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Abstract

Aspect Sentiment Quad Prediction (ASQP) is
a crucial sentiment analysis task that has at-
tracted increasing attention. The most recent
studies focus on generating complete senti-
ment quadruples through end-to-end genera-
tive models. However, these methods heavily
depend on labeled data quality and quantity,
performing poorly in low-resource scenarios
and less suitable for real-world applications.
To address these issues, we propose a novel
Representative Chain-of-Reasoning framework
(RCR), with the aim of providing representative
knowledge for large language models (LLMs)
and fully activating their reasoning capabilities
for ASQP. Specifically, we develop a Chain
Prompting (ChaPT) module to decompose the
ASQP task into three subtasks using the step-
by-step reasoning mechanism. Then, a Rep-
resentative Demonstration Retriever (RepDR)
is introduced to provide ChaPT with represen-
tative demonstrations, balancing diversity and
similarity, and enhancing the reasoning capa-
bilities of LLMs at each step. Experimental
results confirm the superiority of RCR in both
zero-shot and few-shot scenarios, significantly
surpassing existing counterparts.

1 Introduction

Given a review text, Aspect Sentiment Quad Pre-
diction (ASQP) aims to predict a comprehensive
sentiment view in the form of quadruples (Zhang
et al., 2022a, 2023b), each consisting of aspect cat-
egory, aspect term, opinion term, and sentiment
polarity, denoted as (¢, a, o, s). For example, given
the review sentence, "The food is great and the en-
vironment is even better.", the ASQP task requires
predicting two sentiment quadruples: (food quality,
food, great, positive) and (ambiance general, envi-
ronment, better, positive). ASQP is a challenging
task due to the complexity of sentence structure
and the diversity of sentiment expressions, making
it difficult to recognize all sentiment quadruples.

Recently, the end-to-end generative models have
been extensively applied to solve the ASQP task
by generating sentiment quadruples directly from
the review text and achieved promising results
(Peper and Wang, 2022). A successful appli-
cation is to construct sequences in natural lan-
guage format as generation targets, including an-
notated sentences (Zhang et al., 2021b), para-
phrased sentences (Liu et al., 2021; Zhang et al.,
2021a; Hu et al., 2022a), and sentiment element
sequences (Zhang et al., 2021c). Furthermore, sen-
timent clues within sentences have been utilized
to promote the quadruple generation (Bao et al.,
2022). For example, Mao et al. (2022) introduced
a parallel generation framework to capture more
sentiment information through beam search. Gou
et al. (2023) enhanced the model’s expressive capa-
bility by increasing the output views by adjusting
the generation order of quadruples. Despite their
potential, a notable issue is that these models are
less suitable in low-resource scenarios (Hu et al.,
2022a; Gou et al., 2023). That is because generative
models heavily rely on the scale and quality of the
labeled dataset while annotating datasets is costly
and time-consuming in practical applications.

With the rise of In-Context Learning (ICL), ad-
dressing the ASQP task by generative models in
zero-shot and few-shot scenarios becomes feasi-
ble (Wang et al., 2023c; Zhang et al., 2023a,c).
Sun et al. (2023) propose a multi-LLM negotia-
tion strategy, demonstrating LLMs’ ability to solve
sentiment analysis problems involving complex
contexts (e.g., clauses and irony) under zero-shot
conditions. Moreover, the Three-Hop Reasoning
(THOR) CoT framework (Fei et al., 2023) achieves
state-of-the-art results in implicit sentiment analy-
sis tasks. However, existing research lacks a dis-
cussion on applying LLMs to ASQP tasks, and the
reasoning capabilities of LLMs are underutilized.

To this end, we propose a Representative Chain-
of-Reasoning framework (RCR) that aims to pro-



vide representative knowledge for LLMs and
fully activate their reasoning capabilities for the
ASQP task. Inspired by the Chain-of-Thought
(CoT) prompting (Wei et al., 2022; Zhou et al.,
2022; Zhang et al., 2022b), we first introduce
a Chain Prompt (ChaPT) module to decompose
the one-step ASQP task into three sub-steps,
where each step progressively infers aspect-opinion
pairs, category-aspect-opinion triplets, and com-
plete quadruples. Hence, a complete sentiment
view is obtained through step-by-step reasoning,
effectively reducing the ASQP task’s complexity.
Additionally, considering LLM’s reasoning capabil-
ity is influenced greatly by the quality of demonstra-
tions (Lee et al., 2022; Min et al., 2022; Wang et al.,
2023b), we develop a Representative Demonstra-
tion Retriever (RepDR) module to provide ChaPT
with representative demonstrations, balancing di-
versity and similarity, and thus enhancing their rea-
soning capabilities at each step. Specifically, we
first paraphrase the sentiment quadruples into natu-
ral sentences (Zhang et al., 2021a) and calculate
their semantic similarities using SBERT (Reimers
and Gurevych, 2019). Based on semantic similari-
ties, the triplet that contains an anchor sentence, a
positive sentence, and a negative sentence is picked
for further fine-tuning this SBERT model. Hence,
this fine-tuned SBERT model is good at retrieving
representative demonstrations that possess seman-
tic information of different attributes (Wang et al.,
2022a; Shi et al., 2023; Qin et al., 2023).

In summary, the main contributions of this work
are as follows:

* We introduce ChaPT, a prompting frame-
work based on the chain-of-reasoning con-
cept, which mitigates task complexity through
task decomposition and step-by-step reason-
ing, fully leveraging the reasoning capabilities
of LLMs.

* We use the RepDR module to retrieve demon-
strations, providing more representative prior
information for model reasoning. To the best
of our knowledge, this work is the first to pro-
pose retrieving both diversity and similarity
samples as demonstrations.

» Experimental results show that our proposed
model demonstrates superiority in both zero-
shot and few-shot scenarios and greatly sur-
passes existing counterparts.

2 Methodology

2.1 Problem Definition

The ASQP task is defined as follows: given a sen-
tence X, the model predicts all aspect-based sen-
timent quadruples (Cai et al., 2021; Zhang et al.,
2021a), each formulated as (c, a, 0, s) which cor-
responds to aspect category, aspect term, opinion
term, and sentiment polarity, respectively. The
aspect category c is part of a predefined cate-
gory set U.. The aspect term a is the target
of opinion. The opinion term o is the subjec-
tive statement. Moreover, the sentiment polarity
s belongs to the predefined sentiment set Us €
{positive, neutral, negative}. Notably, aspect a is
generally within the text scope of sentence X, and
if aspect a is not explicitly mentioned, it is repre-
sented by the specific tag NULL.

Xie et al. (2021) believe that ICL in-
fers conditional probabilities of the predic-
tive target from the prompt, formulated as
p(y [prompt)=[ . .p(y|prompt)d(prompt),
where y represents the prediction target and
d(prompt) represents the prompt set. ICL infers
the maximum probability of generating y by
integrating y over the prompt. Therefore, we can
use ICL to model the ASQP task as

y=argmax p(y| X, prompt) (1)

where ¢ represents all quadruples, and Zhang et al.
(2023c¢) attempt to construct the following stan-
dard prompt paradigm as input to the LLMs:

Given the sentence X, tag all the (category,
aspect, opinion, sentiment) quadruples.

2.2 Representative Chain-of-Reasoning

To fully activate the reasoning capabilities of LLMs
for the ASQP task, we propose a Representative
Chain-of-Reasoning framework (RCR) consisting
of two sub-modules: Chain Prompt Framework
(ChaPT) and Representative Demonstration Re-
triever (RepDR). The former is designed to de-
compose the ASQP task into three subtasks, while
the latter is responsible for providing representa-
tive demonstrations to enhance LLLMs’ reasoning
capabilities.

2.2.1 Chain Prompt Framework

Inspired by the impressive reasoning capabilities
demonstrated by Chain of Thought (CoT) in han-
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Figure 1: An illustration of our ChaPT framework for Aspect Sentiment Quad Prediction task.

dling complex tasks(Wei et al., 2022), we propose
the Chain Prompt framework(ChaPT), shown in
Figure 1, to address the ASQP task by decompos-
ing a one-step ASQP solution into three subtasks.
The details are as follows.

Subtask 1. Aspect-Opinion Pair Extraction
Empirical studies find that extracting a single as-
pect or opinion alone would ignore their pairwise
relationships, leading to pairing errors (Chen et al.,
2020; Zhao et al., 2020). Therefore, instead of finer-
grained aspect term or opinion term extraction sub-
task, we first consider predicting all aspect-opinion
pairs appearing in the sentence. Mathematically,
this subtask is formulated as:

7= argmax p(y | X, prompty) 2)

where Z; denotes predicted aspect-opinion
pairs, the template of prompt; is defined as:

Given the sentence X, tag all the (aspect,
opinion) pairs.

Subtask 2. Aspect Category Classification
Based on X and the intermediate results Z;, we
classify category c from the predefined set U, and

obtain the category-aspect-opinion triplets Zs. This
process is represented as:

Zy=argmaxp(y| X, Z1,prompts)  (3)
the template of prompts is as follows.

Given the sentence X and the corresponding list
of aspect-opinion pair tuples Z;, tag all the
(category, aspect, opinion) triplets.

Subtask 3. Aspect Sentiment Quad Prediction
Based on the intermediate results Z», we finally
predict the complete quadruples y. The final step
is denoted as:

g=argmaxp(y| X, Zz, prompts)  (4)

and the template of prompts is as follows.

Given the sentence X and the corresponding list of
category-aspect-opinion triplets Z,, tag all the
(category, aspect, opinion, sentiment) quadruples.

2.2.2 Representative Demonstration Retriever

In few-shot scenarios, we propose the Representa-
tive Demonstration Retriever (RepDR), a demon-
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Figure 2: The proposed RepDR module consists of two stages. The first stage generates training samples with
pre-trained SBERT, and fine-tunes SBERT using these samples. The second stage generates text embeddings using
the fine-tuned model and utilizes clustering and cosine similarity to produce representative demonstrations.

stration retriever that balances diversity and simi-
larity. First, we explain the generation of training
sample, then describe training the model with the
labeled sample, and finally show using the trained
model to retrieve representative demonstrations. As
shown in Figure 2.

Generating Training Sample Since we utilize
clustering and similarity comparison for demon-
stration retrieval, it is vital to train a model that
precisely captures the similarity among sentence
pairs. We choose SBERT (Reimers and Gurevych,
2019), a BERT-based text embedding model, as our
target model. By fine-tuning SBERT with gener-
ated triplet data, we enhance its ability to capture
semantic similarity between sentences. Triplet data
consists of an anchor sentence, a positive sentence,
and a negative sentence without additional labels.
Inspired by paraphrase generation (Zhang et al.,
2021a; Gou et al., 2023; Hu et al., 2022b), we pro-
pose modeling paraphrases for the training set by
linearizing sentiment quadruples (c, a, 0, p) into
natural sentences I, as shown in Figure 3.
Paraphrase modeling allows us to focus on
the quadruples and ignore unnecessary details in
sentences. We compute their embeddings using
a pre-trained SBERT model for the resulting
paraphrase set U7. Then, we compare the semantic
similarity between these paraphrases by employing
Cosine Similarity. We retrieve the sentence most
similar to the anchor sentence X, as the positive
sentence X, and the least similar sentence as

Sentence-1 Our teenage kids love it , too .

Quadruplet-1

O

Paraphrase-1

(restaurant general, NULL, e, )

&

restaurant general is because it is o

The only thing more wonderful than the food ( which is

Sentence-2 exceptional ) is the service .

(food quality, food, s )
(service general, service, , )

O

because food is 1al and service
because service is wo ful

Quadruplet-2

O

food quality is
Paraphrase-2 ! N

general is

Figure 3: Two examples of paraphrase modeling. No-
tably, if the aspect is not explicitly mentioned, it is
represented by the implicit pronoun "it". If a sentence
contains multiple sentiment quadruples, the paraphrases
are concatenated using "and".

the negative sentence X,,, thus constructing
triplet training samples (X,, X,, X,,). Notably,
the sentences referred to here are the original
sentences, not the paraphrase sentences, to ensure
the model focuses more attention on quadruples in
the original sentence.

Training Model = We fine-tune the SBERT model
using the typical triplet network. Given triplet data
1, we utilize SBERT (selected mpnet (Song et al.,
2020)) to encode X,, X, and X,,, obtaining em-
beddings O,, O, and O,,. Fine-tuning aims to
minimize the distance between O, and O, while
maximizing the distance between O, and O,,. We
use triplet loss as the loss function, as shown below



in Equation 5:

L(Oa, Op, On)

= max(d(Oq, 0p) — d(Oq, Oy) + ,0) ©)

where d(Oq,0,) = ||O, — Opl|2 represents the
Euclidean Distance between embeddings. The
hyperparameter « specifies the expected difference

between d(Og, Op) and d(Oy, Oy,).

Retrieving Demonstration Firstly, we use
the fine-tuned SBERT to encode all training set
sentences into text embeddings and store them in a
Memory bank (Wu et al., 2018) to avoid redundant
computations. Secondly, we measure the similarity
of demonstrations utilizing Cosine Similarity,
comparing target samples with the training set to
extract the top-k most similar samples. Finally,
we propose a diversified demonstration retrieval
scheme based on K-means clustering (Arthur et al.,
2007). We evaluate the optimal number of clusters
by calculating the Silhouette Score and find that
the optimal number for both datasets is 3(see
Appendix A). Based on this result, we perform
K-means clustering and select the samples closest
to the cluster centers as diversity samples that
highlight key characteristics.

3 Experiments

3.1 Datasets

We conducted experiments on two public restaurant
datasets, Rest15 and Rest16, from the SemEval
task (Pontiki et al., 2015, 2016). These datasets,
with multiple annotations (Peng et al., 2020; Wan
et al., 2020), were aligned by Zhang et al. (2021a)
and ultimately served as the standard datasets for
the ASQP task. Each sample contains one or more
sentiment quadruples. The statistics are shown in
Table 1.

3.2 Implementation Details

We utilized two OpenAl models, including Chat-
GPT (Open, 2022) (gpt-3.5-turbo3) and the newly
released GTP-4 (Achiam et al., 2023) (gpt-40),
as the backbone for the ChaPT framework (Sec-
tion 2.2.1) to evaluate its effectiveness under zero-
shot conditions. The temperature for all models
was set to 0 to ensure stable predictions.
Moreover, for few-shot scenarios, we employed
all-mpnet-base-v1 (Song et al., 2020) as pre-trained
SBERT (Section 2.2.2), using a typical triplet net-
work for fine-tuning. During fine-tuning, we used a

Rest15 Rest16
SEN POS NUE NEG SEN POS NUE NEG

Train 834 1005 34 315 1264 1369 62 558
Dev 209 252 14 81 316 341 23 143
Test 537 453 37 305 544 583 40 176

Table 1: Dataset statistics for Rest15 and Rest16. SEN,
POS, NUE and NEG represent the number of sentences,
positive, neutral, and negative quadruples, respectively.

batch size of 64, a learning rate of 2e-5, and 5 train-
ing epochs. The hyperparameter o of the model
was set to 5. Additional implementation details of
generative models in low-resource scenarios are
provided in Appendix B.

During demonstration retrieval, we used the
model at the best checkpoint to re-encode sentences
for text similarity comparison and clustering, ob-
taining demonstrations with similarity and diversity.
We only considered three k-shot settings: 1-shot, 5-
shot, and 10-shot. For each setting, we maintained
a constant number of diversity demonstrations and
adjusted the number of similarity demonstrations
to achieve k-shot. For example, in the 1-shot sce-
nario, we retrieved 3 diversity samples and the 1
most similar sample.

3.3 Baselines

We employ generative-based models and ICL-
based large language models as our comparative
baselines. For generative methods, we select the
following four models:

* GAS (Zhang et al., 2021b)  The first attempt
to use generative methods to handle aspect-
based sentiment analysis, we modify it to use
sentiment quadruple sequences as target se-
quences.

* Paraphrase (Zhang et al., 2021a) A para-
phrasing modeling framework, using para-
phrased sentences as training targets to gener-
ate sentiment quadruples end-to-end.

* DLO/ILO (Hu et al., 2022a)  Selecting the
appropriate quadruple generation order as a
data augmentation method for paraphrase gen-
eration.

* MVP (Gou et al., 2023) Enhances the
model predictive capability by increasing out-
put views of different quadruple generation
orders.



Rest15 Rest16
0-shot 1-shot 5-shot 10-shot ©@-shot 1-shot 5-shot 10-shot
Generative-based Baselines
GAST (Zhang et al., 2021b) - 4.43 10.65 13.82 - 2.24 16.04 19.03
Paraphrase’ (Zhang et al., 2021a) - 7.78 11.53 18.60 - 2.36 12.85 16.34
DLOT (Hu et al., 2022a) - 6.79 13.07 18.92 - 1.90 17.68 28.95
ILO' (Hu et al., 2022a) - 7.25 14.85 20.99 - 2.41 15.71 21.32
MvPT (Gou et al., 2023) - 9.33 18.54 22.82 - 3.62 21.51 29.24
Prompt-based Baselines

w/ GPT-3.5

LMMs for SAT (Zhang et al., 2023¢)  7.77 27.83 26.86 25.74 10.06 28.45 38.63 37.13

THORT (Fei et al., 2023) 10.21 22.13 27.24 23.51 14.11 28.62 37.26 36.04

RCR(Ours) 13.82 28.46 31.44 32.29 19.00 30.60 41.51 42.09
w/ GPT-4

LMMs for SAT (Zhang et al., 2023¢)  32.40 35.63 37.65 36.72 35.87 40.56 42.07 40.32

THORT (Fei et al., 2023) 30.57 35.01 36.22 35.81 36.37 38.02 41.58 39.97

RCR(Ours) 33.01 39.78 42.26 44.33 38.07 40.97 48.08 51.23

Table 2: Report the model’s experimental results under zero-shot and few-shot settings. F1 score is used as the
evaluation metric. The best and second-best results are indicated in bold and underlined, respectively. The baseline
methods, marked with?, follow the few-shot settings of this work (Zhang et al., 2023c), where k-shot represents

sampling k examples for each aspect category.

For ICL methods, we selected the following re-
search approaches:

e LMMs for SA (Xu et al., 2024) A com-
prehensive study of sentiment analysis using
LLMs, including Flan-T5, FLan-UL2, TS5, and
GPT-3.5.

* THOR (Fei et al., 2023) A Three-hop rea-
soning (THOR) CoT framework for address-
ing implicit sentiment analysis issues. In our
setup, it serves as one of the benchmarks for
ICL methods by modifying the prompt.

Experimental results for these supervised meth-
ods are derived from the base pre-trained models
(BERT or T5) to ensure a fair comparison.

4 Results and Discussions

4.1 Zero-shot and Few-shot Results

The experimental results are shown in Table 2. No-
tably, in the zero-shot scenario, the T5-based (Raf-
fel et al., 2020) generative model struggled with
ASQP tasks and failed to generate effective results.
However, the performance gradually improved as
the number of samples increased, highlighting the
importance of high-quality labeled data for gen-
erative models. Compared to the best generative
model baseline MVP, the ICL-based LLMs (LLMs
for SA) showed significant performance improve-
ments in both zero-shot and few-shot scenarios. For

Fl-score

15
—— MvPw/T5 10
—+— LMMs for SA w/ GPT-3.5

104 —=— RCR w/GPT-3.5 5
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—+— LMMs for SA w/ GPT-3.5
—=— RCR w/GPT-3.5
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Shots Shots

Figure 4: The evaluation curve of the model with vary-
ing sample sizes.

GPT-3.5, under few-shot conditions, the average
F1 score gained on the Rest15 and Rest16 datasets
was 9.91% and 16.61%, respectively. This demon-
strates the great potential of LLMs in ASQP tasks.
Furthermore, our proposed Representative Chain-
of-Reasoning (RCR) framework achieved the best
performance with both GPT-3.5 and GPT-4 com-
pared to the original ICL baselines. Specifically,
with GPT-3.5, the average F1 score gained on the
Rest15 and Rest16 datasets were 4.45% and 4.73%,
respectively. With GPT-4, the F1 scores improved
by an average of 4.24% and 4.88%. This indicates
that the RCR framework provides sufficient prior
information for LLMs, fully leveraging their rea-
soning capabilities in ASQP tasks.

4.2 Ablation Study

We conducted ablation experiments to further val-
idate our RCR framework’s effectiveness. In a



Methods | Rest15 Rest16
‘ Pre Rec F1 Pre Rec F1
RCR 2799 3585 3144 36.82 47.56 41.51
RCR w/o [RepDR] 23.39 3421 27.78 2453 3242 2792
RCR w/o [ChaPT] 21.83 27.30 2426 28.16 3629 31.71
RCR w/o [RepDR,ChaPT] | 21.25 26.68 23.66 25.10 30.16 27.40

Table 3: The results of ablation study.

Example 1(Rest15)

Sent

40

: Watch the talented belly dancers as you enjoy delicious baba ganoush that s more lemony than smoky .

Rest15 Gold: (food quality, baba ganoush, enjoy delicious, positive), (ambience general, belly dancers, talented, positive)
Prediction:
Rest16 (ambience general, belly dancers, talented, positive) v/
30 (food quality, baba ganoush, delicious, positive) X
(food quality, baba ganoush, lemony, positive) X

Example 2(Rest16)

Num of quads
N
o

Sentence: The regular menu here is slightly above average that is not worth the snotty attitude that you receive .

Gold: (food quality, regular menu, above average, neutral)
10 (food quality, regular menu, not worth the snotty attitude, neutral)
(service general, NULL, snotty, negative)
Prediction:
(food quality, menu, slightly above average, positive) X
Category _ aspect  opinion _ sentiment no-prediction (service general, attitude, snotty, negative) X
(service general, NULL, snotty, negative) v

Figure 5: Statistics of error types and two examples of prediction errors. Notably, no-prediction indicates the

samples where LLMs made no predictions.

5-shot scenario, we analyzed the impact on the
results by removing individual modules, with re-
sults shown in Table 3. ChaPT decomposes the
ASQP task into subtasks, reducing the complexity
of LLM reasoning. RepDR is responsible for pro-
viding more accurate prior semantic knowledge to
LLMs through demonstration retrieval. The results
indicate that removing any module significantly
reduces RCR performance, demonstrating the ef-
fectiveness of ChaPT and RepDR in stimulating
the reasoning capabilities of LLMs.

Furthermore, We observed performance differ-
ences across the Rest15 and Rest16 datasets when
removing specific modules. For instance, remov-
ing the RepDR module resulted in a 13.59% de-
crease in F1 score for Rest16, but only a 3.66%
decrease for Rest15. This indicates that different
datasets have varying dependencies on the ChaPT
and RepDR modules, reflecting the distinct knowl-
edge support these two components provide to
LLMs.

4.3 Influence of Different Sample Sizes

Our preliminary research reveals that the LLMs’
reasoning capabilities for ASQP tasks improve sig-
nificantly with an increased sample size. However,
this raises the question of whether this improve-
ment is always directly proportional to the number

of samples. To explore this issue, we further in-
creased the sample size, as shown in Figure 4. We
found that the T5-based MvP model’s performance
steadily improved with more samples, indicating
that the generative-based models rely on sufficient
high-quality labeled data. Surprisingly, for ICL-
based methods, performance tends to decline after
reaching a certain sample size threshold. Our anal-
ysis suggests two main reasons for this decline.
First, a large number of examples provides exces-
sive prior semantic information, causing LLMs to
become confused and lose focus on core aspects.
Second, lower-ranked samples are poorer in quality
and contain more redundancy. Notably, compared
to previous ICL methods, the RCR framework miti-
gates this performance degradation, indicating that
RepDR retrieves higher-quality demonstrations and
introduces fewer errors.

4.4 Error analysis and Case Study

In order to comprehensively analyze the reasoning
errors of our proposed method, we conducted error
analysis and case studies. We randomly selected
100 prediction results from each dataset in the 5-
shot scenario using GPT-4. The incorrectly pre-
dicted quadruples were categorized by error type,
as shown in Figure 5. We found that errors were
primarily concentrated on the predictions of aspect



and opinion terms in both datasets.

The main reason for this phenomenon is that as-
pect and opinion terms often appear as text spans
rather than individual words. LLMs struggle to
match these text spans accurately, as illustrated by
Example 1. Another significant cause of errors
is the presence of multiple quadruples in the text,
which confuses the LLMs. This typically occurs
in the first subtask of the ChaPT framework, mak-
ing it difficult to match each aspect-opinion pair
precisely. Example 2 shows an incorrect aspect-
opinion pair (attitude, snotty) being generated. Fur-
thermore, errors from the previous subtask can
propagate and interfere with predicting aspect cate-
gories, leading to cumulative errors. In summary,
accurately matching text spans and handling sen-
tences with multiple quadruples are challenging
issues that LLMs must address in ASQP problems.

5 Related work

5.1 Aspect Sentiment Quad Prediction

Aspect Sentiment Quad Prediction (ASQP) is a
crucial sentiment analysis task that has attracted
increasing attention. (Zhang et al., 2022a, 2023b;
Zhong et al., 2023). Initially, ASQP was mainly
handled using pipeline approaches that combined
multiple baseline models (Cai et al., 2021). Fur-
ther studies have shown that generative models
achieve promising results (Zhang et al., 2021b;
Bao et al., 2022; Peper and Wang, 2022). For exam-
ple, Zhang et al. (2021a) introduced a paraphrase
model, transforming a quadruple prediction task
into a text generation task. Mao et al. (2022) con-
structed a search tree for the optimal generation
path. Bao et al. (2022) developed an opinion tree to
jointly detect all sentiment elements. Additionally,
many efforts have focused on enhancing genera-
tive models through data augmentation. Hu et al.
(2022a) first considered selecting the appropriate
quadruple generation order as a data augmentation
method. Gou et al. (2023) proposed an MVP frame-
work to increase output views. Wang et al. (2023a)
suggested generating new data containing quadru-
ples through generation models. However, models
trained on specific domain datasets often perform
poorly when transferred to other domains.

5.2 In-Context Learning

In-context learning (ICL) refers to the ability of
large language models (LLMs) to handle complex
tasks with only a few annotated examples with-

out additional training or gradient updates (Zhao
et al., 2023). Research on ICL focuses on two
main areas. On the one hand, it involves investigat-
ing prompting frameworks (Long, 2023; Paranjape
et al., 2023; Diao et al., 2023; Li et al., 2024). For
example, Wei et al. (2022); Wang et al. (2022b)
proposed the Chain of Thought (CoT) to enhance
reasoning capabilities. Yao et al. (2024) further
refined CoT into the Tree of Thoughts (ToT), main-
taining the intermediate thoughts in a search tree
and evaluating these thoughts. On the other hand,
considerable work studies focus on providing better
demonstrations (Li et al., 2022; Min et al., 2022; Li
et al., 2023; Wang et al., 2023b). Liu et al. (2022)
found that samples closely related to the target data
in the embedding space perform better. Building
on this idea, Wang et al. (2022a) proposed enhanc-
ing inputs by retrieving similar examples. Rubin
et al. (2022) introduced a demonstration retriever.
Moreover, examples representing diversity can also
improve ICL performance (Qin et al., 2023; Xu
et al., 2024).

Owing to developments in ICL, some studies
have addressed sentiment analysis tasks in zero-
shot or few-shot scenarios using ICL, achieving
effective results (Wang et al., 2023c). For in-
stance, Zhong et al. (2023) observed that the zero-
shot performance of LLMs is comparable to fine-
tuned BERT. Sun et al. (2023) proposed a multi-
LLM negotiation framework for sentiment analy-
sis. Fei et al. (2023) introduced a THOR frame-
work, significantly enhancing implicit sentiment
analysis performance. In light of this, we explore
the potential of LLMs for the ASQP problem. To
our knowledge, this work is the first to discuss the
application of LLMs to ASQP task systematically.

6 Conclusion

In this work, we propose a new RCR framework
to solve the ASQP task in low-resource scenarios.
To reduce complexity, the chain prompting module
(ChaPT) is designed to decompose the ASQP task
into three subtasks and enable LLMs to conduct
step-by-step reasoning. Furthermore, a representa-
tive demonstration retriever (RepDR) is developed
to provide ChaPT with demonstrations that balance
diversity and similarity, maximizing the reasoning
ability of LLMs at each step. Detailed experiments
demonstrate the effectiveness of our proposed RCR
framework in both zero-shot and few-shot scenar-
ios, enabling GPT-4 to achieve state-of-the-art per-
formance on the ASQP task.



Limitations

Despite our proposed method achieves state-of-the-
art performance in ASQP tasks under low-resource
scenarios, our work still has limitations. Firstly,
we observe that the performance of RCR improves
with the increasing intelligence of the integrated
LLM models. Therefore, it is necessary to explore
the effects of integrating LLLMs of different scales
with RCR. Secondly, our proposed ChaPT frame-
work requires manually designed prompts, leading
to instability in LLM reasoning results as the qual-
ity of the prompts varies. Exploring better auto-
matic prompt generation strategies could address
this issue. Finally, the experiments only validate
the improvements of RCR in the ASQP task. Intu-
itively, the RCR framework can be easily extended
to aspect-based Sentiment analysis subtasks similar
to ASQP, such as Aspect Sentiment Triplet Extrac-
tion (ASTE), Aspect-Category-Sentiment Detec-
tion (ACSD), and Aspect Category Opinion Senti-
ment (ACOS).

Ethical Statement

All our experiments are based on publicly avail-
able datasets and code repositories. We maintain
impartiality and honesty in our analysis of the
experimental results, and our research and work
do not harm any individuals or groups. We will
open-source our code for further discussion and
exploration. Regarding broader impacts, this work
may promote further research using large language
models(LLMs) for sentiment analysis tasks in low-
resource scenarios, contributing to lightweight and
automated opinion mining and sentiment analysis
in the real world. Additionally, we recognize the ro-
bust capabilities and potential risks of LLMs. Thus,
we strictly adhere to ethical standards throughout
our research to ensure that our work is not misused
or causes any negative impact.
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A Silhouette Scores

Figure 6 shows the results of running K-means
and calculating silhouette scores on Rest15 and
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Figure 6: Silhouette Scores for different number of
clusters.

Rest16. A larger silhouette score indicates better
clustering quality. Therefore, from Figure 6, we
can determine that the optimal number of clusters
for both datasets is 3. To maintain clustering sta-
bility, we first standardize, normalize, and reduce
dimensionality of the sentence embedding.

B Implementation Details of Generative
Models

The few-shot training of generative models fol-
lows the settings proposed by Zhang et al. (2023c),
where k-shot represents sampling k examples for
each aspect category. We set the batch size of all
models to 8, the learning rate to 1e-4, and the train-
ing epochs to 100. All experiments were conducted
using an Nvidia RTX 3090 GPU.
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