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ABSTRACT

Despite the significant success of large language models (LLMs), their extensive
memory requirements pose challenges for deploying them in long-context token
generation. The substantial memory footprint of LLM decoders arises from the
necessity to store all previous tokens in the attention module, a requirement im-
posed by key-value (KV) caching. In this work, our focus is on developing an
efficient compression technique for the KV cache. Empirical evidence indicates
a significant clustering tendency within key embeddings in the attention module.
Building on this key insight, we have devised a novel caching method with sublin-
ear complexity, employing online clustering on key tokens and online ℓ2 sampling
on values. The result is a provably accurate and efficient attention decoding al-
gorithm, termed CLUSTERGEN. Not only does this algorithm ensure a sublinear
memory footprint and sublinear time complexity, but we also establish a tight
error bound for our approach. Empirical evaluations on long-context question-
answering tasks demonstrate that CLUSTERGEN significantly outperforms exist-
ing and state-of-the-art KV cache compression methods in terms of performance
and efficiency.

1 INTRODUCTION

Large Language Models (LLMs) (Achiam et al., 2023; Touvron et al., 2023) play a crucial role
in various natural language processing applications, including dialog systems (Taori et al., 2023;
Chiang et al., 2023), coding assistance (Chen et al., 2021; Roziere et al., 2023), and image/video
generations from text (Radford et al., 2021; Ho et al., 2022). All of these models rely on the trans-
former architecture, with the attention mechanism serving as the key component.

To fully harness the capabilities of LLMs, they must demonstrate both efficiency and accuracy in
generating long sequences. In practical applications, deploying LLMs to generate tokens in an
autoregressive manner involves a sequential decoding process, where attention is dynamically ap-
plied to each newly generated token. This process effectively constructs the output sequence in a
streaming manner, one token at a time. Therefore, as the sequence grows, the model has to produce
contextually relevant and coherent content.

A common method for autoregressive attention decoding involves the use of key-value (KV)
caching, where key and value pairs from all preceding tokens are cached and reused to prevent
redundant computations. However, this approach faces memory constraints, particularly when han-
dling long sequences. In particular, the memory requirements and runtime for generating each new
token increase linearly with context size, posing a significant challenge for efficient processing of
extensive sequences. This linear scaling directly impedes practical applicability in real-world sce-
narios, such as chat systems, where large contexts are often encountered.

In this work, we delve into the primary computational and memory bottleneck of token generation.
We propose CLUSTERGEN, a novel approach designed to significantly reduce the memory and
runtime complexity of token generation, moving from conventional linear growth to sublinear scale.
To summarize, our goal is to answer the following question:

Can we approximate the attention output in decoding phase
in sublinear space/time complexity in context length?
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1.1 RELATED WORK

Recent studies have underscored the need for efficient token generation, particularly with the rise of
long-range context datasets. Several recent works have developed efficient strategies for compress-
ing the KV cache. Zhang et al. (2023) proposed a greedy-type eviction algorithm that dynamically
keeps at most k ≪ n token embeddings based on the accumulated attention scores where they refer
to the Heavy Hitter Oracle (H2O). Liu et al. (2023a) empirically observed that tokens with initially
high attention scores tend to stay high during the future generation process. Motivated by this ob-
servation, the authors proposed a strategy that only keeps the most recent and pivotal tokens whose
attention scores are higher than a threshold. Ge et al. (2023) proposed an adaptive method of KV
cache compression which identifies the intrinsic structures of attention heads and uses them to deter-
mine the optimal compression policy. Xiao et al. (2023) observed that a simple eviction mechanism
that keeps only first few and last few tokens does not degrade much the decoding quality. They
additionally proposed a fine-tuning method to solve performance degradation from their method.
Liu et al. (2023b) developed an algorithm that reduces the generation latency by exploiting contex-
tual sparsity. In addition to algorithmic acceleration, there has also been a line of work optimizing
hardware resource configurations (Sheng et al., 2023; Hong et al., 2023). However, to the best of
our knowledge, none of these works have achieved an efficient method for KV cache with fully
sublinear-time memory space.

On the lower bound side, achieving subquadratic amortized runtime for producing output embed-
dings for n tokens in the worst-case instances is likely impossible without making assumptions about
the input tokens (Alman & Song, 2023; Sarlos et al., 2023). Therefore, to achieve fast runtime, it is
necessary to rely on certain assumptions about the input tokens.

1.2 STREAMING ATTENTION PROBLEM

Deployment of LLMs involves computing attention output in a streaming fashion, where at each
phase of token generation a triplet of vectors is given. More precisely, at i-th token generation
phase, three vectors qi,ki,vi ∈ Rd are streamed where they are called by query, key and value,
respectively. Suppose that n of tokens have been streamed so far either in prompt encoding or token
generation phase. The objective of streaming attention decoding is to compute the following:

Attn(qn,Kn,Vn) = softmax(Kn · qn)⊤ · Vn, (1)

where Kn,Vn ∈ Rn×d are matrices defined by stacking the keys and values in their respective
rows:

Kn :=


k⊤
1

k⊤
2
...

k⊤
n

 , Vn :=


v⊤
1

v⊤
2
...

v⊤
n

 . (2)

The output Attn(qn,Kn,Vn) is then used for predicting the next token and its token embedding
is applied to a transformer model and introduce a new stream pair (qn+1,kn+1,vn+1) is gener-
ated. However, storing these values and keys requires O(nd) memory, posing a significant space
complexity challenge for long-context models with large n.

1.3 OVERVIEW OF CONTRIBUTIONS

We propose CLUSTERGEN, an efficient method that accurately approximates the attention decoder’s
output in Eq. (1) while retaining only a small (sublinear) subset of keys and values in the cache. In
particular, CLUSTERGEN computes an estimator zn for Attn(qn,Kn,Vn) in sublinear time and
memory such that the error is bounded as follows:

∥zn −Attn(qn,Kn,Vn)∥2 ≤ ε ∥softmax(Kn · qn)∥2 ∥Vn∥op , (3)

where ∥·∥op represents the matrix operator norm. This error bound is in line with the spectral errors
studied in previous works (Zandieh et al., 2023; Han et al., 2024).

We begin by observing that Attn(qn,Kn,Vn) in Eq. (1) is the product of the softmax vector
softmax(Kn · qn) and value matrix Vn. This matrix-vector product can be approximated by sub-
sampling only O(ε−2d log n) key-value pairs according to the vector and matrix according to the
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squared norms of value tokens. This can be implemented in a streaming setting using some variants
of reservoir sampling.

The other major computational challenge is computing the partition function in the denominator of
the softmax function, i.e.,

∑
i∈[n] exp(⟨ki, qn⟩). To solve this, we construct a data structure that can

be stored in sublinear memory and efficiently approximate
∑

i∈[n] exp(⟨ki, qn⟩) up to 1 ± ε factor
for any query qn. Our method assumes that the key tokens can be covered by a sublinear number
of bounded diameter clusters. This assumption is indeed weaker than the one made in Han et al.
(2024), which in the decoding setting translates to having key tokens belong to only one cluster with
a bounded diameter, while our approach allows for any sublinear number of clusters. So, if the keys
are composed of bounded diameter clusters then we only need a small number of uniformly sampled
keys from each cluster to approximate the softmax normalizer efficiently and accurately. The central
task is to find these clusters in a streaming setting, and we achieve this using an algorithm that is
inspired by the streaming k-center algorithm of Charikar et al. (1997).

In Theorem 2.4 and Corollary 2.5 we demonstrate that if the keys can be clustered into some sub-
linear number m = n1−Ω(1) of clusters with some bounded diameters, then CLUSTERGEN operates
with sublinear O

(
ε−2md

)
= O

(
ε−2dn1−Ω(1)

)
memory and runtime and its output satisfies the ap-

proximation guarantee in Eq. (3). In Section 4, we empirically compare CLUSTERGEN to other KV
cache compression methods including the attention-score-based algorithm of Zhang et al. (2023) and
the deterministic eviction policy from Xiao et al. (2023). Our results confirm that CLUSTERGEN
outperforms these methods, particularly in question-answering tasks with various sequence lengths.

2 SUBLINEAR TIME AND MEMORY ALGORITHM

Our goal is to approximate the attention output in Eq. (1) with a space complexity that is sublinear
in context length n. To achieve this objective, we aim to design the following data structure (DS)
for efficiently approximating the streaming attention mechanism:

2.1 STREAMING ATTENTION DATA STRUCTURE

For every positive integer n and every stream of token triplets (q1,k1,v1), . . . , (qn,kn,vn) where
qi,ki,vi ∈ Rd, we aim to construct an efficient DS with the following properties:

• The required memory space is sublinear in n, i.e., o(n).

• Upon the arrival of a new triplet (qn+1,kn+1,vn+1) in the stream, the time complexity to update
is sublinear in n, i.e., o(n).

• Given such data structure, there exists an algorithm that outputs an estimator zn ∈ Rd in sublin-
ear time o(n) such that:∥∥zn − softmax(Kn · qn)⊤ · Vn

∥∥
2
≤ ε ∥softmax(Kn · qn)∥2 ∥Vn∥op . (4)

In the rest of this section, our focus is on developing an algorithm to satisfy the above properties.
Note that the attention output in Eq. (1), using the definition of softmax, is equivalent to the following
expression:

Attn(qn,Kn,Vn) =
exp(Kn · qn)⊤ · Vn∑

i∈[n] exp(⟨ki, qn⟩)
.

Thus, to compute the attention output we need to calculate:

1. The matrix-vector product between Vn and exp(Kn · qn).
2. The partition function

∑
i∈[n] exp(⟨ki, qn⟩).

Thus, our DS needs to efficiently approximate each of these two operations. The matrix-vector prod-
uct exp(Kn · qn)⊤ ·Vn can be approximated efficiently using standard sampling-based techniques.
Specifically, we make use of the row norm sampling approach (Drineas & Kannan, 2001; Cohen
et al., 2016). When multiplying two matrices A ∈ Rm×n and B ∈ Rn×p, we randomly sample
an i.i.d. index i ∈ [n] with probability proportional to the ℓ2 norm of the i-th row in B. Then, we
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estimate A · B by the average of the product between i-th column in A and i-th row in B. With
this approximation, we need only O(ε−2d log n) samples to guarantee an ε multiplicative error in
spectral norm for exp(Kn ·qn)⊤ ·Vn. Luckily, it can be implemented in a streaming setting through
a variant of reservoir sampling (Vitter, 1985).

The more challenging task is the sublinear-time approximation of the partition function∑
i∈[n] exp(⟨ki, qn⟩). We construct a DS for computing this under the assumption that the keys

in the token stream are organized into o(n) of clusters. To be more precise, we introduce the follow-
ing notion of clusterability:
Definition 2.1 (Clusterability). For a positive integer m and a real-valued δ > 0, a dataset of
points x1,x2, . . .xn ∈ Rd is considered (m, δ)-clusterable if there exists a size-m partition
C1, C2, . . . Cm ⊆ {xi}ni=1 of the dataset satisfying the following conditions:

• Ci ∩ Cj = ∅ for every i ̸= j and
⋃m

j=1 Cj = {xi}ni=1.

• for every j ∈ [m] and every distinct pair y, z ∈ Cj , ∥y − z∥2 ≤ δ.

We demonstrate that under the assumption that the stream of keys k1,k2, . . .kn is (m, δ)-clusterable
as defined in Definition 2.1, with the number of clusters scaling sublinearly in stream length (m =
o(n)), it is possible to construct a DS with sublinear memory space. The procedure for this DS is
presented in Algorithm 1 which we refer to as CLUSTERGEN.

To verify this in the practical settings, we plot key embeddings from open-source LLMs in Sec-
tion 3.1 and observe that they are indeed well clusterable on their embedding space. This motivates
us to utilize an efficient stream clustering algorithm on key embeddings. In the remainder of this
section, we provide a detailed explanation for the execution of the algorithm while simultaneously
analyzing it through a series of lemmas.

2.2 MATRIX PRODUCT DATA STRUCTURE

Here, we focus on the UPDATEMATRIXPRODUCT primitive and establish its correctness by intro-
ducing invariants that are maintained throughout the stream processing. This primitive maintains
and updates a list of s elements denoted byM in CLUSTERGEN (Algorithm 1). Initially, this list is
filled with null values. After processing the first token tuple (q1,k1,v1), this list is populated with
s copies of the first key and value (k1,v1). The procedure UPDATEMATRIXPRODUCT performs a
variant of reservoir sampling upon observing any new token in the stream. At any iteration n of the
stream,M is ensured to contain s i.i.d. samples chosen at random from (k1,v1), . . . , (kn,vn) with
probabilities proportional to ∥ki∥22. More precisely, the following invariants hold:
Lemma 2.2 (Correctness of UPDATEMATRIXPRODUCT). For any positive integer s, at any itera-
tion n of the stream in Algorithm 1 the following properties are maintained:

1. µ =
∑

i∈[n] ∥vi∥22.

2. M is a list of s i.i.d. samples from {(k1,v1), . . . , (kn,vn)} where the probability distri-

bution for each element j ∈ [s] and i ∈ [n] is Pr [M(j) = (ki,vi)] =
∥vi∥2

2∑
l∈[n]∥vl∥2

2

.

The proof of the above lemma is deferred to Appendix A.1.

2.3 SOFTMAX NORMALIZER (PARTITION FUNCTION) DS

Here we delve into a detailed discussion of the UPDATESOFTMAXNORMALIZER primitive. This
primitive constructs and maintains a DS denoted by D, enabling accurate approximation of the par-
tition function in the softmax denominator for any query. A crucial requirement for the efficiency of
this primitive is that the key tokens must be (m, δ)-clusterable, as per Definition 2.1. Our algorithm
locates and stores a subsampled representation of each cluster in D in a small memory. Particularly,
to achieve sublinear memory complexity, instead of keeping all keys in each cluster which would
require O(n) memory space, we maintain only a random subset of t samples from each cluster.

Initially, D is an empty set. As new tokens in the stream are processed, new clusters get added to
this set. Each cluster is characterized by a representative point, which is the first key assigned to

4
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Algorithm 1 CLUSTERGEN: Sublinear Streaming Attention via Clustering

1: inputs: stream of token embeddings (qn,kn,vn), parameter δ > 0, positive integers s, t
2: Initialize µ← 0, D ← ∅,M←

[
null,

×s· · · · · ·
]

3: repeat
4: D ← UPDATESOFTMAXNORMALIZER(D, δ, t,kn)
5: M← UPDATEMATRIXPRODUCT(M, s, µ,kn,vn)

6: µ← µ+ ∥vn∥22
7: zn ← QUERYSTREAMATTN(D,M, s, t, µ, qn)
8: n← n+ 1
9: output zn

10: until Token stream ends

Procedure UPDATESOFTMAXNORMALIZER (D, δ, t,k)
11: Initialize D ← {(xi,Si, ni) : i ∈ [m]} and i∗ ← arg mini∈[m] ∥xi − k∥2
12: if ∥k − xi∗∥2 ≤ δ then
13: ni∗ ← ni∗ + 1
14: Suppose Si∗ is a list of t vectors in Rd

15: for j ∈ [t] do
16: Flip a coin and with probability p = 1

ni∗
, update the jth entry of Si∗ as Si∗(j)← k

17: end for
18: else
19: S ′ ←

[
k,

×t· · · · · ·
]

(contains t copies of k)
20: D = D ∪ {(k,S ′, 1)}
21: end if
22: return D
Procedure UPDATEMATRIXPRODUCT (M, s, µ,k,v)

23: SupposeM is a list of s tuples of vectors in Rd

24: for i ∈ [s] do
25: Flip a coin and with probability p =

∥v∥2
2

µ+∥v∥2
2

, update the ith entry ofM asM(i)← (k,v)

26: end for
27: returnM
Procedure QUERYSTREAMATTN (D,M, s, t, µ, q)

28: z ←
∑

(k,v)∈M
µ

s·∥v∥2
2

· exp(⟨q,k⟩) · v

29: τ ←
∑

(x,S,n′)∈D
n′

t ·
∑

k∈S exp(⟨q,k⟩)
30: return z/τ

that cluster by our algorithm. Throughout stream processing, we compute the distance between the
new key token and each existing cluster. Here the distance to an existing cluster is defined as the
distance to the aforementioned representative of the cluster. If there is a cluster whose distance is
less than δ, then the token is assigned to the nearest cluster, and we update our random samples of
keys from this cluster using reservoir sampling. If the distance from all existing clusters is more
than δ, we introduce a new cluster in D, and the new key becomes the representative of this new
cluster. At any point in the stream, this algorithm identifies at most m clusters if the keys so far are
(m, δ)-clusterable. If m grows sublinearly in the stream length n, the memory and update time of
our algorithm will be sublinear as well. Formally, we prove that the following invariant holds:
Lemma 2.3 (Correctness of UPDATESOFTMAXNORMALIZER). For any δ > 0, any positive integer
t, at any iteration n of the stream in Algorithm 1 the following properties are maintained. D is a set
of m items of the form D = {(xi,Si, ni) : i ∈ [m]}, where there exists a partition of keys into m
disjoint subsets C1, C2, . . . Cm ⊆ {ki}ni=1 satisfying

⋃m
j=1 Cj = {ki}ni=1 and Ci ∩ Cj = ∅ for every

i ̸= j, such that for every i ∈ [m]:

1. xi ∈ Ci,

2. ni = |Ci|,

5
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3. ∥xi − k′∥2 ≤ δ for every k′ ∈ Ci,

4. ∥xi − xj∥2 > δ for every i ̸= j,

5. Si is a set of t i.i.d. uniform samples from the set Ci.

The proof of Lemma 2.3 can be found in Appendix A.2.

2.4 STREAMING ATTENTION: MAIN THEOREM

Now we are ready to analyze the end-to-end performance of CLUSTERGEN and prove the main
theorem. We show that, given the data structures created throughout the stream and analyzed in
Lemma 2.2 and Lemma 2.3, the primitive QUERYSTREAMATTN can efficiently output an accurate
approximation to the streaming attention, satisfying Eq. (1).

Our analysis unfolds in two steps. First, we establish that the data structures created by UPDATE-
SOFTMAXNORMALIZER and UPDATEMATRIXPRODUCT can be stored in small memory and up-
dated very quickly if the sequence of keys is clusterable into a sublinear number of clusters. Then we
show that the QUERYSTREAMATTN can use these data structures to produce an accurate attention
output for any given query. Our main result is as follows:

Theorem 2.4 (Efficiency and Correctness of Algorithm 1). For any δ, r, ε > 0, any positive integers
n, d, and any sequence of tokens (q1,k1,v1), (q2,k2,v2), . . . (qn,kn,vn) where qi,ki,vi ∈ Rd,
suppose that the followings hold

• t = Ω
(
ε−2 · e2δ·r log n

)
,

• s = Ω(ε−2 · d),

• ∥qn∥2 ≤ r.

Then, CLUSTERGEN (Algorithm 1) at n-th step of the stream processing outputs a vector zn ∈ Rd

that satisfies Eq. (1) with probability at least 0.99. Furthermore, if the keys k1,k2, . . .kn are (m, δ)-
clusterable as per Definition 2.1, then both the total memory of the algorithm and its runtime during
the n-th iteration is bounded by O(d · (mt+ s)).

The proof of Theorem 2.4 can be found in Appendix A.3.

Memory and Runtime. First, note that the memory requirement for storing the listM in Algo-
rithm 1 is O(sd) because it contains s pairs of d-dimensional vectors. Next, to bound the memory
requirement for storing D we need to bound the size of this set which we denoted by m′. According
to properties (1) and (4) in Lemma 2.3, for every i ∈ [m′] there exist xi ∈ {k1,k2, . . .kn} such
that ∥xi − xj∥2 > δ for i ̸= j. Given the assumption in the theorem statement that keys are (m, δ)-
clusterable, by the definition of clusterability in Definition 2.1 along with the pigeonhole principle,
we must have m′ ≤ m. Therefore storing D will require O(m′td) = O(mtd) because it is a set of
m′ elements, and each element of this set is a list of t vectors in dimension d.

Three major operations dominate the runtime of the n-th iteration. Firstly, executing UPDATESOFT-
MAXNORMALIZER requires computing m′ distances in line 12 that takes O(md) time. Addition-
ally, the for loop in line 16 takes O(td) time. Secondly, UPDATEMATRIXPRODUCT has a runtime
bounded by O(sd). Thirdly, running QUERYSTREAMATTN involves O(sd) operations in line 26
and O(m′td) = O(mtd) operations in line 27. As a result, the total runtime of Algorithm 1 in n-th
iteration is O(mtd+ sd).

Theorem 2.4 demonstrates that if the keys can be clustered into some sublinear number m = n1−Ω(1)

of clusters with diameters at most δ, and the queries have bounded ℓ2 norms of at most r such that
the product of the cluster diameter and maximum ℓ2 norm of queries is bounded by δr = o(log n),
then Algorithm 1 operates with sublinear O

(
ε−2 ·mdno(1)

)
= O

(
ε−2 · dn1−Ω(1)

)
memory and

runtime. We summarize this in the following corollary:

Corollary 2.5. Suppose the preconditions of Theorem 2.4 hold. If the diameter of key token clusters
δ and the maximum ℓ2 norm of queries r satisfy δr = o(log n), then the total memory and runtime

6
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(a) OPT-6.7B
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(d) Gemma-2-9B

Figure 1: A t-SNE plot of cached keys (first row) and values (second row) embeddings from 4 open-
source models; (a) OPT-6.7B, (b) MPT-7B, (c) Llama-3.1-8B and (d) Gemma-2-9B using TriviaQA
dataset. Key embeddings are more clusterable than value ones. The green dots represent the centers
from the greedy k-center algorithm (Dyer & Frieze, 1985) where k=16.

Model Positional Encoding Clusterability Leaderboard Score (↑)1 Average ∥qn∥2
OPT-6.7B AbsPE Weak Unknown 15.753 ± 0.0023
MPT-7B ALiBi Weak 5.98 13.576 ± 0.0012
Llama-3.1-8B RoPE Strong 13.78 15.381 ± 0.0005
Gemma-2-9B RoPE Strong 20.98 23.800 ± 0.0009

Table 1: Language models with various positional encodings and their clusterability, performance
scores from open llm leaderboard (Fourrier et al., 2024) (higher is better) and average ℓ2-
norm of the query embeddings. The RoPE makes model performance strong and the corresponding
key embeddings shows strong clusterabilities. All models have bounded query norms regardless of
the sequence length.

of Theorem 2.4 are bounded by O
(
ε−2 · dmno(1)

)
. Moreover, if the number of key token clusters m

grows as a sublinear function of n, i.e., as m = n1−Ω(1), then the memory and runtime are bounded
by O

(
ε−2 · dn1−Ω(1)

)
.

The above results require that the key embeddings are well clusterable in their space, and the cluster
centers should cover all keys with a small radius. In the next section, we empirically explore distribu-
tions on key and value embeddings and verify that the keys are indeed distributed in their embedding
space. This supports that our assumption of clusterability on keys is reasonable in practical settings.

3 ABLATION STUDY

3.1 CLUSTERABILITY ON KEY AND VALUE EMBEDDINGS

We first demonstrate the clusterability of cached embeddings from long-range tokens. To this end,
we collect key and value embeddings from 4 popular open-source language models; OPT-6.7B, MPT-
7B, Llama-3.1-8B and Gemma-2-9B, where each adopts different positional encoding methods across
absolute positional encoding (AbsPE), Attention with Linear Biases (ALiBi) (Press et al., 2021) and
Rotational Positional Encodding (RoPE) (Su et al., 2024). We use prompts from TriviaQA dataset in
LongBench (Li et al., 2023), and the length of input tokens is approximately 5,600 tokens, except for
OPT-6.7B, which has a maximum sequence length of 2048. We then visualize the cached embeddings
(at randomly selected layer/head) using t-SNE (Van der Maaten & Hinton, 2008), identifying cluster

1https://huggingface.co/spaces/open-llm-leaderboard/open_llm_
leaderboard
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center points through the greedy k-center algorithm (Dyer & Frieze, 1985). The benchmark models
are summarized in Table 1, and their embeddings are illustrated in Fig. 1.

First, we observe that the key embeddings (first rows in Fig. 1) exhibit a higher degree of cluster-
ability compared to value embeddings. Furthermore, we note that the cluster centers (indicated by
green dots) corresponding to the key embeddings are evenly distributed across the entire embedding
space. In particular, the key embeddings demonstrate significant dispersion across different time
steps, and their cluster centers are distributed over the entire embedding space. Similar results are
observed across various layers and heads and can be founded in Appendix B.1.

Second, it is clearly observed that the key embeddings in Llama-3.1-8B and Gemma-2-9B, both incor-
porating RoPE, show strong clusterability. On the other hand, MPT-7B (using ALiBi) and OPT-6.7B
(using AbsPE) demonstrate weaker clusterability. Notably, models utilizing RoPE have consistently
outperformed those using other positional encoding methods across various benchmarks. For ex-
ample, from open llm leaderboard (Fourrier et al., 2024), we observe that the performance
ranking followed order of Gemma-2-9B > Llama-3.1-8B≫ OPT-30B > MPT-7B (score for OPT-6.7B
has not been submitted). These observations strongly support the validity and practicality of our
clusterability assumption (Definition 2.1) for high-performing open-source LLMs.

3.2 BOUNDED NORM ON QUERY EMBEDDINGS

We additionally investigate assumption on the upper bound of query embeddings in Theorem 2.4,
i.e., ∥qn∥2 ≤ r for some constant r > 0. Essentially, query embeddings are obtained by mul-
tiplying weights by the input embeddings, and they are typically passed through the Layer Nor-
malization (Ba, 2016). Therefore, entries of query embeddings are expected to be small assuming
the weight matrices have small eigenvalues, and the norms of query embeddings in our case after
Layer Normalization are expected to be small constants. We empirically compute ℓ2 norms of query
embeddings from the same models used in Section 3.1 using the first 20 prompts from TriviaQA
dataset. The average ℓ2-norms of the query (with 95% confidence interval) is reported in Table 1,
which are mostly constant and upper-bounded regardless of the length of the input prompt. This
strongly supports our assumption on upper bound of query embeddings.

4 EXPERIMENTS

In this section, we report the empirical results of the proposed algorithm with memory footprint
reduction and performance on various downstream question-answering tasks. For all experiments,
we use a single NVIDIA A100 GPU with 80 GB VRAM .

4.1 LINE RETRIEVAL

We first evaluate our proposed algorithm on long-context line retrieval task in LongEval (Li et al.,
2023)2 benchmark. The task involves long-context line retrieval from extensive documents, each
comprising multiple lines, complete with line numbers and topics. The objective is to precisely
retrieve a specified number of lines corresponding to a target topic. We vary the number of lines,
representing the number of targets, to 200, 300, and 400 and they correspond to sequence lengths
of n =5,000, 7,000, and 9,000, respectively. Each dataset contains 50 distinct questions, and we
systematically extract the number from the generated answers and compute accuracies. The answers
are generated employing the longchat-7B model3, which is a fine-tuned version of the Llama-2-7B
model with long-range context length.

We compare our method to two KV cache compression algorithms; H2O (Zhang et al., 2023), which
retains cached tokens with high cumulative attention scores, and AttentionSink (Xiao et al., 2023),
a method that deterministically selects some initial and recent tokens. Specifically, both of these
prior works have highlighted the significance of recent token embeddings in generating meaningful
responses. To leverage this insight, we integrate it with our clustering approach. More precisely, our
strategy consistently retains the most recent ℓ token embeddings, in addition to k centers selected

2https://github.com/DachengLi1/LongChat/blob/longeval
3https://huggingface.co/lmsys/longchat-7b-v1.5-32k
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n = 5k n = 7k n = 9k

Algorithm Cache Size (GB) Accuracy Cache Size (GB) Accuracy Cache Size (GB) Accuracy

Exact 2.351 0.98 3.488 1.0 4.613 0.68
Sink (Xiao et al., 2023) 1.511 (35% ↓) 0.56 2.012 (42% ↓) 0.56 2.262 (50% ↓) 0.38
H2O (Zhang et al., 2023) 1.511 (35% ↓) 0.66 2.012 (42% ↓) 0.58 2.262 (50% ↓) 0.38
CLUSTERGEN 1.512 (35% ↓) 0.86 2.012 (42% ↓) 0.66 2.262 (50% ↓) 0.44

Table 2: Results on accuracy of line retrieval from LongEval (Li et al., 2023) dataset with context
length ranging 5k to 9k. Under the sublinear cache budgets in terms of the sequence length, the
proposed approach based on greedy k-center outperforms other methods over all sequence lengths.

Algorithm Single-QA Multi-QA Summurization Fewshot Code

Exact 70.05 56.00 56.67 190.44 108.41
Sink (Xiao et al., 2023) 54.19 51.91 53.47 184.94 96.15
CLUSTERGEN 55.96 48.52 47.24 181.57 96.18

Table 3: Results on generation tasks for long-range prompts from LongBench (Li et al., 2023)
datasets. The prompt length is at most 20k and the cache size budget is set to 2k, i.e., ℓ = k = 1,024.

from the remaining tokens. In a streaming context, this strategy is often referred to as a sliding
window. We apply the greedy k-center clustering algorithm once to compress the entire KV caches.
To make comparisons fair, we set cache memory budgets of all algorithms identical (i.e., ℓ + k),
which scales sublinearly with the context length denoted as n. We set the compression ratio (ℓ+k)/n
to fixed number, e.g., 0.35 for n = 5k, and report the highest accuracy among all combinations of
(r, k) where r ∈ {2048, 3072} as long as r does not exceed the compressed length.

The results are reported in Table 2. We observe that our clustering-based method consistently out-
performs other algorithms across all sequence lengths. For instance, we achieve an accuracy of 44%
while utilizing only half of the cached KV embeddings with a length of 9k tokens, whereas both
H2O and AttentionSink can achieve accuracies 10% lower. This finding suggests that maintain-
ing the embedding information holds greater significance in sustaining the performance of LLMs
compared to attention scores and positional information.

4.2 TEXT GENERATION ON LONG-RANGE INPUTS

We evaluate our method on various tasks from LongBench (Li et al., 2023) datasets including sum-
marization, single/multi-document question-answering, few-shot learning, and code completion. As
in Section 4.1, we choose longchat-7B model and apply AttentionSink and CLUSTERGEN to the
token generation process. The generated texts are evaluated using metrics from the original code Li
et al. (2023). Specifically, we omit H2O because its open-source version implementation does not
support memory-efficient computation for long sequences and leads the memory overflow errors.
We set the maximum input length to 20,000 for all datasets and truncate the middle prompts when
it overflows (i.e., first and last 10,000 tokens are appended). We fix hyperparameters ℓ, r to 1,024
for all datasets and both cache methods. The results are summarized in Table 2. As a result, our
algorithm shows better performance scores on single-document QA and code completion tasks.

5 CONCLUSION

In this work, we develop CLUSTERGEN, an efficient KV cache compression algorithm via stream
clustering. Our motivation is that cached keys are well clusterable in their embedding space and
we apply a greedy-type clustering algorithm to find the most representative embeddings. Under
assumptions on bounded query norm and clusterability, we analyze that our algorithm can guarantee
a spectral error bound with sublinear time and memory. We further integrate keeping recent tokens
to the proposed clustering approach. For zero-shot line retrieval tasks, our algorithm outperforms
other KV cache compression algorithms with the same memory budget.
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Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Tamas Sarlos, Xingyou Song, David Woodruff, and Qiuyi Zhang. Hardness of low rank approxima-
tion of entrywise transformed matrix products. In Thirty-seventh Conference on Neural Informa-
tion Processing Systems, 2023.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
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A PROOFS

A.1 PROOF OF LEMMA 2.2

Proof. The first property is trivial because µ is initialized at zero and is updated in line 6 of the
algorithm by adding the squared norms of vi’s. The proof of the second invariance is by induc-
tion. The base of induction holds for n = 1 because after processing the first token by procedure
UPDATEMATRIXPRODUCT we have Pr[M(j) = (k1,v1)] =

∥v1∥2
2

∥v1∥2
2

= 1 for j ∈ [s].
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Now suppose that the inductive hypothesis holds for n and we prove it must also hold for n + 1.
For any j ∈ [s] in line 24 of Algorithm 1 with probability p =

∥vn+1∥2
2

µ+∥vn+1∥2
2

,M(j) gets updated to

(kn+1,vn+1). Since we showed that µ =
∑

i∈[n] ∥vi∥22 we have:

Pr[M(j) = (kn+1,vn+1)] =
∥vn+1∥22∑
l∈[n+1] ∥vl∥22

.

Moreover with probability 1− p = µ
µ+∥vn+1∥2

2

,M(j) keeps its previous value. Using the inductive
hypothesis we have that for every i ∈ [n]:

Pr[M(j) = (ki,vi)] =
∥vi∥22∑

l∈[n] ∥vl∥22
·

∑
l∈[n] ∥vl∥22∑

l∈[n+1] ∥vl∥22
=

∥vi∥22∑
l∈[n+1] ∥vl∥22

.

This completes the proof of Lemma 2.2.

A.2 PROOF OF LEMMA 2.3

Proof. The proof is by induction on the stream length n. The base of induction trivially holds
for n = 0, where D is an empty set. To prove the inductive step suppose that the induc-
tive hypothesis holds for some n. Specifically, suppose that D is a set of m items of the
form D = {(xi,Si, ni) : i ∈ [m]} and there exists a partition of keys into m disjoint subsets
C1, C2, . . . Cm ⊆ {ki}ni=1 as per in the lemma statement, such that for every i ∈ [m]: (1) xi ∈ Ci, (2)
ni = |Ci|, (3) ∥xi − k′∥2 ≤ δ for every k′ ∈ Ci, (4) ∥xi − xj∥2 > δ for every i ̸= j, and (5) Si is
a set of t i.i.d. uniform samples from the set Ci. Given this assumption, we prove that the inductive
step also holds for after processing the (n+ 1)-th key in the stream kn+1.

In the next iteration, specifically in line 12 of UPDATESOFTMAXNORMALIZER, the algorithm finds
the index i∗ ∈ [m] such that ∥xi∗ − kn+1∥2 is minimized. Two cases arise:

Case 1: ∥xi∗ − kn+1∥2 ≤ δ. In this case, the algorithm increments ni∗ ← ni∗ + 1 in line 14.
Consider the new partitioning of the keys defined as C′i = Ci for i ̸= i∗ and C′i∗ = Ci∗ ∪ {kn+1}.
It follows from the inductive hypothesis that for every i ∈ [m]: (1) xi ∈ C′i, (2) ni = |C′i|, (3)
∥xi − k′∥2 ≤ δ for every k′ ∈ C′i, and (4) ∥xi − xj∥2 > δ for every i ̸= j hold after the n + 1-th
iteration. Furthermore, since the algorithm does not alter the lists Si for i ̸= i∗, we have that (5) Si
is a set of t i.i.d. uniform samples from the set C′i for any i ̸= i∗. On the other hand, the algorithm in
line 17 performs reservoir sampling on the set Si∗ with new element kn+1 which implies that Si∗ is
a set of t i.i.d. uniform samples from the set C′i∗ . This completes the inductive step in the first case.

Case 2: ∥xi∗ − kn+1∥2 > δ. In this case, the algorithm adds a new element to D, thus, the
updated set is D′ = {(xi,Si, ni) : i ∈ [m + 1]} with xm+1 = kn+1 and nm+1 = 1. If we
consider the new partitioning of keys to be C1, C2, . . . Cm, Cm+1, where Cm+1 = {kn+1}, we can
use the inductive hypothesis to deduce that for any i ∈ [m + 1]: (1) xi ∈ Ci, (2) ni = |Ci|, (3)
∥xi − k′∥2 ≤ δ for every k′ ∈ Ci, and (4) ∥xi − xj∥2 > δ for every i ̸= j hold after the n + 1-th
iteration of the stream. Furthermore, Sm+1 is defined to be a list of t copies of kn+1, thus, (5) Si is
a set of t i.i.d. uniform samples from the set Ci for any i ∈ [m + 1]. This completes the inductive
step in this case and also concludes the proof of Lemma 2.3.

A.3 PROOF OF THEOREM 2.4

Proof. We start the correctness proof by observing that all preconditions of Lemma 2.3 are satis-
fied, allowing us to invoke this lemma. Let the partition of keys into disjoint subsets be denoted
by C1, C2, . . . Cm′ ⊆ {ki}ni=1 satisfying

⋃m′

j=1 Cj = {ki}ni=1 and Ci ∩ Cj = ∅ for every i ̸= j

as per Lemma 2.3 for some positive integer m′. Rewriting the partition function in the attention
denominator gives: ∑

j∈[n]

exp(⟨kj , qn⟩) =
∑

i∈[m′]

∑
k′∈Ci

exp(⟨k′, qn⟩).
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Now by property (3) in Lemma 2.3 and triangle inequality, for every i ∈ [m′] and every k′,k′′ ∈ Ci
we have:

∥k′ − k′′∥2 ≤ ∥k
′ − xi∥2 + ∥k

′′ − xi∥2 ≤ 2δ.

Therefore, using the precondition of the theorem on ∥qn∥2 ≤ r we have

exp(⟨k′, qn⟩)/ exp(⟨k′′, qn⟩) ≤ e2δ·r.

Using the above inequality and the assumption in the theorem statement regarding t =
Ω
(
ε−2 · e2δ·r log n

)
combined with the properties (2) and (5) proved in Lemma 2.3, we can invoke

Chernoff-Hoeffding inequality (see e.g., McDiarmid (1998)) along with union bound to conclude
that the following holds simultaneously for all i ∈ [m′] with probability at least 1− 1

poly(n) :

ni

t
·
∑
k′∈Si

exp(⟨qn,k′⟩) ∈ (1± ε/3) ·
∑
k′∈Ci

exp(⟨k′, qn⟩)

Since the terms above are positive, by summing up the given inequality for all i ∈ [m′], we find that
the quantity τ computed in line 27 of Algorithm 1 satisfies the following:

Pr

τ ∈ (1± ε/3)
∑
j∈[n]

exp(⟨kj , qn⟩)

 ≥ 0.995 (5)

Next, we invoke Lemma 2.2 to derive an error bound on the approximate matrix-vector product
between the softmax vector and the matrix of values Vn. By leveraging well-established techniques
in approximate matrix products, such as the standard result from Drineas & Kannan (2001), and
using the conclusion of Lemma 2.2 regardingM as a list of s = Ω(ε−2 · d) i.i.d. sample from the

probability distribution Pr[M(j) = (ki,vi)] =
∥vi∥2

2∑
l∈[n]∥vl∥2

2

for i ∈ [n] for i ∈ [n] and j ∈ [s],

we have that vector z computed in line 26 of Algorithm 1 satisfies the following inequality with a
probability of at least 0.995: ∥∥z − exp(Kn · qn)⊤ · Vn

∥∥
2

≤ ε

3
∥exp(Kn · qn)∥2 ∥Vn∥op (6)

Now by combining inequalities in Eq. (5) and Eq. (6) using union bound and triangle inequality
we find that the output of Algorithm 1 computed in line 28 as z/τ satisfies the following with
probability at least 0.99 ∥∥z/τ − softmax(Kn · qn)⊤ · Vn

∥∥
2

≤ ε ∥softmax(Kn · qn)∥2 ∥Vn∥op.

This completes the correctness proof of Theorem 2.4.

B ADDITIONAL EXPERIMENTS

B.1 CLUSTERABILITY

We additionally provide t-SNE plots of key (first rows) and value (second rows) with more diverse
layers and heads, and similar results discussed in Section 3.1 are observed; a higher degree of
clusterability on the key embeddings compared to value ones.
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