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Abstract

Aspect Sentiment Quad Prediction (ASQP) is001
a crucial sentiment analysis task that has at-002
tracted increasing attention. The most recent003
studies focus on generating complete senti-004
ment quadruples through end-to-end genera-005
tive models. However, these methods heavily006
depend on labeled data quality and quantity,007
performing poorly in low-resource scenarios008
and less suitable for real-world applications.009
To address these issues, we propose a novel010
Representative Chain-of-Reasoning framework011
(RCR), with the aim of providing representative012
knowledge for large language models (LLMs)013
and fully activating their reasoning capabilities014
for ASQP. Specifically, we develop a Chain015
Prompting (ChaPT) module to decompose the016
ASQP task into three subtasks using the step-017
by-step reasoning mechanism. Then, a Rep-018
resentative Demonstration Retriever (RepDR)019
is introduced to provide ChaPT with represen-020
tative demonstrations, balancing diversity and021
similarity, and enhancing the reasoning capa-022
bilities of LLMs at each step. Experimental023
results confirm the superiority of RCR in both024
zero-shot and few-shot scenarios, significantly025
surpassing existing counterparts.026

1 Introduction027

Given a review text, Aspect Sentiment Quad Pre-028

diction (ASQP) aims to predict a comprehensive029

sentiment view in the form of quadruples (Zhang030

et al., 2022a, 2023b), each consisting of aspect cat-031

egory, aspect term, opinion term, and sentiment032

polarity, denoted as (c, a, o, s). For example, given033

the review sentence, "The food is great and the en-034

vironment is even better.", the ASQP task requires035

predicting two sentiment quadruples: (food quality,036

food, great, positive) and (ambiance general, envi-037

ronment, better, positive). ASQP is a challenging038

task due to the complexity of sentence structure039

and the diversity of sentiment expressions, making040

it difficult to recognize all sentiment quadruples.041

Recently, the end-to-end generative models have 042

been extensively applied to solve the ASQP task 043

by generating sentiment quadruples directly from 044

the review text and achieved promising results 045

(Peper and Wang, 2022). A successful appli- 046

cation is to construct sequences in natural lan- 047

guage format as generation targets, including an- 048

notated sentences (Zhang et al., 2021b), para- 049

phrased sentences (Liu et al., 2021; Zhang et al., 050

2021a; Hu et al., 2022a), and sentiment element 051

sequences (Zhang et al., 2021c). Furthermore, sen- 052

timent clues within sentences have been utilized 053

to promote the quadruple generation (Bao et al., 054

2022). For example, Mao et al. (2022) introduced 055

a parallel generation framework to capture more 056

sentiment information through beam search. Gou 057

et al. (2023) enhanced the model’s expressive capa- 058

bility by increasing the output views by adjusting 059

the generation order of quadruples. Despite their 060

potential, a notable issue is that these models are 061

less suitable in low-resource scenarios (Hu et al., 062

2022a; Gou et al., 2023). That is because generative 063

models heavily rely on the scale and quality of the 064

labeled dataset while annotating datasets is costly 065

and time-consuming in practical applications. 066

With the rise of In-Context Learning (ICL), ad- 067

dressing the ASQP task by generative models in 068

zero-shot and few-shot scenarios becomes feasi- 069

ble (Wang et al., 2023c; Zhang et al., 2023a,c). 070

Sun et al. (2023) propose a multi-LLM negotia- 071

tion strategy, demonstrating LLMs’ ability to solve 072

sentiment analysis problems involving complex 073

contexts (e.g., clauses and irony) under zero-shot 074

conditions. Moreover, the Three-Hop Reasoning 075

(THOR) CoT framework (Fei et al., 2023) achieves 076

state-of-the-art results in implicit sentiment analy- 077

sis tasks. However, existing research lacks a dis- 078

cussion on applying LLMs to ASQP tasks, and the 079

reasoning capabilities of LLMs are underutilized. 080

To this end, we propose a Representative Chain- 081

of-Reasoning framework (RCR) that aims to pro- 082
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vide representative knowledge for LLMs and083

fully activate their reasoning capabilities for the084

ASQP task. Inspired by the Chain-of-Thought085

(CoT) prompting (Wei et al., 2022; Zhou et al.,086

2022; Zhang et al., 2022b), we first introduce087

a Chain Prompt (ChaPT) module to decompose088

the one-step ASQP task into three sub-steps,089

where each step progressively infers aspect-opinion090

pairs, category-aspect-opinion triplets, and com-091

plete quadruples. Hence, a complete sentiment092

view is obtained through step-by-step reasoning,093

effectively reducing the ASQP task’s complexity.094

Additionally, considering LLM’s reasoning capabil-095

ity is influenced greatly by the quality of demonstra-096

tions (Lee et al., 2022; Min et al., 2022; Wang et al.,097

2023b), we develop a Representative Demonstra-098

tion Retriever (RepDR) module to provide ChaPT099

with representative demonstrations, balancing di-100

versity and similarity, and thus enhancing their rea-101

soning capabilities at each step. Specifically, we102

first paraphrase the sentiment quadruples into natu-103

ral sentences (Zhang et al., 2021a) and calculate104

their semantic similarities using SBERT (Reimers105

and Gurevych, 2019). Based on semantic similari-106

ties, the triplet that contains an anchor sentence, a107

positive sentence, and a negative sentence is picked108

for further fine-tuning this SBERT model. Hence,109

this fine-tuned SBERT model is good at retrieving110

representative demonstrations that possess seman-111

tic information of different attributes (Wang et al.,112

2022a; Shi et al., 2023; Qin et al., 2023).113

In summary, the main contributions of this work114

are as follows:115

• We introduce ChaPT, a prompting frame-116

work based on the chain-of-reasoning con-117

cept, which mitigates task complexity through118

task decomposition and step-by-step reason-119

ing, fully leveraging the reasoning capabilities120

of LLMs.121

• We use the RepDR module to retrieve demon-122

strations, providing more representative prior123

information for model reasoning. To the best124

of our knowledge, this work is the first to pro-125

pose retrieving both diversity and similarity126

samples as demonstrations.127

• Experimental results show that our proposed128

model demonstrates superiority in both zero-129

shot and few-shot scenarios and greatly sur-130

passes existing counterparts.131

2 Methodology 132

2.1 Problem Definition 133

The ASQP task is defined as follows: given a sen- 134

tence X , the model predicts all aspect-based sen- 135

timent quadruples (Cai et al., 2021; Zhang et al., 136

2021a), each formulated as (c, a, o, s) which cor- 137

responds to aspect category, aspect term, opinion 138

term, and sentiment polarity, respectively. The 139

aspect category c is part of a predefined cate- 140

gory set Uc. The aspect term a is the target 141

of opinion. The opinion term o is the subjec- 142

tive statement. Moreover, the sentiment polarity 143

s belongs to the predefined sentiment set Us ∈ 144

{positive, neutral, negative}. Notably, aspect a is 145

generally within the text scope of sentence X , and 146

if aspect a is not explicitly mentioned, it is repre- 147

sented by the specific tag NULL. 148

Xie et al. (2021) believe that ICL in- 149

fers conditional probabilities of the predic- 150

tive target from the prompt, formulated as 151

p(y |prompt)=
∫
promptp(y |prompt)d(prompt), 152

where y represents the prediction target and 153

d(prompt) represents the prompt set. ICL infers 154

the maximum probability of generating y by 155

integrating y over the prompt. Therefore, we can 156

use ICL to model the ASQP task as 157

ŷ=argmax p(y |X, prompt) (1) 158

where ŷ represents all quadruples, and Zhang et al. 159

(2023c) attempt to construct the following stan- 160

dard prompt paradigm as input to the LLMs: 161

162

2.2 Representative Chain-of-Reasoning 163

To fully activate the reasoning capabilities of LLMs 164

for the ASQP task, we propose a Representative 165

Chain-of-Reasoning framework (RCR) consisting 166

of two sub-modules: Chain Prompt Framework 167

(ChaPT) and Representative Demonstration Re- 168

triever (RepDR). The former is designed to de- 169

compose the ASQP task into three subtasks, while 170

the latter is responsible for providing representa- 171

tive demonstrations to enhance LLMs’ reasoning 172

capabilities. 173

2.2.1 Chain Prompt Framework 174

Inspired by the impressive reasoning capabilities 175

demonstrated by Chain of Thought (CoT) in han- 176
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Figure 1: An illustration of our ChaPT framework for Aspect Sentiment Quad Prediction task.

dling complex tasks(Wei et al., 2022), we propose177

the Chain Prompt framework(ChaPT), shown in178

Figure 1, to address the ASQP task by decompos-179

ing a one-step ASQP solution into three subtasks.180

The details are as follows.181

Subtask 1. Aspect-Opinion Pair Extraction182

Empirical studies find that extracting a single as-183

pect or opinion alone would ignore their pairwise184

relationships, leading to pairing errors (Chen et al.,185

2020; Zhao et al., 2020). Therefore, instead of finer-186

grained aspect term or opinion term extraction sub-187

task, we first consider predicting all aspect-opinion188

pairs appearing in the sentence. Mathematically,189

this subtask is formulated as:190

Ẑ1=argmax p(y |X, prompt1) (2)191

where Ẑ1 denotes predicted aspect-opinion192

pairs, the template of prompt1 is defined as:193

194

Subtask 2. Aspect Category Classification195

Based on X and the intermediate results Ẑ1, we196

classify category c from the predefined set Uc and197

obtain the category-aspect-opinion triplets Z2. This 198

process is represented as: 199

Ẑ2=argmax p(y |X,Z1, prompt2) (3) 200

the template of prompt2 is as follows. 201

202

Subtask 3. Aspect Sentiment Quad Prediction 203

Based on the intermediate results Ẑ2, we finally 204

predict the complete quadruples y. The final step 205

is denoted as: 206

ŷ=argmax p(y |X,Z2, prompt3) (4) 207

and the template of prompt3 is as follows. 208

209

2.2.2 Representative Demonstration Retriever 210

In few-shot scenarios, we propose the Representa- 211

tive Demonstration Retriever (RepDR), a demon- 212
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Figure 2: The proposed RepDR module consists of two stages. The first stage generates training samples with
pre-trained SBERT, and fine-tunes SBERT using these samples. The second stage generates text embeddings using
the fine-tuned model and utilizes clustering and cosine similarity to produce representative demonstrations.

stration retriever that balances diversity and simi-213

larity. First, we explain the generation of training214

sample, then describe training the model with the215

labeled sample, and finally show using the trained216

model to retrieve representative demonstrations. As217

shown in Figure 2.218

Generating Training Sample Since we utilize219

clustering and similarity comparison for demon-220

stration retrieval, it is vital to train a model that221

precisely captures the similarity among sentence222

pairs. We choose SBERT (Reimers and Gurevych,223

2019), a BERT-based text embedding model, as our224

target model. By fine-tuning SBERT with gener-225

ated triplet data, we enhance its ability to capture226

semantic similarity between sentences. Triplet data227

consists of an anchor sentence, a positive sentence,228

and a negative sentence without additional labels.229

Inspired by paraphrase generation (Zhang et al.,230

2021a; Gou et al., 2023; Hu et al., 2022b), we pro-231

pose modeling paraphrases for the training set by232

linearizing sentiment quadruples (c, a, o, p) into233

natural sentences I , as shown in Figure 3.234

Paraphrase modeling allows us to focus on235

the quadruples and ignore unnecessary details in236

sentences. We compute their embeddings using237

a pre-trained SBERT model for the resulting238

paraphrase set UI . Then, we compare the semantic239

similarity between these paraphrases by employing240

Cosine Similarity. We retrieve the sentence most241

similar to the anchor sentence Xa as the positive242

sentence Xp and the least similar sentence as243

Figure 3: Two examples of paraphrase modeling. No-
tably, if the aspect is not explicitly mentioned, it is
represented by the implicit pronoun "it". If a sentence
contains multiple sentiment quadruples, the paraphrases
are concatenated using "and".

the negative sentence Xn, thus constructing 244

triplet training samples (Xa, Xp, Xn). Notably, 245

the sentences referred to here are the original 246

sentences, not the paraphrase sentences, to ensure 247

the model focuses more attention on quadruples in 248

the original sentence. 249

250Training Model We fine-tune the SBERT model 251

using the typical triplet network. Given triplet data 252

I , we utilize SBERT (selected mpnet (Song et al., 253

2020)) to encode Xa, Xp, and Xn, obtaining em- 254

beddings Oa, Op, and On. Fine-tuning aims to 255

minimize the distance between Oa and Op while 256

maximizing the distance between Oa and On. We 257

use triplet loss as the loss function, as shown below 258
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in Equation 5:259

L(Oa, Op, On)

= max(d(Oa, Op)− d(Oa, On) + α, 0)
(5)260

where d(Oa, Op) = ∥Oa − Op∥2 represents the261

Euclidean Distance between embeddings. The262

hyperparameter α specifies the expected difference263

between d(Oa, Op) and d(Oa, On).264

265 Retrieving Demonstration Firstly, we use266

the fine-tuned SBERT to encode all training set267

sentences into text embeddings and store them in a268

Memory bank (Wu et al., 2018) to avoid redundant269

computations. Secondly, we measure the similarity270

of demonstrations utilizing Cosine Similarity,271

comparing target samples with the training set to272

extract the top-k most similar samples. Finally,273

we propose a diversified demonstration retrieval274

scheme based on K-means clustering (Arthur et al.,275

2007). We evaluate the optimal number of clusters276

by calculating the Silhouette Score and find that277

the optimal number for both datasets is 3(see278

Appendix A). Based on this result, we perform279

K-means clustering and select the samples closest280

to the cluster centers as diversity samples that281

highlight key characteristics.282

283

3 Experiments284

3.1 Datasets285

We conducted experiments on two public restaurant286

datasets, Rest15 and Rest16, from the SemEval287

task (Pontiki et al., 2015, 2016). These datasets,288

with multiple annotations (Peng et al., 2020; Wan289

et al., 2020), were aligned by Zhang et al. (2021a)290

and ultimately served as the standard datasets for291

the ASQP task. Each sample contains one or more292

sentiment quadruples. The statistics are shown in293

Table 1.294

3.2 Implementation Details295

We utilized two OpenAI models, including Chat-296

GPT (Open, 2022) (gpt-3.5-turbo3) and the newly297

released GTP-4 (Achiam et al., 2023) (gpt-4o),298

as the backbone for the ChaPT framework (Sec-299

tion 2.2.1) to evaluate its effectiveness under zero-300

shot conditions. The temperature for all models301

was set to 0 to ensure stable predictions.302

Moreover, for few-shot scenarios, we employed303

all-mpnet-base-v1 (Song et al., 2020) as pre-trained304

SBERT (Section 2.2.2), using a typical triplet net-305

work for fine-tuning. During fine-tuning, we used a306

Rest15 Rest16

SEN POS NUE NEG SEN POS NUE NEG

Train 834 1005 34 315 1264 1369 62 558
Dev 209 252 14 81 316 341 23 143
Test 537 453 37 305 544 583 40 176

Table 1: Dataset statistics for Rest15 and Rest16. SEN,
POS, NUE and NEG represent the number of sentences,
positive, neutral, and negative quadruples, respectively.

batch size of 64, a learning rate of 2e-5, and 5 train- 307

ing epochs. The hyperparameter α of the model 308

was set to 5. Additional implementation details of 309

generative models in low-resource scenarios are 310

provided in Appendix B. 311

During demonstration retrieval, we used the 312

model at the best checkpoint to re-encode sentences 313

for text similarity comparison and clustering, ob- 314

taining demonstrations with similarity and diversity. 315

We only considered three k-shot settings: 1-shot, 5- 316

shot, and 10-shot. For each setting, we maintained 317

a constant number of diversity demonstrations and 318

adjusted the number of similarity demonstrations 319

to achieve k-shot. For example, in the 1-shot sce- 320

nario, we retrieved 3 diversity samples and the 1 321

most similar sample. 322

3.3 Baselines 323

We employ generative-based models and ICL- 324

based large language models as our comparative 325

baselines. For generative methods, we select the 326

following four models: 327

• GAS (Zhang et al., 2021b) The first attempt 328

to use generative methods to handle aspect- 329

based sentiment analysis, we modify it to use 330

sentiment quadruple sequences as target se- 331

quences. 332

• Paraphrase (Zhang et al., 2021a) A para- 333

phrasing modeling framework, using para- 334

phrased sentences as training targets to gener- 335

ate sentiment quadruples end-to-end. 336

• DLO/ILO (Hu et al., 2022a) Selecting the 337

appropriate quadruple generation order as a 338

data augmentation method for paraphrase gen- 339

eration. 340

• MVP (Gou et al., 2023) Enhances the 341

model predictive capability by increasing out- 342

put views of different quadruple generation 343

orders. 344
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Rest15 Rest16

0-shot 1-shot 5-shot 10-shot 0-shot 1-shot 5-shot 10-shot

Generative-based Baselines
GAS† (Zhang et al., 2021b) - 4.43 10.65 13.82 - 2.24 16.04 19.03
Paraphrase† (Zhang et al., 2021a) - 7.78 11.53 18.60 - 2.36 12.85 16.34
DLO† (Hu et al., 2022a) - 6.79 13.07 18.92 - 1.90 17.68 28.95
ILO† (Hu et al., 2022a) - 7.25 14.85 20.99 - 2.41 15.71 21.32
MvP† (Gou et al., 2023) - 9.33 18.54 22.82 - 3.62 21.51 29.24

Prompt-based Baselines
w/ GPT-3.5

LMMs for SA† (Zhang et al., 2023c) 7.77 27.83 26.86 25.74 10.06 28.45 38.63 37.13
THOR† (Fei et al., 2023) 10.21 22.13 27.24 23.51 14.11 28.62 37.26 36.04
RCR(Ours) 13.82 28.46 31.44 32.29 19.00 30.60 41.51 42.09

w/ GPT-4
LMMs for SA† (Zhang et al., 2023c) 32.40 35.63 37.65 36.72 35.87 40.56 42.07 40.32
THOR† (Fei et al., 2023) 30.57 35.01 36.22 35.81 36.37 38.02 41.58 39.97
RCR(Ours) 33.01 39.78 42.26 44.33 38.07 40.97 48.08 51.23

Table 2: Report the model’s experimental results under zero-shot and few-shot settings. F1 score is used as the
evaluation metric. The best and second-best results are indicated in bold and underlined, respectively. The baseline
methods, marked with†, follow the few-shot settings of this work (Zhang et al., 2023c), where k-shot represents
sampling k examples for each aspect category.

For ICL methods, we selected the following re-345

search approaches:346

• LMMs for SA (Xu et al., 2024) A com-347

prehensive study of sentiment analysis using348

LLMs, including Flan-T5, FLan-UL2, T5, and349

GPT-3.5.350

• THOR (Fei et al., 2023) A Three-hop rea-351

soning (THOR) CoT framework for address-352

ing implicit sentiment analysis issues. In our353

setup, it serves as one of the benchmarks for354

ICL methods by modifying the prompt.355

Experimental results for these supervised meth-356

ods are derived from the base pre-trained models357

(BERT or T5) to ensure a fair comparison.358

4 Results and Discussions359

4.1 Zero-shot and Few-shot Results360

The experimental results are shown in Table 2. No-361

tably, in the zero-shot scenario, the T5-based (Raf-362

fel et al., 2020) generative model struggled with363

ASQP tasks and failed to generate effective results.364

However, the performance gradually improved as365

the number of samples increased, highlighting the366

importance of high-quality labeled data for gen-367

erative models. Compared to the best generative368

model baseline MVP, the ICL-based LLMs (LLMs369

for SA) showed significant performance improve-370

ments in both zero-shot and few-shot scenarios. For371

Figure 4: The evaluation curve of the model with vary-
ing sample sizes.

GPT-3.5, under few-shot conditions, the average 372

F1 score gained on the Rest15 and Rest16 datasets 373

was 9.91% and 16.61%, respectively. This demon- 374

strates the great potential of LLMs in ASQP tasks. 375

Furthermore, our proposed Representative Chain- 376

of-Reasoning (RCR) framework achieved the best 377

performance with both GPT-3.5 and GPT-4 com- 378

pared to the original ICL baselines. Specifically, 379

with GPT-3.5, the average F1 score gained on the 380

Rest15 and Rest16 datasets were 4.45% and 4.73%, 381

respectively. With GPT-4, the F1 scores improved 382

by an average of 4.24% and 4.88%. This indicates 383

that the RCR framework provides sufficient prior 384

information for LLMs, fully leveraging their rea- 385

soning capabilities in ASQP tasks. 386

4.2 Ablation Study 387

We conducted ablation experiments to further val- 388

idate our RCR framework’s effectiveness. In a 389
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Methods Rest15 Rest16

Pre Rec F1 Pre Rec F1

RCR 27.99 35.85 31.44 36.82 47.56 41.51
RCR w/o [RepDR] 23.39 34.21 27.78 24.53 32.42 27.92
RCR w/o [ChaPT] 21.83 27.30 24.26 28.16 36.29 31.71
RCR w/o [RepDR,ChaPT] 21.25 26.68 23.66 25.10 30.16 27.40

Table 3: The results of ablation study.

Figure 5: Statistics of error types and two examples of prediction errors. Notably, no-prediction indicates the
samples where LLMs made no predictions.

5-shot scenario, we analyzed the impact on the390

results by removing individual modules, with re-391

sults shown in Table 3. ChaPT decomposes the392

ASQP task into subtasks, reducing the complexity393

of LLM reasoning. RepDR is responsible for pro-394

viding more accurate prior semantic knowledge to395

LLMs through demonstration retrieval. The results396

indicate that removing any module significantly397

reduces RCR performance, demonstrating the ef-398

fectiveness of ChaPT and RepDR in stimulating399

the reasoning capabilities of LLMs.400

Furthermore, We observed performance differ-401

ences across the Rest15 and Rest16 datasets when402

removing specific modules. For instance, remov-403

ing the RepDR module resulted in a 13.59% de-404

crease in F1 score for Rest16, but only a 3.66%405

decrease for Rest15. This indicates that different406

datasets have varying dependencies on the ChaPT407

and RepDR modules, reflecting the distinct knowl-408

edge support these two components provide to409

LLMs.410

4.3 Influence of Different Sample Sizes411

Our preliminary research reveals that the LLMs’412

reasoning capabilities for ASQP tasks improve sig-413

nificantly with an increased sample size. However,414

this raises the question of whether this improve-415

ment is always directly proportional to the number416

of samples. To explore this issue, we further in- 417

creased the sample size, as shown in Figure 4. We 418

found that the T5-based MvP model’s performance 419

steadily improved with more samples, indicating 420

that the generative-based models rely on sufficient 421

high-quality labeled data. Surprisingly, for ICL- 422

based methods, performance tends to decline after 423

reaching a certain sample size threshold. Our anal- 424

ysis suggests two main reasons for this decline. 425

First, a large number of examples provides exces- 426

sive prior semantic information, causing LLMs to 427

become confused and lose focus on core aspects. 428

Second, lower-ranked samples are poorer in quality 429

and contain more redundancy. Notably, compared 430

to previous ICL methods, the RCR framework miti- 431

gates this performance degradation, indicating that 432

RepDR retrieves higher-quality demonstrations and 433

introduces fewer errors. 434

4.4 Error analysis and Case Study 435

In order to comprehensively analyze the reasoning 436

errors of our proposed method, we conducted error 437

analysis and case studies. We randomly selected 438

100 prediction results from each dataset in the 5- 439

shot scenario using GPT-4. The incorrectly pre- 440

dicted quadruples were categorized by error type, 441

as shown in Figure 5. We found that errors were 442

primarily concentrated on the predictions of aspect 443
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and opinion terms in both datasets.444

The main reason for this phenomenon is that as-445

pect and opinion terms often appear as text spans446

rather than individual words. LLMs struggle to447

match these text spans accurately, as illustrated by448

Example 1. Another significant cause of errors449

is the presence of multiple quadruples in the text,450

which confuses the LLMs. This typically occurs451

in the first subtask of the ChaPT framework, mak-452

ing it difficult to match each aspect-opinion pair453

precisely. Example 2 shows an incorrect aspect-454

opinion pair (attitude, snotty) being generated. Fur-455

thermore, errors from the previous subtask can456

propagate and interfere with predicting aspect cate-457

gories, leading to cumulative errors. In summary,458

accurately matching text spans and handling sen-459

tences with multiple quadruples are challenging460

issues that LLMs must address in ASQP problems.461

5 Related work462

5.1 Aspect Sentiment Quad Prediction463

Aspect Sentiment Quad Prediction (ASQP) is a464

crucial sentiment analysis task that has attracted465

increasing attention. (Zhang et al., 2022a, 2023b;466

Zhong et al., 2023). Initially, ASQP was mainly467

handled using pipeline approaches that combined468

multiple baseline models (Cai et al., 2021). Fur-469

ther studies have shown that generative models470

achieve promising results (Zhang et al., 2021b;471

Bao et al., 2022; Peper and Wang, 2022). For exam-472

ple, Zhang et al. (2021a) introduced a paraphrase473

model, transforming a quadruple prediction task474

into a text generation task. Mao et al. (2022) con-475

structed a search tree for the optimal generation476

path. Bao et al. (2022) developed an opinion tree to477

jointly detect all sentiment elements. Additionally,478

many efforts have focused on enhancing genera-479

tive models through data augmentation. Hu et al.480

(2022a) first considered selecting the appropriate481

quadruple generation order as a data augmentation482

method. Gou et al. (2023) proposed an MVP frame-483

work to increase output views. Wang et al. (2023a)484

suggested generating new data containing quadru-485

ples through generation models. However, models486

trained on specific domain datasets often perform487

poorly when transferred to other domains.488

5.2 In-Context Learning489

In-context learning (ICL) refers to the ability of490

large language models (LLMs) to handle complex491

tasks with only a few annotated examples with-492

out additional training or gradient updates (Zhao 493

et al., 2023). Research on ICL focuses on two 494

main areas. On the one hand, it involves investigat- 495

ing prompting frameworks (Long, 2023; Paranjape 496

et al., 2023; Diao et al., 2023; Li et al., 2024). For 497

example, Wei et al. (2022); Wang et al. (2022b) 498

proposed the Chain of Thought (CoT) to enhance 499

reasoning capabilities. Yao et al. (2024) further 500

refined CoT into the Tree of Thoughts (ToT), main- 501

taining the intermediate thoughts in a search tree 502

and evaluating these thoughts. On the other hand, 503

considerable work studies focus on providing better 504

demonstrations (Li et al., 2022; Min et al., 2022; Li 505

et al., 2023; Wang et al., 2023b). Liu et al. (2022) 506

found that samples closely related to the target data 507

in the embedding space perform better. Building 508

on this idea, Wang et al. (2022a) proposed enhanc- 509

ing inputs by retrieving similar examples. Rubin 510

et al. (2022) introduced a demonstration retriever. 511

Moreover, examples representing diversity can also 512

improve ICL performance (Qin et al., 2023; Xu 513

et al., 2024). 514

Owing to developments in ICL, some studies 515

have addressed sentiment analysis tasks in zero- 516

shot or few-shot scenarios using ICL, achieving 517

effective results (Wang et al., 2023c). For in- 518

stance, Zhong et al. (2023) observed that the zero- 519

shot performance of LLMs is comparable to fine- 520

tuned BERT. Sun et al. (2023) proposed a multi- 521

LLM negotiation framework for sentiment analy- 522

sis. Fei et al. (2023) introduced a THOR frame- 523

work, significantly enhancing implicit sentiment 524

analysis performance. In light of this, we explore 525

the potential of LLMs for the ASQP problem. To 526

our knowledge, this work is the first to discuss the 527

application of LLMs to ASQP task systematically. 528

6 Conclusion 529

In this work, we propose a new RCR framework 530

to solve the ASQP task in low-resource scenarios. 531

To reduce complexity, the chain prompting module 532

(ChaPT) is designed to decompose the ASQP task 533

into three subtasks and enable LLMs to conduct 534

step-by-step reasoning. Furthermore, a representa- 535

tive demonstration retriever (RepDR) is developed 536

to provide ChaPT with demonstrations that balance 537

diversity and similarity, maximizing the reasoning 538

ability of LLMs at each step. Detailed experiments 539

demonstrate the effectiveness of our proposed RCR 540

framework in both zero-shot and few-shot scenar- 541

ios, enabling GPT-4 to achieve state-of-the-art per- 542

formance on the ASQP task. 543
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Limitations544

Despite our proposed method achieves state-of-the-545

art performance in ASQP tasks under low-resource546

scenarios, our work still has limitations. Firstly,547

we observe that the performance of RCR improves548

with the increasing intelligence of the integrated549

LLM models. Therefore, it is necessary to explore550

the effects of integrating LLMs of different scales551

with RCR. Secondly, our proposed ChaPT frame-552

work requires manually designed prompts, leading553

to instability in LLM reasoning results as the qual-554

ity of the prompts varies. Exploring better auto-555

matic prompt generation strategies could address556

this issue. Finally, the experiments only validate557

the improvements of RCR in the ASQP task. Intu-558

itively, the RCR framework can be easily extended559

to aspect-based Sentiment analysis subtasks similar560

to ASQP, such as Aspect Sentiment Triplet Extrac-561

tion (ASTE), Aspect-Category-Sentiment Detec-562

tion (ACSD), and Aspect Category Opinion Senti-563

ment (ACOS).564

Ethical Statement565

All our experiments are based on publicly avail-566

able datasets and code repositories. We maintain567

impartiality and honesty in our analysis of the568

experimental results, and our research and work569

do not harm any individuals or groups. We will570

open-source our code for further discussion and571

exploration. Regarding broader impacts, this work572

may promote further research using large language573

models(LLMs) for sentiment analysis tasks in low-574

resource scenarios, contributing to lightweight and575

automated opinion mining and sentiment analysis576

in the real world. Additionally, we recognize the ro-577

bust capabilities and potential risks of LLMs. Thus,578

we strictly adhere to ethical standards throughout579

our research to ensure that our work is not misused580

or causes any negative impact.581
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A Silhouette Scores 864

Figure 6 shows the results of running K-means 865

and calculating silhouette scores on Rest15 and 866
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Figure 6: Silhouette Scores for different number of
clusters.

Rest16. A larger silhouette score indicates better867

clustering quality. Therefore, from Figure 6, we868

can determine that the optimal number of clusters869

for both datasets is 3. To maintain clustering sta-870

bility, we first standardize, normalize, and reduce871

dimensionality of the sentence embedding.872

B Implementation Details of Generative873

Models874

The few-shot training of generative models fol-875

lows the settings proposed by Zhang et al. (2023c),876

where k-shot represents sampling k examples for877

each aspect category. We set the batch size of all878

models to 8, the learning rate to 1e-4, and the train-879

ing epochs to 100. All experiments were conducted880

using an Nvidia RTX 3090 GPU.881
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