusters get added to
this set. Each cluster is characterized by a representative point, which is the first key assigned to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 CLUSTERGEN: Sublinear Streaming Attention via Clustering

1: inputs: stream of token embeddings (qn,kn,vn), parameter δ > 0, positive integers s, t
2: Initialize µ← 0, D ← ∅,M←

[
null,

×s· · · · · ·
]

3: repeat
4: D ← UPDATESOFTMAXNORMALIZER(D, δ, t,kn)
5: M← UPDATEMATRIXPRODUCT(M, s, µ,kn,vn)

6: µ← µ+ ∥vn∥22
7: zn ← QUERYSTREAMATTN(D,M, s, t, µ, qn)
8: n← n+ 1
9: output zn

10: until Token stream ends

Procedure UPDATESOFTMAXNORMALIZER (D, δ, t,k)
11: Initialize D ← {(xi,Si, ni) : i ∈ [m]} and i∗ ← arg mini∈[m] ∥xi − k∥2
12: if ∥k − xi∗∥2 ≤ δ then
13: ni∗ ← ni∗ + 1
14: Suppose Si∗ is a list of t vectors in Rd

15: for j ∈ [t] do
16: Flip a coin and with probability p = 1

ni∗
, update the jth entry of Si∗ as Si∗(j)← k

17: end for
18: else
19: S ′ ←

[
k,

×t· · · · · ·
]

(contains t copies of k)
20: D = D ∪ {(k,S ′, 1)}
21: end if
22: return D
Procedure UPDATEMATRIXPRODUCT (M, s, µ,k,v)

23: SupposeM is a list of s tuples of vectors in Rd

24: for i ∈ [s] do
25: Flip a coin and with probability p =

∥v∥2
2

µ+∥v∥2
2

, update the ith entry ofM asM(i)← (k,v)

26: end for
27: returnM
Procedure QUERYSTREAMATTN (D,M, s, t, µ, q)

28: z ←
∑

(k,v)∈M
µ

s·∥v∥2
2

· exp(⟨q,k⟩) · v

29: τ ←
∑

(x,S,n′)∈D
n′

t ·
∑

k∈S exp(⟨q,k⟩)
30: return z/τ

that cluster by our algorithm. Throughout stream processing, we compute the distance between the
new key token and each existing cluster. Here the distance to an existing cluster is defined as the
distance to the aforementioned representative of the cluster. If there is a cluster whose distance is
less than δ, then the token is assigned to the nearest cluster, and we update our random samples of
keys from this cluster using reservoir sampling. If the distance from all existing clusters is more
than δ, we introduce a new cluster in D, and the new key becomes the representative of this new
cluster. At any point in the stream, this algorithm identifies at most m clusters if the keys so far are
(m, δ)-clusterable. If m grows sublinearly in the stream length n, the memory and update time of
our algorithm will be sublinear as well. Formally, we prove that the following invariant holds:
Lemma 2.3 (Correctness of UPDATESOFTMAXNORMALIZER). For any δ > 0, any positive integer
t, at any iteration n of the stream in Algorithm 1 the following properties are maintained. D is a set
of m items of the form D = {(xi,Si, ni) : i ∈ [m]}, where there exists a partition of keys into m
disjoint subsets C1, C2, . . . Cm ⊆ {ki}ni=1 satisfying

⋃m
j=1 Cj = {ki}ni=1 and Ci ∩ Cj = ∅ for every

i ̸= j, such that for every i ∈ [m]:

1. xi ∈ Ci,

2. ni = |Ci|,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3. ∥xi − k′∥2 ≤ δ for every k′ ∈ Ci,

4. ∥xi − xj∥2 > δ for every i ̸= j,

5. Si is a set of t i.i.d. uniform samples from the set Ci.

The proof of Lemma 2.3 can be found in Appendix A.2.

2.4 STREAMING ATTENTION: MAIN THEOREM

Now we are ready to analyze the end-to-end performance of CLUSTERGEN and prove the main
theorem. We show that, given the data structures created throughout the stream and analyzed in
Lemma 2.2 and Lemma 2.3, the primitive QUERYSTREAMATTN can efficiently output an accurate
approximation to the streaming attention, satisfying Eq. (1).

Our analysis unfolds in two steps. First, we establish that the data structures created by UPDATE-
SOFTMAXNORMALIZER and UPDATEMATRIXPRODUCT can be stored in small memory and up-
dated very quickly if the sequence of keys is clusterable into a sublinear number of clusters. Then we
show that the QUERYSTREAMATTN can use these data structures to produce an accurate attention
output for any given query. Our main result is as follows:

Theorem 2.4 (Efficiency and Correctness of Algorithm 1). For any δ, r, ε > 0, any positive integers
n, d, and any sequence of tokens (q1,k1,v1), (q2,k2,v2), . . . (qn,kn,vn) where qi,ki,vi ∈ Rd,
suppose that the followings hold

• t = Ω
(
ε−2 · e2δ·r log n

)
,

• s = Ω(ε−2 · d),

• ∥qn∥2 ≤ r.

Then, CLUSTERGEN (Algorithm 1) at n-th step of the stream processing outputs a vector zn ∈ Rd

that satisfies Eq. (1) with probability at least 0.99. Furthermore, if the keys k1,k2, . . .kn are (m, δ)-
clusterable as per Definition 2.1, then both the total memory of the algorithm and its runtime during
the n-th iteration is bounded by O(d · (mt+ s)).

The proof of Theorem 2.4 can be found in Appendix A.3.

Memory and Runtime. First, note that the memory requirement for storing the listM in Algo-
rithm 1 is O(sd) because it contains s pairs of d-dimensional vectors. Next, to bound the memory
requirement for storing D we need to bound the size of this set which we denoted by m′. According
to properties (1) and (4) in Lemma 2.3, for every i ∈ [m′] there exist xi ∈ {k1,k2, . . .kn} such
that ∥xi − xj∥2 > δ for i ̸= j. Given the assumption in the theorem statement that keys are (m, δ)-
clusterable, by the definition of clusterability in Definition 2.1 along with the pigeonhole principle,
we must have m′ ≤ m. Therefore storing D will require O(m′td) = O(mtd) because it is a set of
m′ elements, and each element of this set is a list of t vectors in dimension d.

Three major operations dominate the runtime of the n-th iteration. Firstly, executing UPDATESOFT-
MAXNORMALIZER requires computing m′ distances in line 12 that takes O(md) time. Addition-
ally, the for loop in line 16 takes O(td) time. Secondly, UPDATEMATRIXPRODUCT has a runtime
bounded by O(sd). Thirdly, running QUERYSTREAMATTN involves O(sd) operations in line 26
and O(m′td) = O(mtd) operations in line 27. As a result, the total runtime of Algorithm 1 in n-th
iteration is O(mtd+ sd).

Theorem 2.4 demonstrates that if the keys can be clustered into some sublinear number m = n1−Ω(1)

of clusters with diameters at most δ, and the queries have bounded ℓ2 norms of at most r such that
the product of the cluster diameter and maximum ℓ2 norm of queries is bounded by δr = o(log n),
then Algorithm 1 operates with sublinear O

(
ε−2 ·mdno(1)

)
= O

(
ε−2 · dn1−Ω(1)

)
memory and

runtime. We summarize this in the following corollary:

Corollary 2.5. Suppose the preconditions of Theorem 2.4 hold. If the diameter of key token clusters
δ and the maximum ℓ2 norm of queries r satisfy δr = o(log n), then the total memory and runtime

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

50 0 50
30

20

10

0

10

20

15-layer 3-head key

50 0 50

50

25

0

25

50

75
15-layer 3-head value

0

250

500

750

1000

1250

1500

1750

2000
timesteps

(a) OPT-6.7B

50 0 50
75

50

25

0

25

50

75
15-layer 3-head key

50 0 50

50

0

50

15-layer 3-head value

0

1000

2000

3000

4000

5000

timesteps

(b) MPT-7B

50 0 50

50

0

50

15-layer 3-head key

50 0 50
100

50

0

50

100
15-layer 3-head value

0

1000

2000

3000

4000

5000

timesteps

(c) Llama-3.1-8B

50 0 50

50

0

50

15-layer 3-head key

100 50 0 50
75

50

25

0

25

50

75
15-layer 3-head value

0

1000

2000

3000

4000

5000

timesteps

(d) Gemma-2-9B

Figure 1: A t-SNE plot of cached keys (first row) and values (second row) embeddings from 4 open-
source models; (a) OPT-6.7B, (b) MPT-7B, (c) Llama-3.1-8B and (d) Gemma-2-9B using TriviaQA
dataset. Key embeddings are more clusterable than value ones. The green dots represent the centers
from the greedy k-center algorithm (Dyer & Frieze, 1985) where k=16.

Model Positional Encoding Clusterability Leaderboard Score (↑)1 Average ∥qn∥2
OPT-6.7B AbsPE Weak Unknown 15.753 ± 0.0023
MPT-7B ALiBi Weak 5.98 13.576 ± 0.0012
Llama-3.1-8B RoPE Strong 13.78 15.381 ± 0.0005
Gemma-2-9B RoPE Strong 20.98 23.800 ± 0.0009

Table 1: Language models with various positional encodings and their clusterability, performance
scores from open llm leaderboard (Fourrier et al., 2024) (higher is better) and average ℓ2-
norm of the query embeddings. The RoPE makes model performance strong and the corresponding
key embeddings shows strong clusterabilities. All models have bounded query norms regardless of
the sequence length.

of Theorem 2.4 are bounded by O
(
ε−2 · dmno(1)

)
. Moreover, if the number of key token clusters m

grows as a sublinear function of n, i.e., as m = n1−Ω(1), then the memory and runtime are bounded
by O

(
ε−2 · dn1−Ω(1)

)
.

The above results require that the key embeddings are well clusterable in their space, and the cluster
centers should cover all keys with a small radius. In the next section, we empirically explore distribu-
tions on key and value embeddings and verify that the keys are indeed distributed in their embedding
space. This supports that our assumption of clusterability on keys is reasonable in practical settings.

3 ABLATION STUDY

3.1 CLUSTERABILITY ON KEY AND VALUE EMBEDDINGS

We first demonstrate the clusterability of cached embeddings from long-range tokens. To this end,
we collect key and value embeddings from 4 popular open-source language models; OPT-6.7B, MPT-
7B, Llama-3.1-8B and Gemma-2-9B, where each adopts different positional encoding methods across
absolute positional encoding (AbsPE), Attention with Linear Biases (ALiBi) (Press et al., 2021) and
Rotational Positional Encodding (RoPE) (Su et al., 2024). We use prompts from TriviaQA dataset in
LongBench (Li et al., 2023), and the length of input tokens is approximately 5,600 tokens, except for
OPT-6.7B, which has a maximum sequence length of 2048. We then visualize the cached embeddings
(at randomly selected layer/head) using t-SNE (Van der Maaten & Hinton, 2008), identifying cluster

1https://huggingface.co/spaces/open-llm-leaderboard/open_llm_
leaderboard

7

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

center points through the greedy k-center algorithm (Dyer & Frieze, 1985). The benchmark models
are summarized in Table 1, and their embeddings are illustrated in Fig. 1.

First, we observe that the key embeddings (first rows in Fig. 1) exhibit a higher degree of cluster-
ability compared to value embeddings. Furthermore, we note that the cluster centers (indicated by
green dots) corresponding to the key embeddings are evenly distributed across the entire embedding
space. In particular, the key embeddings demonstrate significant dispersion across different time
steps, and their cluster centers are distributed over the entire embedding space. Similar results are
observed across various layers and heads and can be founded in Appendix B.1.

Second, it is clearly observed that the key embeddings in Llama-3.1-8B and Gemma-2-9B, both incor-
porating RoPE, show strong clusterability. On the other hand, MPT-7B (using ALiBi) and OPT-6.7B
(using AbsPE) demonstrate weaker clusterability. Notably, models utilizing RoPE have consistently
outperformed those using other positional encoding methods across various benchmarks. For ex-
ample, from open llm leaderboard (Fourrier et al., 2024), we observe that the performance
ranking followed order of Gemma-2-9B > Llama-3.1-8B≫ OPT-30B > MPT-7B (score for OPT-6.7B
has not been submitted). These observations strongly support the validity and practicality of our
clusterability assumption (Definition 2.1) for high-performing open-source LLMs.

3.2 BOUNDED NORM ON QUERY EMBEDDINGS

We additionally investigate assumption on the upper bound of query embeddings in Theorem 2.4,
i.e., ∥qn∥2 ≤ r for some constant r > 0. Essentially, query embeddings are obtained by mul-
tiplying weights by the input embeddings, and they are typically passed through the Layer Nor-
malization (Ba, 2016). Therefore, entries of query embeddings are expected to be small assuming
the weight matrices have small eigenvalues, and the norms of query embeddings in our case after
Layer Normalization are expected to be small constants. We empirically compute ℓ2 norms of query
embeddings from the same models used in Section 3.1 using the first 20 prompts from TriviaQA
dataset. The average ℓ2-norms of the query (with 95% confidence interval) is reported in Table 1,
which are mostly constant and upper-bounded regardless of the length of the input prompt. This
strongly supports our assumption on upper bound of query embeddings.

4 EXPERIMENTS

In this section, we report the empirical results of the proposed algorithm with memory footprint
reduction and performance on various downstream question-answering tasks. For all experiments,
we use a single NVIDIA A100 GPU with 80 GB VRAM .

4.1 LINE RETRIEVAL

We first evaluate our proposed algorithm on long-context line retrieval task in LongEval (Li et al.,
2023)2 benchmark. The task involves long-context line retrieval from extensive documents, each
comprising multiple lines, complete with line numbers and topics. The objective is to precisely
retrieve a specified number of lines corresponding to a target topic. We vary the number of lines,
representing the number of targets, to 200, 300, and 400 and they correspond to sequence lengths
of n =5,000, 7,000, and 9,000, respectively. Each dataset contains 50 distinct questions, and we
systematically extract the number from the generated answers and compute accuracies. The answers
are generated employing the longchat-7B model3, which is a fine-tuned version of the Llama-2-7B
model with long-range context length.

We compare our method to two KV cache compression algorithms; H2O (Zhang et al., 2023), which
retains cached tokens with high cumulative attention scores, and AttentionSink (Xiao et al., 2023),
a method that deterministically selects some initial and recent tokens. Specifically, both of these
prior works have highlighted the significance of recent token embeddings in generating meaningful
responses. To leverage this insight, we integrate it with our clustering approach. More precisely, our
strategy consistently retains the most recent ℓ token embeddings, in addition to k centers selected

2https://github.com/DachengLi1/LongChat/blob/longeval
3https://huggingface.co/lmsys/longchat-7b-v1.5-32k

8

https://github.com/DachengLi1/LongChat/blob/longeval
https://huggingface.co/lmsys/longchat-7b-v1.5-32k

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

n = 5k n = 7k n = 9k

Algorithm Cache Size (GB) Accuracy Cache Size (GB) Accuracy Cache Size (GB) Accuracy

Exact 2.351 0.98 3.488 1.0 4.613 0.68
Sink (Xiao et al., 2023) 1.511 (35% ↓) 0.56 2.012 (42% ↓) 0.56 2.262 (50% ↓) 0.38
H2O (Zhang et al., 2023) 1.511 (35% ↓) 0.66 2.012 (42% ↓) 0.58 2.262 (50% ↓) 0.38
CLUSTERGEN 1.512 (35% ↓) 0.86 2.012 (42% ↓) 0.66 2.262 (50% ↓) 0.44

Table 2: Results on accuracy of line retrieval from LongEval (Li et al., 2023) dataset with context
length ranging 5k to 9k. Under the sublinear cache budgets in terms of the sequence length, the
proposed approach based on greedy k-center outperforms other methods over all sequence lengths.

Algorithm Single-QA Multi-QA Summurization Fewshot Code

Exact 70.05 56.00 56.67 190.44 108.41
Sink (Xiao et al., 2023) 54.19 51.91 53.47 184.94 96.15
CLUSTERGEN 55.96 48.52 47.24 181.57 96.18

Table 3: Results on generation tasks for long-range prompts from LongBench (Li et al., 2023)
datasets. The prompt length is at most 20k and the cache size budget is set to 2k, i.e., ℓ = k = 1,024.

from the remaining tokens. In a streaming context, this strategy is often referred to as a sliding
window. We apply the greedy k-center clustering algorithm once to compress the entire KV caches.
To make comparisons fair, we set cache memory budgets of all algorithms identical (i.e., ℓ + k),
which scales sublinearly with the context length denoted as n. We set the compression ratio (ℓ+k)/n
to fixed number, e.g., 0.35 for n = 5k, and report the highest accuracy among all combinations of
(r, k) where r ∈ {2048, 3072} as long as r does not exceed the compressed length.

The results are reported in Table 2. We observe that our clustering-based method consistently out-
performs other algorithms across all sequence lengths. For instance, we achieve an accuracy of 44%
while utilizing only half of the cached KV embeddings with a length of 9k tokens, whereas both
H2O and AttentionSink can achieve accuracies 10% lower. This finding suggests that maintain-
ing the embedding information holds greater significance in sustaining the performance of LLMs
compared to attention scores and positional information.

4.2 TEXT GENERATION ON LONG-RANGE INPUTS

We evaluate our method on various tasks from LongBench (Li et al., 2023) datasets including sum-
marization, single/multi-document question-answering, few-shot learning, and code completion. As
in Section 4.1, we choose longchat-7B model and apply AttentionSink and CLUSTERGEN to the
token generation process. The generated texts are evaluated using metrics from the original code Li
et al. (2023). Specifically, we omit H2O because its open-source version implementation does not
support memory-efficient computation for long sequences and leads the memory overflow errors.
We set the maximum input length to 20,000 for all datasets and truncate the middle prompts when
it overflows (i.e., first and last 10,000 tokens are appended). We fix hyperparameters ℓ, r to 1,024
for all datasets and both cache methods. The results are summarized in Table 2. As a result, our
algorithm shows better performance scores on single-document QA and code completion tasks.

5 CONCLUSION

In this work, we develop CLUSTERGEN, an efficient KV cache compression algorithm via stream
clustering. Our motivation is that cached keys are well clusterable in their embedding space and
we apply a greedy-type clustering algorithm to find the most representative embeddings. Under
assumptions on bounded query norm and clusterability, we analyze that our algorithm can guarantee
a spectral error bound with sublinear time and memory. We further integrate keeping recent tokens
to the proposed clustering approach. For zero-shot line retrieval tasks, our algorithm outperforms
other KV cache compression algorithms with the same memory budget.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Josh Alman and Zhao Song. Fast attention requires bounded entries. Neural Information Processing
Systems (NeurIPS), 2023.

Jimmy Lei Ba. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental clustering and
dynamic information retrieval. In Symposium on the Theory of Computing (STOC), 1997.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. 2023. URL https://vicuna.lmsys.org.

Michael B Cohen, Jelani Nelson, and David P Woodruff. Optimal Approximate Matrix Product in
Terms of Stable Rank. In International Colloquium on Automata, Languages, and Programming
(ICALP), 2016.

Petros Drineas and Ravi Kannan. Fast Monte-Carlo algorithms for approximate matrix multiplica-
tion. In Foundations of Computer Science (FOCS), 2001.

Martin E Dyer and Alan M Frieze. A simple heuristic for the p-centre problem. Operations Research
Letters, 1985.

Clémentine Fourrier, Nathan Habib, Alina Lozovskaya, Konrad Szafer, and Thomas Wolf. Open
llm leaderboard v2. https://huggingface.co/spaces/open-llm-leaderboard/
open_llm_leaderboard, 2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model Tells You
What to Discard: Adaptive KV Cache Compression for LLMs. arXiv preprint arXiv:2310.01801,
2023.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David P Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. International Conference on Learning
Representations (ICLR), 2024.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xiuhong Li, Jun Liu, Kangdi Chen, Hanyu Dong,
and Yu Wang. Flashdecoding++: Faster large language model inference on gpus. arXiv preprint
arXiv:2311.01282, 2023.

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph Gonzalez, Ion Stoica,
Xuezhe Ma, and Hao Zhang. How Long Can Context Length of Open-Source LLMs truly
Promise? In NeurIPS 2023 Workshop on Instruction Tuning and Instruction Following, 2023.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the Persistence of Importance
Hypothesis for LLM KV Cache Compression at Test Time. Neural Information Processing Sys-
tems (NeurIPS), 2023a.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms
at inference time. In International Conference on Machine Learning (ICML), 2023b.

10

https://arxiv.org/pdf/2303.08774.pdf
https://arxiv.org/pdf/2303.08774.pdf
https://arxiv.org/pdf/2302.13214
https://dl.acm.org/doi/pdf/10.1145/258533.258657
https://dl.acm.org/doi/pdf/10.1145/258533.258657
https://arxiv.org/pdf/2107.03374.pdf?trk=public_post_comment-text
https://arxiv.org/pdf/2107.03374.pdf?trk=public_post_comment-text
https://vicuna.lmsys.org
https://arxiv.org/pdf/1507.02268.pdf
https://arxiv.org/pdf/1507.02268.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=959921
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=959921
https://www.math.cmu.edu/users/af1p/Texfiles/simpheur.pdf
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://arxiv.org/pdf/2310.01801.pdf
https://arxiv.org/pdf/2310.01801.pdf
https://arxiv.org/pdf/2310.05869.pdf
https://arxiv.org/pdf/2210.02303.pdf
https://arxiv.org/pdf/2210.02303.pdf
https://arxiv.org/pdf/2311.01282.pdf
https://openreview.net/pdf?id=LywifFNXV5
https://openreview.net/pdf?id=LywifFNXV5
https://openreview.net/pdf?id=JZfg6wGi6g
https://openreview.net/pdf?id=JZfg6wGi6g
https://proceedings.mlr.press/v202/liu23am/liu23am.pdf
https://proceedings.mlr.press/v202/liu23am/liu23am.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Colin McDiarmid. Concentration. In Probabilistic methods for algorithmic discrete mathematics.
Springer, 1998.

Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning
(ICML), 2021.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Tamas Sarlos, Xingyou Song, David Woodruff, and Qiuyi Zhang. Hardness of low rank approxima-
tion of entrywise transformed matrix products. In Thirty-seventh Conference on Neural Informa-
tion Processing Systems, 2023.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of
large language models with a single gpu. In International Conference on Machine Learning
(ICML), 2023.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research (JMLR), 2008.

Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software
(TOMS), 1985.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers
via kernel density estimation. In International Conference on Machine Learning (ICML), 2023.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2O: Heavy-Hitter Oracle for Efficient Gen-
erative Inference of Large Language Models. Neural Information Processing Systems (NeurIPS),
2023.

A PROOFS

A.1 PROOF OF LEMMA 2.2

Proof. The first property is trivial because µ is initialized at zero and is updated in line 6 of the
algorithm by adding the squared norms of vi’s. The proof of the second invariance is by induc-
tion. The base of induction holds for n = 1 because after processing the first token by procedure
UPDATEMATRIXPRODUCT we have Pr[M(j) = (k1,v1)] =

∥v1∥2
2

∥v1∥2
2

= 1 for j ∈ [s].

11

https://proceedings.mlr.press/v139/radford21a/radford21a.pdf
https://proceedings.mlr.press/v139/radford21a/radford21a.pdf
https://arxiv.org/pdf/2308.12950.pdf?fbclid=IwAR1lnwBO8AEH9CcL7HSpR4ZypJgzDTKtEnUPoyn81SBwvn3pcFcxUqAgZmE&trk=public_post_comment-text
https://arxiv.org/pdf/2303.06865.pdf
https://arxiv.org/pdf/2303.06865.pdf
https://arxiv.org/pdf/2104.09864.pdf
https://arxiv.org/pdf/2104.09864.pdf
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/pdf/2307.09288.pdf%C3%82%C2%A0
https://arxiv.org/pdf/2307.09288.pdf%C3%82%C2%A0
https://jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://dl.acm.org/doi/pdf/10.1145/3147.3165
https://arxiv.org/pdf/2309.17453.pdf
https://arxiv.org/pdf/2309.17453.pdf
https://arxiv.org/pdf/2302.02451.pdf
https://arxiv.org/pdf/2302.02451.pdf
https://arxiv.org/pdf/2306.14048.pdf
https://arxiv.org/pdf/2306.14048.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Now suppose that the inductive hypothesis holds for n and we prove it must also hold for n + 1.
For any j ∈ [s] in line 24 of Algorithm 1 with probability p =

∥vn+1∥2
2

µ+∥vn+1∥2
2

,M(j) gets updated to

(kn+1,vn+1). Since we showed that µ =
∑

i∈[n] ∥vi∥22 we have:

Pr[M(j) = (kn+1,vn+1)] =
∥vn+1∥22∑
l∈[n+1] ∥vl∥22

.

Moreover with probability 1− p = µ
µ+∥vn+1∥2

2

,M(j) keeps its previous value. Using the inductive
hypothesis we have that for every i ∈ [n]:

Pr[M(j) = (ki,vi)] =
∥vi∥22∑

l∈[n] ∥vl∥22
·

∑
l∈[n] ∥vl∥22∑

l∈[n+1] ∥vl∥22
=

∥vi∥22∑
l∈[n+1] ∥vl∥22

.

This completes the proof of Lemma 2.2.

A.2 PROOF OF LEMMA 2.3

Proof. The proof is by induction on the stream length n. The base of induction trivially holds
for n = 0, where D is an empty set. To prove the inductive step suppose that the induc-
tive hypothesis holds for some n. Specifically, suppose that D is a set of m items of the
form D = {(xi,Si, ni) : i ∈ [m]} and there exists a partition of keys into m disjoint subsets
C1, C2, . . . Cm ⊆ {ki}ni=1 as per in the lemma statement, such that for every i ∈ [m]: (1) xi ∈ Ci, (2)
ni = |Ci|, (3) ∥xi − k′∥2 ≤ δ for every k′ ∈ Ci, (4) ∥xi − xj∥2 > δ for every i ̸= j, and (5) Si is
a set of t i.i.d. uniform samples from the set Ci. Given this assumption, we prove that the inductive
step also holds for after processing the (n+ 1)-th key in the stream kn+1.

In the next iteration, specifically in line 12 of UPDATESOFTMAXNORMALIZER, the algorithm finds
the index i∗ ∈ [m] such that ∥xi∗ − kn+1∥2 is minimized. Two cases arise:

Case 1: ∥xi∗ − kn+1∥2 ≤ δ. In this case, the algorithm increments ni∗ ← ni∗ + 1 in line 14.
Consider the new partitioning of the keys defined as C′i = Ci for i ̸= i∗ and C′i∗ = Ci∗ ∪ {kn+1}.
It follows from the inductive hypothesis that for every i ∈ [m]: (1) xi ∈ C′i, (2) ni = |C′i|, (3)
∥xi − k′∥2 ≤ δ for every k′ ∈ C′i, and (4) ∥xi − xj∥2 > δ for every i ̸= j hold after the n + 1-th
iteration. Furthermore, since the algorithm does not alter the lists Si for i ̸= i∗, we have that (5) Si
is a set of t i.i.d. uniform samples from the set C′i for any i ̸= i∗. On the other hand, the algorithm in
line 17 performs reservoir sampling on the set Si∗ with new element kn+1 which implies that Si∗ is
a set of t i.i.d. uniform samples from the set C′i∗ . This completes the inductive step in the first case.

Case 2: ∥xi∗ − kn+1∥2 > δ. In this case, the algorithm adds a new element to D, thus, the
updated set is D′ = {(xi,Si, ni) : i ∈ [m + 1]} with xm+1 = kn+1 and nm+1 = 1. If we
consider the new partitioning of keys to be C1, C2, . . . Cm, Cm+1, where Cm+1 = {kn+1}, we can
use the inductive hypothesis to deduce that for any i ∈ [m + 1]: (1) xi ∈ Ci, (2) ni = |Ci|, (3)
∥xi − k′∥2 ≤ δ for every k′ ∈ Ci, and (4) ∥xi − xj∥2 > δ for every i ̸= j hold after the n + 1-th
iteration of the stream. Furthermore, Sm+1 is defined to be a list of t copies of kn+1, thus, (5) Si is
a set of t i.i.d. uniform samples from the set Ci for any i ∈ [m + 1]. This completes the inductive
step in this case and also concludes the proof of Lemma 2.3.

A.3 PROOF OF THEOREM 2.4

Proof. We start the correctness proof by observing that all preconditions of Lemma 2.3 are satis-
fied, allowing us to invoke this lemma. Let the partition of keys into disjoint subsets be denoted
by C1, C2, . . . Cm′ ⊆ {ki}ni=1 satisfying

⋃m′

j=1 Cj = {ki}ni=1 and Ci ∩ Cj = ∅ for every i ̸= j

as per Lemma 2.3 for some positive integer m′. Rewriting the partition function in the attention
denominator gives: ∑

j∈[n]

exp(⟨kj , qn⟩) =
∑

i∈[m′]

∑
k′∈Ci

exp(⟨k′, qn⟩).

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Now by property (3) in Lemma 2.3 and triangle inequality, for every i ∈ [m′] and every k′,k′′ ∈ Ci
we have:

∥k′ − k′′∥2 ≤ ∥k
′ − xi∥2 + ∥k

′′ − xi∥2 ≤ 2δ.

Therefore, using the precondition of the theorem on ∥qn∥2 ≤ r we have

exp(⟨k′, qn⟩)/ exp(⟨k′′, qn⟩) ≤ e2δ·r.

Using the above inequality and the assumption in the theorem statement regarding t =
Ω
(
ε−2 · e2δ·r log n

)
combined with the properties (2) and (5) proved in Lemma 2.3, we can invoke

Chernoff-Hoeffding inequality (see e.g., McDiarmid (1998)) along with union bound to conclude
that the following holds simultaneously for all i ∈ [m′] with probability at least 1− 1

poly(n) :

ni

t
·
∑
k′∈Si

exp(⟨qn,k′⟩) ∈ (1± ε/3) ·
∑
k′∈Ci

exp(⟨k′, qn⟩)

Since the terms above are positive, by summing up the given inequality for all i ∈ [m′], we find that
the quantity τ computed in line 27 of Algorithm 1 satisfies the following:

Pr

τ ∈ (1± ε/3)
∑
j∈[n]

exp(⟨kj , qn⟩)

 ≥ 0.995 (5)

Next, we invoke Lemma 2.2 to derive an error bound on the approximate matrix-vector product
between the softmax vector and the matrix of values Vn. By leveraging well-established techniques
in approximate matrix products, such as the standard result from Drineas & Kannan (2001), and
using the conclusion of Lemma 2.2 regardingM as a list of s = Ω(ε−2 · d) i.i.d. sample from the

probability distribution Pr[M(j) = (ki,vi)] =
∥vi∥2

2∑
l∈[n]∥vl∥2

2

for i ∈ [n] for i ∈ [n] and j ∈ [s],

we have that vector z computed in line 26 of Algorithm 1 satisfies the following inequality with a
probability of at least 0.995: ∥∥z − exp(Kn · qn)⊤ · Vn

∥∥
2

≤ ε

3
∥exp(Kn · qn)∥2 ∥Vn∥op (6)

Now by combining inequalities in Eq. (5) and Eq. (6) using union bound and triangle inequality
we find that the output of Algorithm 1 computed in line 28 as z/τ satisfies the following with
probability at least 0.99 ∥∥z/τ − softmax(Kn · qn)⊤ · Vn

∥∥
2

≤ ε ∥softmax(Kn · qn)∥2 ∥Vn∥op.

This completes the correctness proof of Theorem 2.4.

B ADDITIONAL EXPERIMENTS

B.1 CLUSTERABILITY

We additionally provide t-SNE plots of key (first rows) and value (second rows) with more diverse
layers and heads, and similar results discussed in Section 3.1 are observed; a higher degree of
clusterability on the key embeddings compared to value ones.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

60 40 20 0 20 40 60

40

20

0

20

40

0-layer 19-head key

40 20 0 20 40 60

40

20

0

20

40

60

7-layer 27-head key

75 50 25 0 25 50 75

40

30

20

10

0

10

20

30
15-layer 11-head key

100 75 50 25 0 25 50 75

30

20

10

0

10

20

30

40
23-layer 13-head key

60 40 20 0 20 40 60

40

20

0

20

40

60

31-layer 27-head key

60 40 20 0 20 40 60

40

20

0

20

40

0-layer 19-head value

80 60 40 20 0 20 40 60

40

20

0

20

40

7-layer 27-head value

60 40 20 0 20 40 60
60

40

20

0

20

40

60
15-layer 11-head value

60 40 20 0 20 40
60

40

20

0

20

40

23-layer 13-head value

60 40 20 0 20 40 60

40

20

0

20

40

60

31-layer 27-head value

0

250

500

750

1000

1250

1500

1750

2000
timesteps

facebook/opt-6.7b

75 50 25 0 25 50 75

60

40

20

0

20

40

60

80

0-layer 19-head key

75 50 25 0 25 50 75 100
80

60

40

20

0

20

40

60

7-layer 27-head key

75 50 25 0 25 50 75

60

40

20

0

20

40

60
15-layer 11-head key

100 75 50 25 0 25 50 75 100

60

40

20

0

20

40

60

23-layer 13-head key

60 40 20 0 20 40 60 80

60

40

20

0

20

40

60

80
31-layer 27-head key

100 50 0 50 100

100

50

0

50

100

0-layer 19-head value

75 50 25 0 25 50 75

60

40

20

0

20

40

60

80
7-layer 27-head value

75 50 25 0 25 50 75
80

60

40

20

0

20

40

60

80
15-layer 11-head value

75 50 25 0 25 50 75 100

75

50

25

0

25

50

75

23-layer 13-head value

100 75 50 25 0 25 50 75 100

40

20

0

20

40

60

31-layer 27-head value

0

1000

2000

3000

4000

5000

timesteps
mosaicml/mpt-7b

100 75 50 25 0 25 50 75 100

60

40

20

0

20

40

60

80
0-layer 7-head key

100 50 0 50 100

100

75

50

25

0

25

50

75

100
7-layer 0-head key

75 50 25 0 25 50 75 100

75

50

25

0

25

50

75

15-layer 0-head key

75 50 25 0 25 50 75

80

60

40

20

0

20

40

60

80
23-layer 5-head key

100 75 50 25 0 25 50 75
100

75

50

25

0

25

50

75

31-layer 6-head key

100 75 50 25 0 25 50 75 100

100

50

0

50

100

0-layer 7-head value

75 50 25 0 25 50 75

80

60

40

20

0

20

40

60

7-layer 0-head value

80 60 40 20 0 20 40 60 80

60

40

20

0

20

40

60

15-layer 0-head value

75 50 25 0 25 50 75

75

50

25

0

25

50

75

23-layer 5-head value

80 60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

80

31-layer 6-head value

0

1000

2000

3000

4000

5000

timesteps
meta-llama/Meta-Llama-3.1-8B

80 60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

80

0-layer 3-head key

100 50 0 50 100
80

60

40

20

0

20

40

60

7-layer 7-head key

75 50 25 0 25 50 75
80

60

40

20

0

20

40

60

80
15-layer 2-head key

75 50 25 0 25 50 75

75

50

25

0

25

50

75

23-layer 4-head key

80 60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

80

31-layer 6-head key

100 50 0 50 100

100

50

0

50

100

150
0-layer 3-head value

75 50 25 0 25 50 75
80

60

40

20

0

20

40

60

80
7-layer 7-head value

80 60 40 20 0 20 40 60 80
100

75

50

25

0

25

50

75

100
15-layer 2-head value

75 50 25 0 25 50 75

75

50

25

0

25

50

75

23-layer 4-head value

75 50 25 0 25 50 75

75

50

25

0

25

50

75

31-layer 6-head value

0

1000

2000

3000

4000

5000

timesteps
google/gemma-2-9b

14

	Introduction
	Related Work
	Streaming Attention Problem
	Overview of Contributions

	Sublinear Time and Memory Algorithm
	Streaming Attention Data Structure
	Matrix Product Data Structure
	Softmax Normalizer (Partition Function) DS
	Streaming Attention: Main Theorem

	Ablation Study
	Clusterability on Key and Value Embeddings
	Bounded Norm on Query Embeddings

	Experiments
	Line Retrieval
	Text Generation on Long-range Inputs

	Conclusion
	Proofs
	Proof of lemupdatematrixprod
	Proof of lemupdatesoftmaxnorm
	Proof of maintheorem

	Additional Experiments
	Clusterability

