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ABSTRACT

Deep learning models have shown themselves as a powerful solution for molecular
property prediction, yet they are underutilized in real-world applications. These
models, while powerful, lack chemical interpretability to link predicted proper-
ties to molecular motifs that govern them. Therefore, we introduce Chemically
Informed Language Transformer (CILT) that utilizes hundreds of programmati-
cally derived molecular motifs as a weak supervision prior. CILT leverages these
motifs together with property descriptions to generate a chemically interpretable
embedding space that clusters with respect to chemical motifs. This unified de-
sign enables CILT to quickly adapt to new motifs, properties, and perform clas-
sification, regression, and conditional generation. CILT showcases competitive
performance while increasing the interpretability and requiring a 2-3 orders of
magnitude fewer molecules.

1 INTRODUCTION

Chemists have long understood molecular behaviour through explicit linking of structural motifs
— functional groups and molecular substructures — with observable properties. Machine learning
models learn these relationships through data, often obscuring the underlying chemical relationships.
The trade-off between the interpretability of hand-crafted features and the flexibility of machine
learning remains unresolved.

Chemists represent these hand-crafted features as molecular fingerprints — vectors encoding the
presence or count of functional groups, aromatic rings, and polar surface area. When crafted cor-
rectly, these fingerprints achieve high interpretability, sample efficiency, and outperform deep learn-
ing models (Praski et al., 2025} Boldini et al., 2024} [Dekker et al.| 2023)). However, they are static;
domain scientists maintain dozens of specialized fingerprints, each optimized for a specific property,
making them inflexible and slow to adapt to new tasks. By design, they impose a hard inductive bias
on the model and limit expressivity.

Deep learning methods learn molecular representations with little to no inductive bias, offering a
layer of flexibility, unatainable to fingerprints. However, this comes at a cost of interpretability,
making it hard to link underlying molecular motifs to predicted properties. This limits the applica-
bility of deep learning models in real-world applications, where understanding the reasoning behind
the prediction is as crucial as the prediction itself (Jiménez-Luna et al., 2020).

Here, we tackle this interpretability-flexibility trade-off by introducing a task-conditioned, motif-
based, pre-training, creating an adaptive and interpretable molecular representation model. Our
Chemically Informed Language Transformer (CILT) is pre-trained in a weakly supervised fashion
on 300+ chemical motifs, programmatically derived from chemically important substructures and
functional groups. These motifs are combined with natural text descriptors, enabling CILT to derive
task-dependent embeddings. Furthermore, this design enables CILT to generate new molecules,
predict properties, and adapt to any number of classification and regression tasks without changing
the model’s architecture or vocabulary, creating a unified, interpretable model for chemistry.

We demonstrate these capabilities through direct comparison with baseline models showcasing the
interpretability with clear functional group clusters for CILTs embeddings and attention routes to
relevant atoms. Zero-shot inference on novel tasks reaches 68% accuracy, and performance on
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standard benchmarks remains competitive, demonstrating that interpretability and task-adaptivity
do not sacrifice prediction quality.

Our main contributions are:

1. Weakly supervised ask-adaptive pre-training framework: We introduce a weak super-
vision approach on chemically important motifs paired with an open source library, Chem-
Caption, for molecular featurization.

2. Chemical interpretability: Functional group clustering, feature attribution, and task-
conditioned attention routing demonstrate that learned representations align with chemical
concepts and can be visualized to understand model reasoning per task.

3. Semantic task reasoning capabilities: Zero-shot inference (up to 68% on novel tasks)
through interpretable task embeddings—capabilities categorically unavailable to task-
agnostic pre-trained models that require fine-tuning on each new task.

4. Data efficient competitive performance: CILT outperforms other task-agnostic models
on the MoleculeNet benchmark across multiple versions of the model, showing that struc-
tured weak supervision substitutes for scale without sacrificing prediction quality.

w 0y__OH

(()) Is carboxyl

O  9group present O\r

(@) o)

2 carbonyl
[ITTTT] !

> Oy OH Palogen

| Is ketone o / . fene

S  ogowp present \g/ Same embedding e

carboxyl

O __OH
= Is carboxyl [
rou resent carbon)
= o Y
O Task dependent halogen
— embeddings .
3 o OH clh:r
Is ketone O. carboxyl
o group present 5/ e [TTT1T11]

Figure 1: Overview figure of different approaches. Our CILT model can utilize the advantages of
both deep learning and classical fingerprinting approaches.

2 BACKGROUND

Group Contribution Methods are a family of techniques for estimating molecular properties based
on their substructural composition (Joback & Reid| 1987} [Fredenslund et al.,[1975). Molecules are
decomposed into predefined structural groups, where each group has assigned empirically derived
parameters that represent their contribution. These contributions are then combined, while account-
ing for the correction terms for group interactions, to form a property prediction. Chemists apply
this method to this day to quickly and at scale estimate properties for mixture thermodynamics
(Fredenslund et al., [1975)), property estimation (Lydersen [1955)), drug discovery (Andrews et al.,
1984), to name a few. Besides predictive power, thanks to hand-tuned features, predictions made
with group-contribution approaches are very interpretable.

Molecular Fingerprints describe a molecule as a vector encoding the presence or count of prede-
fined structural features. These fingerprints can then be used for fast similarity comparisons, form-
ing the basis for structure-to-property predictive modeling. Machine learning models often offer
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negligible gains compared to fingerprints while lacking interpretability and introducing additional
computational overhead (Praski et al., {2025} [Boldini et al., [2024]).

3 RELATED WORK

Molecular Representation Learning Molecular property prediction has been addressed through
diverse representation learning approaches. Sequence-based methods treat molecules as sequences,
typically using the SMILES notation (Weininger, [1988)) or other line representations such as SELF-
IES (Krenn et al., 2022} 2020). Early work applied recurrent neural networks to SMILES (Segler
et al., [2018; Mayr et al.l 2018; |Goh et al., [2017)), while more recent approaches use transformer
architectures with masked language modeling objectives (Ahmad et al., [2022; |Chithrananda et al.,
2020; [Ross et al., [2022; [Fabian et al.l [2020; Honda et al., |[2019; Irwin et al., |2022; Born & Man-
1ca, 2023). ChemBERTa (Chithrananda et al., 2020) adapts RoBERTa to molecular data, while
MolFormer (Ross et al., |2022) scales to more than a billion molecules using linear attention mecha-
nisms.

Graph-based Approaches One can represent molecules as molecular graphs with atoms as nodes
and bonds as edges. Message-passing neural networks (Gilmer et al., 2017} [Scarselli et al., 2008)
form the foundation for many architectures. Self-supervised approaches include contrastive learning
methods like MolCLR (Wang et al.| [2022b)), GraphCL (You et al., 2020), GraphMAE (Hou et al.,
2022)), and GROVER (Rong et al.,|2020).

Multi-Task and Auxiliary Supervision Several approaches incorporate additional supervision
signals during pretraining. MolBERT (Fabian et al., 2020) combines masked language modeling
with auxiliary tasks such as descriptor prediction. ChemBERTa-2 (Ahmad et al.| |2022) adds multi-
task regression on physico-chemical properties. MoMu (Su et al., 2022) trains jointly on molecular
graphs and natural language descriptions.

Text-Molecule Joint Modeling Recent works explore the joint modeling of natural language and
molecular representations. MolT5 (Edwards et al., [2022)) adapts T5 to perform both molecule-to-
text and text-to-molecule generation tasks. Text2Mol (Edwards et al) [2021) learns cross-modal
embeddings between molecular graphs and textual descriptions. MoleculeSTM (Liu et al.| [2022)
and CLAMP (Seidl et al. [2023)) use contrastive learning between molecules and text. CLAMP
learns CLIP-style contrastive alignments between molecules and text to improve downstream activ-
ity prediction from natural language assay descriptions. Instruction-following approaches include
Galactica (Taylor et al.|, 2022, etherO (Narayanan et al., 2025)), and MolecularGPT (Liu et al.}[2024).

Task Conditioning and Prompting In scientific domains, task conditioning appears in protein
modeling (Ferruz et al., 2022} [Liu et al., 2023)), drug design (Bagal et al., [2021; Born & Manica,
2023)) and optimization (Wu et al., 2024). However, most molecular models use fixed task identifiers
or classification heads rather than natural language descriptions.

In summary, prior molecular pretraining has been largely optimized for token- or sequence-level
objectives on SMILES, often requiring massive corpora before substructure knowledge emerges.
We instead weakly supervise on chemistry via task-conditioned targets, derived via inexpensive
calculations described in natural language, and we couple this with a dual-masking objective that
ties text semantics to molecular structure. Empirically, this yields competitive accuracy with far
fewer pretraining molecules, strong few-shot transfer and high interpretability; theoretically, task-
similarity and motif-sparsity analyses explain when and why these gains appear.

4 CHEMICALLY INFORMED TASK CONDITIONING

4.1 PROBLEM SETUP

We pre-train a single 150M-parameter transformer on hundreds of molecular motifs expressed as
natural language descriptors. Each task ¢ has a programmatic supervision function g; that extracts
chemical properties from molecules: substructure indicators (“‘contains halogen group”), counts
(“number of aromatic rings”), or simple properties (“molecular mass”).
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We unify the tasks and molecules by encoding them into text and jointly passing them throughout
our network in the following form

d [SEP] v |[SEP] =«
~— \ , ~—~
task description value tokens SMILES
This format enables conditional training, the model learns to predict masked SMILES tokens given

properties and masked property values given SMILES, enabling a seamless switch between property
prediction and generation as well as addition of new tasks.

4.2 TRAINING OBJECTIVE

We train with two alternating masked language modeling objectives. The SMILES objective (Equa-
tion (I)) teaches the model to generate molecules conditioned on task descriptions and target prop-
erty values:

Lsmires(0) = Eonr, |— Z log po (i | 2\s, s, dy) (1)
€M,

The property value objective (Equation (2))) teaches property prediction conditioned on molecular
structure and task description:

Latue (0) = Et,r,My - Z IOgPG(yt,j | z,ds) (2)
JEM,

This bidirectional training creates a unified architecture for conditional generation, regression, and

classification driven entirely by natural language prompts.

4.3 THEORETICAL FOUNDATIONS

We provide theoretical justification for two key claims: why semantic similarity between task de-
scriptions should predict transfer performance, and motif pretraining tasks should improve sample
efficiency.

4.3.1 TASK SIMILARITY CONTROLS TRANSFER

We first formalize the intuition that semantically similar task descriptions should enable better zero-

shot transfer. We define this semantic similarity as the cosine similarity between task description
embeddings: s(d,d’) = (e(d), e(d")).

Theorem 1 (Task-Semantic Adaptation Bound). Under standard Lipschitz and bounded loss as-
sumptions, the domain error R on a target task d' is bounded by:

Ry(h) < ) oaqRa,(h) + L)Y oafe(d) —e(di)]+O(v/1/n) 3)
a ; a ; oW1/n)

few-shot term

weighted source risk task geometry term

Sfor any convex combination of source tasks {«.} and constant L > 0.

Where Rg, (h) represents the model’s source domain error (on the pre-training tasks) while Ry (h)
represents model’s target domain error (on new tasks). The task embedding is represented as e(d)
and « is chosen via softmax over distance oy = softmaz(|le(d’) — e(dy)|)).

Proof. See section section [A. 1

The task geometry term shows that transfer performance degrades with the distance between task
embeddings. For unit-norm embeddings, |[e(d’) — e(d;)||* = 2(1 — cos Z(e(d'), e(dy))), higher
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cosine similarity implies better transfer when the weighted source domain errors are appropriately
regularized. This provides theoretical backing for our empirical observation that zero-shot perfor-
mance correlates with semantic similarity and indicates the number of shots needed to adapt to a
re-phrased or related task (see Section [6.2).

4.3.2 MOTIF PRETRAINING IMPROVES SAMPLE EFFICIENCY

Next, we establish that when molecular properties depend on sparse combinations of motifs (e.g.,
functional groups) weak supervision on chemical motifs dramatically reduces sample complexity.
This is a chemically informed prior based on the realization that chemists have achieved much
success with so-called group contribution methods (Gani, 2019; Kiihne et al., |1995; |(Constantinou
& Ganil |1994; [Fredenslund, [2012), where a property is predicted based on a linear or higher-order
combination of group-specific factors (see Background section).

Suppose the pre-trained representations are motif-aligned, where motifs might correspond to func-
tional group features, and suppose downstream molecular properties depend on sparse combinations
of k < p motifs, as suggested by the group contribution method. Under standard sparse regression
assumptions:

Theorem 2 (Motif Sample Complexity). When molecular properties depend on k motifs out of p

total features, explicit motif supervision reduces sample complexity from O(p/e?) to O(klogp/e?)
for achieving prediction error €.

Proof. See section section|A.2

5 METHODS

5.1 DATASET CONSTRUCTION

We construct our pretraining dataset by programmatically generating chemical task-property pairs
from half a million diverse molecules from ChemPile-MLift (Mirza et al.| |2025) using the Chem-
Caption package, which interfaces with RDKit (Landrum) |2006). Our property set spans atom and
bond counts, manually curated functional group indicators, ring system features, molecular descrip-
tors, hydrogen bonding patterns, and substructure motifs. This yields over 300 distinct chemical
properties per molecule.

Task descriptions are generated using templated natural language patterns. Task descriptions use
templates like “does the molecule contain (PROPERTY.NAME)” or “what is the
(PROPERTY_NAME) ”, or “number of (PROPERTY_NAME)”. Property values are serialized
as text tokens: binary values as “17°/“0”, integers directly, and continuous values are first normalized
and then quantized to four decimal places. This process generates approximately 150 million task-
molecule pairs.

5.2 MODEL ARCHITECTURE AND TRAINING

We employ a 150M-parameter ModernBERT architecture (Warner et al., [2025) with a shared vo-
cabulary combining SMILES tokens derived using a regular expression-based tokenizer (Schwaller
et al., 2018), as well as natural language tokens, and numerical value tokens derived from the
ModernBERT tokenizer. Input sequences follow the format [task description] [SEP]
[property value] [SEP] [SMILES] with a maximum sequence length of 1024. Through-
out all of the experiments no sequence has exceeded this limit.

Training alternates between the SMILES objective (Equation (IJ)) and the property prediction objec-
tive (Equation (2)) every 20 batch steps. The property prediction objective masks the entire property
value and predicts it conditioned on the task description and SMILES sequence. The SMILES com-
pletion objective randomly masks 25% of the SMILES tokens and predicts them conditioned on the
description of the task and the value of the property. Both objectives use cross-entropy loss with uni-
form task sampling across our property collection. We train the model for 3 epochs, for parameter
breakdown see Section[A.3]
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5.3 BASELINES

For comparison, we consider the following leading large chemical pretrained models: Mol-
CLR (Wang et al., 2022a), ChemBERTa (Chithrananda et al., 2020), MolFormer (Ross et al.,
2022), MolBert (Fabian et al., 2020), Grover (Rong et al. 2020), MolT5 (Edwards et al., [2022)
and MoleculeSTM (Liu et al., 2022)). We test all models on the MoleculeNet benchmark (Wu et al.}
2018) and photoswitch dataset (Griffiths et al., 2022) (detailed description can be found in Sec-

tion[A.3.T|and Section[A.3.2] respectively).

In the linear probe experiments, we train linear regression models for the regression tasks and lo-
gistic regression models for the classification tasks. For both, we utilize L, regularization (with
optimal parameters see section[A.2)), additionally, for the logistic regression we employ the liblinear
solver and balanced class weights. For all experiments, we use 4-fold cross-validation with scaffold
splitting.

6 EXPERIMENTS AND RESULTS

To demonstrate the effectiveness of our method, we evaluate CILT on multiple standard benchmarks
in multiple systematic experiments: a) embedding alignment assessing the alignment of embed-
dings with chemically relevant features; b) zero-/few-shot transfer evaluating the performance of
CILT on unseen tasks and the amount of data needed for adaptation to these tasks; c) linear probes
comparing embeddings across different models to evaluate innate learned molecular representations;
d) ablations for targeted assessment of our training methodology.
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Figure 2: Visualization of learned embeddings represented via t-SNE. Representations are ex-
tracted from the hold-out test set (scaffold-split) used for the pre-training of CILT. The models used
for comparisons are MolFormer (Ross et al.| [2022), MolT5 (Edwards et al.| 2022) and a SMILES-
only pre-trained version of CILT.

6.1 REPRESENTATIONS ALIGNMENT WITH FUNCTIONAL GROUPS

Experiment To show the benefit of pre-training with molecular fingerprints as a weak prior we
compare the embeddings across CILT, SMILES only trained version of CILT, MolFormer (Ross
et all[2022) and MolT5 (Edwards et all [2022) Figure[2]



Under review as a conference paper at ICLR 2026

Results Figure [2] show that CILT’s embeddings cluster align with the presence and absence of
functional groups, while the classical MLM approaches and multimodal modeling are not able to
make this distinction. This indicates that the model can capture relevant chemical features that
are known to chemists and therefore offers a higher level of interpretability. This gives additional
support to our assumption that we induce motif-aligned coordinates in our representation (see The-
orem [2). For a full breakdown of per-functional group embeddings see Section[A.7]

Additionally, we also find attention patterns to show chemically meaningful behaviors (Section[A.6).
Chemically relevant atoms have higher attention scores, and attention patterns link the task to the
property and then to relevant atoms.

6.2 ZERO-SHOT TRANSFER

Experiment Theorem [I| predicts that semantically similar task descriptions should enable better
zero-shot transfer. To evaluate this, we conducted an experiment on a subset of functional group
presence tasks. We rephrase the original template 20 times (see Section [A.4) and measure the
cosine similarity between the new and original task description. We then group the tasks by cosine
similarity and evaluate the model on them. First, we measure the zero-shot performance, and then
we gradually increase the number of fine-tuning data points until all of the tasks converge. Baseline
models do not have the ability to adapt to new task descriptions, therefore we report only their
zero-shot performance.
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Figure 3: Adaptation to new tasks. A Adaptation to the new task description for the already seen
task based on the cosine similarity to the original task description. Baseline models do not have
the ability to adapt to new task descriptions, their zero-shot performance is reported. B Required
number of data points to adapt to the unseen tasks across 12 methylations.

Results Figure [3] A shows that across all of the datasets the cosine similarity is correlated both
in the zero-shot performance and the adaptation setting. We see that the datasets with higher co-
sine similarity between the new task description and the original task description from pretraining
adapt with fewer data points. This gives support to our assumptions that semantically similar task
descriptions should enable better zero-shot transfer. Furthermore, none of the baseline models show
zero-shot performance better than random, indicating that the models are not capable of distinguish-
ing between different functional groups.

6.3 FEW-SHOT TRANSFER

Experiment Theorem [2| predicts that motif-alignment leads to more data efficient learning. We
test this by altering the original task. We perform methylations (replacing one H with CHj3) on
the substructures that CILT has been trained to understand. We gathered 15 of these new tasks to
evaluate our model. After evaluating the zero-shot, we gradually increase the number of training
points by 20 (10 positive and 10 negative samples) until our models converge. For the baseline
models, we freeze the backbone and replace the last layer with the prediction head and fine-tune the
model as a binary classifier.

Results Figure E] B shows that across all of the methylations, CILT can fine-tune with less than
100 samples and even perform zero-shot inference in some settings. This gives support to our
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assumptions that motif alignment leads to more data-efficient learning. Furthermore, none of the
baseline models show performance significantly better than random at any step of the fine-tuning
process.

6.4 TRANSFERABILITY OF THE EMBEDDINGS

Experiment We assess the robustness and transferability of the embeddings of CILT and other
baseline encoders using linear probing (Alain & Bengiol [2016). We report the %9 AUCROC for
classification tasks and MAE for regression tasks along with the standard deviations.

Table 1: Embedding quality estimated using linear probes. Logistic regression and linear regres-
sion trained on embeddings over 4-fold cross-validation scaffold split. For classification we report
%AUCROC (1) and for regression MAE ({). The best results in each column are bolded and the
second best are underlined. CILT is the best model for classification tasks.

Classification (% AUCROC 71)

Model BACE BBBP ClinTox HIV SIDER Tox21 ToxCast MUV Avg.
MolCLR 73.4+3.6 8242+2.1 705+3.7 71.24+09 589+48 69.7+7.6 62.5+10.1 70.54+13.9 699
ChemBERTa 80.0+3.6 88.0+22 97.24+15 739+19 54.1+£6.0 67.84+6.8 64.0+10.5 72.8+11.1 747
MolFormer 74.3 +2.1 89.84+1.0 97.2+15 73.9+£09 558+5.1 68.0+ 6.2 65.3+10.2 71.9+15.7 745
Grover 84.2+38 84.1+0.8 828+3.1 78.5+2.3 56.7+6.6 71.3+£6.6 67.0£10.7 73.8+12.6 750
MoIBERT 81.0+4.2 829+22 779+63 754+22 569+46 704+6.9 63.9+10.4 76.2+12.8 731
MolT5 81.94+35 943+16 974+27 75.84+1.6 60.3+7.8 7T4.0+6.7 69.9+10.4 74.0+13.9 784
MoleculeSTM 73.7 £ 4.2 87.6+ 1.9 98.0+0.6 71.1+£1.0 56.3+5.2 69.6+6.2 64.2+10.7 67.4+11.8 735
CILT(500k) 80.4+1.2 925+1.2 97.7+15 73.9+15 552+£6.3 66.3+6.9 64.44+10.3 71.9+£13.7 753
CILT(250k) 81.3+2.5 945+1.3 983+0.1 756+07 585+£6.8 72.54+6.0 68.0+11.2 75.2+12.3 780
Regression (MAE |)
Model Lipo ESOL FreeSolv CAM PBEO En — 7% En — 7% Zn — 7% Rank

MolCLR 1.00+0.04 1.03£0.09 1.16+£0.34 36.7+21.3 37.5+7.9 25.8+129 505+£7.7 13.8+5.3 3.0
ChemBERTa 0.81 4+ 0.30 0.824+0.73 0.86 +0.27 34.24+21.1 43.4+16.1 26.74+12.3 47.3 +10.6 13.8+5.3 2.0

MolFormer 0.81 +0.04 0.834+0.73 0.884+0.23 43.1£12.3 55.2+14.2 26.94+12.3 50.9+9.1 13.8+5.3 38
Grover 0.81 +0.03 0.82+0.73 0.85 + 0.27 39.8423.3 44.6+18.0 23.5+8.7 67.5+11.1 16.5+5.2 3.0
MolBERT 1.00+0.04 1.03£0.08 1.64+0.34 47.0+£25.8 41.54+21.8 31.0£11.3 58.6+£10.3 16.6 5.0 54
MolT5 0.81 +0.03 0.82+0.73 0.86 +0.27 833.83 +£17.7 43.74+15.2 24.7+13.5 47.4+12.1 13.8+5.3 1.9
MoleculeSTM 0.81 £ 0.03 0.82 +0.73 0.86 + 0.27 44.1£15.3 55.0£12.1 27.3+12.0 50.6+7.8 13.8+5.3 3.6
CILT(500k) 0.80 + 0.02 0.88+0.18 0.91+0.30 46.94+15.5 585+ 7.6 27.5+12.0 51.3+7.3 13.9+5.2 49
CILT(250k) 0.81 +0.02 0.90+£0.18 0.91+0.30 49.14+19.1 65.8 £ 7.0 27.5+12.0 51.3+7.3 13.9+5.2 5.1

Results Table [ shows that CILT demonstrates competitive performance across all the datasets.
In the classification setting, it achieves the 2 best and 3 second best scores, while in the regression
setting, it shows the second-to-last performance. We theorise that the lackluster performance on
regression tasks comes from pre-training being dominated by classification tasks.

6.5 ABLATIONS

Experiment To isolate the effect of task conditioning, we train a control model using identical
architecture and hyperparameters but with standard masked language modeling on SMILES se-
quences only, without task descriptions or property values. This control methodology represents
conventional molecular pretraining approaches like ChemBERTa and MolFormer.

We evaluate both the task-conditioned model and the SMILES-only baseline on the same down-
stream benchmarks using identical fine-tuning protocols.

Results  Table[2]shows that task-conditioned pretraining outperforms SMILES-only pretraining on
15 out of 16 tasks across two benchmark datasets. This confirms that our chemically meaningful
pretraining tasks provide measurable benefits over standard molecular language modeling.

7 DISCUSSION

Parameter—Performance Frontier In Figure 4] we plot the average classification performances
from the linear probe experiments (Section and compare them against the log number of
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Table 2: Ablation results. Logistic regression and linear regression trained on embeddings over a
4-fold cross-validation scaffold split. For classification we report % AUCROC (1) and for regression
MAE ({). The best results are bolded. We find that CILT outperforms the SMILES-only model on
both classification and regression tasks.

Classification (% AUCROC 1)

Model BACE BBBP ClinTox HIV SIDER tox21 ToxCast MUV Mean

SmilesOnly 74.7 £2.3 90.5+ 1.1 97.3+£2.0 70.1+1.2 55.2+6.1 65.7 + 6.6 63.4+10.1 68.7+13.7 732
CILT(500k) 80.4+1.2 925+1.2 97.7+1.5 73.9+1.5 55.2+6.3 66.3 + 6.9 64.44+10.3 71.9+13.7 753
CILT(250k) 81.3+2.5 94.5+1.3 983+0.1 75.6+0.7 585+6.8 725+60 68.0+11.2 75.2+12.3 78.0

Regression (MAE |)

Model Lipo FreeSolv ESOL CAM PBEO En — 7x Enr — mx Zn — 7 Rank

SmilesOnly 0.81+£0.03 0.894+0.07 0.91 +£0.18 49.2+16.9 77.4£15.3 30.0+11.9 62.8+6.9 17.1+4.8 2.6
CILT(500k) 0.80 + 0.02 0.88 £0.18 0.91 +0.30 46.9 +15.5 58.5+7.6 27.54+12.0 51.3+7.3 13.9+5.2 1.1
CILT(250k) 0.814+0.02 0.90£0.18 0.914+0.30 49.1+19.1 65.8+£ 7.0 27.54+12.0 51.3+7.3 13.9+£5.2 1.6

molecules used in pre-training. Our model CILT shows competitive performance across multiple
versions while only requiring a fraction of molecules. This challenges the assumption that sequence-
based molecular foundation models need to be trained on a huge number of molecules to work well.

Meaningful Representations Through Soft

50 Inductive Biases. Our approach succeeds
MolIT5 by implementing soft inductive biases—
78 | 78K 250; preferences for certain solutions without
I 7?"1}\*;,( 375k hard constraints (Wilsonl, [2025)). Rather
S e than restricting the model architecture, we
2 535k Chego guide learning through natural language task
BN Grover
g 7 MoIBERT MolFormer conditioning. ~ This creates representations
g 72 MaleculeSTM thgt cluster t?y' chemica}ly import'ant featu.res
< sequence without explicit supervision, while attention
0 % glriTph MoICLR mechanisms focus on chemically r.elefvant
atoms when processing task descriptions.
12 14 16 18 20 Our theoretical analysis shows that semantic

log Number of SMILES similarity between task descriptions directly

predicts transfer performance (Theorem [2)),
Figure 4: Log number of pretraining molecules while Theorem [Il formalizes how motif-based
vs. downstream performance. We show the supervision reduces sample complexity from
number of molecules used in pretraining of base- O(p) to O(klgp). The model learns chemical
line models and CILT vs. the average classifi- intuition not as an emergent property by scal-
cation performance of linear probes on Molecu- ing data, but as an explicit objective encoded
leNet. CILT shows the best tradeoff between through structured tasks.
dataset size and performance.

Task Conditioning as Architectural Inno-

vation The natural language conditioning
framework offers practical advantages beyond efficiency. Unlike approaches that require archi-
tectural changes for new properties and downstream applications, our text-based task descriptions
enable immediate extensibility. New chemical tasks can be incorporated without re-training by sim-
ply providing appropriate natural language descriptions, making the system immediately adaptable
to new chemical properties.

Future Directions The current CILT model is pre-trained on a naive selection of motifs and task
descriptions; therefore, the next future step would be to improve the selection of pre-training motifs
and rephrase the task descriptions (Maini et al., 2024} Pieler et al.| |2024). The semantic similarity
results also suggest principled curriculum learning possibilities.
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8 CONCLUSIONS

Foundation models (Whitel 2023} [Ramos et al.| 2025} |Alampara et al., [2025) for scientific domains
commonly follow the standard approach following the NLP blueprint: scale data and parameters
until patterns emerge (Frey et al.,|2023). But scientific domains differ fundamentally from language.
Chemical datasets are small, diverse, and experimental data is expensive. But scientific domains
possess structured theoretical knowledge that language modeling lacks. In chemistry, for instance,
this has been encoded over decades via QSPR relationships and group contribution theory. Rather
than rediscovering them from data, we can use them as a weak supervision signal.

We demonstrate that chemically-informed pretraining achieves competitive performance with orders
of magnitude less data. By encoding chemical priors as soft inductive biases through natural lan-
guage task conditioning, CILT learns interpretable representations that respect chemical structure
while enabling rapid adaptation to new tasks.

Our approach of pre-training on a broad basis of weakly supervised tasks in multiple masking ob-
jectives might be a recipe for other domains where there is little data, but one can generate tasks
with some weak-supervision-like techniques.
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A APPENDIX

A.1 PROOF OF THEOREM[I}E TASK-SEMANTIC ADAPTATION BOUND

We prove that the domain error on a target task can be bounded in terms of source task performance
plus a term that depends on the semantic similarity between task descriptions. The key insight is to
use optimal transport theory to relate distributional differences to task embedding distances.

Let P, denote the joint distribution of motif-task pairs (¢g (X, d), g4(X)) for task d, where X ~ D.
The domain error under task d is Rq(h) = E(z y)~p,[((h(Z),Y)].

Step 1: Kantorovich-Rubinstein bound. We want to bound the difference in domain error be-
tween the target task d’ and a weighted combination of source tasks d. Since the loss function £
is L¢-Lipschitz by assumption, we can apply the Kantorovich-Rubinstein duality, which provides a
connection between differences in expectations and Wasserstein distances (Villani, 2008)):

T
Ry (h) - Z Oztht (h)

T
= ’]Epd’ [E(h(Z)vY)} - Ezt ay Py, w(h(Z)vy)]’ < wal <Pd/7zatpdt> .

t=1

This converts the problem from bounding differences in domain errors to bounding Wasserstein
distances between distributions (which is a geometric problem about the learned representations).

Step 2: Pushforward representation. The joint distributions P, arise from our specific model
architecture. We can represent them as pushforwards of simpler distributions through our learned
mapping.

Define the map ¥ : (z,u) — (¢g(z,d(u)), gqu)(z)) that transforms molecules and task embed-

dings into motifs and tasks. This map encapsulates both our learned representation function and the
ground truth property computation.
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Since each task d corresponds to a fixed task embedding e(d), we can write:

Py = Y4(D @ de(ay),

where W denotes the pushforward measure. This means the distribution FP; is obtained by taking
the product of the molecular distribution D with a point mass at the task embedding e(d), then
applying the transformation W.

For the weighted combination of source distributions:

T T
z:Oétht =Wy (D ® Zatée(dt)> .

t=1 t=1

Step 3: Wasserstein contraction. Now we can use the property that the Wasserstein distance
contracts under Lipschitz maps. By assumption, the map V¥ is Lg-Lipschitz in the task embedding
component. This means that if two task embeddings are close, the resulting motif-task distributions
will also be close.

The contraction property gives us:

T T
Wy (Pd’7 Z Oétht> < LyWh <D ® Oe(ary, D ® Z at(se(dt)>

t=1 t=1

Since the molecular distribution D is the same in both cases, the Wasserstein distance only depends
on the task embedding component:

T T
W <5e(d’)a Z O‘tée(dt)) = Zatﬂe(d') —e(dy)|
t=1 t=1

The distributional distance between tasks thus reduces to the geometric distance between their em-
beddings. This justifies why semantic similarity should predict transfer performance.

Step 4: Finite-sample bound. Finally, we need to account for the fact that we only have finite
samples from the target task. The standard approach uses Rademacher complexity to bound the
gap between empirical and population risk. For bounded loss functions and hypothesis class H,
concentration inequalities give (Mohri et al.,|[2018)):

Ra(h) < Rar(h) + 2%, (H) + 3 %

with probability at least 1 — §, where Ry (h) is the empirical domain error on the target task.

Combining all steps and minimizing the empirical term over i € H yields the bound in Theorem ]
The interpretation is that target task performance is bounded by a weighted combination of source
performance, plus a penalty term proportional to the distance between task embeddings, plus a
finite-sample correction. O

A.2 PROOF OF THEOREM 2k MOTIF SAMPLE COMPLEXITY

We analyze when explicit motif supervision can reduce sample complexity compared to standard
dense regression. The key insight is that chemical properties often depend on sparse combinations
of motifs, making this a sparse regression problem where k£ < p motifs matter.

Setup and intuition. Consider a pretrained encoder that produces representations ¥y(x) € RP
that are motif-aligned—meaning different coordinates respond to different motifs. If downstream
molecular properties depend on only k out of p possible motifs, then the optimal linear head w*
should be k-sparse.

15



Under review as a conference paper at ICLR 2026

We analyze the LASSO estimator (Tibshirani, |1996), which is designed to recover sparse solutions:
1
b in —|ly — w2 + A
b € arg min 5 ly = D + A
where W € R"™*P stacks rows v (z;) " and y; = w* " g (x;) + &;.

Step 1: Basic inequality. The proof follows the standard template for LASSO analysis. By opti-
mality of 0, it achieves lower objective value than the true parameter w*:

1 ) ) 1
oy = Wllz + Al < olly = Pw?([3 + Ao

Since y = Ww* + £ where £ is noise, we can expand and simplify to get:
1 1 .
S WA < —€TWA + A o~ o),

where A = 1w — w™* is the estimation error.

The left side is the prediction error, while the right side has a stochastic term and a regularization
term.

Step 2: Controlling the stochastic term. The term 1£T WA involves the noise and is the main
source of randomness. We can bound it using the dual norm relationship:

Letga= <1\DT5,A> < le%
n n n

\ 1AL

Since the noise £ is sub-Gaussian, concentration inequalities tell us that with high probability:

< Coy/l08P
n

We choose the regularization parameter A to be twice this bound, so that:

1
ok
n

‘ o0

1 A
—¢TUA < S[A
n 2

This is a standard technique in high-dimensional statistics: choose A large enough to dominate the
stochastic fluctuations.

Step 3: Decomposability and cone constraint. Now we analyze the regularization term ||w*||; —
||0]|1. Since w* is k-sparse with support S = supp(w*), we can decompose:

lw™ [y = ll@lly = lwslly = lds]l — [[dse 2

Using the reverse triangle inequality ||all; — ||a + 0|1 < ||b]|1:

[wsll = ll@sll = lwsll = [lws + Aslly < [[As]

Therefore: |w*||1 — |[@]1 < ||Asll1 — [|Ase|l-

Combining with the previous steps gives:

1 A 3\ A
5, IPAIE < SHAIL + AT As I = 1Ase ) = - [1As]h = 51 Ase ]
Rearranging: ||Age<||1 < 3||Agl|1 (cone constraint).
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Step 4: Restricted eigenvalue and final bound. The cone constraint (Hastie et al., 2015) allows
us to control the estimation error using the restricted eigenvalue (RE) condition (Raskutti et al.,
2010). This condition requires that the design matrix ¥ has good properties when restricted to
sparse vectors:

1
~IA[Z > wl|Al3
for all A satisfying the cone constraint.

The RE condition is natural for motif-aligned representations: it says that different motifs produce
sufficiently different representation patterns that they can be distinguished statistically.

Using the Cauchy-Schwarz inequality || Ag|[; < v/k[|A||2 and combining with our earlier bound:

K 1 3\
A2 < = 1TA|2 < =VE||A
CIAIR < 5 1WAl < ZVRIALL

Solving: ||A|l2 < %/\.
For the prediction error:

9k

1
7\11/\7 * 2<7>\2
(- w) < =

Sample complexity conclusion. With A = Co IOSP , achieving prediction error at most £2 re-
quires:

% . Czazlogp < &2
K n

Solving for n:

n

2 2 2
> 9C?0%klog p _H <a ' klogp>.

Ke? K g2

This improves upon the standard dense regression bound of @(p/ €2) by a factor of p/(klogp).
When motifs are sparse (k < p), this represents an exponential improvement in sample complexity.

A.3 DATA

We provide a short overview of the dataset used in this study.

A.3.1 MOLECULENET

We use MoleculeNet [Wu et al.| (2018)) as one of our benchmarks. All of the benchmarks are used
with scaffold splitting. The benchmark contains the following datasets:

BACE BACE contains approximately 1.5k molecules and their bioactivity measurement for in-
hibition of human [-secretase 1 (BACE-1). The bioactivity values are an aggregate of scientific
literature and not from a single bioassay.

BBBP The blood-brain barrier penetration dataset contains approximately 2k molecules, and its
activity is determined by whether it is able to pass the highly selective membrane and enter the brain
fluid.

ClinTox The clinical toxicity (ClinTox) contains two bioactivity prediction tasks: (1) FDA ap-
proval and (2) failure of clinical trials. The dataset contains approximately 58k molecules.

HIV The HIV dataset contains approximately 40k of molecules and measures the evidence of
anti-HIV activity.
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SIDER The side effect resources (SIDER) dataset contains approximately 1.4k molecules span-
ning 27 assays measuring the side effects of drugs.

Tox21 The Tox21 dataset measures the drug-related effects spanning 12 different prediction tasks
with over 7.8k molecules.

ToxCast The ToxCast dataset provides 617 classification tasks based on in vitro drug screening.
The dataset contains 8.5 molecules.

MUV The maximum unbiased validation (MUV) dataset spans 17 tasks designed to identify active
compounds. The dataset contains approximately 93k molecules.

Lipo The lipophilicity dataset contains hydrophobicity measurements of 4.2k molecules.

ESOL The Delaney Solubility Dataset contains water solubility measurements for over 1.1k of
molecules.

FreeSolv The Freesolv dataset contains the measurements for hydration free energy for small
molecules and contains 624 molecules.

A.3.2 PHOTOSWITCH

For additional regression tasks, we use the photoswitch dataset (Griffiths et al.l|2022), where we use
the datasets that contain more than 100 molecules, and we again scaffold-split the datasets.

CAM The CAM-B3LYP benchmark contains 117 molecules and computed electronic transition
wavelengths in nm.

PBE(O The PBEOQ dataset contains 114 molecules and computed electronic transition wavelengths.

E and Z isomer These datasets contain the wavelengths of transitions between different electronic
states (n, m, %) that have been observed for the different isomers.

A.4 TEMPLATE REPHRASES

List of rephrased templates for functional groups used in Section The (GROUP )parameters are
replaced with the name of the functional group:

* “is the (GROUP) group present”

* “does it have a (GROUP) group”

* “is there a (GROUP) group in it”

* “does this structure include a (GROUP) group”

* “is a (GROUP) group part of the molecule”

* “does the compound contain a (GROUP) group”

* “can a (GROUP) group be found here”

* “is the (GROUP )functional group present”

* “does the molecule feature a (GROUP) group”

* “is there evidence of a (GROUP )functional group”
* “does this molecule exhibit a (GROUP) group”

* “is a (GROUP )functional group detectable”

* “does the structure show the presence of (GROUP )”
* “can a (GROUP) group be identified here”

* “is (GROUP )part of the chemical composition”
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A5

* “does the sample possess a (GROUP) group”

* “is there a (GROUP )moiety in this compound”

* “does this substance carry a (GROUP) group”

* “can the molecule be classified as containing a (GROUP) group”
* “is the (GROUP )function observed in this case”

TRAINING PARAMETERS

Table 3: Training hyperparameters. Hyperparameter setting used to train our model.

Hyperparameter | Value

Batch size 76

GPUs 6 x NVIDIA H100
GPUh 252h

Alternating loss steps 20

Precision float16

Hidden size 768

Maximum of positional embeddings | 1024

Number of hidden layers 22

Learning rate 0.01

Warmup steps 10000

Optimizer AdaFactor (Shazeer & Stern, [2018))
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A.6 ATTENTION

In Section[A.6] we show an example of how attention maps the property value token to the descrip-
tion and the relevant atoms, in this case, that is Fluorine (F). Additionally, we show that the atom

itself attends to a phrase “contains halogen” as well as the property value.

In Section[A.6] we show the average attention per SMILES token across all attention heads for the
second-to-last layer. The results are averaged over 5000 molecules that contain a halogen group,

where we fix the task description as shown in Section [A.6]
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Figure 5: Attention heads in the second to last layer exhibit the ability to correlate the task
to prediction and corresponding chemical element. Top, the source token for correct prediction
is attended by the task description and all Fluorine (F) atoms. Bottom, the Fluorine atom receives
attention from value tokens as well as the phrase “contains halogen group.” Illustration created using

BertViz 2019).
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Figure 6: Average attention per SMILES token across all attention heads for the second-to-last
layer for molecules containing a halogen group. The task description is fixed as shown in[A-6|and

the experiment contains 5000 molecules that in turn contain the halogen group.

20

OOorEec w0 ~0c0A0r0Z 000 ~A0ro0cENO0rZO0C0r00000r ~00NO—u ~vu ~ud

OOrCE~"0~0~"0~0r0Z-"0~0~" IO~ 0r0CECECNOFrZO—0r0000O0r—00ONO-L~-~—uL—~0u

EP]

EP]



Under review as a conference paper at ICLR 2026

A.7 PER FUNCTIONAL GROUP EMBEDDINGS

Here we show a full embedding breakdown per functional group. The molecules are from the test
set that has been scaffold split against the training set. As shown in the Fig. CILTs embeddings
cluster for each of the groups (except thiol) into clusters based on the functional group.

not alkanol not amide not amine
alkanol amide amine
Embeddings visualization - alkanol Embeddings visualization - amide Embeddings visualization - amine
carbonyl not carboxyl ether
—: not carbonyl —: carboxyl not ether
S S o
} - P )
Embeddings visualization - carbonyl Embeddings visualization - carboxyl Embeddings visualization - ether
not halogen not ketone not thiol
c halogen ketone thiol
(@) D c
Embeddings visualization - halogen Embeddings visualization - ketone Embeddings visualization - thiol

Figure 7: Functional group embeddings breakdown. The task description is fixed for each of
the functional groups. The model is in prediction mode, where the value of the functional group
is masked and the molecule is shown in full. Molecules are from the test set that is scaffold split
against the train set.
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A.8 CILT SCALING RESULTS BREAKDOWN

Here we expand on the section[6.4]results for all of the version of CILT Models we have trained that
are not shown in the main text. We conduct the same linear probe experiments as in the previously
mentioned section and give a breakdown based on the number of molecules in the pre-training
dataset.

Table 4: Linear probe breakdown for different versions of CILT Logistic regression and linear
regression trained on embeddings over 4-fold cross-validation scaffold split. For classification we
report % AUCROC (1) and for regression MAE ().

Classification (% AUCROC 1)

Model BACE BBBP ClinTox HIV SIDER Tox21 ToxCast MUV Avg.
75k 789 +4.0 943+1.3 981+1.6 749+20 573+64 725+6.3 68.4+11.0 73.8+13.0 773
125k 79.0£3.3 94.44+0.8 98.3+0.1 75.3+1.1 58.0+6.7 72.7+6.4 68.1+11.2 72.5+13.4 773
250k 81.3+2.5 94.5+1.3 98.3+0.1 75.6 £ 0.7 585+6.8 72.5+£6.0 68.0+£11.2 75.24+12.3 780
375k 78.9+3.8 9444+07 98.7+£1.1 75.7+1.0 588+58 72.3+£6.0 68.6+11.0 7T4.24+11.6 777
500k 80.4+1.2 925+1.2 97.7+1.5 73.9+15 552+£6.3 66.3+6.9 64.44+10.3 71.9+£13.7 753
Regression (MAE |)
Model Lipo ESOL FreeSolv CAM PBEO En — 7% En — 7w Zn — m* Rank
75k 0.814+0.02 0.91+£0.30 0.90+0.18 42.0+12.6 66.5+7.4 27.6+11.9 51.3+8.0 14.0+5.2 3
125k 0.814+0.02 0.91+0.30 0.90+0.18 38.7+13.9 67.7+7.9 27.5+12.0 51.3+7.3 14.0+5.2 3
250k 0.814+0.02 0.90+0.18 0.914+0.30 49.14+19.1 65.8+7.0 27.5+12.0 51.3+7.3 13.9+5.2 4
375k 0.814+0.02 0.90+0.18 0.914+0.30 43.64+11.9 66.4+6.8 27.6+12.0 51.3+7.3 13.9+5.2 3
500k 0.80+0.02 0.88+0.18 0.91+0.30 46.9+15.5 58.5+£7.6 27.5+12.0 51.3+7.3 13.9+£5.2 25
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A.9 USE OF LLMs

Large language models were employed as assistive tools for tasks including text rewriting,
spellchecking, minor stylistic improvements, and the writing of this statement. All content was
reviewed and verified by the authors, who take full responsibility for the final manuscript. LLMs
did not contribute to research ideation or substantive writing decisions.
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