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ABSTRACT

We achieve molecular property prediction competitive with SOTA models us-
ing up to two orders of magnitude fewer pretraining molecules by replacing
generic masked language modeling with chemically-informed, task-conditioned
self-supervision. Our Chemically Informed Language Transformer (CILT) learns
from hundreds of programmatically-derived chemical tasks (functional groups,
substructure counts, molecular properties) paired with natural language descrip-
tions. During pretraining, the model alternates between predicting masked
SMILES tokens conditioned on task descriptions and predicting property values
conditioned on molecules, creating a unified architecture for generation, regres-
sion, and classification driven by text prompts. This approach yields three key
advantages. First, despite using orders of magnitude less molecular data, we
match state-of-the-art performance on MoleculeNet benchmarks. Second, the
learned representations exhibit chemical interpretability: embeddings cluster by
functional groups without explicit supervision, while attention mechanisms route
from task descriptions to chemically relevant atoms. Third, the model demon-
strates predictable zero-shot generalization. The adaptation speed correlates with
semantic similarity between task descriptions, enabling rapid few-shot learning
on unseen tasks. Our results demonstrate that structured domain knowledge, en-
coded through natural language, can substitute for scale in scientific foundation
models—establishing a blueprint for data-efficient pretraining in chemistry and
beyond.

1 INTRODUCTION

Current sequence-based molecular property prediction models require massive pretraining cor-
pora. MolFormer trains on 1.1 billion molecules (Ross et al., 2022), ChemBERTa on 77 mil-
lion (Chithrananda et al., 2020). Both achieve strong performance by applying masked language
modeling to SMILES (Weininger, 1988) representations, following the standard recipe from natural
language processing (Frey et al., 2023).

This approach faces a fundamental mismatch. Molecular properties are frequently determined by
functional groups and substructures, not individual SMILES tokens. When analyzing aspirin, a
chemist immediately identifies an aromatic ring, carboxyl group, and ester linkage—structural mo-
tifs that determine pharmacological behavior. A SMILES tokenizer (Schwaller et al., 2018) pro-
cesses CC(=O)Oc1ccccc1C(=O)O as 21 independent symbols with no explicit functional group
or motif information. This forces models to reconstruct chemical knowledge from token-level statis-
tics, limiting efficiency in the low-data regimes common in chemical applications such as drug dis-
covery (Stanley et al., 2021).

Recent work has begun addressing this limitation. MolBERT (Fabian et al., 2020) incorpo-
rates auxiliary property prediction tasks during pretraining. ChemBERTa-2 (Ahmad et al., 2022)
adds physico-chemical property prediction alongside masked language modeling. Text+Chem
T5 (Christofidellis et al., 2023) explores joint text-molecule pretraining for improved chemical un-
derstanding.

These approaches, while promising, have fundamental limitations. They rely on fixed sets of auxil-
iary tasks determined at training time, often requiring architectural changes and retraining to incor-
porate new chemical properties. More critically, they treat motif (e.g., functional groups) recognition
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as an emergent capability rather than an explicit objective. The models must learn to connect aux-
iliary property predictions with the underlying SMILES tokens through indirect supervision, rather
than directly learning the structural patterns that determine molecular behavior.

We propose task-conditioned molecular pretraining that trains directly on the abstractions chemists
use. Instead of generic masked language modeling, we create hundreds of programmatically-derived
chemical tasks expressed as natural language descriptions such as “contains nitro group”, “number
of aromatic rings”, “hydrogen bond donors”... Our 150M-parameter model, CILT, alternates be-
tween predicting masked SMILES tokens conditioned on task descriptions and predicting chemical
properties conditioned on molecular structure. CILT is therefore able to inherently learn the cor-
relation between the molecule and its global and local features. We evaluate CLIT across multiple
benchmarks and demonstrate that explicit chemical supervision can substitute for scale in molecular
foundation models.

Our main contributions are:

1. Task-conditioned pretraining framework: We develop a unified architecture that per-
forms generation, regression, and classification driven by natural language task descrip-
tions, enabling extensibility without architectural changes.

2. Sample efficiency gains: We achieve competitive performance on the MoleculeNet bench-
mark using 2–3 orders of magnitude fewer SMILES than existing sequence-based ap-
proaches.

3. Theoretical analysis: We prove that when molecular properties depend on sparse combi-
nations of k motifs (e.g., functional groups), our approach reduces sample complexity from
O(p) to O(k log p) labeled examples. We further provide theoretical justification for why
semantic similarity between task descriptions controls transfer learning efficiency.

4. Predictable zero-shot transfer: Despite using only 150M parameters—orders of magni-
tude smaller than models that typically show zero-shot capabilities—we demonstrate zero-
shot capabilities on unseen tasks. Adaptation speed correlates with semantic similarity
between task descriptions, providing a principled framework for transfer to new chemical
spaces.

5. Chemical interpretability: The learned representations cluster by functional groups with-
out explicit supervision, and attention mechanisms route from task descriptions to chemi-
cally relevant atoms.

The natural language conditioning distinguishes our approach from prior work. Rather than fixed
heads for downstream classification or regression tasks, we express all tasks as text descriptions,
making the framework immediately extensible to new chemical properties without the need for any
changes in the tokenizer or the model architecture. Due to the quick adaptability, the model can be
quickly tuned to new task descriptions and new tasks. This same approach can be applied across
other scientific domains, making it especially powerful for areas where data is scarce.

2 RELATED WORK

Molecular Representation Learning Molecular property prediction has been addressed through
diverse representation learning approaches. Sequence-based methods treat molecules as sequences,
typically using the SMILES notation (Weininger, 1988) or other line representations such as SELF-
IES (Krenn et al., 2022; 2020). Early work applied recurrent neural networks to SMILES (Segler
et al., 2018; Mayr et al., 2018; Goh et al., 2017), while more recent approaches use transformer
architectures with masked language modeling objectives (Ahmad et al., 2022; Chithrananda et al.,
2020; Ross et al., 2022; Fabian et al., 2020; Honda et al., 2019; Irwin et al., 2022; Born & Man-
ica, 2023). ChemBERTa (Chithrananda et al., 2020) adapts RoBERTa to molecular data, while
MolFormer (Ross et al., 2022) scales to more than a billion molecules using linear attention mecha-
nisms.

Graph-based Approaches One can represent molecules as molecular graphs with atoms as nodes
and bonds as edges. Message-passing neural networks (Gilmer et al., 2017; Scarselli et al., 2008)
form the foundation for many architectures. Self-supervised approaches include contrastive learning
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methods like MolCLR (Wang et al., 2022b), GraphCL (You et al., 2020), GraphMAE (Hou et al.,
2022), and GROVER (Rong et al., 2020).

Multi-Task and Auxiliary Supervision Several approaches incorporate additional supervision
signals during pretraining. MolBERT (Fabian et al., 2020) combines masked language modeling
with auxiliary tasks such as descriptor prediction. ChemBERTa-2 (Ahmad et al., 2022) adds multi-
task regression on physico-chemical properties. MoMu (Su et al., 2022) trains jointly on molecular
graphs and natural language descriptions.

Text-Molecule Joint Modeling Recent works explore the joint modeling of natural language and
molecular representations. MolT5 (Edwards et al., 2022) adapts T5 to perform both molecule-to-
text and text-to-molecule generation tasks. Text2Mol (Edwards et al., 2021) learns cross-modal
embeddings between molecular graphs and textual descriptions. MoleculeSTM (Liu et al., 2022)
and CLAMP (Seidl et al., 2023) use contrastive learning between molecules and text. CLAMP
learns CLIP-style contrastive alignments between molecules and text to improve downstream activ-
ity prediction from natural language assay descriptions. Instruction-following approaches include
Galactica (Taylor et al., 2022), ether0 (Narayanan et al., 2025), and MolecularGPT (Liu et al., 2024).

Task Conditioning and Prompting In scientific domains, task conditioning appears in protein
modeling (Ferruz et al., 2022; Liu et al., 2023), drug design (Bagal et al., 2021; Born & Manica,
2023) and optimization (Wu et al., 2024). However, most molecular models use fixed task identifiers
or classification heads rather than natural language descriptions.

In summary, prior molecular pretraining has been largely optimized for token- or sequence-level
objectives on SMILES, often requiring massive corpora before substructure knowledge emerges.
We instead supervise on chemistry via task-conditioned targets, derived via inexpensive calculations
described in natural language, and we couple this with a dual-masking objective that ties text seman-
tics to molecular structure. Empirically, this yields competitive accuracy with far fewer pretraining
molecules and strong few-shot transfer; theoretically, task-similarity and motif-sparsity analyses
explain when and why these gains appear.

Chemically Informed Language Transformer (CILT)
150 M parameters

global properties: 
logP, Mw, shape ...

local properties: 
functional groups

data preparation modeling
is carboxy present <MASK>

TRUE

Figure 1: CILT is a transformer that is trained on hundreds of chemically informed objectives.
CILT performs conditional regression and conditional classification on local and global motifs as
well as molecular properties. In addition, CILT performs conditional generation. All tasks are
expressed in natural language, which makes it possible for CILT to rapidly adjust to new tasks.
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3 CHEMICALLY INFORMED TASK CONDITIONING

3.1 PROBLEM SETUP

We train a single 150M-parameter transformer on hundreds of chemical tasks expressed as natural
language descriptors. Each task t has a programmatic supervision function gt that extracts chemical
properties from molecules: substructure indicators (“contains halogen group”), counts (“number of
aromatic rings”), or simple properties (“hydrogen bond donors”).

Our key insight is to unify molecular generation and property prediction through text prompts. We
concatenate task descriptions, target values, and SMILES representations into one, unified prompt:

d︸︷︷︸
task description

[SEP] yt︸︷︷︸
value tokens

[SEP] x︸︷︷︸
SMILES

.

This format enables bidirectional training: the model learns to predict masked SMILES tokens given
properties and masked property values given SMILES.

3.2 TRAINING OBJECTIVE

We train with two alternating masked language modeling objectives. The SMILES objective (Equa-
tion (1)) teaches the model to generate molecules conditioned on task descriptions and target prop-
erty values:

LSMILES(θ) = Et,x,Mx

[
−
∑
i∈Mx

log pθ(xi | x\i, yt, dt)

]
(1)

The property value objective (Equation (2)) teaches property prediction conditioned on molecular
structure and task description:

Lvalue(θ) = Et,x,My

− ∑
j∈My

log pθ(yt,j | x, dt)

 (2)

The joint objective combines both terms: L(θ) = Lsmiles(θ)+λLvalue(θ). This bidirectional training
creates a unified architecture for conditional generation, regression, and classification driven entirely
by natural language prompts.

3.3 THEORETICAL FOUNDATIONS

We provide theoretical justification for two key claims: why semantic similarity between task de-
scriptions should predict transfer performance, and motif pretraining tasks should improve sample
efficiency.

3.3.1 TASK SIMILARITY CONTROLS TRANSFER

We first formalize the intuition that semantically similar task descriptions should enable better zero-
shot transfer. We define this semantic similarity as the cosine similarity between task description
embeddings: s(d, d′) = ⟨e(d), e(d′)⟩.
Theorem 1 (Task-Semantic Adaptation Bound). Under standard Lipschitz and bounded loss as-
sumptions, the risk R on a target task d′ is bounded by:

Rd′(h) ≤
T∑

t=1

αtRdt(h)︸ ︷︷ ︸
weighted source risk

+L

T∑
t=1

αt∥e(d′)− e(dt)∥︸ ︷︷ ︸
task geometry term

+O(
√

1/n)︸ ︷︷ ︸
few-shot term

(3)

for any convex combination of source tasks {αt} and constant L > 0.
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Proof. See section appendix A.1.

The task geometry term shows that transfer performance degrades with the distance between task
embeddings. For unit-norm embeddings, ∥e(d′) − e(dt)∥2 = 2(1 − cos∠(e(d′), e(dt))), higher
cosine similarity directly implies better transfer. This provides theoretical backing for our empirical
observation that zero-shot performance correlates with semantic similarity and indicates the number
of shots needed to adapt to a re-phrased or related task (see Section 5.2).

3.3.2 MOTIF PRETRAINING IMPROVES SAMPLE EFFICIENCY

Next, we establish that when molecular properties depend on sparse combinations of motifs (e.g.,
functional groups) explicit supervision on these patterns dramatically reduces sample complexity.
This is a chemically informed prior based on the realization that chemists have achieved much
success with so-called group contribution techniques (Gani, 2019; Kühne et al., 1995; Constantinou
& Gani, 1994; Fredenslund, 2012), where a property is predicted based on a linear or higher-order
combination of group-specific factors.

Suppose the pretrained representations are motif-aligned, where motifs might correspond to func-
tional group features, and suppose downstream molecular properties depend on sparse combinations
of k ≪ p motifs. Under standard sparse regression assumptions:

Theorem 2 (Motif Sample Complexity). When molecular properties depend on k motifs out of p
total features, explicit motif supervision reduces sample complexity from Õ(p/ε2) to Õ(k log p/ε2)
for achieving prediction error ε.

Proof. See section appendix A.2.

4 METHODS

4.1 DATASET CONSTRUCTION

We construct our pretraining dataset by programmatically generating chemical task-property pairs
from half a million diverse molecules from ChemPile-MLift (Mirza et al., 2025) using the ChemCap-
tion package (Gordan Prastalo et al.), which interfaces with RDKit (Landrum, 2006). Our property
set spans atom and bond counts, manually curated functional group indicators, ring system features,
molecular descriptors, hydrogen bonding patterns, and substructure motifs. This yields over 300
distinct chemical properties per molecule.

Task descriptions are generated using templated natural language patterns. Task descriptions use
templates like “does the molecule contain 〈PROPERTY NAME〉” or “what is the
〈PROPERTY NAME〉 ”, or “number of 〈PROPERTY NAME〉”. Property values are serialized
as text tokens: binary values as “1”/“0”, integers directly, and continuous values are first normalized
and then quantized to four decimal places. This process generates approximately 150 million task-
molecule pairs.

4.2 MODEL ARCHITECTURE AND TRAINING

We employ a 150M-parameter ModernBERT architecture (Warner et al., 2025) with a shared vo-
cabulary combining SMILES tokens derived using a regular expression based tokenizer (Schwaller
et al., 2018), as well as natural language tokens, and numerical value tokens derived from the
ModernBERT tokenizer. Input sequences follow the format [task description] [SEP]
[property value] [SEP] [SMILES] with a maximum sequence length of 1024.

Training alternates between SMILES objective (Equation (1)) and property prediction objective
(Equation (2)) every 20 batch steps. The property prediction objective masks the entire property
value and predicts it conditioned on the task description and SMILES sequence. The SMILES com-
pletion objective randomly masks 25% of the SMILES tokens and predicts them conditioned on the
description of the task and the value of the property. Both objectives use cross-entropy loss with uni-
form task sampling across our property collection. We train the model for 3 epochs, for parameter
breakdown see Appendix A.5.
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4.3 BASELINES

For comparison, we consider the following leading large chemical pretrained models: Mol-
CLR (Wang et al., 2022a), ChemBERTa (Chithrananda et al., 2020), MolFormer (Ross et al., 2022),
MolBert (Fabian et al., 2020) and Grover (Rong et al., 2020). We test all models on the MoleculeNet
benchmark (Wu et al., 2018) and photoswitch dataset (Griffiths et al., 2022) (detailed description
can be found in Appendix A.3.1 and Appendix A.3.2, respectively).

In the linear probe experiments, we train linear regression models for the regression tasks and lo-
gistic regression models for the classification tasks. For both, we utilize L1 regularization (with
optimal parameteres see appendix A.2), additionally for the logistic regression we employ the lib-
linear solver and balanced class weights. For all experiments, we use 4-fold cross-validation with
scaffold splitting.

5 EXPERIMENTS AND RESULTS

To demonstrate the effectiveness of our method, we evaluate CILT on multiple standard benchmarks
in multiple systematic experiments: a) linear probes comparing embeddings across different mod-
els to evaluate innate learned molecular representations; b) zero-/few-shot transfer evaluating the
performance of CILT on unseen tasks and the amount of data needed for adaptation to these tasks;
c) embedding alignment assessing the alignment of embeddings with chemically relevant features;
e) ablations for targeted assessment of our training methodology.

5.1 TRANSFERABILITY OF THE EMBEDDINGS

Experiment We assess the robustness and transferability of the embeddings of CILT and other
baseline encoders using linear probing (Alain & Bengio, 2016). We report the %AUCROC for
classification tasks and MAE for regression tasks along with the standard deviations.

Table 1: Embedding quality estimated using linear probes. Logistic regression and linear regres-
sion trained on embeddings over 4-fold cross-validation scaffold split. For classification we report
%AUCROC (↑) and for regression MAE (↓). The best results in each column are bolded and the
second best are underlined. CILT is the best model for classification tasks.

Classification (%AUCROC ↑)

Model BACE BBBP ClinTox HIV SIDER Tox21 ToxCast MUV Avg.

MolCLR 73.4 ± 3.6 82.42±2.1 70.5 ± 3.7 71.2 ± 0.9 58.9 ± 4.8 69.7 ± 7.6 62.5±10.1 70.54±13.9 69.9
ChemBERTa 80.0 ± 3.6 88.0 ± 2.2 97.2 ± 1.5 73.9 ± 1.9 54.1 ± 6.0 67.8 ± 6.8 64.0±10.5 72.8 ± 11.1 74.7
MolFormer 74.3 ± 2.1 89.8 ± 1.0 97.2 ± 1.5 73.9 ± 0.9 55.8 ± 5.1 68.0 ± 6.2 65.3 ± 10.2 71.9 ± 15.7 74.5
Grover 84.2 ± 3.8 84.1 ± 0.8 82.8 ± 3.1 78.5 ± 2.3 56.7 ± 6.6 71.3 ± 6.6 67.0 ± 10.7 73.8 ± 12.6 75.0
MolBERT 81.0 ± 4.2 82.9 ± 2.2 77.9 ± 6.3 75.4 ± 2.2 56.9 ± 4.6 70.4 ± 6.9 63.9±10.4 76.2 ± 12.8 73.1

CILT 80.4 ± 1.2 92.5 ± 1.2 97.7 ± 1.5 73.9 ± 1.5 55.2 ± 6.3 66.3 ± 6.9 64.4±10.3 71.9 ± 13.7 75.3

Regression (MAE ↓)

Model Lipo FreeSolv ESOL CAM PBE0 En − π∗ Eπ − π∗ Zn − π∗ Rank

MolCLR 1.00±0.04 1.03±0.09 1.16±0.34 36.7 ± 21.3 37.5 ± 7.9 25.8 ± 12.9 50.5 ± 7.7 13.8 ± 5.3 2.5
ChemBERTa 0.81 ± 0.30 0.82 ± 0.73 0.86 ± 0.27 34.2 ± 21.1 43.4±16.1 26.7±12.3 47.3 ± 10.6 13.8 ± 5.3 1.8
MolFormer 0.81 ± 0.04 0.83±0.73 0.88±0.23 43.1±12.3 55.2±14.2 26.9±12.3 50.9 ± 9.1 13.8 ± 5.3 3
Grover 0.81 ± 0.03 0.82 ± 0.73 0.85 ± 0.27 39.8±23.3 44.6±18.0 23.5 ± 8.7 67.5±11.1 16.5 ± 5.2 2.6
MolBERT 1.00±0.04 1.03±0.08 1.64±0.34 47.0±25.8 41.5 ± 21.8 31.0±11.3 58.6±10.3 16.6 ± 5.0 4.6

CILT 0.80 ± 0.02 0.88±0.18 0.91±0.30 46.9±15.5 58.5 ± 7.6 27.5±12.0 51.3 ± 7.3 13.9 ± 5.2 3.8

Results Table 1 shows that CILT demonstrates competitive performance across all the datasets—
being the leading model in the classification setting—while being trained on a fraction of molecules
for only 3 epochs.

5.2 ZERO-SHOT TRANSFER

Experiment Theorem 1 predicts that semantically similar task descriptions should enable better
zero-shot transfer. To evaluate this, we conducted an experiment on a subset of functional group
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presence tasks. We rephrase the original template 20 times (see Appendix A.4) and measure the
cosine similarity between the new and original task description. We then group the tasks by cosine
similarity and evaluate the model on them. First, we measure the zero-shot performance, and then
we gradually increase the number of fine-tuning data points until all of the tasks converge.

A B

Figure 2: Adaptation to new tasks. A Adaptation to the new task description for the already seen
task based on the cosine similarity to the original task description. B Required number of data
points to adapt to the unseen tasks. The average performance over 15 methylations and its standard
deviation are in blue, and two random tasks are shown in orange and green. CLIT can perform zero-
shot inference and can rapidly adapt to new tasks. The data efficiency of this adaptation is linked to
the cosine similarity of the task description to a task seen in training.

Results Figure 2 A shows that across all of the datasets the cosine similarity is correlated both
in the zero-shot performance and the adaptation setting. We see that the datasets with higher co-
sine similarity between the new task description and the original task description from pretraining
adapt with fewer data points. This gives support to our assumptions that semantically similar task
descriptions should enable better zero-shot transfer.

5.3 FEW-SHOT TRANSFER

Experiment Theorem 2 predicts that motif-alignment leads to more data efficient learning. We
test this by altering the original task. We perform methylations (replacing one H with CH3) on
the substructures that CILT has been trained to understand. We gathered 15 of these new tasks to
evaluate our model. After evaluating the zero-shot, we gradually increase the number of training
points by 20 (10 positive and 10 negative samples) until our models converge.

Results Figure 2 B shows that across all of the methylations, CILT can fine-tune with less than
100 samples and even perform zero-shot inference in some settings. This gives support to our
assumptions that motif alignment leads to more data-efficient learning.

5.4 REPRESENTATIONS ALIGNMENT WITH FUNCTIONAL GROUPS

Experiment To understand if the good performance of our embeddings is linked to molecular
properties, as motif-alignment suggested for Theorem 2, we embedded roughly 10k molecules per
functional group from our holdout set. In Figure 3A, we project the two types of embeddings using
t-SNE (Maaten & Hinton, 2008) for all molecules with different functional groups with the task
description, whereas we focus on specific functional groups in Figure 3B and C.

Results Figure 3 shows that the molecule clusters align with functional groups, drawing sharp
boundaries between classes. This indicates that the model can distinguish between the functional
group tasks (Figure 3A) as well as distinguish the presence or absence of the specific functional
group (see Figure 3B, C). This gives additional support to our assumption that we induce motif-
aligned coordinates in our representation (see Theorem 2).

In addition, we also find attention patterns to show chemically meaningful behaviors (Ap-
pendix A.6). Chemically relevant atoms have higher attention scores and attention patterns link
the task to the property and then to relevant atoms.

7
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A B

C

Figure 3: Visualization of learned embeddings represented via t-SNE. Representations are ex-
tracted from the hold-out test set (scaffold-split). A Task level separation for functional group tasks.
Embeddings contain task descriptions and molecules. B Molecule-level representation for amine
functional group, the task description is fixed. C Molecule level representation for alkanol func-
tional group, the task description is fixed. We find that the learned embeddings of CILT cluster in a
chemically meaningful way.

5.5 ABLATIONS

Experiment To isolate the effect of task conditioning, we train a control model using identical
architecture and hyperparameters but with standard masked language modeling on SMILES se-
quences only, without task descriptions or property values. This control methodology represents
conventional molecular pretraining approaches like ChemBERTa and MolFormer.

We evaluate both the task-conditioned model and the SMILES-only baseline on the same down-
stream benchmarks using identical fine-tuning protocols.

Table 2: Ablation results. Logistic regression and linear regression trained on embeddings over a
4-fold cross-validation scaffold split. For classification we report %AUCROC (↑) and for regression
MAE (↓). The best results are bolded. We find that CILT outperforms the SMILES-only model on
both classification and regression tasks.

Classification (%AUCROC ↑)

Model BACE BBBP ClinTox HIV SIDER tox21 ToxCast MUV Mean

SmilesOnly 74.7 ± 2.3 90.5 ± 1.1 97.3 ± 2.0 70.1 ± 1.2 55.2 ± 6.1 65.7 ± 6.6 63.4±10.1 68.7 ± 13.7 73.2
CILT 80.4 ± 1.2 92.5 ± 1.2 97.7 ± 1.5 73.9 ± 1.5 55.2 ± 6.3 66.3 ± 6.9 64.4 ± 10.3 71.9 ± 13.7 75.3

Regression (MAE ↓)

Model Lipo FreeSolv ESOL CAM PBE0 En − π∗ Eπ − π∗ Zn − π∗ Rank

SmilesOnly 0.81±0.03 0.91±0.18 0.89 ± 0.07 49.2±16.9 77.4±15.3 30.0±11.9 62.8 ± 6.9 17.1 ± 4.8 1.9
CILT 0.80 ± 0.02 0.88 ± 0.18 0.91±0.30 46.9 ± 15.5 58.5 ± 7.6 27.5 ± 12.0 51.3 ± 7.3 13.9 ± 5.2 1.1

Results Table 2 shows that task-conditioned pretraining outperforms SMILES-only pretraining on
14 out of 16 tasks across two benchmark datasets. This confirms that our chemically meaningful
pretraining tasks provide measurable benefits over standard molecular language modeling.

6 DISCUSSION

Parameter–Performance Frontier In Figure 4, we plot the average classification performances
from the linear probe experiments (Section 5.1) and compare them against the log number of

8
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molecules used in pretraining. Our model CILT shows competitive performance while only re-
quiring a fraction of molecules. This challenges the assumption that sequence-based molecular
foundation models need to be trained on a huge number of molecules to work well.

Meaningful Representations Through Soft Inductive Biases. Our approach succeeds by imple-
menting soft inductive biases—preferences for certain solutions without hard constraints (Wilson,
2025). Rather than restricting the model architecture, we guide learning through natural language
task conditioning. This creates representations that cluster by functional groups without explicit
supervision, while attention mechanisms focus on chemically relevant atoms when processing task
descriptions. Our theoretical analysis shows that semantic similarity between task descriptions di-
rectly predicts transfer performance (Theorem 2), while Theorem 1 formalizes how motif-based
supervision reduces sample complexity from O(p) to O(k lg p). The model learns chemical in-
tuition not as an emergent property by scaling data, but as an explicit objective encoded through
structured tasks.

Task Conditioning as Architectural Innovation The natural language conditioning framework
offers practical advantages beyond efficiency. Unlike approaches that require architectural changes
for new properties and downstream applications, our text-based task descriptions enable immediate
extensibility. New chemical tasks can be incorporated without retraining by simply providing ap-
propriate natural language descriptions, making the system immediately adaptable to new chemical
properties.

Figure 4: Log number of pretraining molecules
vs. downstream performance. We show the
number of molecules used in pretraining of base-
line models and CILT vs. the average classifi-
cation performance of linear probes on Molecu-
leNet. CILT shows the best tradeoff between
dataset size and performance.

Future Directions The current CILT model
is built on top of the base 150M ModernBERT
with only half a million molecules. One area
that we have not explored yet, and that is left for
future work, is scaling of the model and data,
which we expect to further increase the perfor-
mance. Additionally, we can further improve
our pretraining by rephrasing the dataset (Maini
et al., 2024; Pieler et al., 2024). The seman-
tic similarity results also suggest principled cur-
riculum learning possibilities.

7 CONCLUSIONS

Foundation models (White, 2023; Ramos et al.,
2025; Alampara et al., 2025) for scientific do-
mains commonly follow the standard approach
following the NLP blueprint: scale data and
parameters until patterns emerge (Frey et al.,
2023). But scientific domains differ funda-
mentally from language. Chemical datasets are
small, diverse, and experimental data is expen-
sive. But scientific domains possess structured
theoretical knowledge that language modeling
lacks. In chemistry, for instance, this has been

encoded over decades via QSPR relationships and group contribution theory. Rather than rediscov-
ering them from data, we can use them as a weak supervision signal.

We demonstrate that chemically-informed pretraining achieves competitive performance with orders
of magnitude less data. By encoding chemical priors as soft inductive biases through natural lan-
guage task conditioning, CILT learns interpretable representations that respect chemical structure
while enabling rapid adaptation to new tasks.

Our approach of pretraining on a broad basis of weakly supervised tasks in multiple masking objec-
tives might be a recipe for other domains where there is little data, but one can generate tasks with
some weak-supervision-like techniques.
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A APPENDIX

A.1 PROOF OF THEOREM 1: TASK-SEMANTIC ADAPTATION BOUND

We prove that the risk on a target task can be bounded in terms of source task performance plus a
term that depends on the semantic similarity between task descriptions. The key insight is to use
optimal transport theory to relate distributional differences to task embedding distances.

Let Pd denote the joint distribution of representation-label pairs (ϕθ(X, d), gd(X)) for task d, where
X ∼ D. The risk under task d is Rd(h) = E(Z,Y )∼Pd

[ℓ(h(Z), Y )].

Step 1: Kantorovich-Rubinstein bound. We want to bound the difference in risk between the tar-
get task d′ and a weighted combination of source tasks. Since the loss function ℓ is Lf -Lipschitz by
assumption, we can apply the Kantorovich-Rubinstein duality, which provides a connection between
differences in expectations and Wasserstein distances (Villani, 2008):

∣∣∣∣∣Rd′(h)−
T∑

t=1

αtRdt
(h)

∣∣∣∣∣ = ∣∣∣EPd′ [ℓ(h(Z), Y )]− E∑
t αtPdt

[ℓ(h(Z), Y )]
∣∣∣ ≤ LfW1

(
Pd′ ,

T∑
t=1

αtPdt

)
.

This converts the problem from bounding differences in risks (which involve the specific head h)
to bounding Wasserstein distances between distributions (which is a geometric problem about the
learned representations).

Step 2: Pushforward representation. The joint distributions Pd arise from our specific model
architecture. We can represent them as pushforwards of simpler distributions through our learned
mapping.

Define the map Ψ : (x, u) 7→ (ϕθ(x, d(u)), gd(u)(x)) that transforms molecules and task embed-
dings into representations and labels. This map encapsulates both our learned representation func-
tion and the ground truth property computation.

Since each task d corresponds to a fixed task embedding e(d), we can write:
Pd = Ψ#(D ⊗ δe(d)),

where Ψ# denotes the pushforward measure. This means the distribution Pd is obtained by taking
the product of the molecular distribution D with a point mass at the task embedding e(d), then
applying the transformation Ψ.

For the weighted combination of source distributions:
T∑

t=1

αtPdt
= Ψ#

(
D ⊗

T∑
t=1

αtδe(dt)

)
.

Step 3: Wasserstein contraction. Now we can use the property that the Wasserstein distance
contracts under Lipschitz maps. By assumption, the map Ψ is LΨ-Lipschitz in the task embedding
component. This means that if two task embeddings are close, the resulting representation-label
distributions will also be close.

The contraction property gives us:

W1

(
Pd′ ,

T∑
t=1

αtPdt

)
≤ LΨW1

(
D ⊗ δe(d′),D ⊗

T∑
t=1

αtδe(dt)

)
Since the molecular distribution D is the same in both cases, the Wasserstein distance only depends
on the task embedding component:

W1

(
δe(d′),

T∑
t=1

αtδe(dt)

)
=

T∑
t=1

αt∥e(d′)− e(dt)∥

The distributional distance between tasks thus reduces to the geometric distance between their em-
beddings. This justifies why semantic similarity should predict transfer performance.
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Step 4: Finite-sample bound. Finally, we need to account for the fact that we only have finite
samples from the target task. The standard approach uses Rademacher complexity to bound the
gap between empirical and population risk. For bounded loss functions and hypothesis class H,
concentration inequalities give (Mohri et al., 2018):

Rd′(h) ≤ R̂d′(h) + 2Rn(H) + 3

√
ln(2/δ)

2n

with probability at least 1− δ, where R̂d′(h) is the empirical risk on the target task.

Combining all steps and minimizing the empirical term over h ∈ H yields the bound in Theorem 1.
The interpretation is that target task performance is bounded by a weighted combination of source
performance, plus a penalty term proportional to the distance between task embeddings, plus a
finite-sample correction.

A.2 PROOF OF THEOREM 2: MOTIF SAMPLE COMPLEXITY

We analyze when explicit motif supervision can reduce sample complexity compared to standard
dense regression. The key insight is that chemical properties often depend on sparse combinations
of motifs, making this a sparse regression problem where k ≪ p motifs matter.

Setup and intuition. Consider a pretrained encoder that produces representations ψθ(x) ∈ Rp

that are motif-aligned—meaning different coordinates respond to different motifs. If downstream
molecular properties depend on only k out of p possible motifs, then the optimal linear head w⋆

should be k-sparse.

We analyze the LASSO estimator (Tibshirani, 1996), which is designed to recover sparse solutions:

ŵ ∈ arg min
w∈Rp

1

2n
∥y −Ψw∥22 + λ∥w∥1

where Ψ ∈ Rn×p stacks rows ψθ(xi)
⊤ and yi = w⋆⊤ψθ(xi) + ξi.

Step 1: Basic inequality. The proof follows the standard template for LASSO analysis. By opti-
mality of ŵ, it achieves lower objective value than the true parameter w⋆:

1

2n
∥y −Ψŵ∥22 + λ∥ŵ∥1 ≤ 1

2n
∥y −Ψw⋆∥22 + λ∥w⋆∥1

Since y = Ψw⋆ + ξ where ξ is noise, we can expand and simplify to get:
1

2n
∥Ψ∆∥22 ≤ 1

n
ξ⊤Ψ∆+ λ(∥w⋆∥1 − ∥ŵ∥1),

where ∆ = ŵ − w⋆ is the estimation error.

The left side is the prediction error, while the right side has a stochastic term and a regularization
term.

Step 2: Controlling the stochastic term. The term 1
nξ

⊤Ψ∆ involves the noise and is the main
source of randomness. We can bound it using the dual norm relationship:

1

n
ξ⊤Ψ∆ =

〈
1

n
Ψ⊤ξ,∆

〉
≤
∥∥∥∥ 1nΨ⊤ξ

∥∥∥∥
∞

∥∆∥1

Since the noise ξ is sub-Gaussian, concentration inequalities tell us that with high probability:∥∥∥∥ 1nΨ⊤ξ

∥∥∥∥
∞

≤ Cσ

√
log p

n

We choose the regularization parameter λ to be twice this bound, so that:
1

n
ξ⊤Ψ∆ ≤ λ

2
∥∆∥1

This is a standard technique in high-dimensional statistics: choose λ large enough to dominate the
stochastic fluctuations.
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Step 3: Decomposability and cone constraint. Now we analyze the regularization term ∥w⋆∥1−
∥ŵ∥1. Since w⋆ is k-sparse with support S = supp(w⋆), we can decompose:

∥w⋆∥1 − ∥ŵ∥1 = ∥w⋆
S∥1 − ∥ŵS∥1 − ∥ŵSc∥1

Using the reverse triangle inequality ∥a∥1 − ∥a+ b∥1 ≤ ∥b∥1:

∥w⋆
S∥1 − ∥ŵS∥1 = ∥w⋆

S∥1 − ∥w⋆
S +∆S∥1 ≤ ∥∆S∥1

Therefore: ∥w⋆∥1 − ∥ŵ∥1 ≤ ∥∆S∥1 − ∥∆Sc∥1.

Combining with the previous steps gives:

1

2n
∥Ψ∆∥22 ≤ λ

2
∥∆∥1 + λ(∥∆S∥1 − ∥∆Sc∥1) =

3λ

2
∥∆S∥1 −

λ

2
∥∆Sc∥1

Rearranging: ∥∆Sc∥1 ≤ 3∥∆S∥1 (cone constraint).

Step 4: Restricted eigenvalue and final bound. The cone constraint (Hastie et al., 2015) allows
us to control the estimation error using the restricted eigenvalue (RE) condition (Raskutti et al.,
2010). This condition requires that the design matrix Ψ has good properties when restricted to
sparse vectors:

1

n
∥Ψ∆∥22 ≥ κ∥∆∥22

for all ∆ satisfying the cone constraint.

The RE condition is natural for motif-aligned representations: it says that different motifs produce
sufficiently different representation patterns that they can be distinguished statistically.

Using the Cauchy-Schwarz inequality ∥∆S∥1 ≤
√
k∥∆∥2 and combining with our earlier bound:

κ

2
∥∆∥22 ≤ 1

2n
∥Ψ∆∥22 ≤ 3λ

2

√
k∥∆∥2

Solving: ∥∆∥2 ≤ 3
√
k

κ λ.

For the prediction error:
1

n
∥Ψ(ŵ − w⋆)∥22 ≤ 9k

κ
λ2

Sample complexity conclusion. With λ = Cσ
√

log p
n , achieving prediction error at most ε2 re-

quires:
9k

κ
· C2σ2 log p

n
≤ ε2

Solving for n:

n ≥ 9C2σ2k log p

κε2
= Õ

(
σ2

κ
· k log p

ε2

)
.

This improves upon the standard dense regression bound of Õ(p/ε2) by a factor of p/(k log p).
When motifs are sparse (k ≪ p), this represents an exponential improvement in sample complexity.

A.3 DATA

We provide a short overview of the dataset used in this study.

A.3.1 MOLECULENET

We use MoleculeNet Wu et al. (2018) as one of our benchmarks. All of the benchmarks are used
with scaffold splitting. The benchmark contains the following datasets:
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BACE BACE contains approximately 1.5k molecules and their bioactivity measurement for in-
hibition of human β-secretase 1 (BACE-1). The bioactivity values are an aggregate of scientific
literature and not from a single bioassay.

BBBP The blood-brain barrier penetration dataset contains approximately 2k molecules, and its
activity is determined by whether it is able to pass the highly selective membrane and enter the brain
fluid.

ClinTox The clinical toxicity (ClinTox) contains two bioactivity prediction tasks: (1) FDA ap-
proval and (2) failure of clinical trials. The dataset contains approximately 58k molecules.

HIV The HIV dataset contains approximately 40k of molecules and measures the evidence of
anti-HIV activity.

SIDER The side effect resources (SIDER) dataset contains approximately 1.4k molecules span-
ning 27 assays measuring the side effects of drugs.

Tox21 The Tox21 dataset measures the drug-related effects spanning 12 different prediction tasks
with over 7.8k molecules.

ToxCast The ToxCast dataset provides 617 classification tasks based on in vitro drug screening.
The dataset contains 8.5 molecules.

MUV The maximum unbiased validation (MUV) dataset spans 17 tasks designed to identify active
compounds. The dataset contains approximately 93k molecules.

Lipo The lipophilicity dataset contains hydrophobicity measurements of 4.2k molecules.

ESOL The Delaney Solubility Dataset contains water solubility measurements for over 1.1k of
molecules.

FreeSolv The Freesolv dataset contains the measurements for hydration free energy for small
molecules and contains 624 molecules.

A.3.2 PHOTOSWITCH

For additional regression tasks, we use the photoswitch dataset (Griffiths et al., 2022), where we use
the datasets that contain more than 100 molecules, and we again scaffold-split the datasets.

CAM The CAM-B3LYP benchmark contains 117 molecules and computed electronic transition
wavelengths in nm.

PBE0 The PBE0 dataset contains 114 molecules and computed electronic transition wavelengths.

E andZ isomer These datasets contain the wavelengths of transitions between different electronic
states (n, π, π∗) that have been observed for the different isomers.

A.4 TEMPLATE REPHRASES

List of rephrased templates for functional groups used in Section 5.2. The 〈GROUP 〉parameters are
replaced with the name of the functional group:

• “is the 〈GROUP〉 group present”
• “does it have a 〈GROUP〉 group”
• “is there a 〈GROUP〉 group in it”
• “does this structure include a 〈GROUP〉 group”
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• “is a 〈GROUP〉 group part of the molecule”
• “does the compound contain a 〈GROUP〉 group”
• “can a 〈GROUP〉 group be found here”
• “is the 〈GROUP 〉functional group present”
• “does the molecule feature a 〈GROUP〉 group”
• “is there evidence of a 〈GROUP 〉functional group”
• “does this molecule exhibit a 〈GROUP〉 group”
• “is a 〈GROUP 〉functional group detectable”
• “does the structure show the presence of 〈GROUP 〉”
• “can a 〈GROUP〉 group be identified here”
• “is 〈GROUP 〉part of the chemical composition”
• “does the sample possess a 〈GROUP〉 group”
• “is there a 〈GROUP 〉moiety in this compound”
• “does this substance carry a 〈GROUP〉 group”
• “can the molecule be classified as containing a 〈GROUP〉 group”
• “is the 〈GROUP 〉function observed in this case”

A.5 MODEL PARAMETERS

Table 3: Model hyperparameters. Hyperparameter setting used to train our model.
Hyperparameter Value

Batch size 76
GPUs 6 x NVIDIA H100
Alternating loss steps 20
Precision float16
Hidden size 768
Maximum of positional embeddings 1024
Number of hidden layers 22
Learning rate 0.01
Warmup steps 10000
Optimizer AdaFactor (Shazeer & Stern, 2018)

A.6 ATTENTION

In Appendix A.6, we show an example of how attention maps the property value token to the de-
scription and the relevant atoms, in this case, that is Fluorine (F). Additionally, we show that the
atom itself attends to a phrase “contains halogen” as well as the property value.

In Appendix A.6, we show the average attention per SMILES token across all attention heads for
the second-to-last layer. The results are averaged over 5000 molecules that contain a halogen group,
where we fix the task description as shown in Appendix A.6.

A.7 USE OF LLMS

Large language models were employed as assistive tools for tasks including text rewriting,
spellchecking, minor stylistic improvements, and the writing of this statement. All content was
reviewed and verified by the authors, who take full responsibility for the final manuscript. LLMs
did not contribute to research ideation or substantive writing decisions.
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Figure 5: Attention heads in the second to last layer exhibit the ability to correlate the task
to prediction and corresponding chemical element. Top, the source token for correct prediction
is attended by the task description and all Fluorine (F) atoms. Bottom, the Fluorine atom receives
attention from value tokens as well as the phrase “contains halogen group.” Illustration created using
BertViz (Vig, 2019).

Figure 6: Average attention per SMILES token across all attention heads for the second-to-last
layer for molecules containing a halogen group. The task description is fixed as shown in A.6 and
the experiment contains 5000 molecules that in turn contain the halogen group.
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