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Abstract—The evolution of large vision-language models
(LVLMs) has shed light on the development of many fields,
particularly for multimodal recommendation. While LVLMs offer
an integrated understanding of textual and visual information of
items from user interactions, their deployment in this domain
remains limited due to inherent complexities. First, LVLMs are
trained from enormous general datasets and lack knowledge
of personalized user preferences. Second, LVLMs struggle with
multiple image processing, especially with discrete, noisy, and
redundant images in recommendation scenarios. To address these
issues, we introduce a new reasoning strategy called Visual-
Summary Thought (VST) for Multimodal Recommendation.
This approach begins by prompting LVLMs to generate textual
summaries of item images, which serve as contextual information.
These summaries are then combined with item titles to enhance
the representation of sequential interactions and improve the
ranking of candidates. Our experiments, conducted across four
datasets using three different LVLMs: GPT4-V, LLaVA-7b, and
LLaVA-13b validate the effectiveness of VST.

Index Terms—Large Vision-Language Models, Multimodal
Recommendation, Reasoning Strategy

I. INTRODUCTION

To address the cold-start issues that recommender systems
(RSs) lack sufficient records of new items/users, multimodal rec-
ommender systems (MMRSs) [1]–[4] are proposed by involving
the complementary content of items from multiple perspectives,
e.g., textual description and visual illustration, thus enriching
the recommender system’s knowledge. Traditional MMRSs
usually first extract features from various modalities and then
use different fusion strategies to combine those features into
a unified representation. Although these methods have shown
promising results, they encounter challenges in efficiently
fusing multimodal knowledge, especially when new modal-
ities are introduced. Ineffective integration and representation
learning can further degrade the RS’s performance [5]–[8].
Additionally, the product image provided by the seller contains
critical marketing highlights that attract buyers, e.g., the game’s
duration and thematic ambiance, elements that traditional
embedding-based MMRSs may struggle to capture effectively.

Meanwhile, the remarkable success of large vision-language
models (LVLMs) [9]–[16] offers encouraging solutions to the
∗Both authors contributed equally to this research.
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Fig. 1: Performance of GPT4-V on four representative Amazon
datasets with title-only and title-image concatenation inputs.

above issues encountered by traditional MMRSs. LVLMs are
proficient in comprehending both textual and visual information
about an item since they are trained using vast datasets [17]–
[20]. Their ability to distill and adapt item features across
modalities into natural language space provides more flexibility
to extract information from each modality, thus exhibiting
an opportunity for effective knowledge fusion. It is worth
mentioning that we choose to explore the inference schema
instead of finetuning for two main reasons: (1) Current
LVLMs are extremely large, making deployment and finetuning
impractical. (2) As LVLMs continuously evolve, extensive fine-
tuning on such large models is computationally expensive and
unnecessary. Therefore, we propose a lightweight and plug-and-
play reasoning strategy compatible with all LVLM backbones,
allowing performance improvements to scale with the ongoing
development of LVLMs. Despite the aforementioned strengths,
the incorporation of pretrained LVLMs into MMRSs remains
an under-explored area. Two possible obstacles may hinder the
widespread adoption of LVLMs in MMRSs:

First, LVLMs are trained from vast general knowledge and,
as such, lack domain-specific knowledge for understanding
user preferences revealed through their interactions. This
gap results in the under-exploration of LVLMs’ capacity in
recommendation scenarios. To bridge this gap, it is essential to
integrate additional knowledge to inform LVLMs in the context
necessary for making appropriate recommendations. This
approach, however, introduces the second challenge: LVLMs’



inefficiency in processing multiple images. Although models
like GPT4-V have been evaluated in video understanding
scenarios to examine their capacity in capturing dynamic
content across frames [9], [10], [21]–[25], the scenario with
MMRSs involves handling multiple, discrete, and noisy images.
This complexity can pose a significant challenge even from a
human perspective, making it difficult to extract meaningful
knowledge from such diverse interactions. Our preliminary
experiments on different datasets with various LVLMs indicate
that a simple concatenation of multiple images with item
titles performs worse than methods relying solely on item
titles for recommendations. Figure 1 shows this issue across
four representative datasets with powerful GPT4-V. Note
that this phenomenon also happens on other datasets using
different LVLMs. Furthermore, current reasoning algorithms,
e.g., in-context learning (ICL) [26], [27] and chain-of-thought
(CoT) [28], [29], are primarily designed for NLP tasks ignoring
visual modality. However, the principal challenge in multimodal
recommendation is how to effectively leverage image-based
knowledge and integrate it into the recommendation process.
Thus, effective LVLM-based MMRS requires the design of
specific prompting strategies that can utilize their visual
comprehension strength without caving to the complexities
associated with processing multiple images simultaneously.

Accordingly, we propose a novel Visual-Summary Thought
(VST) reasoning strategy of LVLMs for MMRSs. Our approach
includes two primary components: First, we utilize user histori-
cal interactions as contextual data for the LVLMs’ personalized
recommendations. This involves using sequences of both item
titles and images as inputs to the LVLMs. Second, to overcome
the shortage of handling multiple images, we prompt the
LVLMs with one static image to obtain a corresponding
textual summary. Then, we construct user history sequences
by substituting the images with their textual comprehensions
one by one, serving as an intermediate representation for
LVLMs during the reasoning phase. This strategy allows for the
recommendation based on a more manageable comprehension
of user preferences, transitioning from the complex and noisy
image sequences to a simpler task of understanding visual-
summary enhanced preference dynamics. To validate the
efficacy of our proposed reasoning algorithm, we conduct
experiments using GPT4-V, LLaVA-7b, and LLaVA-13b as
reasoning backbones. We observe consistent improvements over
other existing reasoning strategies, such as concatenation, ICL,
and CoT. Our contributions can be summarized as follows:

• To the best of our knowledge, this is the first attempt
to investigate the reasoning strategies for LVLMs in
multimodal recommendation scenarios. This new paradigm
embraces the ongoing development and potential of
LVLMs, offering a more integrated and effective approach
to multimodal recommendation.

• We introduce a novel Visual-Summary Thought (VST) rea-
soning strategy, specifically designed for the multimodal
recommendation context, to harness the proficiency of
LVLMs’ visual understanding and remedy their deficiency

in handling multiple images simultaneously.
• We conduct comprehensive experiments to evaluate VST,

utilizing both API-based LVLMs like GPT4-V, and open-
source models such as LLaVA-7b and -13b. The consistent
improvements observed across these models demonstrate
the effectiveness of VST for LVLM-based MMRSs.

II. METHODOLOGY

A. Problem definition
In this paper, we follow the problem settings in [30],

[31] that use the pretrained LVLMs as reranker to make
recommendations to user u via reranking the given n candidate
item titles v = {v1, v2, . . . , vn}. For each user, we have their
historical interactions, which is the sequence of title and image
pair of items: u = {(t1, i1), (t2, i2), . . . , (tm, im)}.
B. Preliminary

LVLMs exhibit limitations in handling multiple images. We
evaluated the LVLMs’ ability to handle multimodal inputs
by concatenating the item titles and images of user histories.
Surprisingly, leveraging complementary visual information led
to poorer results than only using item titles as shown in Figure 1.
(An example can be found in section III-D.) This underscores a
critical insight: adding more information to the LVLMs’ prompt
context without a thoughtful design can lead to confusion,
especially with discrete and noisy images full of redundancy.
To address this challenge, we introduce a novel visual-summary
thought of prompting strategy (VST) as shown in Figure 2.
C. Visual-Summary Generation

Existing LVLMs, e.g., GPT4-V and LLaVA, primarily
focus on static image understanding scenarios, where LVLMs
generate textual descriptions of a given image. However, this
paradigm is inefficient for handling multiple images [10].
Existing strategies include concatenating images for LVLM
reasoning [10], or adapting LVLMs to video comprehension
scenarios via finetuning on video datasets [11]–[13], [22]. Yet,
neither approach is suitable for the unique demands of MMRSs,
where the image sequence of a user history is discrete and
noisy, lacking the continuous nature of video frames and
making sequential correlations difficult to discern. To deal
with these issues, we propose leveraging LVLMs’ strengths
in temporal understanding within natural language modality
and their capacity for static image interpretation. Instead of
processing a sequence of images, we focus on distilling critical
marketing highlights from individual image. The prompt can
be formalized as: si = summary(i) ="What’s in this image?"
For each item, we use one image and get the summarization
of each image independently. In this way, we can not only
obtain marketing highlights of items via distilling image
comprehension from LVLMs but also simplify the temporal
user preference understanding from the visual modality to the
textual modality, where LVLMs exhibit proficiency.
D. Visual-Summary Thought for MMRSs

After summarizing each item image, we concat the history
item titles with their visual summary to construct the prompt
for querying user preferences among candidates. The prompt
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"Classic Jenga" game made by 
Hasbro Gaming.
For 6 and older, 1 or more players.  
There's a slogan: "HOW DO YOU 
STACK UP?" relating to both the
stacking nature of the game and 
the competitive aspect of player 
performance.

The image is of the board game "Say 
Anything" packaging.
The box boasts "30 Awards" including 
a "Parents' Choice Fun Stuff" ribbon 
and a "Toy's Top Pick" badge.
For ages 13 and up, suitable for 3-8 
players, as a party game.  
The bottom suggests a party 
atmosphere, fitting for a game that 
likely involves social interaction and 
humor.

The image displays a board game 
named "King of Tokyo: Power Up!" by 
Richard Garfield. 
For 2-6 players, ages 8 and above, 
playtime of around 30 minutes.
Includes the "IELLO" logo, the name of 
the game publisher, and a graphic that 
indicates "Pandakai" character. 
The visual style suggests a fun and 
energetic game, possibly with elements 
of monster combat or city destruction, 
given the title and the imagery. 

The image is of the "Exploding Kittens: Original Edition" card 
game box. 
there's a cartoon of a black kitten with a worried expression—
adds humor and character to the game's concept.
Described as "A CARD GAME for people who are into kittens 
and explosions and laser beams and sometimes goats," 
suggesting quirky and whimsical gameplay. 
For ages 7 and up, 2-5 players, 2 minutes to learn, 15 minutes 
to play, highlighting its accessibility and quick playtime.
There's a badge stating "#1 MOST-BACKED KICKSTARTER 
EVER" which signifies its popularity and success on the 
crowdfunding platform Kickstarter.

Say SomethingClassic Jenga King of Tokyo Exploding Kittens
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Fig. 2: Framework of Visual-Summary Thought of LVLMs for Multimodal Recommendation. Text in yellow highlights some
key features obtained through visual-summary generation.

TABLE I: Statistics of the datasets after sampling.

Datasets #Users #Items #Interactions Sparsity

Sports 200 1750 2333 99.33%
Clothing 200 1291 1362 99.47%
Beauty 200 2024 2797 99.31%
Toys 200 1684 1967 99.42%

is structured in two parts: the first outlines the user’s purchase
history in chronological order, demonstrated by each item’s title
and visual summary. The second segment directs the LVLMs to
rerank the candidates represented by their titles. An illustrative
prompt might be:

"[Here is a chronological list of my purchase history for
some products including the title and the description of each
product. {(t1, si1), . . . , (tm, sim)}][There are |n| candidate
products I am considering to buy: {v1, . . . , vn}. Please rank
these |n| candidate products based on the likelihood I would
like to purchase next most according to the given purchase
history. You cannot generate products that are not in the given
candidate list.]".

III. EXPERIMENTS

A. Experimental Settings
a) Dataset: In this paper, we adopt the same dataset as

in [32] that uses the Amazon Review datasets for evaluation.
Due to the limitation of the inference rate, following the
common practice [30], [33], we only sample 200 users for
evaluation. We report the statistics of such datasets in Table I.

b) Metrics: Following the leave-one-out evaluation strat-
egy adopted in prior works [34]–[38], we treat the last item in
each historical interaction sequence as the ground-truth (target)
item. We adopt Recall@K (R@K) and NDCG@K (N@K) to
evaluate the ranking performance of the LVLMs over candidate
items, which consist of the title of the target item and the 9
random sampled items following [30].

c) Implementation Details: For open-source LVLMs, we
use Fastchat to launch models and conduct the model inference
on a single GeForce RTX 4090.

d) Baseline Models: As there is no previous work that
only utilizes the inference capacity of LVLMs for multimodal
recommendation, we adopt the commonly chosen prompting
strategies used in NLP tasks: in-context-learning (ICL) and
chain-of-thought (CoT) for comparison. MM: The plain prompt,
using the simple concatenation of the historical item titles and
images as the first segment. The second part keeps the same
as VST. MM-ICL: For ICL, we match each prefix of the
user’s historical interaction sequence with its corresponding
successor as demonstration examples. For example: "[Here
is a chronological list of my purchase history: {(t1, i1), . . . ,
(tm−1, im−1)}] [Then if I ask you to recommend a new product,
you should recommend tm. Now I’ve just purchased tm, I want
to buy a new product...]". The remaining part is the same as the
second part of VST. MM-CoT: For CoT, we adopt zero-shot
CoT by adding "Please think step by step." to the second part
of the prompt, while the first part is the same as MM. For
example: "[Here is a chronological list of my purchase history:
{(t1, i1), . . . , (tm, im)}][There are |n| candidate products I am
considering to buy . . . Please think step by step by considering
my preferences based on the given titles and image sequence
of the purchased products.. . . ]".

Note that we focus on exploring different reasoning strategies
of LVLMs in MMRSs with zero-shot settings. It is out of our
scope to compare with traditional full-shot methods that are
trained on the target datasets.

B. Overall Performance
To demonstrate the effectiveness of our proposed VST

strategy, we employ GPT4-V, LLaVA-7b, and LLaVA-13b
as pretrained LVLMs and conduct experiments with four
different prompt strategies across four public datasets. The
complete experimental results are shown in Table II. From
the table, we can observe that our proposed VST reasoning
strategy achieves the best or comparable performances across
all datasets, demonstrating the effectiveness of our approach.
Notably, our approach has a better performance on Sports
dataset than others. We observe the characteristic of this dataset



TABLE II: Performance comparison of different prompt strategies. Target items are guaranteed to be included in the candidate
sets. We highlight the best and the second-best results.

Dataset Metric GPT4-V LLaVA-7b LLaVA-13b
MM MM-ICL MM-CoT VST MM MM-ICL MM-CoT VST MM MM-ICL MM-CoT VST

Sports

R@5 0.6900 0.6950 0.5750 0.7250 0.1300 0.1900 0.1800 0.3283 0.2250 0.3300 0.2300 0.3750
R@10 0.8600 0.8600 0.8150 0.9000 0.2950 0.3400 0.3250 0.5067 0.3200 0.4850 0.3250 0.6250
R@20 0.8700 0.8650 0.8300 0.9050 0.3100 0.3500 0.3550 0.5117 0.3400 0.5000 0.3450 0.6350
N@5 0.4880 0.5126 0.4186 0.5263 0.0703 0.1138 0.1043 0.1769 0.1395 0.2087 0.1393 0.2244
N@10 0.5435 0.5666 0.4961 0.5834 0.1243 0.1619 0.1506 0.2345 0.1706 0.2598 0.1701 0.3063
N@20 0.5461 0.5678 0.4999 0.5846 0.1281 0.1646 0.1580 0.2357 0.1755 0.2637 0.1752 0.3086

Clothing

R@5 0.6550 0.7100 0.6300 0.6950 0.1400 0.1650 0.1700 0.2800 0.3650 0.3200 0.2550 0.3950
R@10 0.8950 0.9050 0.8150 0.9300 0.2750 0.3100 0.2600 0.3250 0.6700 0.5450 0.4200 0.6200
R@20 0.9000 0.9050 0.8200 0.9350 0.2900 0.3150 0.2600 0.3250 0.6950 0.5450 0.4200 0.6250
N@5 0.4781 0.5580 0.4631 0.5322 0.0851 0.1156 0.1086 0.1875 0.2248 0.2062 0.1554 0.2594
N@10 0.5555 0.6205 0.5238 0.6085 0.1287 0.1633 0.1386 0.2025 0.3234 0.2787 0.2058 0.3329
N@20 0.5569 0.6205 0.5252 0.6098 0.1326 0.1646 0.1386 0.2025 0.3301 0.2787 0.2085 0.3343

Beauty

R@5 0.6300 0.6300 0.5500 0.6200 0.2450 0.1800 0.1450 0.2750 0.2650 0.2900 0.2300 0.3200
R@10 0.8450 0.8700 0.6400 0.9000 0.4050 0.3150 0.1700 0.4000 0.3750 0.4200 0.3200 0.5500
R@20 0.8500 0.8750 0.6500 0.9000 0.4200 0.3200 0.1750 0.4000 0.3850 0.4200 0.3250 0.5600
N@5 0.4503 0.4395 0.3964 0.4536 0.1484 0.1202 0.1006 0.1769 0.1641 0.1928 0.1398 0.2183
N@10 0.5197 0.5183 0.4264 0.5439 0.1996 0.1641 0.1087 0.2179 0.2008 0.2361 0.1692 0.2942
N@20 0.5211 0.5195 0.4290 0.5439 0.2035 0.1655 0.1101 0.2179 0.2033 0.2361 0.1706 0.2970

Toys

R@5 0.5500 0.6450 0.4950 0.6300 0.1450 0.1150 0.1300 0.3000 0.1875 0.3400 0.2600 0.3617
R@10 0.7650 0.7800 0.6950 0.8000 0.2750 0.1450 0.1700 0.3800 0.2550 0.4250 0.3800 0.5150
R@20 0.7750 0.7800 0.7050 0.8000 0.2850 0.1550 0.1850 0.3950 0.2663 0.4350 0.3800 0.5200
N@5 0.4184 0.4789 0.3967 0.4399 0.0857 0.0842 0.0835 0.2035 0.1389 0.2373 0.1832 0.2412
N@10 0.4883 0.5227 0.4349 0.4958 0.1281 0.0941 0.0977 0.2299 0.1614 0.2648 0.2228 0.2919
N@20 0.4911 0.5227 0.4376 0.4958 0.1305 0.0966 0.1015 0.2336 0.1642 0.2672 0.2228 0.2932

is that the titles contain much more noise, making the alignment
between textual and visual information more challenging for
the employed LVLMs. In contrast, through visual-summary
generation, VST can better leverage visual modality and capture
more relevant information from the image, reducing the impact
of the noise from different modalities to some extent. Another
observation is that the more powerful the LVLM backbone
becomes, i.e., with the evolution from LLaVA-7b to LLaVA-
13b to GPT4-V, the better VST performs. This supports the
benefit of designing such a lightweight reasoning-only strategy
for MMRSs. Moreover, VST outperforms other reasoning
strategies regardless of the choice of LVLMs, which supports
its effectiveness tailored to MMRS scenarios.
C. Ablation Study

To analyze the effectiveness of the VST reasoning principle,
we conduct an ablation study on six variants of the proposed
strategy. The results on Toys dataset using LLaVA-13b are
shown in Figure 3. The reported results are the average of
a minimum of three repeated runs, aimed at minimizing the
impact of randomness. titleSum-VST refers to the prompt
that also lets LVLMs distill information from the title of an
item: st = summary(t) ="What information can you get
from the title?", then appended by the summary distilled from
the corresponding image. title-based VST refers to instructing
LVLMs to distill information from an image by taking item
title into consideration, where si = summary(i) ="This is
an image related to t. Please provide a detailed description of
the given image."

From the results, we have the following observations: (1)
VST can capture more meaningful information from both
textual and visual modalities. The results show that VST has
the capability to significantly enhance the ranking performance
compared to non-VST-based strategies. The improvement stems
from VST’s proficiency in multimodal understanding and serves
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Fig. 3: Ablation study. Performance of LLaVA-13b with
different prompts on Toys dataset.

better in sequential scenarios, where information from different
sources needs to be integrated effectively. (2) Information
from the title can boost performance, but it depends on the
quality of the title and the alignment between the title and
the image. Compared to the results among VST, title-VST,
titleSum-VST, and title-based VST, we can observe that adding
the title information doesn’t yield improvement. This lack of
improvement is likely due to the visibility of toy titles in images
or the easy identification of entities mentioned in titles from the
images themselves. Therefore, combining title information with
VST does not provide substantial additional benefits. Whether
to include titles during reasoning remains a hyperparameter
decision dependent on the quality of titles in each dataset.
D. Case Study

In this section, we compare the ranking lists generated
by LLaVA-13b using VST with title-only and title-image
concatenation prompts. The results are shown in Figure 4.
Here are our observations from comparing the outputs: Both
title-only and VST strategies successfully rank the target item
as the first position, while the naive concatenation of title
and image places it fourth. This discrepancy suggests that
raw images may contain an excess of information, which



CASE STUDY
Title-only
Input: UHI + Title + CRI 
Output: 
1. Don’t Let the Pigeon Drive the Bus Game 
2. TabletTopics Family: Questions to Start Great Conversations
3. Kid Chuck Bumper Cars
......
10. Wikki Stix Big Count Box

Title

1. Mastermind
2. Say Anything
3. My First Lab Duo-Scope Microscope
4. King of Tokyo Power Up Expansion Game
5. Foam Maverick Pogo Stick
6. Helicopter with Gyro
7. Volcano Making Kit

Image Description

1. The image shows the game “Mastermind,” a well-known board game. The packaging indicates that this game
is meant for two players, who are typically aged 8 and above. It’s a logic game.
2. The image appears to be the cover of a board game called “Say Anything.” It's a party game designed for 3-8 
players who are 13 years of age or older. The bottom indicates the party atmosphere of the game. The cover also
boasts that the game has won 30 awards, signaling its popularity and recognition in the gaming community.
……
7. The image displays a science kit, including a segmented dish, …, a plastic volcanic structure. It is designed for
educational purposes to model volcanic eruption, potentially for school-age children as a learning tool.

Title-Image

1. Mastermind

2. Say Anything

……

7. Volcano Making Kit

VST
Input: UHI + Image Description + CRI
Output: 
1. Don’t Let the Pigeon Drive the Bus Game 
2. TabletTopics Family: Questions to Start Great Conversations
3. Paint Cups with Color-Coded Lids
......
10. Flyer Scooter

User’s Historical Interaction Instruction (UHI)

Here is a chronological list of my purchase history for some toys-related products including the title / title and image / image description of each product.

Candidate Reranking Instruction (CRI)

There are 10 candidate products I am considering to buy:
{… Flyer Scooter, Paint Cups with Color-Coded Lids, Don’t Let the Pigeon Drive the Bus Game, Wear Charms Spectacular Spinner …}
Please rank these 10 candidate products that I would like to purchase next most according to the given purchase history.

Title-Image
Input: UHI + Title-Image + CRI
Output:
1. Paint Cups with Color-Coded Lids
……
4. Don’t Let the Pigeon Drive the Bus Game
……
10. Wikki Stix Big Count Box

Fig. 4: Case study. Text in red indicates the target item. Text in orange, purple, or blue indicates the pattern to describe the
item for the corresponding prompt. Text in yellow highlights some key features obtained through visual-summary generation.

could be perceived as redundant and introduce additional noise
into our ranking task. On the other hand, the VST strategy
offers a more refined approach. By utilizing VST, we not only
incorporate information from the title but also extract richer and
more relevant details from the image itself. Such details also
align closely with the marketing selling points of the product.
Consequently, the VST strategy emerges as a more effective
prompt for multimodal recommendation, as it combines textual
and visual cues to provide a comprehensive understanding of
the item, thereby enhancing the performance of the ranking.

IV. CONCLUSION

In this work, we investigate the performance of different
reasoning strategies for LVLMs in multimodal recommendation
scenarios and identify a notable limitation in LVLMs’ capability
to handle multiple images effectively. To bridge this gap, we
propose the Visual-Summary Thought (VST) strategy, which
leverages LVLMs’ visual understanding to distill information
from individual images. Extensive experiments conducted
on four real-world datasets using three LVLMs demonstrate
the effectiveness of VST. However, our approach has some
limitations: it does not integrate the strengths of traditional
recommender systems and may have high time complexity,
though pre-computing can mitigate this. In the future, we
will explore opportunities to combine the strength of both
full-shot traditional MMRSs and the inference strategies of
LVLMs. Additionally, we will assess the generalization of VST
across domains with more complex visual information, such as
artworks. Furthermore, future work could refine VST to better
capture nuanced sequential correlations among user behaviors.
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