
A Diffusion Model for Regular Time Series Generation
from Irregular Data with Completion and Masking

Gal Fadlon∗ Idan Arbiv∗ Nimrod Berman Omri Azencot
Department of Computer Science

Ben-Gurion University of The Negev
{galfad, arbivid, bermann}@post.bgu.ac.il

azencot@bgu.ac.il

Abstract

Generating realistic time series data is critical for applications in healthcare, finance,
and science. However, irregular sampling and missing values present significant
challenges. While prior methods address these irregularities, they often yield sub-
optimal results and incur high computational costs. Recent advances in regular time
series generation, such as the diffusion-based ImagenTime model, demonstrate
strong, fast, and scalable generative capabilities by transforming time series into
image representations, making them a promising solution. However, extending
ImagenTime to irregular sequences using simple masking introduces “unnatural”
neighborhoods, where missing values replaced by zeros disrupt the learning pro-
cess. To overcome this, we propose a novel two-step framework: first, a Time
Series Transformer completes irregular sequences, creating natural neighborhoods;
second, a vision-based diffusion model with masking minimizes dependence on
the completed values. This approach leverages the strengths of both completion
and masking, enabling robust and efficient generation of realistic time series. Our
method achieves state-of-the-art performance, achieving a relative improvement
in discriminative score by 70% and in computational cost by 85%. Code is at
https://github.com/azencot-group/ImagenI2R.

1 Introduction
Time series data is essential in fields such as healthcare, finance, and science, supporting critical
tasks like forecasting trends, detecting anomalies, and analyzing patterns [18, 24, 34]. Beyond direct
analysis, generating synthetic time series has become increasingly valuable for creating realistic
proxies of private data, testing systems under new scenarios, exploring “what-if” questions, and
balancing datasets for training machine learning models [6, 40]. The ability to generate realistic
sequences enables deeper insights and robust applications across diverse domains.

In practice, however, time series is often irregular, with unevenly spaced measurements and missing
values. These irregularities arise from limitations in data collection processes, such as sensor failures,
inconsistent sampling, or interruptions in monitoring systems [28, 44]. This irregularity poses a
unique challenge for generating regular time series—where intervals are consistent, and the data
follows the same distribution as if it were regularly observed [26]. The main goal of this paper is to
generate regular sequences by training on irregularly-sampled time series using deep neural networks.

The synthesis of regular time series from irregular ones is a fundamental challenge, yet existing
approaches remain scarce, with notable examples being GT-GAN and KoVAE [26, 39]. Unfortunately,
these methods suffer from several limitations. First, they rely on generative adversarial networks
(GANs) and variational autoencoders (VAEs), which have recently been surpassed in performance

∗Equal Contribution

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/azencot-group/ImagenI2R


by diffusion-based tools [11, 59, 38]. Second, both GT-GAN and KoVAE utilize a computationally-
demanding preprocessing step based on neural controlled differential equations (NCDEs) [28],
rendering these methods impractical for long time series. For instance, KoVAE requires ≈ 6.5×
more training time in comparison to our approach (See Fig. 3). Third, these methods inherently
assume that the data, completed by NCDE, accurately reflects the true underlying distribution, which
can introduce catastrophical errors when this assumption fails. In particular, their performance lags
far behind that of models trained on regular time series, with state-of-the-art results on irregular
discriminative benchmarks being, on average, 540% worse than those on regular benchmarks.

To address these shortcomings, we base our approach on a recent diffusion model for time series,
ImagenTime [38]. This method maps time series data to images, enabling the use of powerful
vision-based diffusion neural architectures. Leveraging a vision-based diffusion generator offers a
significant advantage: regular time series can be generated from irregular ones using a straightforward
masking mechanism. Specifically, missing values in the series are seamlessly ignored during the
denoising process in training, akin to techniques used in image inpainting tasks [37, 12].

However, while this straightforward masking approach is simple and achieves strong results (see
Tab. 7), we identify a significant limitation. Missing values in the time series are mapped to zeros
in the image, resulting in “unnatural” neighborhoods that mix valid and invalid information. This
can pose challenges for diffusion backbones, such as U-Nets with convolutional blocks, where the
convolution kernels are not inherently masked and may inadvertently propagate errors from these
artificial neighborhoods. To address this issue, we propose a two-step generation process. In the first
step, we complete the irregular series using our adaptation of an efficient Time Series Transformer
(TST) approach [61], significantly reducing computational overhead and enabling the generation
of long time series. In the second step, we apply the straightforward masking approach described
earlier. Crucially, this combination of completion and masking allows the model to learn from
“natural” image neighborhoods while mitigating the reliance on fully accurate completed information
through the use of masked loss minimization. Overall, our approach, built on a vision diffusion
backbone, enables effective modeling of long time series while making minimal assumptions about
pre-completed data, resulting in significantly efficient and improved generation performance.

We conduct a comprehensive evaluation of our approach on standard irregular time series benchmarks,
benchmarking it against state-of-the-art methods. Our model consistently demonstrates superior gen-
erative performance, effectively bridging the gap between regular and irregular settings. Furthermore,
we extend the evaluation to medium-, long- and ultra-long-length sequence generation, assessing
performance across 12 datasets and 12 tasks. The results highlight the robustness and efficiency of
our method, achieving consistent improvements over existing approaches. Our key contributions are
summarized as follows:

1. We introduce a novel generative model for irregularly-sampled time series, leveraging
vision-based diffusion approaches to efficiently and effectively handle sequences ranging
from short to long lengths.

2. In contrast to existing methods that assume completed information is drawn from the data
distribution, we treat it as a weak conditioning signal and directly optimize on the observed
signal using a masking strategy.

3. Our approach achieves state-of-the-art performance across multiple generative tasks, de-
livering an average improvement of 70% in discriminative benchmarks while reducing
computational requirements by 85% relative to competing methods.

2 Related Work
Diffusion models [49] have recently demonstrated groundbreaking generative capabilities, surpassing
VAEs and GANs [29, 17] primarily on image generation [21, 14, 45]. The immense success of
diffusion-based approaches has spurred a wave of recent advancements, encompassing both theoretical
developments [50, 35] and practical applications [37, 22, 30, 4, 5, 3].

Generative modeling of time series is an emerging field, with pioneering approaches predominantly
relying on GANs [58, 33, 31] and VAEs [13, 39]. Recently, inspired by the success of diffusion
models, there has been a growing trend to adapt these techniques to various time series tasks [53, 43],
including generative modeling [11, 59, 16]. Notably, the ImagenTime approach [38] has achieved
state-of-the-art performance on regular generative tasks for sequences of varying lengths, from short

2



A B C D E F

score = 0.71 score = 0.67 score = 0.32
Figure 1: A data point (A) is mapped to an image with zeros and the coordinates in the center (B).
Denoising the entire image yields inferior kernels (D) in comparison to masking (E). Constructing
natural neighborhoods (C), yields consistent kernels and better scores (F).

to very long, by transforming time series into images and leveraging vision-based diffusion backbones.
Our work builds on ImagenTime, extending it to address the challenging setting of generating regular
time series information from irregularly-sampled data.

Irregular time series modeling has been a longstanding task. Modern machine learning methods
have made significant strides by framing the problem through the lens of differential equations [46, 28].
Subsequent efforts have explored alternative architectures, including recurrent neural networks [47]
and transformers [61, 9]. However, learning from irregular sequences has received comparatively
less attention, with notable contributions such as GT-GAN and KoVAE [26, 39], both relying on
NCDE [28]. Despite their promise, NCDE-based methods are costly during preprocessing and
training, limiting the applicability of GT-GAN and KoVAE in handling long time series. Further,
replacing NCDE by efficient components such as TST [61], yields suboptimal results (see Tab. 7).

3 Background
Problem statement. We learn the underlying distribution of time series data from irregularly
sampled observations and generating regular time series from it. Specifically, given a set of irregularly
sampled sequences, our goal is to learn a model that approximates the true data distribution pdata(x1:T )
and enables sampling of complete time series x1:T from the learned distribution pθ(x1:T ). Formally,
we consider a dataset of irregularly sampled time series, represented as {xj

t1:tn}
N
j=1, where each

sequence consists of observations at non-uniform time steps t1 : tn = [t1, t2, . . . , tn] with t1 ≥ 1
and tn ≤ T . The challenge is to leverage these incomplete sequences to model the full distribution
and generate realistic, regularly sampled time series that align with the true data distribution.

ImagenTime employs the delay embedding transformation to map time series data into images, en-
abling their processing with powerful vision-based diffusion models [38]. Given an input multivariate
regular time series x1:T ∈ Rd×T with d features and length T , the delay embedding constructs an
image ximg ∈ Rd×w×h by placing x’s values over the columns of ximg per channel, where w, h are
user-defined parameters. During training, noise is added to the image ximg at different timesteps,
forming ximg(t). The diffusion model, parameterized by sθ, learns to denoise these images by approx-
imating the score function sθ(ximg, t). Inference begins with a noise sample ximg(T ) ∼ N (0, I). This
sample is iteratively denoised using the learned score function to produce a cleaned image ximg(0).
The inverse delay embedding transform is then applied to ximg(0), reconstructing the original time
series x̃1:T . Importantly, the inverse transformation of delay embedding is inherently non-unique, as
the time series values are repeated within the image representation, suggesting various designs can be
considered as we discuss in Sec. 4. Finally, a crucial advantage of ImagenTime is its effectivity in
handling long series, e.g., a time series of length 65k is transformed to an image of size 256× 256.

TST leverages the self-attention mechanism of Transformers to model temporal dependencies and
long-range interactions in time-series data effectively. Unlike traditional sequence models such
as RNNs or LSTMs, TST processes the entire sequence simultaneously, enabling parallelism and
mitigating the vanishing gradient problem. The architecture includes input projection to a higher-
dimensional feature space, positional encodings to capture temporal order, and a stack of Transformer
encoder layers with flexible normalization and activation options. TST is particularly suitable for
imputation tasks, as it can handle irregularly-sampled data and missing values through explicit
masking and preprocessing. Additionally, its self-attention mechanism inherently supports long
sequences, making it robust for capturing global context and dependencies in extended time-series
data. By eliminating the need for computationally expensive preprocessing techniques, such as
calculating coefficients for cubic splines or other interpolation methods, TST achieves significant
speed advantages while providing a scalable, efficient, and accurate solution for tasks like forecasting,
classification, anomaly detection, and imputation.

3



A
E

tr
ai

n
Tr

ai
n

In
fe

re
nc

e

irregular signal TST encoder GRU decoder regular signal

autoencoder image noisy img. U-Net denoised

noise

T

T −1

Figure 2: In the first step (top), we train a TST-based autoencoder, which we use during the second step
(middle), where a vision diffusion model is trained with masking over non-active pixels. Inference
(bottom) is done similarly to ImagenTime.

4 Method
While ImagenTime does not address the challenge of irregularly-sampled time series, a simple
extension can enable it to generate regularly-sampled time series by training on irregular data. The
key idea involves employing a mask during the loss computation. This mask ensures that only “active”
pixels–those corresponding to observed time series values–are considered in the loss calculation, while
“non-active” pixels, representing missing information, are effectively ignored. This approach enables
effective learning from incomplete data while preserving the integrity of the observed information,
offering two key advantages: (i) the mask is architecture-agnostic, making it compatible with any
diffusion backbone, and (ii) the inference procedure of ImagenTime remains entirely unchanged.

4.1 Unnatural image neighborhoods
Unfortunately, the straightforward approach has a fundamental limitation: although non-active pixels
are ignored during loss computation, they are still processed by the network. In practice, missing
values are replaced with zeros, resulting in “unnatural” pixel neighborhoods. Specifically, while
zeros may occasionally occur in non-zero segments of a time series, their repeated presence is highly
unlikely, leading to inconsistencies. In other words, masking is not applied at the architecture level,
potentially hindering the effective learning of neural components.

To demonstrate this phenomenon, we consider the following toy experiment. We generate 1000
two-dimensional points, drawn from a multivariate Gaussian distribution with four centers (Fig. 1A).
Given this distribution, we create an irregular dataset of 3 × 4 images, Sirregular, by taking a data
point, setting all pixels to zero except those at the center, corresponding to the x and y coordinates of
the original point (Fig. 1B). Then, we train two diffusion models to: (i) predict the score across the
entire image, and (ii) predict only the two central pixels via masking.

We evaluate the models by comparing their score estimation loss only on the two central pixels,
regardless of the training strategy. Our results indicate that masking does not improve score estimation,
yielding scores of 0.71 vs. 0.67 for Setups (i) and (ii), respectively. In addition, we also inspect the
convolution kernels by averaging across channels the L1 norm of each spatial position (Fig. 1D,E).
As can be seen, the kernel in Setup (i) heavily attends to zero-valued pixels instead of focusing on the
essential central pixels, suggesting that “unnatural” neighbors may be detrimental. In contrast, the
masked kernel from Setup (ii) largely ignores non-relevant zeros and prioritizes the middle pixels.

4.2 Our approach
One possible solution to alleviate the phenomenon of unnatural neighborhoods is to implement
masking at the kernel level, but this would require modifications tailored to each neural architecture,
thereby restricting the approach’s flexibility and its straightforward applicability across different
models. For instance, while our work employs a convolutional U-Net, recent transformer-based
architectures have emerged as highly effective diffusion backbones [41]. Accommodating such
diversity in architectures would require a more generalized solution.

To construct more natural pixel neighborhoods while remaining architecture-agnostic, we take
inspiration from the two-stage pipelines of GT-GAN and KoVAE [26, 39]. Our method likewise uses
a two-step training scheme. First, we complete missing values in irregularly sampled time series using

4



TST [61] to obtain a regularly sampled sequence. Second, we transform the completed series into an
image and apply denoising as in ImagenTime, with one key change: during the loss computation we
mask the pixels that originated from completion (see App. B), following the straightforward masking
strategy discussed earlier. In the toy experiment of Sec. 4.1, the completed neighborhood (Fig. 1C)
enables learning of consistent kernels (Fig. 1F) and improves score estimation to 0.32.

We also replicated the synthetic experiment on a real-world Stocks dataset, using a larger convolu-
tional kernel and comparing the two ways to complete irregular neighborhoods: (i) zero filling and (ii)
natural-neighbor filling. The Stocks results mirrored the synthetic study, reinforcing our hypothesis
that “unnatural” neighbors (e.g., zeros) are detrimental. Evaluated by score-estimation loss on active
pixels, simple masking delivered only a marginal gain (0.81 → 0.79). Visual inspection likewise
matched the synthetic patterns. In contrast, our proposed approach, which avoids zero padding and
learning from semantically valid neighborhoods, significantly improved performance, reducing the
loss to 0.29 and yielding more consistent kernel behavior. See App.E.1 for visuals.

This combination of completion + masking addresses the two primary challenges of irregular se-
quences. Completion creates natural neighborhoods so convolutional kernels learn from values closer
to the true data distribution; masking prevents over-reliance on imputed values by excluding them
from the loss, striking a balance between leveraging and mitigating incomplete information. Figure 2
illustrates our pipeline: autoencoder pretraining (top), main training (middle), and inference (bottom).
T and T −1 denote the delay-embedding transform and its inverse; the fire and snowflake icons
indicate trainable and frozen modules, respectively.

Importantly, we identify limitations with T −1 that was proposed in [38]. Specifically, in their
approach, only the first pixel corresponding to each time series value is used for reconstruction.
Specifically, if xi is mapped to multiple image indices, the original method selects the first corre-
sponding pixel in the image for reconstruction. We modify this inverse transformation by aggregating
information from all corresponding image indices and computing the average of the associated pixels
for each xi. For a given x1:L ∈ RL, both methods ensure that f−1(f(x)) = x. See Sec. 5.6 for an
ablation study of these two methods.

5 Results
5.1 Quality vs. Complexity

0 10 20 30 40
Time (hours)

0.1

0.2

0.3

D
is

cr
im

in
at

iv
e 

Sc
or

e

Ours (24)

Ours (96)

Ours (768)

KoVAE (24)

KoVAE (96)

KoVAE (768)

Figure 3: Discriminative score vs. training time for
our approach and KoVAE across different lengths
(24, 96, and 768). Lower discriminative scores and
shorter training times are better.

We first compare the discriminative score and
training time of our method against KoVAE
across different sequence lengths (24, 96, 768).
Both models were evaluated under identical
conditions, utilizing the same GPU and batch
size to ensure a fair comparison. Training time
was measured until each model converged to
its best result. The discriminative score and
training time were averaged over all missing
rates and datasets for each sequence length and
each method separately. As illustrated in Fig. 3
and Tab. 1, our approach achieves an average
speedup of approximately 6.5× and an average
improvement of about 3.4× in the discriminative
score compared to KoVAE. The results demon-
strate that our method not only trains signifi-
cantly faster but also generates data that more
closely resembles the real distribution compared to KoVAE. Full results can be seen in App. E.7

5.2 Quantitative Evaluation
Our quantitative evaluations assess missing rate setups of 30%, 50%, and 70%. For example, in the
30% missing rate case, we randomly omit 30% of the data in each training sample. Additionally,
we extend the standard benchmark, which typically considers a sequence length of 24, to include
longer sequences of 96, 768, and 10,920, providing a more comprehensive evaluation across varying
temporal scales. We utilize a diverse set of datasets, extending beyond common benchmarks such as
Sine, Stock, Energy, and MuJoCo to include additional real-world datasets: ETTh1, ETTh2, ETTm1,
ETTm2, Weather, Electricity, KDD-Cup, and Traffic. We compare against the popular TimeGAN

5



approach [58], adapted to handle irregular data by incorporating the time difference between samples
as input. In addition, we also consider the recent GT-GAN [26] and KoVAE [39].

We evaluate the performance of our model using the discriminative and predictive tasks suggested
by [58]. In the discriminative task, we measure the similarity between real and synthetic samples by
training a classifier to distinguish between the two, reporting |0.5− acc|, where acc is the accuracy
of the classifier. For the predictive task, we adopt the “train on synthetic, test on real” protocol, where
a predictor is trained on synthetic data and tested on real data. The performance is evaluated using
the Mean Absolute Error (MAE). We also consider irregular time series metrics: the Context-FID
score [25], which quantifies the similarity in distribution between synthetic and real data, and the
correlation score [33], which evaluates the feature-level relationship between the two datasets. The
Context-FID score is computed by encoding both synthetic and real sequences using TS2Vec [60]
and calculating the FID score on the representations. The correlation score measures the covariance
of features between real and synthetic data, with a focus on assessing their alignment. Full details are
provided in App. D.3. For all metrics, lower scores are better.

Tab. 2 details the benchmark results for a sequence length of 24. The values represent averages over
the 30%, 50% and 70% missing rates, where the full results are provided in Tab. 18. In general, our
approach presents dramatic improvements across all metrics with respect to the second-best approach
(typically KoVAE). Following [39], we define the relative improvement error as erel = (e2 − e1)/e2,
where e2 is the second-best error and e1 is ours. In this metric, averaged across all datasets, our
method improves by 74.2%, 15.0%, 78.5%, 62.1% in the discriminative, predictive, context-FID,
and correlation scores, respectively. We also compared our approach to KoVAE in the medium (96)
and long (768) lengths on all datasets excluding MuJoCo and electricity. The results appear in Tab. 3,

Table 4: Discriminative results of
ultra-long (10,920) sequences on
KDD-Cup for different missing rates.

Method 30% 50% 70%
KoVAE 0.375 0.410 0.499

Ours 0.155 0.288 0.392

showing the superiority of our method and its advantages to
longer horizons, where we achieved mean relative improve-
ment of 72.6%, 29.7%, 92.1%, 73.25% in the discrimina-
tive, predictive, context-FID, and correlation scores. See the
full results in Tabs. 19, 20. Finally, for ultra-long sequences
(10,920) on the KDD-Cup dataset, our model showed im-
provements of 36.6% in the discriminative score (see Tab. 4),
showing its ability to generate realistic synthetic data even at
extreme sequence lengths.

5.3 Qualitative Evaluation

We evaluate the similarity between the generated sequences and the real data using qualitative metrics.
Specifically, we employ two visualization techniques [58]: (i) projecting the real and synthetic data
into a two-dimensional space using t-SNE [55], and (ii) performing kernel density estimation to
visualize the corresponding probability density functions (PDFs). Fig. 4 illustrates these results for
the 70% missing rate setting over various datasets and sequence lengths: Energy (24), Weather (96),
and Stocks (768). The top row shows the two-dimensional point clouds of real (blue), KoVAE (green),
and our data obtained via t-SNE, while the bottom row displays their respective PDFs. Overall,
our approach demonstrates strong alignment in both visualizations. In the t-SNE plots (top row), a
high degree of overlap between real and synthetic samples is observed. Similarly, in the PDF plots
(bottom row), the trends and behaviors of the distributions are closely aligned. For additional results,
including the regular and irregular 30% and 50% settings, please refer to App. E.6.

Table 1: Train time (hours) for lengths (24, 96, 768), averaged over missing rates (30%, 50%, 70%).

Model ETTh1 ETTh2 ETTm1 ETTm2 Weather Electricity Energy Sine Stock Mujoco

24

GT-GAN 7.44 3.68 5.14 3.60 5.04 6.45 5.25 4.09 3.15 2.17
KoVAE 6.49 10.79 10.14 6.55 5.840 16.57 9.31 5.59 2.04 1.15
Ours 1.28 2.76 0.96 1.43 3.66 2.44 1.00 0.48 0.21 0.60

96

KoVAE 19.70 10.82 14.61 26.51 22.06 - 13.68 10.76 6.45 -
Ours 1.52 1.90 1.24 1.85 1.87 - 1.72 1.46 0.76 -

76
8 KoVAE 31.53 37.66 67.97 72.58 52.93 - 21.04 14.64 16.27 -

Ours 5.38 2.61 12.20 7.49 9.47 - 4.96 8.24 2.74 -

6



Table 2: Averaged results over 30%, 50%, 70% missing rates for length 24. Lower values are better.

Model ETTh1 ETTh2 ETTm1 ETTm2 Weather Electricity Energy Sine Stock

D
is

c.

TimeGAN-∆t 0.499 0.499 0.499 0.499 0.497 0.499 0.474 0.497 0.479
GT-GAN 0.471 0.369 0.412 0.366 0.481 0.427 0.325 0.338 0.249
KoVAE 0.197 0.081 0.050 0.067 0.332 0.498 0.323 0.043 0.118
Ours 0.037 0.009 0.012 0.011 0.057 0.384 0.080 0.010 0.008

Pr
ed

. TimeGAN-∆t 0.267 0.336 0.235 0.314 0.394 0.262 0.457 0.334 0.072
GT-GAN 0.186 0.092 0.125 0.094 0.145 0.148 0.069 0.096 0.020
KoVAE 0.057 0.054 0.045 0.050 0.057 0.047 0.050 0.074 0.017
Ours 0.053 0.046 0.044 0.044 0.022 0.049 0.047 0.069 0.012

FI
D

TimeGAN-∆t 3.140 3.199 3.419 3.218 2.378 23.39 6.507 2.780 2.668
GT-GAN 2.212 8.635 14.29 6.385 2.758 9.993 1.531 1.698 2.181
KoVAE 1.518 0.248 0.180 0.280 3.699 6.163 0.629 0.037 0.369
Ours 0.124 0.035 0.047 0.024 0.170 3.580 0.132 0.015 0.036

C
or

r.

TimeGAN-∆t 3.743 1.051 2.350 0.579 1.200 13.24 3.765 2.424 1.399
GT-GAN 7.148 0.916 2.467 0.356 0.791 14.92 3.889 3.282 0.261
KoVAE 0.183 0.177 0.130 0.262 2.899 4.283 2.630 0.041 0.064
Ours 0.084 0.054 0.065 0.039 0.396 2.031 0.922 0.015 0.019

Table 3: Averaged results over 30%, 50%, 70% missing rates for length 96 (top) and 768 (bottom).

Model ETTh1 ETTh2 ETTm1 ETTm2 Weather Energy Sine Stock

L
en

gt
h
=

9
6 D

is
c. KoVAE 0.284 0.103 0.276 0.089 0.341 0.356 0.239 0.099

Ours 0.070 0.053 0.040 0.030 0.152 0.185 0.003 0.017

Pr
ed

. KoVAE 0.062 0.057 0.054 0.050 0.046 0.080 0.165 0.020
Ours 0.053 0.049 0.045 0.044 0.025 0.049 0.155 0.011

FI
D KoVAE 5.842 1.111 4.070 0.996 3.681 4.694 4.381 0.868

Ours 0.357 0.508 0.171 0.142 0.394 0.309 0.017 0.109

C
or

r. KoVAE 0.224 0.362 0.175 0.435 2.609 4.810 0.222 0.089
Ours 0.114 0.151 0.092 0.094 0.890 1.161 0.016 0.014

L
en

gt
h
=

76
8 D
is

c. KoVAE 0.238 0.201 0.236 0.196 0.428 0.384 0.350 0.284
Ours 0.088 0.045 0.058 0.052 0.102 0.213 0.006 0.022

Pr
ed

. KoVAE 0.072 0.069 0.060 0.076 0.070 0.087 0.226 0.031
Ours 0.053 0.056 0.047 0.050 0.027 0.042 0.204 0.013

FI
D KoVAE 13.92 8.304 13.50 8.279 17.49 24.51 38.60 7.273

Ours 0.882 0.439 0.391 0.264 0.318 0.796 0.237 0.160

C
or

r. KoVAE 0.333 0.606 0.404 0.738 3.252 8.752 0.379 0.046
Ours 0.103 0.106 0.122 0.128 0.458 1.040 0.006 0.026

5.4 Irregularly-sampled data under noise
Our work primarily addresses irregularly sampled time series data. However, in real-world scenarios,
such data often includes noise due to sensor limitations and inaccuracies. To further enhance our
quantitative evaluation framework, we tackle the generative challenges of learning from irregular
time series in noisy environments. Specifically, we propose a novel setup to evaluate the model’s
capability to recover the true underlying distribution from data corrupted by both irregular sampling
and Gaussian noise. In this setup, we simulate a 50% missing rate and inject additive Gaussian noise
sampled from a normal distribution N (0, σ), where σ corresponds to the specified noise level (e.g.,
0.1, 0.15, and 0.2). Importantly, this noise is added independently of the original data distribution
or scale. The evaluation is conducted on sequences of length 24 across four datasets: Weather,
Etth1, Stocks. and Energy. Following the discriminative and predictive evaluation protocols for

Table 5: Discriminative and predictive scores for 50% missing rate on Weather, ETTh1, Stock, and
Energy datasets with injected noise levels (0.1, 0.15, and 0.2).

Weather ETTh1 Stock Energy
N/R Model Disc. Pred. Disc. Pred. Disc. Pred. Disc. Pred.

0.1 KoVAE 0.426 0.056 0.225 0.073 0.235 0.016 0.434 0.067
Ours 0.061 0.052 0.024 0.034 0.007 0.012 0.065 0.047

0.15 KoVAE 0.488 0.092 0.377 0.077 0.341 0.092 0.493 0.093
Ours 0.416 0.029 0.407 0.059 0.282 0.023 0.467 0.053

0.2 KoVAE 0.491 0.096 0.440 0.084 0.352 0.121 0.496 0.123
Ours 0.485 0.035 0.456 0.062 0.340 0.027 0.457 0.057

7



10 0 10
10

5

0

5

tS
NE

Energy

10 0 10
10

0

10

Weather

10 0 10

10

0

10

Stocks

0.2 0.4 0.6
0

2

4

6

De
ns

ity

Real
Ours
KoVAE

0.4 0.6
0.0

2.5

5.0

7.5 Real
Ours
KoVAE

0.0 0.5
0.0

2.5

5.0

7.5
Real
Ours
KoVAE

A B C

D E F

Figure 4: 2D t-SNE embeddings (top) and probability density functions (bottom) for real data vs.
synthetic data from our method and KoVAE, under a 70% missing rate. From left to right: Energy
(length 24), Weather (length 96), and Stock (length 768) datasets.

Table 6: Discriminative and predictive scores for 40% random vs. 40% continuous missingness on
the Weather and Energy datasets with sequence lengths of 24 and 96. Lower is better.

Weather Energy
Metric Random Continuous Random Continuous

Length = 24 Discriminative ↓ 0.057 0.053 0.081 0.082
Predictive ↓ 0.021 0.025 0.047 0.043

Length = 96 Discriminative ↓ 0.154 0.165 0.185 0.191
Predictive ↓ 0.025 0.023 0.048 0.050

50% missing rate described earlier, we compare our approach against the most recent state-of-the-art
method, KoVAE. Tab. 5 presents the results. For each noise rate (N/R), we report the discriminative
(Disc.) and predictive (Pred.) scores, where lower values indicate better performance. Our method
consistently outperforms KoVAE, achieving significant improvements. Specifically, we observe an
average relative improvement of 26.8% in the discriminative score and 50.3% in the predictive score
across all datasets and noise levels.

5.5 Robustness to missingness patterns
While many time series exhibit randomly missing values, in practice, missing values can also occur in
contiguous blocks due to sensor outages or communication delays. To study this effect, we compare
model performance under two types of 40% missingness: (i) randomly dropped values, and (ii)
continuous missing blocks. This experiment is conducted on the Weather and Energy datasets using
sequence lengths of 24 and 96. Discriminative and predictive scores are reported in Tab. 6. The
results show that our method maintains strong performance under both missingness types, with some
cases slightly favoring random missingness and others slightly favoring block-missingness. Overall,
these findings confirm that our approach is robust across a range of missingness patterns, effectively
handling both sporadic and structured data gaps.

5.6 Ablation Studies
To better understand the contributions of each component in our proposed architecture, we conducted
a series of ablation studies. We explore each of the components in our approach separately, and,
additionally, we modify recent approaches to include our completion strategy. Specifically, we
consider the following models: (i) KoVAE + TST, where the NCDE module in KoVAE is replaced by
TST, as in our approach. (ii) TimeAutoDiff [51] + TST (iii): TransFusion [48] + TST; The latter two
baselines are diffusion-based models designed for regular time series but not specifically for irregular
time series data. Therefore, we used the TST module to impute the missing values. (iv) Mask Only,
where the TST autoencoder is removed, and we only apply the masking mechanism. In this setup,
missing values are imputed using unnatural neighbors by filling them with zeros. (v) Ours Without

8



Table 7: Discriminative scores of the ablation study with 30%, 50%, and 70% drop-rate on Energy
and Stock datasets for sequence lengths of 24, 96, and 768.

30% 50% 70%
Model Energy Stock Energy Stock Energy Stock

L
en

.=
24

KoVAE + TST 0.399 0.109 0.407 0.064 0.408 0.037
TimeAutoDiff + TST 0.293 0.100 0.329 0.101 0.468 0.375
TransFusion + TST 0.201 0.050 0.279 0.058 0.423 0.065
Ours (Mask Only) 0.157 0.087 0.269 0.168 0.372 0.237
Ours (Without Mask) 0.158 0.025 0.307 0.045 0.444 0.013
Ours 0.048 0.007 0.065 0.007 0.128 0.007

L
en

.=
96

KoVAE + TST 0.240 0.185 0.254 0.221 0.417 0.193
TimeAutoDiff + TST 0.299 0.105 0.336 0.104 0.461 0.398
TransFusion + TST 0.305 0.083 0.335 0.098 0.442 0.116
Ours (Mask Only) 0.490 0.174 0.422 0.263 0.480 0.388
Ours (Without Mask) 0.402 0.033 0.476 0.072 0.491 0.082
Ours 0.130 0.011 0.153 0.018 0.272 0.021

L
en

.=
76

8 KoVAE + TST 0.380 0.225 0.418 0.243 0.385 0.186
TimeAutoDiff + TST 0.299 0.104 0.334 0.101 0.466 0.487
TransFusion + TST 0.367 0.113 0.395 0.121 0.451 0.131
Ours (Mask Only) 0.437 0.249 0.349 0.450 0.435 0.491
Ours (Without Mask) 0.364 0.027 0.353 0.102 0.325 0.102
Ours 0.170 0.025 0.244 0.033 0.251 0.013

Masking, where we leverage TST to complete missing values, and training is performed without
masking. (vi) Our approach.

We quantitatively evaluated each model under the same experimental conditions and show the
results in Tab. 7. To provide an extensive analysis, our tests include several missing rates
(30%, 50%, and 70%) using two datasets, Energy and Stock. Further, we measured the perfor-
mance across different sequence lengths (24, 96, and 768). Our findings show that the combination
of TST-based completion and masking yields superior performance compared to all other setups.
Specifically, the Mask Only and Ours (Without Masking) setups showed significant limitations in
capturing the true data distribution, while the replacement of NCDE with TST (KoVAE + TST) fell
short in comparison to our proposed architecture. In particular, our results reveal that replacing the
NCDE imputation component in KoVAE with the TST imputation mechanism is not the primary
factor driving the significant improvements achieved by our method. Moreover, even when employing
a powerful time series diffusion-based model like TransFusion combined with TST-based imputation,
performance significantly degrades, struggling to capture the true distribution of the regular data.
Overall, these results highlight the critical role of masking during the diffusion process and the
importance of leveraging completion as a guide rather than a direct substitute for the true distribution.

We also ablate the impact of different image transformations on model performance, evaluating four
methods: vanilla folding (reshapes a sequence into a fixed-size matrix with zero-padding), Gramian
Angular Field, basic delay embedding, and our proposed inverse delay embedding (see App. A).
Results in Tab. 8a and Tab. 9 show that geometric approaches—vanilla folding and our enhanced
DE—better suit our method due to their structural clarity, where each pixel maps directly to a time
point, facilitating mask usage and improving both discriminative and predictive performance. In
contrast, GAF does not scale well to long sequences due to large image size. Our inverse transform
also outperforms the original inverse of ImagenTime [38].

We additionally conducted an extensive ablation study comparing a variety of completion strategies.
These included simple methods such as, Gaussian noise (GN), zero-filling, linear interpolation (LI),
and polynomial interpolation (PI); probabilistic techniques like stochastic imputation (SI) (sampling
from a Gaussian distribution fitted to the non-NaN values in each slice); and more advanced learning-
based approaches, including NCDE, CSDI [53], and our proposed Time Series Transformer (TST)
completion. Our results in Tab. 8b show that when the neighbors are not natural—such as in the
case of zero completion or Gaussian noise completion—the model struggles more to generate data
that closely follows the true distribution. In contrast, when using more natural completions (e.g.,
polynomial, stochastic imputation, NCDE, CSDI, TST), the model consistently obtains very good
results. This confirms that generating natural neighborhoods indeed enhances the generative quality
without making the model completely reliant on the imputation quality.

9



Table 8: Comparative performance on Energy and Stock datasets for sequence length 24.

(a) Ablation study on image transformation methods.

30% 50% 70%
Model Energy Stock Energy Stock Energy Stock

D
is

c.

Gramian Angular 0.291 0.061 0.313 0.157 0.363 0.183
Vanilla Folding 0.058 0.005 0.050 0.009 0.136 0.010
Basic DE 0.091 0.035 0.102 0.046 0.153 0.019
Ours DE 0.048 0.007 0.065 0.007 0.128 0.007

Pr
ed

. Gramian Angular 0.049 0.013 0.048 0.015 0.049 0.016
Vanilla Folding 0.047 0.013 0.047 0.013 0.047 0.014
Basic DE 0.053 0.022 0.051 0.025 0.055 0.027
Ours DE 0.047 0.012 0.047 0.012 0.047 0.011

(b) Imputation methods with 50% drop-rate.

Disc. Pred.
Model Energy Stock Energy Stock

GN → NaN 0.457 0.102 0.058 0.014
0 → NaN 0.269 0.158 0.051 0.014
LI 0.251 0.013 0.049 0.019
PI 0.201 0.012 0.053 0.016
NCDE 0.102 0.013 0.058 0.013
CSDI 0.088 0.012 0.048 0.013
SI 0.069 0.010 0.047 0.013
Ours (TST) 0.065 0.007 0.047 0.012

6 Conclusions
In this work, we introduced a novel two-step framework for generating realistic regular time series
from irregularly sampled sequences. By integrating a Time Series Transformer (TST) for completion
with a vision-based diffusion model leveraging masking, we effectively addressed the challenge of
unnatural neighborhoods inherent in direct masking approaches. This hybrid strategy ensures that the
diffusion model benefits from more structured and meaningful input while mitigating over-reliance
on completed values. Our extensive evaluations across multiple benchmarks demonstrated state-of-
the-art performance, with improvements of up to 70% in discriminative score and an 85% reduction
in computational cost over prior methods. Furthermore, our approach scales effectively to long time
series, significantly outperforming existing generative models in both accuracy and efficiency.

Beyond these advancements, our work highlights the broader potential of integrating completion
and masking strategies in generative modeling, particularly in domains where irregular sampling
and missing values are prevalent. Future directions include extending our framework to multimodal
time series generation, exploring self-supervised objectives for improved imputation, and integrating
adaptive masking techniques that dynamically adjust completion reliance. By bridging the gap
between irregular and regular time series generation, our method opens new possibilities for high-
fidelity synthetic data generation in critical fields such as healthcare, finance, and climate science.

Acknowledgments

This research was partially supported by the Lynn and William Frankel Center of the Computer
Science Department, Ben-Gurion University of the Negev, an ISF grant 668/21, an ISF equipment
grant, and by the Israeli Council for Higher Education (CHE) via the Data Science Research Center,
Ben-Gurion University of the Negev, Israel.

10



References
[1] J. Allen. Short term spectral analysis, synthesis, and modification by discrete Fourier transform.

IEEE transactions on acoustics, speech, and signal processing, 25(3):235–238, 1977.

[2] J. B. Allen and L. R. Rabiner. A unified approach to short-time Fourier analysis and synthesis.
Proceedings of the IEEE, 65(11):1558–1564, 1977.

[3] N. Berman, O. Joglekar, E. Kosman, D. Di Castro, and O. Azencot. Towards general modality
translation with contrastive and predictive latent diffusion bridge. In Advances in Neural
Information Processing Systems (NeurIPS) 39, 2025.

[4] N. Berman, E. Kosman, D. D. Castro, and O. Azencot. Reviving life on the edge: Joint
score-based graph generation of rich edge attributes. Trans. Mach. Learn. Res., 2025.

[5] N. Berman, I. Naiman, M. Eliasof, H. Zisling, and O. Azencot. One-step offline distillation of
diffusion-based models via Koopman modeling. In Advances in Neural Information Processing
Systems (NeurIPS) 39, 2025.

[6] E. Brophy, Z. Wang, Q. She, and T. Ward. Generative adversarial networks in time series: A
systematic literature review. ACM Computing Surveys, 55(10):1–31, 2023.

[7] E. Brophy, Z. Wang, and T. E. Ward. Quick and easy time series generation with established
image-based GANs. arXiv preprint arXiv:1902.05624, 2019.

[8] L. M. Candanedo, V. Feldheim, and D. Deramaix. Data driven prediction models of energy use
of appliances in a low-energy house. Energy and buildings, 140:81–97, 2017.

[9] Y. Chen, K. Ren, Y. Wang, Y. Fang, W. Sun, and D. Li. ContiFormer: Continuous-time
transformer for irregular time series modeling. Advances in Neural Information Processing
Systems, 37, 2023.

[10] Z. Chen, Y. Wu, Y. Leng, J. Chen, H. Liu, X. Tan, Y. Cui, K. Wang, L. He, S. Zhao, J. Bian, and
D. P. Mandic. ResGrad: Residual denoising diffusion probabilistic models for text to speech.
arXiv preprint arXiv:2212.14518, 2022.

[11] A. Coletta, S. Gopalakrishnan, D. Borrajo, and S. Vyetrenko. On the constrained time-series
generation problem. Advances in Neural Information Processing Systems, 37, 2023.

[12] C. Corneanu, R. Gadde, and A. M. Martinez. LatentPaint: Image inpainting in latent space
with diffusion models. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 4334–4343, 2024.

[13] A. Desai, C. Freeman, Z. Wang, and I. Beaver. TimeVAE: A variational auto-encoder for
multivariate time series generation. arXiv preprint arXiv:2111.08095, 2021.

[14] P. Dhariwal and A. Nichol. Diffusion models beat GANs on image synthesis. Advances in
neural information processing systems, 34:8780–8794, 2021.

[15] P. Flandrin, G. Rilling, and P. Goncalves. Empirical mode decomposition as a filter bank. IEEE
signal processing letters, 11(2):112–114, 2004.

[16] T. Gonen, I. Pemper, I. Naiman, N. Berman, and O. Azencot. Time series generation under
data scarcity: A unified generative modeling approach. In Advances in Neural Information
Processing Systems (NeurIPS) 39, 2025.

[17] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville,
and Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing
Systems 27, pages 2672–2680, 2014.

[18] Z. Han, J. Zhao, H. Leung, K. F. Ma, and W. Wang. A review of deep learning models for time
series prediction. IEEE Sensors Journal, 21(6):7833–7848, 2019.

[19] N. Hatami, Y. Gavet, and J. Debayle. Classification of time-series images using deep convo-
lutional neural networks. In Tenth international conference on machine vision (ICMV 2017),
volume 10696, pages 242–249. SPIE, 2018.

11



[20] J. Hellermann and S. Lessmann. Leveraging image-based generative adversarial networks for
time series generation. arXiv preprint arXiv:2112.08060, 2021.

[21] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

[22] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet. Video diffusion models.
Advances in Neural Information Processing Systems, 35:8633–8646, 2022.

[23] J. Hogue. Metro Interstate Traffic Volume. UCI Machine Learning Repository, 2019. DOI:
https://doi.org/10.24432/C5X60B.

[24] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller. Deep learning for time
series classification: a review. Data mining and knowledge discovery, 33(4):917–963, 2019.

[25] P. Jeha, M. Bohlke-Schneider, P. Mercado, S. Kapoor, R. S. Nirwan, V. Flunkert, J. Gasthaus,
and T. Januschowski. PSA-GAN: Progressive self attention GANs for synthetic time series. In
The Tenth International Conference on Learning Representations, 2022.

[26] J. Jeon, J. Kim, H. Song, S. Cho, and N. Park. GT-GAN: General purpose time series synthesis
with generative adversarial networks. Advances in Neural Information Processing Systems,
35:36999–37010, 2022.

[27] T. Karras, M. Aittala, T. Aila, and S. Laine. Elucidating the design space of diffusion-based
generative models. Advances in neural information processing systems, 35:26565–26577, 2022.

[28] P. Kidger, J. Morrill, J. Foster, and T. Lyons. Neural controlled differential equations for
irregular time series. Advances in Neural Information Processing Systems, 33:6696–6707, 2020.

[29] D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In 2nd International Confer-
ence on Learning Representations, ICLR, 2014.

[30] F. Kreuk, G. Synnaeve, A. Polyak, U. Singer, A. Défossez, J. Copet, D. Parikh, Y. Taigman,
and Y. Adi. AudioGen: Textually guided audio generation. In The Eleventh International
Conference on Learning Representations, ICLR, 2023.

[31] X. Li, V. Metsis, H. Wang, and A. H. H. Ngu. TTS-GAN: A transformer-based time-series
generative adversarial network. In International conference on artificial intelligence in medicine,
pages 133–143. Springer, 2022.

[32] Z. Li, S. Li, and X. Yan. Time series as images: Vision transformer for irregularly sampled time
series. Advances in Neural Information Processing Systems, 36, 2023.

[33] S. Liao, H. Ni, L. Szpruch, M. Wiese, M. Sabate-Vidales, and B. Xiao. Conditional Sig-
Wasserstein GANs for time series generation. arXiv preprint arXiv:2006.05421, 2020.

[34] B. Lim and S. Zohren. Time-series forecasting with deep learning: a survey. Philosophical
Transactions of the Royal Society A, 379(2194):20200209, 2021.

[35] Y. Lipman, R. T. Q. Chen, H. Ben-Hamu, M. Nickel, and M. Le. Flow matching for generative
modeling. In The Eleventh International Conference on Learning Representations, ICLR, 2023.

[36] H. Liu, Z. Chen, Y. Yuan, X. Mei, X. Liu, D. Mandic, W. Wang, and M. D. Plumbley. Au-
dioLDM: Text-to-audio generation with latent diffusion models. In Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learn-
ing Research, pages 21450–21474. PMLR, 23–29 Jul 2023.

[37] A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and L. Van Gool. Repaint: Inpainting
using denoising diffusion probabilistic models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 11461–11471, 2022.

[38] I. Naiman, N. Berman, I. Pemper, I. Arbiv, G. Fadlon, and O. Azencot. Utilizing image
transforms and diffusion models for generative modeling of short and long time series. Advances
in Neural Information Processing Systems, 38, 2024.

12



[39] I. Naiman, N. B. Erichson, P. Ren, M. W. Mahoney, and O. Azencot. Generative modeling
of regular and irregular time series data via Koopman VAEs. In The Twelfth International
Conference on Learning Representations, ICLR, 2024.

[40] L. Nochumsohn and O. Azencot. Data augmentation policy search for long-term forecasting.
Trans. Mach. Learn. Res., 2025.

[41] W. Peebles and S. Xie. Scalable diffusion models with transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 4195–4205, 2023.

[42] V. Popov, I. Vovk, V. Gogoryan, T. Sadekova, and M. Kudinov. Grad-TTS: A diffusion
probabilistic model for text-to-speech. In International Conference on Machine Learning, pages
8599–8608. PMLR, 2021.

[43] K. Rasul, C. Seward, I. Schuster, and R. Vollgraf. Autoregressive denoising diffusion models
for multivariate probabilistic time series forecasting. In International Conference on Machine
Learning, pages 8857–8868. PMLR, 2021.

[44] P. Ren, R. Nakata, M. Lacour, I. Naiman, N. Nakata, J. Song, Z. Bi, O. A. Malik, D. Morozov,
O. Azencot, et al. Learning physics for unveiling hidden earthquake ground motions via
conditional generative modeling. arXiv preprint arXiv:2407.15089, 2024.

[45] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis
with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 10684–10695, 2022.

[46] Y. Rubanova, R. T. Chen, and D. K. Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. Advances in neural information processing systems, 32, 2019.

[47] M. Schirmer, M. Eltayeb, S. Lessmann, and M. Rudolph. Modeling irregular time series with
continuous recurrent units. In International conference on machine learning, pages 19388–
19405. PMLR, 2022.

[48] M. F. Sikder, R. Ramachandranpillai, and F. Heintz. Transfusion: Generating long, high fidelity
time series using diffusion models with transformers. arXiv preprint arXiv:2307.12667, 2023.

[49] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In International conference on machine learning, pages
2256–2265. PMLR, 2015.

[50] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based
generative modeling through stochastic differential equations. In 9th International Conference
on Learning Representations, ICLR, 2021.

[51] N. Suh, Y. Yang, D.-Y. Hsieh, Q. Luan, S. Xu, S. Zhu, and G. Cheng. TimeAutoDiff: Combining
autoencoder and diffusion model for time series tabular data synthesizing. arXiv preprint
arXiv:2406.16028, 2024.

[52] F. Takens. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence,
Warwick 1980: proceedings of a symposium held at the University of Warwick 1979/80, pages
366–381. Springer, 2006.

[53] Y. Tashiro, J. Song, Y. Song, and S. Ermon. CSDI: Conditional score-based diffusion models
for probabilistic time series imputation. Advances in Neural Information Processing Systems,
34:24804–24816, 2021.

[54] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033. IEEE,
2012.

[55] L. Van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of machine learning
research, 9(11), 2008.

[56] M. Vetterli and C. Herley. Wavelets and filter banks: Theory and design. IEEE transactions on
signal processing, 40(9):2207–2232, 1992.

13



[57] Z. Wang and T. Oates. Imaging time-series to improve classification and imputation. In
Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence,
IJCAI, pages 3939–3945. AAAI Press, 2015.

[58] J. Yoon, D. Jarrett, and M. Van der Schaar. Time-series generative adversarial networks.
Advances in neural information processing systems, 32, 2019.

[59] X. Yuan and Y. Qiao. Diffusion-TS: Interpretable diffusion for general time series generation.
In The Twelfth International Conference on Learning Representations, ICLR, 2024.

[60] Z. Yue, Y. Wang, J. Duan, T. Yang, C. Huang, Y. Tong, and B. Xu. TS2Vec: Towards universal
representation of time series. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 8980–8987, 2022.

[61] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff. A transformer-based
framework for multivariate time series representation learning. In Proceedings of the 27th ACM
SIGKDD conference on knowledge discovery & data mining, pages 2114–2124, 2021.

[62] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang. Informer: Beyond
efficient transformer for long sequence time-series forecasting. In Proceedings of the AAAI
conference on artificial intelligence, volume 35, pages 11106–11115, 2021.

14



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly outline the problem of generating regular
time series from irregular data and present the two-step method (completion + masking),
which is consistently analyzed throughout the paper (see Abstract, Sec. 1, Sec. 4, and Sec. 5).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

15



Justification: The paper discusses the limitations of naive masking and inverse transforma-
tions in Sec. 4, and includes ablation studies in Sec. 5.6 to analyze failure cases and model
sensitivity.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results or formal theorems—it is an
empirical study focused on generative modeling and experimental evaluation.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

16



Justification: The paper provides extensive implementation details including training pa-
rameters, model architecture (Sec. 4, App. B, and hyperparameter tables in the appendix),
datasets used, evaluation metrics, and ablation studies.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Code and data will be released after the review process concludes (post-
acceptance or rejection), as noted by the authors.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Training/test splits, hyperparameters, sampling steps, and optimizer settings
are provided in Sec. 5 and in App. D.3, Tables 10–12.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper provides average results over multiple random seeds and missing
rates (e.g., 30%, 50%, 70%), and includes standard deviation in extended tables in the
appendix (e.g., Tab. 18, Tab. 20).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

18



Answer: [Yes]

Justification: Training and inference times are detailed and compared to baselines in Sec. 5.1
and App. E.7, with hardware specs (e.g., RTX3090) provided for fair benchmarking.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper does not raise ethical concerns; all datasets are public, and the work
does not involve sensitive data or human participants.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper highlights potential applications in healthcare, finance, and cli-
mate science (see Abstract and Sec. 1), and discusses risks related to data imputation and
overreliance on incorrect completions (Sec. 4).

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

19

https://neurips.cc/public/EthicsGuidelines


• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release a general-purpose model or scraped dataset and
poses no high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets used are public and cited correctly (e.g., UCI, ETT, USHCN); the
codebases cited are academic open-source projects (e.g., TS2Vec, ImagenTime).
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Although the paper proposes a new model architecture, no new dataset or code
repository is released at submission time; these will be released post-review.
Guidelines:

20

paperswithcode.com/datasets


• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve human participants and does not require IRB
approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used in the methodology, only lightly for text editing and
formatting.
Guidelines:

21



• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM


A Time Series-to-Image Transformation

In this section, we provide a brief discussion on time series to image conversions. We then introduce
Delay Embedding, the transformation we employed. Additionally, we describe an improvement we
implemented to enhance the reversibility of delay embedding.

Time series to image conversion. The conversion of time series data into image representations has
attracted significant interest for its ability to leverage computer vision methods in time series analysis.
Techniques like Gramian Angular Fields [57], Recurrence Plots [19], and Line Graphs [32] allow
for mapping time series data to visual formats, enabling tasks such as classification and imputation.
In the field of speech analysis, the short-time Fourier transform (STFT) [1, 2, 56, 15] is crucial for
capturing frequency variations over time, which is vital for processing audio and speech data. Recent
advancements have also explored incorporating mel-spectrograms in diffusion models, particularly
in connection with latent diffusion spaces[42, 10, 36]. Furthermore, generative approaches such as
Wasserstein GANs [7, 20] have been applied to time series in image form.

Vanilla Folding is a straightforward transformation. Given a time series x, we reshape it into
an image ximg by filling rows from left to right and moving to the next row upon reaching the end,
padding with zeros if necessary. The inverse transformation reconstructs the original time series by
reading the non-padded region row-wise. Despite its simplicity, this method scales well to very long
sequences. Folding can also be interpreted as a specific case of delay embedding, as we explain
below.

Delay Embedding and Enhanced Reverse Transformation [52] converts a univariate time series
x1:L ∈ RL into an image by structuring its information into columns and applying zero-padding
as needed. This transformation is controlled by two hyperparameters: m, which defines the skip
value, and n, which determines the number of columns. Given any channel of a time series, the
corresponding matrix X is formed as follows:

X =

x1 xm+1 . . . xL−n

...
... . . .

...
xn xn+m+1 . . . xL

 ∈ Rn×q ,

where q = ⌈(L− n)/m⌉. To match the input requirements of a neural network, the resulting image
ximg is padded with zeros. This transformation is applied independently to each channel, and for
multivariate time series, the matrices X from different channels are concatenated along a new axis.
Given an input signal x ∈ RL×K , the output is a transformed representation ximg ∈ RK×n×q , which
is then zero-padded to obtain ximg ∈ RK×n×n. Delay embedding efficiently scales to long sequences;
for instance, choosing m = n = 256 enables the encoding of sequences up to 65k in length using
256× 256 images.

Our primary innovation lies in the reverse transformation process. In the original approach, only the
first pixel corresponding to each time series value is used for reconstruction. Specifically, if xi is
mapped to multiple image indices, the original method selects the first corresponding pixel in the
image for reconstruction. In contrast, our approach aggregates information from all corresponding
image indices by computing the average of the associated pixels for each xi. For a given x1:L ∈ RL,
both methods ensure that f−1(f(x)) = x.

As shown in Table 9, our approach consistently outperforms the original approach across various drop
rates. For example, at a 30% drop rate, our delay embedding (DE) approach achieves a discriminative
score of 0.020 for the ETTh1 dataset and 0.009 for ETTh2, compared to 0.023 and 0.018 with
the naive approach, respectively. Similarly, at a 50% drop rate, the new DE method reduces the
discriminative score to 0.032 (ETTh1) and 0.005 (ETTh2), outperforming the previous DE approach,
which yielded scores of 0.040 and 0.037, respectively.

23



Table 9: Discriminative scores on ETTh1 and ETTh2 for sequence length 24
to compare the original inverse delay embedding vs. our inverse, evaluated
in 30%, 50%, and 70% missing rates.

30% 50% 70%
Model ETTh1 ETTh2 ETTh2 ETTh2 ETTh2 ETTh2

Ours + Old inverse 0.023 0.018 0.040 0.037 0.067 0.048
Ours + New inverse 0.020 0.009 0.032 0.005 0.058 0.0130 20

0.50

0.55
Time Series

0 20

0

10

20

30

Gramian Angular Field

0 20

0

10

20

30

STFT (real)

0 10

0

5

10

15

Delay Embedding

B Training Losses

Our model consists of two main components: an Autoencoder (AE) and a vision diffusion model
(ImagenTime). For each component, we modified the loss to handle irregular data more effectively.

B.1 Autoencoder Training Loss

The TST-Based AE is trained to reconstruct only the known (non-missing) values of the input data.
Since we do not have access to the regularly sampled time series during training, the model learns to
infer missing values from the irregularly sampled data. The masked reconstruction loss is defined as:

Lt=0
e =

1

|O|
∑
i∈O

(x̃i − xi)
2 (1)

where x is the original input data, x̃ is the reconstructed output, O represents the set of observed
(non-missing) indices in the input x, and |O| is the number of observed values. This ensures that
the loss function only penalizes reconstruction errors for the known values, without considering the
missing ones.

B.2 ImagenTime Diffusion Training Loss

At the core of ImagenTime is the generative diffusion model, which follows the framework of Karras
et al. [27] for improved score-based modeling. The model employs a second-order ODE for the
reverse process, balancing fast sampling and high-quality generations.

For irregular time series data, we changed the training loss to ensure proper weighting of the diffusion
steps and account for missing values. Given an input sequence x and a corresponding mask m
indicating observed entries, the loss is defined as:

Ldiff = Ex,σ

[
∥(Dθ(x+ σn, σ)− x) ·m∥2

]
(2)

where:

• x is the input time series with missing values.
• n ∼ N (0, I) is standard Gaussian noise, scaled by σ.
• m is the mask, indicating the observed values.

The model reconstructs the output using both observed and imputed indices, treating the imputed
values as natural neighbors to the observed ones. However, the loss is computed and compared only
against the observed indices, ensuring that the comparison is made solely to the true distribution,
unaffected by the imputed values. This allows the model to learn the distribution while maintaining
accurate reconstruction of missing values.

C Inference Time Analysis

In this section, we present a detailed comparison of the inference time between our approach and
KoVAE, particularly in relation to sequence length. The evaluation is conducted across a range of
sequence lengths: 24, 96, and 768. Additionally, we explore the relationship between inference time
and sequence length for both models.

24



C.1 Inference Time vs. Sequence Length

Figure 5 illustrates the relationship between inference time per sample (in seconds) and sequence
length for both our model and KoVAE. While KoVAE demonstrates faster sampling on short se-
quences, its efficiency degrades rapidly as the sequence length increases. KoVAE, which is based on
a sequential VAE architecture for time series, processes each time step individually throughout the
entire sequence, causing its computational cost to increase significantly with longer sequences and
resulting in substantially longer inference times.

In contrast, our model maintains nearly constant inference time regardless of sequence length, making
it highly efficient even for sequences as long as 5000 time steps. This is due to the use of delay
embedding, which enables the model to compress long sequences into compact image representations
with fixed dimensions. A clear turning point occurs at a sequence length of approximately 4500,
beyond which our model consistently outperforms KoVAE in terms of inference time. This robust
performance highlights the advantage of our method in terms of time efficiency, especially when
dealing with long sequences.

C.2 Inference Time and Fidelity Comparison

As shown in Figure 6, we evaluate the relationship between inference time and fidelity (indicated by
the discriminative score) for a single sequence. Lower discriminative scores correspond to higher
fidelity in the model’s predictions. On the other hand, inference time is a measure of efficiency, with
shorter times indicating greater computational efficiency.

Our approach consistently performs well by maintaining a low discriminative score, which translates
into higher fidelity in its predictions. This is achieved while also managing to keep the inference time
relatively low, even for longer sequences. Notably, our model uses only 18 sampling steps regardless
of sequence length, which results in stable and fast inference times across all configurations.

C.3 Performance Comparison

As observed from both figures, our model exhibits a favorable trade-off between inference efficiency
and fidelity. While KoVAE might be more efficient for shorter sequences, its performance degrades
as sequence length increases, making it less suitable for long sequences. Our approach, however,
remains consistently efficient and accurate, maintaining both low discriminative scores and linear
inference times as sequence lengths scale.

0 5000 10000 15000 20000
Sequence Length

0

1

2

3

4

In
fe

re
nc

e 
Ti

m
e 

pe
r 

Sa
m

pl
e 

(s
ec

)

Ours
KoVAE

Figure 5: Comparison of inference time per sam-
ple in seconds vs. sequence length of our model
and KoVae model.

0.0 0.5 1.0
Time (Seconds)

0.1

0.2

0.3

D
is

cr
im

in
at

iv
e 

Sc
or

e

Ours (24)

Ours (96)

Ours (768)

KoVAE (24)

KoVAE (96)

KoVAE (768)

Figure 6: Comparison of discriminative score
vs. inference time of a single sequence for our
approach and KoVAE across different sequence
lengths (24, 96, and 768). Lower discriminative
scores indicate higher fidelity, and shorter infer-
ence times reflect greater efficiency.

25



D Experimental Setup

D.1 Baseline Methods

We compare our method with several generative time series models designed for irregular data.
KoVAE [39] is specifically designed to handle irregularly sampled time series effectively. Additionally,
we consider GT-GAN [26], another method tailored for irregular time series generation. Lastly, we
evaluate against TimeGAN-∆t [58], a re-designed version of the original TimeGAN. Since TimeGAN
does not natively support irregular time series, we follow GT-GAN and compare them with their
re-designed versions. Specifically, extending regular approaches to support irregular TS requires the
conversion of a dynamical module to its time-continuous version. we adapted it by converting its
GRU layers to GRU-∆t, enabling the model to exploit the time differences between observations and
capture temporal dynamics.

D.2 Datasets

We conduct experiments using a combination of synthetic and real-world datasets, each designed to
evaluate the model under various conditions, including regular and irregular time-series settings.

Sines This synthetic dataset contains 5 features, where each feature is independently generated
using sinusoidal functions with different frequencies and phases. Specifically, for each feature
i ∈ {1, ..., 5}, the time-series data is defined as xi(t) = sin(2πfit + θi), where fi ∼ U [0, 1] and
θi ∼ U [−π, π]. The dataset is characterized by its continuity and periodic properties, making it a
suitable benchmark for evaluating the model’s ability to handle structured time-series data.

Stocks The Stocks dataset comprises daily historical Google stock price data from 2004 to 2019. It
includes six features: high, low, opening, closing, adjusted closing prices, and trading volume. Unlike
Sines, this dataset lacks periodicity and primarily exhibits random walk patterns. It is a real-world
dataset commonly used to benchmark financial time-series forecasting and modeling.

MuJoCo MuJoCo (Multi-Joint dynamics with Contact) is a versatile physics simulation framework
used to generate multivariate time-series data [54]. The dataset contains 14 features representing
state variables and control actions from simulated trajectories. This dataset is particularly suitable for
evaluating models on dynamical systems and tasks involving physical interactions

Energy The Energy dataset is a real-world multivariate time-series dataset [8] derived from the UCI
Appliance Energy Prediction dataset. It includes 28 features, which are correlated and exhibit noisy
periodicity and continuous-valued measurements. This dataset provides a challenging benchmark for
forecasting and modeling tasks involving environmental and appliance energy consumption data.

ETTh & ETTm The ETTh (Electricity Transformer Temperature - Hourly) and ETTm (Electricity
Transformer Temperature - Minute) datasets [62] capture electricity load data from two power
stations with varying temporal resolutions. These datasets are used for short- and long-term time-
series forecasting tasks and are part of an established benchmark for evaluating generative and
predictive models.

Weather The Weather dataset includes daily meteorological measurements, such as temperature,
precipitation, snowfall, snow depth, and minimum and maximum temperatures, collected from the
United States Historical Climatology Network (USHCN) 2 . The dataset comprises measurements
from 1,218 weather stations and is used for analyzing climatic trends and weather forecasting tasks.

Electricity The Electricity dataset consists of electricity consumption data across multiple clients,
represented as multivariate time-series. It is widely used for forecasting electricity loads and under-
standing temporal consumption patterns in energy-related applications.

2https://knb.ecoinformatics.org/view/doi%3A10.3334%2FCDIAC%2FCLI.NDP019

26

https://knb.ecoinformatics.org/view/doi%3A10.3334%2FCDIAC%2FCLI.NDP019


Traffic The Traffic dataset [23] contains hourly traffic volume data for westbound I-94 in the
Minneapolis-St. Paul, MN area, collected from 2012 to 2018. It includes eight features, mixing
numerical measurements (e.g., temperature, rainfall, snowfall, cloud coverage, traffic volume) with
several categorical variables (e.g., holiday indicators, weather descriptions), making it one of the
few benchmarks that requires models to handle both continuous and categorical time-series data.
The dataset captures multivariate, sequential patterns influenced by weather and holiday effects,
making it particularly suitable as a generative benchmark for modeling complex dependencies across
heterogeneous features.

D.3 Metrics

Discriminative Score This metric measures the ability of a model to differentiate between real and
generated data. A lower discriminative score indicates that the generated data is more indistinguish-
able from the real data, reflecting better generative performance. This score is typically computed by
training a binary classifier and evaluating its accuracy in distinguishing between the two datasets. A
score close to random guessing suggests that the synthetic data is nearly indistinguishable from real
data.

Predictive Score The predictive score evaluates the quality of the generated data in terms of its
utility for downstream predictive tasks. It is typically assessed using a supervised learning model
trained on generated data and tested on real data, or vice versa. A higher predictive score indicates
better alignment between real and generated distributions.

Context-FID Score A lower Frechet Inception Distance (FID) score indicates that synthetic
sequences are more similar to the original data distribution. Paul et al. (2022) introduced a variation
of FID, called Context-FID (Context-Frechet Inception Distance), which replaces the Inception model
in the original FID calculation with TS2Vec, a time series representation learning method [60]. Their
findings suggest that models with the lowest Context-FID scores tend to achieve the best results in
downstream tasks. Additionally, they demonstrated a strong correlation between the Context-FID
score and the forecasting performance of generative models. To compute this score, synthetic and
real time series samples are first generated, then encoded using a pre-trained TS2Vec model, after
which the FID score is calculated based on the learned representations.

Correlational Score Building on the approach from [33], we estimate the covariance between the
ith and jth features of a time series using the following formula:

covi,j =
1

T

T∑
t=1

Xi
tX

j
t −

(
1

T

T∑
t=1

Xi
t

)(
1

T

T∑
t=1

Xj
t

)
.

To quantify the correlation between real and synthetic data, we compute the following metric:

1

10

∑
i,j

∣∣∣∣∣∣ covi,jr√
covi,ir covj,j

r

−
covi,j

f√
covi,i

f covj,jf

∣∣∣∣∣∣
D.4 Hyperparameters.

We summarize the key hyperparameters used in our framework in Tables 10, 11, and 12, corresponding
to sequence lengths of 24, 96, and 768, respectively. The hyperparameters remain largely consistent
across tasks, with variations in batch size, embedding dimensions, and image resolutions. We use
the default EDM [27] sampler for all datasets and follow a unified configuration for the U-Net
architecture in the diffusion model. For further details, refer to [27]. Additionally, all models were
trained using the same learning rate schedule and optimization settings to ensure comparability across
different sequence lengths.

27



Table 10: Hyperparameter Settings for Sequence Length 24 Across Different Datasets

ETTh1 ETTh2 ETTm1 ETTm2 Weather Electricity Energy Sine Stock Mujoco
General
image size 16× 16 16× 16 16× 16 16× 8 8× 8 8× 8 8× 8 8× 8 8× 8 8× 8
learning rate 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4

batch size 128 128 128 128 128 128 128 128 128 128
teacher forcing rate 0 0 0 0 0 0 0 0 0.2 0

DE
embedding(n) 8 8 8 8 8 8 8 8 8 8
delay(m) 3 3 3 3 3 3 3 3 3 3

TST
hidden_dim 40 40 40 40 40 40 40 40 40 40
n_heads 5 5 5 5 5 5 5 5 5 5
num_layers 6 6 6 6 6 6 6 6 6 6

Diffusion
U-net channels 128 128 128 128 128 128 128 128 128 64
in channels [1, 2, 2, 2] [1, 2, 2, 2] [1, 2, 2, 2] [1, 2, 2, 2] [1, 2, 2, 4] [1, 2, 2, 4] [1, 2, 2, 4] [1, 2, 2, 2] [1, 2, 2, 2] [1, 2, 2, 2]
attention revolution [8, 4, 2] [8, 4, 2] [8, 4, 2] [8, 4, 2] [8, 4, 2] [8, 4, 2] [8, 4, 2] [8, 4, 2] [8, 4, 2] [8, 4, 2]
sampling steps 18 18 18 18 18 18 18 18 18 18

Table 11: Hyperparameter Settings for Sequence Length 96 Across Different Datasets

ETTh1 ETTh2 ETTm1 ETTm2 Weather Energy Sine Stock
General
image size 16× 16 16× 16 16× 16 16× 16 32× 32 32× 32 16× 16 16× 16
learning rate 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4

batch size 32 64 128 128 32 128 128 16
teacher forcing rate 0 0 0 0 0 0 0 0.2

DE
embedding(n) 16 16 16 16 32 32 16 16
delay(m) 6 6 6 6 24 24 6 6

TST
hidden_dim 40 40 40 40 40 40 40 40
n_heads 5 5 5 5 5 5 5 5
num_layers 6 6 6 6 6 6 6 6

Diffusion
U-net channels 128 128 128 128 128 128 128 128
in channels [1, 2, 2, 2] [1, 2, 2, 2] [1, 2, 2, 2] [1, 2, 2, 2] [1, 2, 2, 4] [1, 2, 2, 4] [1, 2, 2, 2] [1, 2, 2, 2]
attention revolution [16, 8, 4, 2] [16, 8, 4, 2] [16, 8, 4, 2] [16, 8, 4, 2] [32, 16, 8, 4, 2] [32, 16, 8, 4, 2] [16, 8, 4, 2] [16, 8, 4, 2]
sampling steps 18 18 18 18 18 18 18 18

Table 12: Hyperparameter Settings for Sequence Length 768 Across Different Datasets

ETTh1 ETTh2 ETTm1 ETTm2 Weather Energy Sine Stock
General
image size 32× 32 32× 32 32× 32 32× 32 32× 32 32× 32 32× 32 32× 32
learning rate 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4

batch size 32 32 32 32 32 16 32 32
teacher forcing rate 0 0 0 0 0 0 0 0.2

DE
embedding(n) 32 32 32 32 32 32 32 32
delay(m) 24 24 24 24 24 24 24 24

TST
hidden_dim 40 40 40 40 40 40 40 40
n_heads 5 5 5 5 5 5 5 5
num_layers 6 6 6 6 6 6 6 6

Diffusion
U-net channels 128 128 128 128 128 128 128 128
in channels [1, 2, 2, 2] [1, 2, 2, 2] [1, 2, 2, 2] [1, 2, 2, 2] [1, 2, 2, 4] [1, 2, 2, 4] [1, 2, 2, 2] [1, 2, 2, 2]
attention revolution [32, 16, 8, 4, 2] [32, 16, 8, 4, 2] [32, 16, 8, 4, 2] [32, 16, 8, 4, 2] [32, 16, 8, 4, 2] [32, 16, 8, 4, 2] [32, 16, 8, 4, 2] [32, 16, 8, 4, 2]
sampling steps 18 18 18 18 18 18 18 18

28



score = 0.81 score = 0.79 score = 0.29
Figure 7: Unnatural vs. natural neighborhoods on stock data. A data point (A) is mapped to an image
with zeros and its coordinates centered (B). Denoising the entire image produces inferior kernels
(D) compared to masking (E). Constructing natural neighborhoods (C) yields consistent kernels and
improved scores (F).

D.5 Natural vs. Unnatural Neighborhoods Experiment Setup

In this section, we provide a detailed explanation of the experimental setup introduced in Sec. 4.

Experiment Setup. We first generate 1000 two-dimensional samples {p} drawn from a multivariate
Gaussian distribution, with means centered at (1, 1), (1,−1), (−1, 1), and (−1,−1). A figure
illustrating all sampled data appears in Figure 1A. To better simulate our real world environment,
we transform each 2D datapoint into a 3× 4 image by setting all pixels to zero except those at the
center, which correspond to the x and y coordinates of the original point (e.g., s[1, 1] = p[0] and
s[1, 2] = p[1]). Figure 1B depicts an example of this transformation. We refer to this dataset as
Sirregular, as it simulates an “irregular” dataset containing zeros for missing values.

Next, we construct a second dataset, Sregular, in which the zero entries are replaced with linear or
nonlinear transformations of p[0], p[1], or both. This is intended to emulate a data-imputation step
performed on the fist step of our method, yielding a more “natural” neighborhood of values. An data
point example can be found in Figure 1C. We then compare three training setups:

1. Train a diffusion model to predict the score across the entire image (i.e., noise prediction in
diffusion) on Sirregular.

2. Train a diffusion model to predict only the two central (coordinate) pixels, using our masking
technique, on Sirregular.

3. Train the same masked model as in (2), but on Sregular, where we have “natural neighbors.”

All score models share a simple architecture: a Conv2D layer with a 3× 4 kernel, followed by a ReLU
activation, and a deconvolution layer that restores the original input size.

Evaluation. We employ two metrics:

1. Score Estimation Loss: For fair comparison, we measure the score prediction error on the
two central pixels (i.e., the original coordinates), regardless of the training strategy.

2. Kernel Analysis: We inspect the first-layer convolution kernels to determine which pixels
the model focuses on. Since there are 64 output channels, we compute the L1 norm at each
spatial position across all channels and then average them.

E Additional Experiments and Analysis

E.1 “Unnatural” Neighborhoods: Stock Market Experiment

As described in the main paper, we extend the synthetic experiment to a real-world dataset of stock
prices. Implementation details appear in the main text; here we present the visual results (moved to
the appendix due to space constraints). See Fig. 7.

E.2 Extending to Categorical and Numerical Features

We further extend our evaluation to demonstrate that our method can handle mixed-type time series
containing both numerical and categorical features. Categorical variables are mapped to learnable

29



Table 13: Discriminative scores on mixed-type data (Traffic) with 30%, 50%, and 70% drop-rate for
sequence lengths of 24, and 96.

Model 30% 50% 70%

Len. = 24
GT-GAN 0.481 0.473 0.485
KoVAE 0.154 0.172 0.222
Ours 0.061 0.064 0.087

Len. = 96
GT-GAN 0.493 0.491 0.488
KoVAE 0.212 0.245 0.307
Ours 0.073 0.091 0.102

embedding vectors, which are jointly optimized with the generative model, transforming the input
into a fully continuous representation that the diffusion process can operate on seamlessly. During
generation, embeddings are mapped back to discrete categories using a simple postprocessing step. To
validate this capability, we evaluated our method on the Traffic dataset which includes both numerical
and categorical attributes, across multiple sequence lengths and missing rates. As reported in Tab. 13,
our approach achieves the best discriminative scores compared to prior methods, demonstrating its
ability to effectively capture temporal dependencies in mixed-type time series while maintaining
superior generative performance.

E.3 Computational Efficiency of Completion Strategies

In addition to performance, we also compare the computational efficiency of completion strategies.
Both NCDE and CSDI rely on costly operations—NCDE requires repeated cubic spline evaluations,
while CSDI involves up to 1000 sampling steps per imputation—which makes them slow or infeasible
for long sequences or high-dimensional data. In contrast, TST is lightweight and scales efficiently
while still achieving competitive or superior results. As shown in Tab. 14, TST consistently trains
faster and imputes orders of magnitude quicker than NCDE and CSDI; for instance, on the Energy
dataset with sequence length 768, NCDE could not be trained due to memory limits and CSDI
required over 84 hours of training and 2394 minutes for imputing 1024 samples, whereas TST
completed training in just 6.67 hours and imputed all samples in only 6.26 seconds. These findings
highlight TST’s role as a scalable and efficient completion module, combining both high-quality
generative performance and practical usability.

Table 14: Training (200 epochs) and imputation (1024 samples) times on RTX 3090. TST is
significantly faster than NCDE and CSDI, especially for long sequences; NCDE times are omitted
where training was infeasible.

Dataset Seq. Len TST (Ours) NCDE CSDI
Train (h) Impute (s) Train (h) Impute (s) Train (h) Impute (min)

E
ne

rg
y 24 0.67 0.64 2.55 2.4 1.60 35.71

96 0.80 0.74 7.68 5.6 5.43 135.29
768 6.67 6.26 – – 84.61 2394.71

St
oc

k 24 0.10 0.19 0.67 2.0 0.18 15.40
96 0.13 0.20 2.45 7.2 0.40 46.78
768 1.10 1.20 59.32 56.0 3.55 514.08

E.4 Effect of Integrated Training Scheme

We investigate the impact of our integrated training scheme, which combines a short pre-training of
the TST-based imputation module with joint training of both imputation and diffusion components. To
assess its advantages, we compare three settings: (i) joint training with a brief TST pre-training (our
approach), (ii) fully joint training from scratch, and (iii) a strict two-stage training where imputation is
performed independently before generative training. Results in Tab. 15 demonstrate that our integrated
approach consistently achieves the best discriminative performance across the Energy and Stock
datasets, while fully joint training without pre-training suffers from unstable reconstructions, and
the two-stage setup underperforms due to the lack of interaction between imputation and generative

30



Table 15: Average discriminative scores across 30%, 50%, and 70% drop-rates on the Energy and
Stock datasets for sequence length of 768.

Model Energy Stock
Joint training without pre-training 0.278 0.076
Training independently 0.404 0.122
Joint training with pre-training (Ours) 0.222 0.024

learning. These findings highlight that even a short pre-training phase can stabilize learning and
enable the model to effectively leverage imputed values during generation.

E.5 Quantitative Evaluation - Full Results

We present the complete results, including standard deviations, for the experiment conducted in the
main text in Sec. 5.2. In Tab. 18, Tab. 19, and Tab. 20, we provide detailed performance results across
all missing rates of 30%, 50%, and 70% for sequence lengths of 24, 96, and 768, respectively.

E.6 Qualitative Evaluation - Cont.

We provide the remaining missing rate analyses for the experiment described in Sec. 5.3. Fig. 8
presents the analysis for a 50% missing rate, while Fig. 9 shows the analysis for a 30% missing rate.

Additionally, we quantitatively assess the overlap between the original and generated data cloud points
in the two-dimensional plane. We compute the Wasserstein distances between the original data and the
generated samples. The results, presented in Table 16, indicate that our method consistently achieves
the lowest Wasserstein distances across all missing rates and sequence lengths, outperforming KoVAE
in every case. Notably, for long time series, our model exhibits significantly better performance,
demonstrating its robustness in handling larger and more complex sequences with high missing
rates. This underscores our approach’s ability to closely match the true data distribution, even under
challenging conditions, and its superior effectiveness in managing incomplete time series.

31



10 0 10
10

0

10
tS

NE
ETTh1

10 0 10

10

0

10

ETTm2

5 0 5
5

0

5

Sine

0.2 0.4 0.6 0.8
0

2

4

6

De
ns

ity

Real
Ours
KoVAE

0.2 0.4 0.6 0.8
0

2

4

6
Real
Ours
KoVAE

0.0 0.5 1.0
0

5

10 Real
Ours
KoVAE

A B C

D E F

Figure 8: 2D t-SNE embeddings (top) and probability density functions (bottom) for the 50% missing
rate on ETTh1 (short), ETTm2 (medium), and Sine (long) datasets.

10 0 10

10

0

10

tS
NE

ETTh1

10 0 10

10

0

10

ETTm2

5 0 5

5

0

5

Sine

0.2 0.4 0.6 0.8
0

2

4

6

De
ns

ity

Real
Ours
KoVAE

0.2 0.4 0.6 0.8
0.0

2.5

5.0

7.5 Real
Ours
KoVAE

0.0 0.5 1.0
0

5

10 Real
Ours
KoVAE

A B C

D E F

Figure 9: 2D t-SNE embeddings (top) and probability density functions (bottom) for the 30% missing
rate on ETTh1 (short), ETTm2 (medium), and Sine (long) datasets.

Table 16: Wasserstein distances between original data clusters, generated samples, and clusters from
KoVAE for various missing rates (30%, 50%, 70%) and sequence lengths. Lower values indicate
better similarity.

30% Drop 50% Drop 70% Drop
Metric Model Energy Weather Stocks ETTh1 ETTm2 Sine ETTh1 ETTm2 Sine

Wass.↓ KoVAE 3.97 7.64 5.53 4.78 5.92 6.25 3.38 4.37 12.07
Ours 1.08 2.85 1.68 1.62 1.84 1.50 1.33 2.39 2.42

32



E.7 Complexity Analysis Cont.

Continuing from Sec. 5.1, where we summarized the upcoming experiment, we now present the full
results.

In Table 17, we report the net training time (in hours) for our method (Ours) and KoVAE until
convergence, measured under identical hardware (RTX3090) and batch size settings. Convergence
was defined by the best discriminative score achieved during training; specifically, we sampled the
generated data every 10 training epochs and computed the discriminative score against the real data.
Note that the times shown exclude any overhead for data generation or evaluation; we only measure
the pure training runtime until the point of highest discriminative performance.

These training times are presented for three different sequence lengths (24, 96, 768) and three missing
rates (30%, 50%, 70%). To assess the relative speedup of our approach over KoVAE, we averaged the
training times of each model (when valid entries were available), computed the percentage speedup as(KoVAE time−Ours time

KoVAE time × 100%
)
,

and then averaged these speedups across the three missing rates. Our results show that:

• At a sequence length of 24, Ours converges approximately ∼ 80% faster on average.
• At a sequence length of 96, Ours converges approximately ∼ 87% faster on average.
• At a sequence length of 768, Ours converges approximately ∼ 85% faster on average.

These figures underscore the substantial reduction in training time provided by our method, ranging
from about 80% to 90% faster than KoVAE in most settings, while still achieving superior performance
based on the discriminative score.

Table 17: Training Time (in hours) for irregular time series across sequence lengths (24, 96, 768)
and missing rates (30%, 50%, 70%).

Seq. Len. Drop % Model ETTh1 ETTh2 ETTm1 ETTm2 Weather Energy Sine Stock

24

30% KoVAE 5.00 15.08 11.65 7.49 9.23 12.20 5.78 2.71
Ours 0.73 0.61 1.18 0.90 4.77 2.80 0.50 0.37

50% KoVAE 4.98 4.73 7.80 6.68 2.20 28.59 6.86 1.03
Ours 1.85 6.75 1.18 1.81 0.38 2.51 0.60 0.17

70% KoVAE 9.45 12.55 10.98 5.48 6.08 8.91 4.22 2.36
Ours 1.27 0.92 0.52 1.58 5.82 2.02 0.35 0.08

96

30% KoVAE 25.80 8.10 13.79 25.92 33.87 4.94 6.90 7.71
Ours 3.38 0.80 1.35 0.95 2.43 2.36 1.20 0.23

50% KoVAE 1.42 17.26 11.04 11.90 14.79 18.01 22.47 3.90
Ours 0.59 0.57 1.32 0.95 1.06 1.33 0.47 0.46

70% KoVAE 31.91 7.12 19.90 15.77 17.52 18.11 2.91 7.76
Ours 0.61 4.34 1.05 3.65 2.12 1.49 2.72 1.60

76
8

30% KoVAE 62.19 59.70 92.48 69.48 40.88 13.30 18.03 16.59
Ours 4.72 1.96 7.57 6.45 16.46 3.50 2.93 3.11

50% KoVAE 15.52 37.41 26.30 45.66 46.99 19.86 5.49 14.84
Ours 4.74 2.96 7.23 6.48 7.18 2.35 2.89 1.21

33



Table 18: Evaluation metrics for irregular time series with 24 sequence length (30%, 50%, 70% drop).
Arrows (↑ / ↓) indicate whether higher or lower values are better.

Metric Model Etth1 Etth2 Ettm1 Ettm2 Weather Electricity Energy Sine Stock Mujoco

30% Drop

Disc. ↓
TimeGAN 0.499 0.499 0.499 0.499 0.493 0.498 0.448 0.494 0.463 0.471
GT-GAN 0.473 0.371 0.420 0.369 0.472 0.409 0.333 0.363 0.251 0.249
KoVAE 0.208 0.075 0.045 0.077 0.229 0.497 0.280 0.035 0.162 0.123

Ours 0.020 0.009 0.014 0.006 0.029 0.399 0.048 0.013 0.007 0.009

Pred. ↓
TimeGAN 0.156 0.305 0.146 0.262 0.388 0.183 0.375 0.145 0.087 0.118
GT-GAN 0.174 0.092 0.119 0.097 0.147 0.148 0.066 0.099 0.021 0.048
KoVAE 0.058 0.050 0.044 0.051 0.029 0.048 0.049 0.074 0.019 0.043

Ours 0.052 0.043 0.044 0.045 0.022 0.048 0.047 0.070 0.012 0.040

Fid. ↓
TimeGAN 2.934 2.565 2.437 2.924 1.612 18.04 4.440 2.919 2.475 3.628
GT-GAN 1.689 15.26 27.43 6.902 1.161 9.907 1.305 1.810 2.429 0.656
KoVAE 1.769 0.211 0.181 0.609 0.539 7.606 0.645 0.048 0.741 0.428

Ours 0.071 0.023 0.023 0.010 0.018 3.451 0.033 0.032 0.009 0.028

Corr. ↓
TimeGAN 6.317 0.862 2.290 0.357 0.744 11.13 3.663 2.131 0.273 0.844
GT-GAN 7.167 0.918 2.519 0.358 0.782 14.93 3.855 3.141 0.264 0.803
KoVAE 0.148 0.088 0.162 0.483 1.852 4.351 2.910 0.049 0.032 0.561

Ours 0.070 0.048 0.059 0.045 0.424 2.041 0.815 0.016 0.007 0.331
50% Drop

Disc. ↓
TimeGAN 0.499 0.499 0.499 0.499 0.499 0.498 0.479 0.496 0.487 0.483
GT-GAN 0.462 0.371 0.407 0.376 0.496 0.391 0.317 0.372 0.265 0.270
KoVAE 0.188 0.086 0.057 0.077 0.498 0.499 0.298 0.030 0.092 0.117

Ours 0.032 0.005 0.013 0.013 0.035 0.360 0.065 0.014 0.007 0.007

Pred. ↓
TimeGAN 0.210 0.343 0.157 0.292 0.404 0.230 0.501 0.123 0.058 0.402
GT-GAN 0.176 0.091 0.118 0.096 0.127 0.147 0.064 0.101 0.018 0.056
KoVAE 0.057 0.053 0.045 0.050 0.114 0.043 0.050 0.072 0.019 0.042

Ours 0.053 0.045 0.043 0.041 0.022 0.049 0.047 0.068 0.012 0.040

Fid. ↓
TimeGAN 4.131 3.132 2.642 2.693 2.839 20.184 6.408 2.124 2.352 4.141
GT-GAN 1.504 5.839 4.201 9.468 5.919 9.741 1.935 1.785 2.258 0.664
KoVAE 1.309 0.319 0.207 0.115 9.830 3.972 0.421 0.030 0.225 0.371

Ours 0.134 0.026 0.045 0.018 0.040 3.633 0.061 0.007 0.057 0.026

Corr. ↓
TimeGAN 2.293 0.932 1.864 0.352 0.835 13.79 3.761 2.192 2.021 0.825
GT-GAN 7.088 0.928 2.443 0.361 0.807 14.91 3.971 3.204 0.255 0.804
KoVAE 0.173 0.283 0.132 0.157 5.027 4.152 1.822 0.029 0.072 0.555

Ours 0.112 0.047 0.058 0.026 0.363 2.044 0.872 0.015 0.011 0.342
70% Drop

Disc. ↓
TimeGAN 0.500 0.499 0.500 0.500 0.499 0.500 0.496 0.500 0.488 0.494
GT-GAN 0.478 0.366 0.409 0.353 0.475 0.480 0.325 0.278 0.230 0.275
KoVAE 0.196 0.081 0.048 0.046 0.269 0.498 0.392 0.065 0.101 0.119

Ours 0.058 0.013 0.010 0.015 0.106 0.392 0.128 0.008 0.010 0.009

Pred. ↓
TimeGAN 0.436 0.359 0.401 0.387 0.390 0.372 0.496 0.734 0.072 0.442
GT-GAN 0.207 0.094 0.137 0.089 0.162 0.149 0.076 0.088 0.020 0.051
KoVAE 0.056 0.060 0.046 0.048 0.028 0.051 0.052 0.076 0.012 0.044

Ours 0.054 0.049 0.045 0.047 0.023 0.049 0.047 0.069 0.012 0.041

Fid. ↓
TimeGAN 2.356 3.900 5.179 4.036 2.683 31.95 8.674 3.296 3.178 4.432
GT-GAN 3.442 4.805 11.24 2.784 1.194 10.33 1.354 1.498 1.857 0.671
KoVAE 1.477 0.215 0.153 0.116 0.727 7.610 0.820 0.033 0.141 0.292

Ours 0.167 0.056 0.073 0.043 0.451 3.653 0.301 0.007 0.041 0.044

Corr. ↓
TimeGAN 6.821 0.959 2.470 0.387 0.728 14.80 3.848 3.051 3.354 0.867
GT-GAN 7.190 0.921 2.438 0.351 0.785 14.92 3.842 3.502 0.254 0.809
KoVAE 0.228 0.160 0.096 0.144 1.817 4.213 3.157 0.029 0.095 0.566

Ours 0.071 0.104 0.079 0.055 0.403 2.007 1.330 0.015 0.037 0.348

34



Table 19: Evaluation metrics for irregular time series with 96 sequence length (30%, 50%, 70% drop).
Arrows (↑ / ↓) indicate whether higher or lower values are better.

Metric Model Etth1 Etth2 Ettm1 Ettm2 Weather Energy Sine Stock

30% Drop

Disc. ↓ KoVAE 0.255 0.096 0.264 0.075 0.290 0.416 0.244 0.114
Ours 0.037 0.036 0.033 0.028 0.084 0.130 0.004 0.011

Pred. ↓ KoVAE 0.062 0.062 0.053 0.047 0.040 0.077 0.164 0.016
Ours 0.052 0.045 0.044 0.042 0.023 0.048 0.155 0.010

Fid ↓ KoVAE 5.223 0.915 4.073 0.645 2.942 4.075 2.725 0.944
Ours 0.156 0.112 0.147 0.060 0.169 0.193 0.018 0.110

Corr. ↓ KoVAE 0.201 0.301 0.177 0.203 2.730 4.677 0.058 0.086
Ours 0.102 0.075 0.087 0.042 0.306 0.827 0.017 0.016

50% Drop

Disc. ↓ KoVAE 0.304 0.077 0.290 0.114 0.358 0.321 0.188 0.111
Ours 0.070 0.067 0.047 0.017 0.190 0.153 0.003 0.018

Pred. ↓ KoVAE 0.063 0.055 0.053 0.054 0.051 0.063 0.161 0.016
Ours 0.054 0.053 0.044 0.046 0.025 0.048 0.155 0.011

Fid ↓ KoVAE 5.370 0.781 4.663 1.325 4.117 4.955 2.334 1.003
Ours 0.516 0.487 0.179 0.130 0.567 0.182 0.018 0.105

Corr. ↓ KoVAE 0.246 0.288 0.247 0.638 2.490 5.142 0.044 0.085
Ours 0.154 0.219 0.090 0.113 1.176 1.186 0.019 0.011

70% Drop

Disc. ↓ KoVAE 0.294 0.137 0.274 0.079 0.374 0.332 0.286 0.073
Ours 0.102 0.057 0.039 0.044 0.182 0.272 0.002 0.021

Pred. ↓ KoVAE 0.062 0.055 0.056 0.049 0.047 0.064 0.171 0.029
Ours 0.053 0.050 0.046 0.044 0.027 0.051 0.155 0.012

Fid ↓ KoVAE 6.932 1.638 3.473 1.019 3.983 5.051 8.083 0.657
Ours 0.399 0.926 0.187 0.235 0.447 0.553 0.016 0.112

Corr. ↓ KoVAE 0.226 0.496 0.101 0.465 2.607 4.611 0.565 0.095
Ours 0.087 0.159 0.100 0.126 1.187 1.470 0.013 0.015

35



Table 20: Evaluation metrics for irregular time series with 768 sequence length (30%, 50%, 70%
drop). Arrows (↑ / ↓) indicate whether higher or lower values are better.

Metric Model Etth1 Etth2 Ettm1 Ettm2 Weather Energy Sine Stock

30% Drop

Disc. ↓ KoVAE 0.239 0.237 0.282 0.160 0.411 0.371 0.284 0.289
Ours 0.045 0.032 0.067 0.047 0.093 0.145 0.005 0.025

Pred. ↓ KoVAE 0.077 0.074 0.059 0.081 0.061 0.089 0.223 0.020
Ours 0.052 0.056 0.047 0.051 0.027 0.025 0.204 0.011

Fid ↓ KoVAE 11.16 9.448 11.47 8.869 12.21 25.50 38.71 7.431
Ours 0.318 0.258 0.373 0.220 0.110 0.755 0.184 0.116

Corr. ↓ KoVAE 0.378 0.528 0.480 0.859 3.136 8.138 0.411 0.041
Ours 0.088 0.119 0.126 0.086 0.269 0.849 0.006 0.004

50% Drop

Disc. ↓ KoVAE 0.270 0.191 0.197 0.225 0.428 0.372 0.426 0.302
Ours 0.061 0.030 0.061 0.048 0.097 0.244 0.009 0.029

Pred. ↓ KoVAE 0.074 0.064 0.056 0.084 0.064 0.086 0.222 0.023
Ours 0.053 0.057 0.047 0.048 0.027 0.051 0.204 0.015

Fid ↓ KoVAE 14.56 7.412 11.51 9.373 18.59 19.58 38.49 8.274
Ours 0.589 0.248 0.305 0.211 0.225 0.916 0.211 0.199

Corr. ↓ KoVAE 0.290 0.574 0.428 0.842 4.836 12.63 0.336 0.085
Ours 0.103 0.128 0.107 0.119 0.455 1.473 0.006 0.042

70% Drop

Disc. ↓ KoVAE 0.206 0.176 0.231 0.203 0.445 0.409 0.340 0.263
Ours 0.160 0.072 0.046 0.061 0.116 0.251 0.005 0.013

Pred. ↓ KoVAE 0.065 0.071 0.065 0.062 0.086 0.088 0.234 0.051
Ours 0.054 0.056 0.047 0.052 0.028 0.050 0.204 0.013

Fid ↓ KoVAE 16.05 8.052 17.54 6.595 21.69 28.46 38.60 6.114
Ours 1.739 0.812 0.496 0.362 0.619 0.718 0.317 0.167

Corr. ↓ KoVAE 0.331 0.718 0.305 0.515 1.786 5.49 0.391 0.013
Ours 0.118 0.071 0.133 0.179 0.650 0.798 0.006 0.034

36


	Introduction
	Related Work
	Background
	Method
	Unnatural image neighborhoods
	Our approach

	Results
	Quality vs. Complexity
	Quantitative Evaluation
	Qualitative Evaluation
	Irregularly-sampled data under noise
	Robustness to missingness patterns
	Ablation Studies

	Conclusions
	Time Series-to-Image Transformation
	Training Losses
	Autoencoder Training Loss
	ImagenTime Diffusion Training Loss

	Inference Time Analysis
	Inference Time vs. Sequence Length
	Inference Time and Fidelity Comparison
	Performance Comparison

	Experimental Setup
	Baseline Methods
	Datasets
	Metrics
	Hyperparameters.
	Natural vs. Unnatural Neighborhoods Experiment Setup

	Additional Experiments and Analysis
	“Unnatural” Neighborhoods: Stock Market Experiment
	Extending to Categorical and Numerical Features
	Computational Efficiency of Completion Strategies
	Effect of Integrated Training Scheme
	Quantitative Evaluation - Full Results
	Qualitative Evaluation - Cont.
	Complexity Analysis Cont.


