
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CHASE-SQL: MULTI-PATH REASONING AND PREF-
ERENCE OPTIMIZED CANDIDATE SELECTION IN TEXT-
TO-SQL

Anonymous authors
Paper under double-blind review

ABSTRACT

We present CHASE-SQL, a novel framework addressing large language model
(LLM) performance challenges for Text-to-SQL tasks by leveraging multi-agent
modeling and test-time compute for improved candidate generation and selection.
CHASE-SQL uses LLMs to generate diverse SQL candidates with: (1) a divide-
and-conquer approach to break down complex queries, (2) chain-of-thought rea-
soning based on query execution plans, and (3) instance-aware synthetic example
generation for tailored few-shot demonstrations. A selection agent ranks candi-
dates via pairwise comparisons using a fine-tuned binary selection LLM, offering
robust performance. This framework improves SQL query quality and diversity,
achieving state-of-the-art execution accuracy of 73.0% on the BIRD Text-to-SQL
benchmark test set, topping the leaderboard at the time of submission.

1 INTRODUCTION

Text-to-SQL, as a bridge between human language and machine-readable structured query lan-
guages, is crucial for many use cases, converting natural language questions into executable SQL
commands (Androutsopoulos et al., 1995; Hristidis et al., 2003; Li & Jagadish, 2014; Li et al.,
2024c; Yu et al., 2018). By enabling users to interact with complex database systems without requir-
ing SQL proficiency, Text-to-SQL empowers users to extract valuable insights, perform streamlined
data exploration, make informed decisions, generate data-driven reports and mine better features
for machine learning (Wang et al., 2019; Pourreza & Rafiei, 2024a; Sun et al., 2023; Chen et al.,
2023; Pourreza et al., 2024; Pérez-Mercado et al., 2023; Xie et al., 2023). Furthermore, Text-to-SQL
systems play a pivotal role in automating data analytics with complex reasoning and powering con-
versational agents, expanding their applications beyond traditional data retrieval (Sun et al., 2023;
Xie et al., 2023). As data continues to grow exponentially, the ability to query databases efficiently
without extensive SQL knowledge becomes increasingly vital for a broad range of applications.

Text-to-SQL can be considered a specialized form of code generation, with the contextual informa-
tion potentially including the database schema, its metadata and along with the values. In the broader
code generation domain, utilizing LLMs to generate a wide range of diverse candidates and select
the best one has proven to be effective (Li et al., 2022; Ni et al., 2023; Chen et al., 2021). How-
ever, it is non-obvious what leads to most effective candidate proposal and winner selector mecha-
nisms. A straightforward yet effective approach involves generating candidates using zero-/few-shot
or open-ended prompting, followed by selecting the best options utilizing self-consistency (Wang
et al., 2022), which entails clustering candidates based on their execution outputs. This approach
has demonstrated promising results in several studies (Maamari et al., 2024; Talaei et al., 2024; Lee
et al., 2024; Wang et al., 2023). However, a single prompt design might not fully unleash the exten-
sive Text-to-SQL knowledge of LLMs, and self-consistency methods might not be always effective.
In fact, as illustrated in Table 1, the most consistent answers would not always be the correct ones,
with an upper-bound performance 14% higher than that achieved through self-consistency. This
substantial gap highlights the potential for significant improvement by implementing more effective
selection methods to identify the best answer from the pool of candidate queries.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Evaluating single-query gen-
eration vs. ensemble methods of self-
consistency and the upper bound that can
be achieved for Text-to-SQL with Gemini
1.5 Pro on the BIRD dev set. EX stands for
execution accuracy.

Method EX (%)

Single query 63.01
Self-consistency 68.84 (+ 5.84)

Upper-bound 82.79 (+ 19.78)

Building on the challenges outlined in the previous sec-
tion, we propose novel approaches to improve LLM
performance for Text-to-SQL by leveraging judiciously-
designed test-time computations in an agentic framework.
As indicated by the upper bound in Table 1, utilizing
LLMs’ intrinsic knowledge offers significant potential for
improvement. We propose methods that generate a diverse
set of high-quality candidate responses and apply a selec-
tion mechanism to identify the best answer. Achieving
both high-quality and diverse candidate responses is crit-
ical for the success of scoring-based selection methods.
Low diversity limits improvement potential and reduces
the difference between self-consistency and scoring-based approaches. While techniques like in-
creasing temperature or reordering prompt contents can boost diversity, they often compromise the
quality of the candidates. To address this, we introduce effective candidate generators designed to
enhance diversity while maintaining high-quality outputs. Specifically, we propose three distinct
candidate generation approaches, each capable of producing high-quality responses. The first is
inspired by the divide-and-conquer algorithm, which breaks down complex problems into smaller,
manageable parts to handle difficult queries. The second employs a query execution-plan-based
chain-of-thought strategy, where the reasoning process mirrors the steps a database engine takes
during query execution. Lastly, we introduce a novel online synthetic example generation method,
which helps the model better understand the underlying data schema of the test database. These
methods, when used independently, can produce highly-accurate SQL outputs. To effectively select
the best answer among candidates, we introduce a selection agent, trained with a classification objec-
tive, that assigns scores based on pairwise comparisons between candidate queries. With this agent,
we construct a comparison matrix for all candidates and select the final response based on the high-
est cumulative score. By combining these candidate generation methods with the proposed scoring
model, we create an ensemble approach that leverages the strengths of each strategy to significantly
improve overall performance.

We present comprehensive evaluations on the efficacy of proposed methodologies of CHASE-SQL.
Our innovative candidate generation approaches demonstrate superior performance compared to tra-
ditional generic CoT prompts, illustrating their capability in guiding LLMs through the decomposi-
tion of complex problems into manageable intermediate steps. Furthermore, the proposed selection
agent significantly outperforms conventional consistency-based methods, contributing to the state-
of-the-art results. Specifically, CHASE-SQL reaches an execution accuracy of 73.01% and 73.0%
on the development set and test set of the challenging BIRD Text-to-SQL dataset which outperforms
all of the published and undisclosed methods on this benchmark, by a large margin. Moreover, by
leveraging entirely open-source models—Mistral Large Model (AI, 2024) as the candidate genera-
tor and a fine-tuned Qwen-2.5-coder model (Team, 2024) as the selector—our method achieved a
state-of-the-art performance of 70.33 on the BIRD development set with open-source models.

2 METHODS

2.1 OVERALL FRAMEWORK

This section outlines the proposed CHASE-SQL framework, which consists of four primary com-
ponents: 1) Value retrieval, 2) Candidate generator, 3) Query fixer, and 4) Selection agent. As
illustrated in Fig. 1. The proposed framework begins by retrieving relevant database values. Sub-
sequently, all contextual information, including retrieved values, database metadata, and schema, is
provided to an LLM to generate candidate queries. These candidate queries then undergo a fixing
loop, and finally, all candidates are compared in a pairwise way using the trained selection agent to
pick the correct answer. The following sections delve into the details of each component.

2.2 VALUE RETRIEVAL

Databases might contain very high number of rows, with often only a few being relevant to a query.
Retrieving relevant values is crucial as they can be used in various SQL clauses like ‘WHERE’ and
‘HAVING’. Similar to the approach in (Talaei et al., 2024), we begin by extracting keywords from

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Overview of the proposed CHASE-SQL framework for Text-to-SQL, with value retrieval and using
a selection agent for improve picking of the answers among the generated candidates along with a fixer to
provide feedback for refinement of the outputs.

the given question using an LLM prompted with few-shot examples. For each keyword, we employ
locality-sensitive hashing (LSH) (Datar et al., 2004) to retrieve the most syntactically-similar words,
and re-rank them based on embedding-based similarity and edit distance. This approach is robust to
typos in the question and considers keyword semantics during retrieval.

2.3 MULTI-PATH CANDIDATE GENERATION

As shown in Table 1, relying solely on consistency among responses can lead to sub-optimal perfor-
mance. Therefore, we prioritize diversity in generation of multiple response candidates to increase
the likelihood of generating at least one correct answer. Among the diverse responses generated by
the candidate generators, we select one as the final response using a selection agent that compares
candidates pairwise. To generate diverse responses, we increase the next token sampling tempera-
ture, and also shuffle the order of columns and tables in the prompt.

Chain-of-Thought (CoT) prompting (Wei et al., 2022) has been proposed to enhance LLMs’ reason-
ing abilities by conditioning their final responses on a step-by-step chain of reasoning. Most CoT
prompting approaches rely on few-shot examples in the prompt to guide LLMs on thinking step-
by-step, following the format M = (qi, ri, si), where qi is the example question, ri is the reasoning
path, and si is the ground truth SQL query for qi. We employ two distinct reasoning methods and an
online synthetic example generation approach. As shown in Fig. 3a, different generators can yield
different outputs, indicating their effectiveness for specific questions and databases.

Divide and Conquer CoT: Divide-and-conquer perspective brings breaking down complex prob-
lems into smaller sub-problems, solving each individually, and then combining the solutions to
obtain the final answer. Along these lines, we propose a CoT prompting approach that first decom-
poses the given question into smaller sub-problems using pseudo-SQL queries. In the ’conquer’
step, the solutions to these sub-problems are aggregated to construct the final answer. Finally, an op-
timization step is applied to the constructed query to remove redundant clauses and conditions. This
approach is particularly powerful handling complex scenarios that involve nested queries, e.g. intri-
cate WHERE or HAVING conditions, and queries requiring advanced mathematical operations. In
Appendix Fig. 19, we exemplify a question and its corresponding SQL query that was successfully
solved using this generator, a scenario the other methods considered in this paper could not address
due to the query’s complex conditions and SQL clauses. For a more detailed view of the divide-
and-conquer prompt, please see Appendix Fig. 18. Additionally, Alg. 1 outlines the step-by-step
process of this strategy to generate the final SQL output using a single LLM call.
Query Plan CoT: A query (execution) plan is a sequence of steps that the database engine fol-
lows to access or modify the data described by a SQL command. When a SQL query is executed,
the database management systems’ query optimizers translate the SQL text into a query plan that the
database engine can execute. This plan outlines how tables are accessed, how they are joined, and
the specific operations performed on the data (see Appendix Fig. 21 as an example). Inspired by
the step-by-step process that database engines use to execute SQL queries, we propose a reasoning
strategy to construct the final SQL output. Query plans for any given SQL query can be obtained
using the “EXPLAIN” command, which provides a detailed breakdown of execution steps. How-
ever, this output is often presented in a format that is difficult to interpret by LLMs (e.g. in SQLite).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 Divide and Conquer Chain-of-Thought (CoT) Strategy for Text-to-SQL.
Require: Set of human-annotated few-shot examples M , user question Qu, target database D associated

with the question, and a large language model (LLM) θ.
Divide:

1: Sq ← θ(M,D,Qu) // Decompose the original question Qu into a set of sub-questions Sq

2: Ssql ← ∅ // Initialize an empty set Ssql to store partial SQL queries for each sub-question
Conquer:

3: for each sub-question qi in Sq do
4: // Generate a partial SQL query for each sub-question qi
5: Ssql ← Ssql ∪ {θ(M,D,Qu, q1, ..., qi, sql1, ..., sqli−1)}
6: end for

Assemble:
7: Sf ← θ(M,D,Qu, Sq, Ssql) // Assemble the final SQL query Sf from all sub-queries in Ssql

8: return Sf

To address this, we convert the output of “EXPLAIN” command into a human-readable text format
that aligns more closely with the pretraining data of LLMs. The human-readable version of query
plans consists of three key steps: (1) identifying and locating the relevant tables for the question,
(2) performing operations such as counting, filtering, or matching between tables, and (3) delivering
the final result by selecting the appropriate columns to return. This reasoning method complements
the divide-and-conquer CoT strategy. While the divide-and-conquer approach is better suited for
decomposing complex questions, the query plan approach excels when questions require more rea-
soning over the relationships between different parts of the question and the database schema. It
systematically explains which tables to scan, how to match columns, and how to apply filters. Ap-
pendix Fig. 22 shows an example of a question that was answered correctly only by this method.
Appendix Fig. 20 provides the prompt used for this reasoning strategy.

Online Synthetic Example Generation: Using a set of human-annotated demonstrations for few-
shot in-context learning has shown promising results on various related tasks (Pourreza & Rafiei,
2024a). Besides using a few select demonstrations helping with specifying the task and illustrate the
step-by-step process deriving the output, question and SQL example pairs are also used for few-shot
in-context learning for text-to-SQL (Liu et al., 2022; Nan et al., 2023). While prior works focused
on selecting a few handful of relevant examples from existing example pools (e.g., training dataset),
we synthesize many example pairs using different schema elements and SQL features per incoming
question. Unlike prior few-shot in-context learning approaches, we generate many more than just
a few (3-5) examples (Pourreza & Rafiei, 2024a; Li et al., 2024b), as we observe that many-shot
learning consistently outperforms few-shot learning (Agarwal et al., 2024).

Algorithm 2 Online Synthetic example generation strategy for Text-to-SQL.
Require: User question Qu, additional user hint Hu, target database D and filtered relevant table columns

t associated with the question, LLM θ, guidelines Rf for generating examples by SQL features, guide-
lines Rt for generating examples with filtered schema, and the numbers of examples to generate nf , nt

respectively
1: P ← ∅ // {(qi, si) | qi, si ∈ Σ∗}, where qi is input question , si is output SQL for the i-th example
2: P ← P ∪ {θ(D,Rf , nf)} // Generate n examples with entire database by common SQL features
3: P ← P ∪ {θ(t, Rt, nt)} // Generate examples with filtered columns to highlight correct schema usage
4: return P

Algorithm 2 outlines the online synthetic example generation approach with two LLM generation
steps. The first step focuses on generating illustrative examples with common SQL features de-
scribed in the guideline Rf . The SQL features include equality and non-equality predicates, single
table and multi-table JOIN, nested JOIN, ORDER BY and LIMIT, GROUP BY and HAVING, var-
ious aggregation functions. These are widely applicable SQL clauses and functions – the generated
example SQL queries, incorporating these features, follow the BIRD SQL feature distribution (Ap-
pendix Fig 26a). The second step focuses on generating examples highlighting correct interpretation
of the underlying data schema – the model θ is asked to generate examples using ti (column selec-
tion using an approach similar to (Talaei et al., 2024)) and that are similar to the examples outlined
in Rt. Appendix A.13 provides the prompts used for the example generation).

While a relevant example (e.g. showing a nested JOIN query with multiple tables) can be helpful
for questions that require complex JOIN queries, it might also mislead the LLM for overuse (e.g.
when a simple single table query is sufficient). This and the inherent ambiguity of natural language

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

query qi, for which we draw the examples by relevance, make the example selection challenging.
Thus, we generate and inject the examples to the prompt online per qi. We ask the LLM to generate
many input-output pairs for in-context learning. The final set of synthetic examples for qi contains
examples generated with both Rf and Rt. This ensures that the example set is diverse both in SQL
features/clauses and the choice of relevant tables/columns used. The diversity of the example set
is desirable to avoid over-fitting the output to certain patterns (e.g., the model always writes a SQL
with JOIN if shown mostly JOIN examples). Mixing various examples for various SQL features
and database tables with and without column filtering is observed to result in better generation
quality overall (see Appendix Table 8). The generated synthetic examples can guide the model for
more accurate text-to-SQL generation. In Appendix A.13, Table 9, we discuss how our synthetic
example generation performs compared to selecting examples from often limited examples pools
(e.g., training dataset and cross-domain data augmentation (Li et al., 2024b))

2.4 QUERY FIXER

In some cases, LLMs might generate queries that are syntactically incorrect. These queries are
clear candidates for correction, as they fail to provide the correct answers. To address this, we
apply an LLM-based query fixer that leverages the self-reflection (Shinn et al., 2024) method. The
fixer reflects on the previously generated query, using feedback such as syntax error details or empty
result sets to guide the correction process. We continue this iterative fixing approach up to a specified
number of attempts, β (set to three in this paper). Appendix Fig. 23 demonstrates the prompt used
for this query fixing step.

Algorithm 3 Query fixing method.
Require: Set of candidate SQL queries C = {c1, c2, ..., cn}, user question Qu, hint Hu, target database D,

max query fixing threshold β, and a fixer model θf
1: Cfixed ← ∅ // Initialize an empty set Cfixed to store the fixed queries
2: for each candidate query ci ∈ C do
3: Executioni ← Execute(ci, D) // Execute the SQL query over the database
4: if error in Executioni or Executioni = [] then
5: for j ∈ {1, 2, ..., β} do // Try fixing up to β times
6: ci ← θf (D, ci, Executioni) // Fix the query using the fixer model
7: Executioni ← Execute(ci, D) // Re-execute the fixed query
8: if not (error in Executioni or Executioni = []) then
9: Cfixed ← Cfixed ∪ {ci} // Add the fixed query to the set

10: break // Exit the fixing loop if successful
11: end if
12: end for
13: else
14: Cfixed ← Cfixed ∪ {ci} // Add the query as is if no fixing is needed
15: end if
16: end for
17: return Cfixed // Return the set of fixed queries

2.5 SELECTION AGENT

With three different methods for generating SQL queries, we can generate a set of candidate queries
for any given question. The key challenge in this step is selecting the correct SQL query from
this pool of candidates. A naive approach would be to measure consistency among the candidates
by executing them, grouping them based on their execution results, and selecting a query from the
largest group as the most likely correct answer. However, this would assume that the most consistent
answer is always the best one, which is not always the case. Instead, we propose a more refined
picking strategy, Algorithm 4, that relies on a selection agent. Given a set of candidates SQL queries
C = {c1, c2, ..., cn}, the final responses are selected by finding the candidate that has the highest
score assigned by the selection model. This model θp can take k candidates and rank them based on
how accurately each of them answers the given question. Concretely, we formulate the selection of
the final response as:

cf = arg max
c∈C

(nk)∑
i=1

θp(ci1 , . . . , cik | Qu, Hu, D)

 , (1)

where Qu refers to the user’s question, Hu is the provided hint, and D is the target database from
which the question is being asked. In Eq. 1, we pass k candidates to the selection model to be

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

ranked, with k being between 1 and n. In the extreme case of k = 1, the model is unable to
make comparisons between candidates, which complicates the evaluation process for the model. As
k increases, comparing more candidates makes the process more challenging for the model, as it
needs to consider different aspects simultaneously. Consequently, we set k = 2 and train a model
with a classification objective to compare only two candidates at a time.

Having a set of high-quality and diverse candidates, the most straightforward solution is to em-
ploy off-the-shelf LLMs to make pairwise selections. However, experiments with Gemini-1.5-pro
showed that using the LLM without fine-tuning resulted in only 58.01% binary classification accu-
racy. This is primarily due to the candidates being very similar to one another, requiring a fine-tuned
model to learn the nuances and make more accurate decisions. To train the selection agent, we
first generate candidate SQL queries on the training set (of Text-to-SQL benchmarks), and group
them into clusters based on their execution results. For cases where at least one cluster contains
correct queries and others contains incorrect ones, we create training examples in the form of tuples
(Qu, Ci, Cj , Dij , yij), where Qu is the user’s question, Ci and Cj are the two candidate queries
being compared, Dij is the database schema used by both candidates (Using the union of candidate
schemas is important as it reduces cost and eliminates unnecessary information during comparison.),
and yij ∈ 0, 1 is the label indicating whether Ci or Cj is the correct query. To avoid order bias dur-
ing training, we randomly shuffle the order of correct and incorrect queries in each pair. Since the
number of cases with both correct and incorrect candidates is limited, for instances where no correct
candidate exists, we include the ground truth SQL query in the prompt as a hint to guide the model
in generating correct candidates.

Algorithm 4 Picking the final SQL query from a pool of candidates.
Require: Set of candidate SQL queries C = {c1, c2, ..., cn}, user question Qu, hint Hu, target database D,

and a selection model θp, er(ci, D) as the execution result of ci on D
1: ri ← 0 for all ci ∈ C // Initialize the score ri for each candidate query to zero
2: for each distinct pair (ci, cj) where i 6= j do
3: if er(ci, D) = er(cj , D) then
4: w ← i // ci is the winner if the execution results match
5: else
6: Si,j ← schema union(ci, cj , D) // Construct union of schemas used in ci and cj
7: w ← θp(Si,j , Qu, Hu, ci, cj)w ∈ {i, j} // Use binary classifier θp to select the winner,w ∈ {i, j}

8: end if
9: rw ← rw + 1 // Increase the score of the winner cw by 1

10: end for
11: cf ← arg maxci∈C ri // Select the candidate with the highest score as the final SQL query cf
12: return cf

In the pseudo-code for Algorithm 4, we begin by initializing a score of zero for each candidate
query. Then, for every distinct pair of queries (ci, cj), we compare both (ci, cj) and (cj , ci) to
mitigate any order bias, ensuring that both candidates in a pair are fairly evaluated (ignoring the
both side comparison will reduce the final performance by roughly 2%). If both queries produce the
same execution result on the database, we mark one as the winner and increment its score, as these
results suggest consistency. If the execution results differ, we generate a union of the schema used
by both queries and use the binary classifier to determine which query is more likely to be correct.
The classifier takes into account the question, the two candidate queries, and the combined schema
to make its decision. The winner’s score is then updated accordingly. After all comparisons, the
candidate with the highest score is selected as the final query. In the rare case of a tie in the final
scores, we break the tie by selecting one of the candidates arbitrarily.

3 EXPERIMENTS

Datasets and Models We evaluate the performance of the proposed CHASE-SQL framework on
two widely-recognized cross-domain datasets: BIRD (Li et al., 2024c) and Spider (Yu et al., 2018).
BIRD contains over 12,751 unique question-SQL pairs from 95 large databases, spanning more
than 37 professional domains, with databases designed to resemble real-world scenarios, featuring
messy data rows and complex schemas. Spider consists of 10,181 questions and 5,693 unique com-
plex SQL queries across 200 databases, covering 138 domains. The Spider dataset is divided into
non-overlapping training, development, and test sets similar to BIRD. For both, we use execution
accuracy (EX), the official metric for their respective leaderboard, as the primary evaluation metric

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

to compare methods. Details of the models and their hyperparameters are provided in Appendix
section A.3.

BIRD results We present the end-to-end Text-to-SQL performance of the proposed CHASE-SQL
framework using Claude-3.5-sonnet, Gemini 1.5 pro, and Mistral Large models on the BIRD devel-
opment set, and Gemini 1.5 pro on the BIRD test set. We compare with both published methods
(either with an available codebase and/or paper) and undisclosed methods. For a fair comparison
with Gemini 1.5 pro, all LLM calls in the Claude-3.5-sonnet setting, except for the selection model,
are made using Claude-3.5-sonnet (previously-trained selection model is reused). To evaluate the
performance of fully open-source models, we used a fine-tuned Qwen2.5-coder model (Team, 2024)
as the selection model for the Mistral Large model.. As shown in Table 2, CHASE-SQL with Gem-
ini 1.5 pro achieves 73.01% accuracy on the BIRD development set and 73.0% on the BIRD holdout
test set, outperforming all previous works and setting a new state-of-the-art performance.

Table 2: Performance Comparison of different Text-
to-SQL methods on BIRD benchmark.

Method EX (Dev) EX (Test)

Published
CHASE-SQL + Gemini 1.5 (Ours) 73.01 73.0
CHASE-SQL + Claude 3.5 Sonnet (Ours) 69.53 –
CHASE-SQL + Mistral Large (Ours) 70.33 –
Distillery + GPT-4o
(Maamari et al., 2024) 67.21 71.83
CHESS
(Talaei et al., 2024) 65.00 66.69
MCS-SQL + GPT-4
(Lee et al., 2024) 63.36 65.45
SuperSQL
(Li et al., 2024a) 58.5 62.66

Undisclosed
Insights AI 72.16 70.26
AskData + GPT-4o 72.03 72.39
OpenSearch-v2 + GPT-4o 69.3 72.28
PURPLE-RED + GPT-4o 68.12 70.21
Arcwise + GPT-4o 67.99 66.21
ExSL + granite-34b-code 67.47 67.76

Table 3: Performance Comparison of different Text-
to-SQL methods on Spider test set.

Method EX Training with Spider

MCS-SQL + GPT-4
(Lee et al., 2024) 89.6 X
CHASE-SQL + Gemini 1.5 (Ours) 87.6 7
CHESS
(Talaei et al., 2024) 87.2 7
DAIL-SQL + GPT-4
(Gao et al., 2023) 86.6 X
DIN-SQL + GPT-4
(Pourreza & Rafiei, 2024a) 85.3 X
C3 + ChatGPT
(Dong et al., 2023) 82.3 X
RESDSQL 3B
(Li et al., 2023a) 79.9 X
DIN-SQL + CodeX
(Pourreza & Rafiei, 2024a) 78.2 X
T5-3B+NatSQL
(Rai et al., 2023) 78.0 X
Graphix-3B+PICARD
(Li et al., 2023b) 77.6 X

Spider results We assess the generalizability of the proposed CHASE-SQL by evaluating it in
an end-to-end way on the Spider test set without modifying the few-shot samples in the prompts
or training a new selection model, i.e. without using and data from the target distribution. This ap-
proach allows us to test the performance of CHASE-SQL on different unseen query and database dis-
tributions compared to the data from training distributions. Table 3 demonstrates that CHASE-SQL
achieves an execution accuracy of 87.6% on the Spider test set, placing it second among methods
that have undergone specific training or prompt optimization for the Spider dataset. This highlights
the strong generalizability of CHASE-SQL and its potential for generating high quality Text-to-SQL
for unseen samples coming from very different distributions and unique challenges.

3.1 GENERATOR AND SELECTION PERFORMANCE

Generator + Fixer: To reveal performance of generators, we conducted an ablation study to eval-
uate the performance of each candidate generation method before and after applying the query fixer
using two models of Gemini-1.5-pro and Mistral Large (AI, 2024). We compare the performance
of the proposed generators in producing a single candidate query against the original BIRD prompt
(Li et al., 2024c), augmented with zero-shot CoT reasoning (Kojima et al., 2022), which serves as
the baseline for assessing the quality of prompts. The results, shown in Table 4, indicate that the
proposed methods significantly improve SQL generation performance, compared to the naive base-
line, towards the goal of producing high-quality candidates while maintaining diversity. Among the
candidate generators, the online synthetic data generation approach produced an impressive perfor-
mance of 68.02% with Gemini-1.5-pro model, demonstrating its effectiveness in leveraging test-time
compute to improve LLM performance by generating high-quality synthetic examples. Further-
more, the query fixer proved crucial, enhancing the quality of the candidate pool and increasing
performance by nearly 2% across all candidate generators.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Ablation studies on single candidate genera-
tion performance of the candidate generators compared
with original BIRD prompt + zero-shot CoT with Gem-
ini 1.5 pro and Mistral Large on the BIRD dev set.

Gemini 1.5 pro Mistral Large

Method EX (%) ∆(%) EX (%) ∆(%)

Baseline 57.75 - 54.88 -
QP CoT 63.62 +5.87 59.64 4.76
DC CoT 63.92 +6.17 58.99 4.11
OS ICL 67.09 +9.34 56.32 1.44
Baseline w Query Fixer 61.58 +3.83 60.03 5.15
QP CoT w Query Fixer 65.51 +7.76 62.64 7.76
DC CoT w Query Fixer 65.77 +8.02 63.75 8.87
OS ICL w Query Fixer 68.02 +10.27 61.47 6.59

Selection: We conducted an analysis on the
binary selection accuracy of the selection agent
for cases where, in a pairwise comparison, one
candidate is correct and the other is incorrect.
We exclude cases where both candidates are ei-
ther correct or incorrect, as the selection would
not affect the outcome since both candidates
have the same label. We compare the perfor-
mance of Claude-3.5-sonnet and Gemini-1.5-
pro (both out-of-the-box without fine-tuning)
with two fine-tuned models: 1) Gemma 2 9B
and 2) Gemini-1.5-flash. As shown in Table
5, both fine-tuned models achieve higher accu-
racy than the untuned counterparts, demonstrat-
ing the importance of fine-tuning to teach the model about the specific preferences.

Table 5: Evaluating the binary selection accu-
racy of the different selection models.

Selection Model Binary Acc. (%)

Claude-3.5-sonnet 60.21
Gemini-1.5-pro 63.98

Tuned Gemma 2 9B 64.28
Tuned Gemini-1.5-flash 71.01

Candidate Generation Analysis: We analyze the
performance of each candidate generator method indi-
vidually. To better understand the performance poten-
tial when effectively selecting the correct SQL query
from the candidate pool, we generate seven candidate
SQL queries from each generator method (21 candi-
dates in total) for all samples in the BIRD development
set. We determine this number of candidates based on
the observation that increasing the candidate pool be-
yond 20 did not yield significant improvements, as il-
lustrated in Fig. 2d. By assuming access to an oracle
selection model that always selects the correct SQL query from the seven candidates, we calculate
the upper-bound performance achievable for each generator. Conversely, by assuming an adver-
sarial selection model that always selects the wrong SQL query, we determine the lower-bound
performance. Fig. 2 illustrates the upper-bound and lower-bound performance for all three methods
together with the performance of our selection agent. As shown, the upper-bound performance of
the two different CoT methods is generally higher than that of the synthetic example generation
method for different number of candidates. However, their lower-bound performance is also lower
than the synthetic method. Lower-bound accuracy reflects cases where all candidates are correct,
reducing the noise in the selection process since it doesn’t matter which candidate is chosen, so a
higher lower-bound is preferred. This is evident in the selection agent’s performance, where a drop
in the lower bound leads to diminishing returns from increasing the upper bound, causing the selec-
tion agent’s performance to plateau. Additionally, the upper-bound performance of combining all
three methods reaches 82.79%, highlighting the significant room for improvement through better
candidate picking methods. This demonstrates that the LLM’s parametric knowledge already con-
tains the information needed to solve most questions, highlighting the need for ensemble approaches
to effectively extract and utilize this knowledge.

Additionally, we evaluate the upper-bound performance by combining all candidates from three
candidate generation methods across the simple, moderate, and challenging difficulty levels for the
BIRD development set. These difficulty categories are assigned by human experts during the cre-
ation of the BIRD development set. Fig. 2d shows that, as expected, the upper-bound performance
increases with the number of candidates across all difficulty levels. However, for the challenging
and moderate classes, the improvement plateaus earlier than in the simple class, suggesting that gen-
erating more samples does not further improve the upper-bound performance for these two difficulty
levels.

Fig. 2 presents a Venn diagram showcasing the performance of three generation methods: Query
Plan, Divide and Conquer, and with Synthetic Examples. The numbers within the intersecting re-
gions represent the instances where multiple methods generated at least one correct candidate. This
diagram visually highlights the unique contributions of each method, which indicates the necessity
of using all three generators. Additionally, in Fig. 3b, we compare the number of correct queries
generated by each SQL generation method that are not correct by the other generators. The divide-
and-conquer approach outperforms the others on challenging questions, while the query plan method

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Upper-bound and lower-bound Accuracy for
Divide and Conquer CoT

(b) Upper-bound and lower-bound Accuracy for
Online Synthetic Example

(c) Upper-bound and lower-bound performance
for Query Plan CoT.

(d) Upper-bound performance of all three can-
didate generators across different difficulty cate-
gories.

Figure 2: Comparison of the upper- and lower-bound performance of different candidate generators.

35 30
33

38

72 23

1045

Query Plan Synthetic Example

Divide and Conquer

Unsolved Questions: 258

(a) Venn diagram illustrating the number of
instances for which each method: Query
Plan, Synthetic Example, Divide and Con-
quer, produces at least one correct candi-
date. The overlap regions represent multi-
ple methods generating correct candidates.

(b) Number of correct queries across different complexity
levels that were answered by each method.

Figure 3: Comparison of SQL generation methods: Venn diagram showing unique and overlapping
correct answers (left) and the performance across different complexity levels (right).

excels on moderately difficult queries. To further analyze the performance of the generators across
different domains and varying numbers of columns and tables, we compare the number of correct
queries generated for each database, as shown in Appendix Fig. 5. As illustrated, both CoT methods
generally perform similarly across databases, while the online synthetic example generation method
significantly increases diversity, resulting in more correct answers overall across different databases.

Selection Agent Analysis: We evaluate the query-picking performance by comparing the Text-
to-SQL execution accuracy of the selection agent with the self-consistency method (using majority
voting) Wang et al. (2022), an oracle model (upper bound), and an adversarial model (lower bound).
To conduct the evaluation, we generate 10 samples from each candidate generation method using
two different sampling temperatures: 0.5 and 1.8. The results, shown in Table 6, demonstrate that the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

selection agent significantly outperforms the self-consistency method with a large margin, roughly
6%. As expected, increasing the sampling temperature raises the upper bound but also lowers the
lower bound. This effect is more pronounced for the synthetic data generation method compared
to the two CoT methods, mainly because LLMs generate reasoning steps before producing the final
SQL query, which helps mitigate the randomness introduced by high-temperature sampling. The
performance with self-consistency method generally decreases as temperature increases, since the
majority cluster becomes smaller with more random queries. However, the proposed trained selec-
tion agent is less affected by temperature scaling and, in two cases, even improved its performance
with a more diverse pool of samples.

Table 6: Performance comparison of different picking methods on the candidates generated by the candidate
generators on BIRD development set with two different temperatures. QP refers to query plan COT, DC refers
to divide and conquer COT, and OS is the online synthetic example generation method.

Picking Method QP (T=0.5) QP (T=1.8) DC (T=0.5) DC (T=1.8) OS (T=0.5) OS (T=1.8)

Lower Bound 50.46 48.63 51.37 47.39 60.43 50.98
Upper Bound 78.55 80.44 78.42 79.34 74.77 79.66
Self-consistency 65.78 65.51 66.43 64.41 67.34 66.88
Our Selection Agent 71.7 71.73 71.31 70.53 70.4 71.38

3.2 ABLATION STUDIES

Table 7: Ablation studies on the performance of CHASE-SQL
after removing the query fixer, LSH for value retrieval, and rea-
soning strategies, i.e., QP, OS, and DC.

Method Execution Accuracy (%) ∆(%)

CHASE-SQL All 73.01 -
CHASE-SQL w self-consistency 68.84 -4.17
CHASE-SQL w ranker agent 65.51 -7.5
CHASE-SQL w/o LSH 70.09 -2.92
CHASE-SQL w/o Query Fixer 69.23 -3.78
CHASE-SQL w/o QP 72.36 -0.65
CHASE-SQL w/o OS 72.16 -0.85
CHASE-SQL w/o DC 71.77 -1.24

In the previous sections, we evaluate
the importance of the selection agent
and each candidate generation method.
Next, we focus on the analysis of the re-
maining components of CHASE-SQL:
LSH for value retrieval, the query fixer,
and three reasoning strategies (QP, OS,
and DC). Table 7 shows the perfor-
mance of CHASE-SQL without each of
these steps, highlighting their signifi-
cance in achieving higher-quality per-
formance. The results demonstrate the
contribution of each component, where
removing LSH, the query fixer, or any of the candidate generators leads to a reduction in execu-
tion accuracy, further validating the importance of these components of CHASE-SQL. Moreover,
the table compares the performance of our binary selection agent with two other selection methods:
self-consistency (Wang et al., 2022) and a ranker agent. The ranker agent receives all candidates
generated by our three candidate generators in a single prompt, compares them, and produce a rank-
ing for each. For the ranker agent, we select the query with the lowest rank as the best answer.
The binary selection agent significantly outperforms both the self-consistency and ranker agents,
demonstrating the effectiveness of the proposed method.

4 CONCLUSION

We introduce a novel agentic framework, CHASE-SQL, to leverage test-time compute for generat-
ing diverse, high-quality SQL queries and accurately selecting the correct one. We propose multiple
chain-of-thought prompting methods and an online synthetic example generation technique, along
with a query selection mechanism that scores candidates based on pairwise comparisons. Our frame-
work, CHASE-SQL, sets a new state-of-the-art in the notable public Text-to-SQL leaderboard (at
the time of the submission), demonstrating the effectiveness of test-time computation for both gen-
erating diverse queries and selecting the most accurate response. CHASE-SQL addresses key issues
like query diversity and selection optimization, paving the way for further improvements in complex
reasoning tasks encountered at real-world Text-to-SQL challenges.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd Bohnet, Luis Rosias, Stephanie C.Y. Chan, Biao
Zhang, Aleksandra Faust, and Hugo Larochelle. Many-shot in-context learning. In ICML 2024
Workshop on In-Context Learning, 2024. URL https://openreview.net/forum?id=
goi7DFHlqS.

Mistral AI. Mistral large 2407. https://mistral.ai/news/mistral-large-2407/,
2024. Accessed: 2024-11-16.

Ion Androutsopoulos, Graeme D Ritchie, and Peter Thanisch. Natural language interfaces to
databases–an introduction. Natural language engineering, 1(1):29–81, 1995.

Ruichu Cai, Jinjie Yuan, Boyan Xu, and Zhifeng Hao. Sadga: Structure-aware dual graph aggrega-
tion network for text-to-sql. Advances in Neural Information Processing Systems, 34:7664–7676,
2021.

Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao, Su Zhu, and Kai Yu. Lgesql: line graph enhanced
text-to-sql model with mixed local and non-local relations. arXiv preprint arXiv:2106.01093,
2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128, 2023.

DongHyun Choi, Myeong Cheol Shin, EungGyun Kim, and Dong Ryeol Shin. Ryansql: Recursively
applying sketch-based slot fillings for complex text-to-sql in cross-domain databases. Computa-
tional Linguistics, 47(2):309–332, 2021.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on
Computational geometry, pp. 253–262, 2004.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, Yunjun Gao, Jinshu Lin, Dongfang Lou, et al.
C3: Zero-shot text-to-sql with chatgpt. arXiv preprint arXiv:2307.07306, 2023.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
Text-to-sql empowered by large language models: A benchmark evaluation. arXiv preprint
arXiv:2308.15363, 2023.

Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno, and Julian Mar-
tin Eisenschlos. Tapas: Weakly supervised table parsing via pre-training. arXiv preprint
arXiv:2004.02349, 2020.

Vagelis Hristidis, Yannis Papakonstantinou, and Luis Gravano. Efficient ir-style keyword search
over relational databases. In Proceedings 2003 VLDB Conference, pp. 850–861. Elsevier, 2003.

Wonseok Hwang, Jinyeong Yim, Seunghyun Park, and Minjoon Seo. A comprehensive exploration
on wikisql with table-aware word contextualization. arXiv preprint arXiv:1902.01069, 2019.

George Katsogiannis-Meimarakis and Georgia Koutrika. A survey on deep learning approaches for
text-to-sql. The VLDB Journal, 32(4):905–936, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Dongjun Lee, Choongwon Park, Jaehyuk Kim, and Heesoo Park. Mcs-sql: Leveraging
multiple prompts and multiple-choice selection for text-to-sql generation. arXiv preprint
arXiv:2405.07467, 2024.

11

https://openreview.net/forum?id=goi7DFHlqS
https://openreview.net/forum?id=goi7DFHlqS
https://mistral.ai/news/mistral-large-2407/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. The dawn of natural language
to sql: Are we fully ready? arXiv preprint arXiv:2406.01265, 2024a.

Fei Li and Hosagrahar V Jagadish. Constructing an interactive natural language interface for rela-
tional databases. Proceedings of the VLDB Endowment, 8(1):73–84, 2014.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. Resdsql: Decoupling schema linking and
skeleton parsing for text-to-sql. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 13067–13075, 2023a.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan
Pan, Cuiping Li, and Hong Chen. Codes: Towards building open-source language models for
text-to-sql. Proceedings of the ACM on Management of Data, 2(3):1–28, 2024b.

Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin, Chenhao Ma, Nan Huo, Fei Huang, Wenyu
Du, Luo Si, and Yongbin Li. Graphix-t5: Mixing pre-trained transformers with graph-aware
layers for text-to-sql parsing. arXiv preprint arXiv:2301.07507, 2023b.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, et al. Can llm already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Advances in Neural Information Processing Systems,
36, 2024c.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
makes good in-context examples for GPT-3? In Eneko Agirre, Marianna Apidianaki, and Ivan
Vulić (eds.), Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on
Knowledge Extraction and Integration for Deep Learning Architectures, pp. 100–114, Dublin,
Ireland and Online, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/
2022.deelio-1.10. URL https://aclanthology.org/2022.deelio-1.10.

Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz, and Amine Mhedhbi. The death of
schema linking? text-to-sql in the age of well-reasoned language models. arXiv preprint
arXiv:2408.07702, 2024.

Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu Ri, Jaesung Tae, Ellen Zhang, Arman Cohan, and
Dragomir Radev. Enhancing few-shot text-to-sql capabilities of large language models: A study
on prompt design strategies. arXiv preprint arXiv:2305.12586, 2023.

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoyanov, Wen-tau Yih, Sida Wang, and Xi Victoria
Lin. Lever: Learning to verify language-to-code generation with execution. In International
Conference on Machine Learning, pp. 26106–26128. PMLR, 2023.

Rubén Pérez-Mercado, Antonio Balderas, Andrés Muñoz, Juan Francisco Cabrera, Manuel Palomo-
Duarte, and Juan Manuel Dodero. Chatbotsql: Conversational agent to support relational database
query language learning. SoftwareX, 22:101346, 2023.

Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Advances in Neural Information Processing Systems, 36, 2024a.

Mohammadreza Pourreza and Davood Rafiei. Dts-sql: Decomposed text-to-sql with small large
language models. arXiv preprint arXiv:2402.01117, 2024b.

Mohammadreza Pourreza, Ruoxi Sun, Hailong Li, Lesly Miculicich, Tomas Pfister, and Sercan O
Arik. Sql-gen: Bridging the dialect gap for text-to-sql via synthetic data and model merging.
arXiv preprint arXiv:2408.12733, 2024.

Abdul Quamar, Vasilis Efthymiou, Chuan Lei, and Fatma Özcan. Natural language interfaces to
data. Found. Trends Databases, 11(4):319–414, 2022. doi: 10.1561/1900000078. URL https:
//doi.org/10.1561/1900000078.

12

https://aclanthology.org/2022.deelio-1.10
https://doi.org/10.1561/1900000078
https://doi.org/10.1561/1900000078

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Daking Rai, Bailin Wang, Yilun Zhou, and Ziyu Yao. Improving generalization in language model-
based text-to-sql semantic parsing: Two simple semantic boundary-based techniques. arXiv
preprint arXiv:2305.17378, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Ruoxi Sun, Sercan Ö Arik, Alex Muzio, Lesly Miculicich, Satya Gundabathula, Pengcheng Yin,
Hanjun Dai, Hootan Nakhost, Rajarishi Sinha, Zifeng Wang, et al. Sql-palm: Improved large
language model adaptation for text-to-sql (extended). arXiv preprint arXiv:2306.00739, 2023.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini, and Amin Saberi.
Chess: Contextual harnessing for efficient sql synthesis. arXiv preprint arXiv:2405.16755, 2024.

Qwen LM Team. Qwen2.5-coder. https://qwenlm.github.io/blog/qwen2.
5-coder/, 2024. Accessed: 2024-11-16.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson. Rat-
sql: Relation-aware schema encoding and linking for text-to-sql parsers. arXiv preprint
arXiv:1911.04942, 2019.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, Qian-Wen Zhang, Zhao Yan, and
Zhoujun Li. Mac-sql: Multi-agent collaboration for text-to-sql. arXiv preprint arXiv:2312.11242,
2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing Hua, Jun-
ning Zhao, Qian Liu, Che Liu, et al. Openagents: An open platform for language agents in the
wild. arXiv preprint arXiv:2310.10634, 2023.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. Tabert: Pretraining for joint
understanding of textual and tabular data. arXiv preprint arXiv:2005.08314, 2020.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887, 2018.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin Wang, Yi Chern Tan, Xinyi Yang, Dragomir
Radev, Richard Socher, and Caiming Xiong. Grappa: Grammar-augmented pre-training for table
semantic parsing. arXiv preprint arXiv:2009.13845, 2020.

13

https://qwenlm.github.io/blog/qwen2.5-coder/
https://qwenlm.github.io/blog/qwen2.5-coder/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 LIMITATIONS AND FUTURE WORKS

Based on the analysis presented in this paper, we demonstrate that the parametric knowledge of
recent large language models, such as Gemini-1.5-pro and Mistral Large, contains the necessary
information to answer most challenging questions in notable text-to-SQL benchmarks, as evidenced
by their high pass@K performance. This highlights the challenge of effectively utilizing the rea-
soning ability of these models to select the best answer among the candidates. In our work, we
concluded that pairwise comparison is an effective approach to identify the best candidate. How-
ever, we believe this performance could be further improved by leveraging the reasoning capabilities
of the models, either through chain-of-thought prompting or employing more sophisticated search
methods, which we leave as directions for future work. Additionally, further research is needed
to address the detection of ambiguous questions and to improve the reliability of text-to-SQL sys-
tems. Most methodologies in this domain assume that all questions are answerable, which remains
a significant limitation in current text-to-SQL approaches.

A.2 RELATED WORKS

Early Text-to-SQL methods predominantly utilized sequence-to-sequence architectures, encoding
user queries and database schemas using models such as Graph Neural Networks (GNNs), Re-
current Neural Networks (RNNs), Long Short-Term Memory (LSTM) networks, and pre-trained
transformer encoders (Hwang et al., 2019; Cai et al., 2021; Cao et al., 2021). On the decoding side,
these systems employed either slot-filling or auto-regressive modelling approaches to construct the
final SQL queries from the encoded inputs (Choi et al., 2021; Wang et al., 2019). Additionally, tab-
ular language models like TaBERT (Yin et al., 2020), TaPas (Herzig et al., 2020), and Grappa (Yu
et al., 2020) have been developed to encode both tables and textual data effectively. However, the
landscape has evolved with the widespread use of LLMs, which have largely replaced earlier meth-
ods with their superior performance (Katsogiannis-Meimarakis & Koutrika, 2023; Quamar et al.,
2022). Initially, efforts concentrated on optimizing prompt designs for these LLMs (Pourreza &
Rafiei, 2024a; Gao et al., 2023; Dong et al., 2023). Subsequent advancements have introduced more
complex methodologies, including schema linking (Li et al., 2024b; Talaei et al., 2024; Pourreza
& Rafiei, 2024a;b), self-correction or self-debugging (Chen et al., 2023; Wang et al., 2023; Ta-
laei et al., 2024), and self-consistency techniques (Lee et al., 2024; Sun et al., 2023; Talaei et al.,
2024; Maamari et al., 2024), further enhancing the performance by proposing complex LLM-based
pipelines.

As previously discussed, one approach to enhance Text-to-SQL performance is based on the con-
sistency of LLM responses. The self-consistency approach, as proposed by Wang et al. (2022),
involves sampling multiple responses from an LLM and selecting the most consistent answer based
on the majority vote. In the Text-to-SQL context, this technique extends to generating multiple SQL
queries for a given question, grouping these queries by their execution results, and selecting a query
from the largest cluster as the most consistent answer (Gao et al., 2023; Sun et al., 2023; Talaei et al.,
2024). However, recent studies have pointed out the limitations of this method in reliably identifying
the correct answer. In response, MCS-SQL (Lee et al., 2024) introduced an approach that utilizes an
LLM to rerank the most consistent answers, moving beyond simple majority voting. Despite these
advancements, reliance on consistency as a filtering mechanism can inadvertently exclude correct
queries that are less frequent among generated candidates, as a critical bottleneck.

A.3 MODELS

All experiments are conducted using models from the Gemini and Claude, known for their ability
to handle long contextual information (Maamari et al., 2024), which is crucial for the Text-to-SQL
task involving queries from large databases. For candidate generation, online synthetic example
generation, query fixing, column filtering, and keyword extraction, we reported the performance
with two models of Gemini 1.5 Pro and Claude-3.5-Sonnet. For the query-picking model, we train a
Gemini 1.5 Flash model (which has much less latency than the Gemini 1.5 Pro model) on a dataset
of 3.8K samples generated by running the candidate generators on the BIRD training dataset. The

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Gemini 1.5 Flash model is trained for 10 epochs using a LoRA adapter with a rank of 16 using
Vertex AI tuning API.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.4 VALUE RETRIEVAL EXAMPLE

In this section, we provide an example of the value retrieval step. For the Given Question: “What
is the highest eligible free rate for K-12 students in the schools in Alameda County?”, from the
“california schools” Database, the closest database values that are retrieved from the LSH and after
reranking are as follows:

Table ”schools”:
”SOCType”: [”Preschool”],
”EILName”: [”Preschool”],
”School”: [
”Preschool”,
”MethodSchools”,
”Alameda County Community”,
”Alameda County Opportunity”,
”Alameda High”],
”MailStreet”: [”4600 Student Lane”],
”Street”: [”4600 Student Lane”],
”AdmLName1”: [”Free”],
”AdmLName2”: [”Freeman”],
”MailCity”: [”Alameda”],
”City”: [”Alameda”],
”AdmFName1”: [”Kate”, ”Nate”, ”Bree”],
”GSserved”: [”K-12”],
”GSoffered”: [”K-12”],
”StreetAbr”: [”4600 Student Ln.”],
”MailStrAbr”: [”4600 Student Ln.”],
”AdmLName3”: [”Yount”],
”AdmFName3”: [”Bree”],
”County”: [”Alameda”],
”District”: [”Alameda Unified”, ”Tri-County ROP”],
Table ”frpm”:
”School Type”: [”Preschool”],
”School Name”: [
”MethodSchools”,
”Alameda County Community”,
”Alameda High”
], ”County Name”: [”Alameda”],
Table ”satscores”:
”sname”: [”Alameda High”],
”cname”: [”Alameda”],
”dname”: [”Alameda County Office of Education”]

Figure 4: An example of the divide and conquer CoT method

A.5 PERFORMANCE BASED ON DATABASE

In this section, we present the number of samples across different databases where only one of the
candidate generators produces a correct result, meaning the other two generators fail to provide
a correct answer. A value of zero for any generator in this figure indicates that whenever that
generator produces a correct result, the other two generators also manage to generate at least one
correct answer.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 5: Number of correct queries by each method across different databases of BIRD development set.

A.6 TOKEN USAGE ANALYSIS

An important consideration when using LLM-based algorithms in production is the token usage
required by the methods. To effectively compare our proposed approach with prior work in this do-
main, we evaluated the input token usage of our method against a previous state-of-the-art approach,
CHESS (Talaei et al., 2024). As shown in the Figure 6, our approach significantly uses less input
token usage across the BIRD benchmark development databases. However, because our method
incorporates reasoning steps before candidate generation, it requires more output tokens compared
to the CHESS method

Figure 6: Input and output token usage of our proposed method compared to the CHESS method across the
BIRD development set databases.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.7 ERROR ANALYSIS

Figure 7: Distribution of system performance based on the final answer correctness. The chart shows
the proportion of correct final answers, correct queries existing among candidates but not chosen
(wrong selection), no correct candidate cases, and cases were the golden SQL query is wrong.

Fig. 7 provides a pie chart that breaks down the system’s performance into four categories: correct
final answer (72.9%), correct exists among candidates but not chosen (10.4%), wrong generations or
no correct candidate (6.7%), and wrong golden query (10.0%). The majority of responses are correct
final answers, but a notable portion falls under correct answers not being chosen by the system. This
breakdown helps in understanding areas where the system excels and where improvements can be
targeted.

California Schools

Card Games
Codebase Community

Debit Card Specializing

European Football 2

Financial
Formula 1

Student Club
Superhero

Thrombosis Prediction

Toxicology

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

84.3%

72.8%

82.8% 82.8% 82.9%
85.8%

79.3%

92.4%

97.7%

77.9%

82.8%

67.4%
63.9%

73.7%
70.3%

75.2%

70.8%

66.1%

88.6%
90.7%

61.3%

70.3%

Correct Exists Among Candidates
Correct is Chosen by Picker

Figure 8: Correctness comparison of the system across different databases in two metrics: (1) per-
centage where the correct query exists among the candidates, and (2) percentage where the correct
query is chosen by the selection agent.

Fig. 8 presents a comparative analysis of system correctness across multiple databases. The x-axis
lists various databases or categories such as California Schools, Formula 1, and Superhero, while
the y-axis represents the percentage performance. Two key metrics are visualized: the first is the
percentage where the correct answer exists among the candidates (shown by one bar per category),
and the second is the percentage where the correct answer is chosen by the selection system (depicted
by a second bar for each category).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.7.1 SELECTION AGENT ERROR ANALYSIS

In this section, we examine cases where at least one of the candidate SQL queries generated by the
three generators matched the ground truth answer, but the selection agent assigned the highest score
to another, incorrect candidate. We categorized these errors into four groups: (1) Vague questions,
(2) Wrong picking, (3) Data Integrity Error, and (4) Incorrect gold query. Fig. 9 illustrates the
distribution of each category among the sample queries. In the following sections, we will discuss
each of these categories in more detail.

Figure 9: Error analysis on the cases where selection agent failed to pick the correct SQL query
which was among the candidates.

Wrong Picking Errors: The largest portion of errors occurs when the candidate with the highest
score from the selection agent is missing a required column, table, or SQL clause. In our analysis,
we could not identify a specific types of patterns in the model’s mistakes as these mistakes includes
different types of the errors almost for each instance. Fig. 10 provides an example where the selected
SQL query incorrectly uses * to return all columns, instead of just returning the id as specified in
the ground truth answer.

Question: List all patients who were followed up at the outpatient clinic
who underwent a laboratory test in October 1991 and had a total blood
bilirubin level within the normal range.

Evidence: followed up at the outpatient clinic refers to Admission = '-';
laboratory test in April 1981 refers to Date like '1991-10%'; blood bilirubin
level within the normal range refers to T-BIL < 2.0;

Gold SQL: SELECT DISTINCT T1.ID FROM Patient AS T1 INNER JOIN Laboratory
AS T2 ON T1.ID = T2.ID WHERE T1.Admission = '-' AND T2.`T-BIL` < 2.0 AND
T2.Date LIKE '1991-10-%'

Picked SQL: SELECT DISTINCT T1.* FROM Patient AS T1 INNER JOIN
Laboratory AS T2 ON T1.ID = T2.ID WHERE T1.Admission = '-' AND T2.`T-BIL` <
2.0 AND T2.Date LIKE '1991-10%'

Figure 10: An example of selection agent preferred SQL query which is incorrect.

Wrong Golden Query Error: The second largest portion of errors occurs when the ground truth
SQL query is incorrect, and one of the candidate queries generated by our model replicates the same
mistake. However, the selection agent ultimately picks another candidate that correctly answers the
question. Fig. 11 provides an example of such a case, where the ground truth query includes an
extra molecule ID column in the SELECT clause, which was not specified in the question.

Vague Question: Another significant portion of errors occurs when the question does not specify
which column to return or use for filtering, and multiple columns could satisfy the query. In these
cases, although one of the candidates was the correct SQL query, the selection model favored another
response that could also be considered correct. Fig. 12 illustrates such a case where ”Fresno” could
refer to either a city or a county, but the question doesn’t specify which one to return. The selection
model chose the query that used ”city” and did not select the candidate that used ”county.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Question: What are the labels for TR000, TR001 and TR002?

Evidence: TR000, TR001 and TR002 are molecule id; label = '+' mean
molecules are carcinogenic; label = '-' means molecules are non-
carcinogenic

Gold SQL: SELECT molecule_id, T.label FROM molecule AS T WHERE
T.molecule_id IN ('TR000', 'TR001', 'TR002')

Picked SQL: SELECT label FROM molecule WHERE molecule_id IN ('TR000',
'TR001', 'TR002')

Figure 11: An example of an error case where the selection agent picked a correct SQL query and
the gold query was wrong.

Question: How many schools in Fresno (directly funded) have number of
test takers not more than 250?

Evidence:

Gold SQL: SELECT COUNT(T1.CDSCode) FROM frpm AS T1 INNER JOIN
satscores AS T2 ON T1.CDSCode = T2.cds WHERE T1.`Charter Funding Type` =
'Directly funded' AND T1.`County Name` = 'Fresno' AND T2.NumTstTakr <=
250

Picked SQL: SELECT COUNT(T1.CDSCode) FROM schools AS T1 INNER JOIN
satscores AS T2 ON T1.CDSCode = T2.cds WHERE T1.City = 'Fresno' AND
T1.FundingType = 'Directly funded' AND T2.NumTstTakr <= 250

Figure 12: An example of an error case where the selection model picked a query which could be
considered as correct as the question is vague.

Data Integrity Error: Finally, the smallest category of errors involves cases where two or more
columns are supposed to have consistent values, but one or more columns contain missing values.
For example, Fig. 13 shows a case where the ”School” and ”School Name” columns were both
expected to contain the names of schools, but one of the columns has missing values.

Question: List the names of schools with more than 30 difference in
enrollements between K-12 and ages 5-17? Please also give the full street
adress of the schools

Evidence: Diffrence in enrollement = `Enrollment (K-12)` - `Enrollment (Ages
5-17)`

Gold SQL: SELECT T1.School, T1.Street FROM schools AS T1 INNER JOIN frpm
AS T2 ON T1.CDSCode = T2.CDSCode WHERE T2.`Enrollment (K-12)` -
T2.`Enrollment (Ages 5-17)` > 30

Picked SQL: SELECT T2.`School Name`, T1.Street FROM schools AS T1 INNER
JOIN frpm AS T2 ON T1.CDSCode = T2.CDSCode WHERE T2.`Enrollment (K-
12)` - T2.`Enrollment (Ages 5-17)` > 30

Figure 13: An example of an error case where the selection agent picked a correct candidate but
because of the data inconsistency the execution accuracy was zero for this candidate.

A.7.2 ERROR ANALYSES

We present the manual error analysis we conducted on one-third of the cases where none of the
generated candidate queries were correct. We categorized these errors into five main types: (1)
Schema linking errors, (2) Incorrect logic, (3) SQL function errors, (4) JOIN issues, and (5) Ignoring
evidence. Fig. 14 illustrates the distribution of these error categories. As shown, the most common
errors occur when none of the candidate queries correctly utilized the columns or tables required to
answer the question. In the following section, we describe the specific types of errors that fall under
each category.

Schema Linking Errors: The schema linking errors category includes cases where none of the
generated candidate SQL queries correctly use the columns required to answer the question. These
errors often occur in databases where column names are ambiguous or confusing for the model. Fig.
15 provides an example where the LLM failed to correctly calculate the average to return the correct
column that was expected.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 14: Error analysis on the cases where all candidate generators failed to produce a single
correct answer.

Question: Who are the top 5 players who perform better in crossing actions?
Indicate their player id.

Evidence: perform better in crossing actions refers to MAX(crossing)

Gold SQL: SELECT id FROM Player_Attributes ORDER BY crossing DESC LIMIT 5

Random Candidate SQL: SELECT player_api_id FROM Player_Attributes ORDER
BY `crossing` DESC LIMIT 5

Figure 15: An example of schema linking error category.

Wrong Logic Error: This category, which represents the second largest portion of errors, includes
cases where the logic of the generated candidate queries is incorrect. These errors involve missing
elements such as the DISTINCT keyword, NOT NULL conditions, missing columns in the SELECT
clause, or incorrect or missing conditions in the WHERE or HAVING clauses. An example is shown
in Fig. 16, provides an example where the LLM failed to correctly calculate the average total price
due to incorrect logic computing the average total price.

Question: What is the average total price of the transactions taken place in
gas stations in the Czech Republic?

Evidence: Gas station in the Czech Republic implies that Country = 'CZE'

Gold SQL: SELECT AVG(T1.Price) FROM transactions_1k AS T1 INNER JOIN
gasstations AS T2 ON T1.GasStationID = T2.GasStationID WHERE T2.Country
= 'CZE'

Random Candidate SQL: SELECT AVG(T1.Amount * T1.Price) FROM
transactions_1k AS T1 INNER JOIN gasstations AS T2 ON T1.GasStationID =
T2.GasStationID WHERE T2.Country = 'CZE'

Figure 16: An example of wrong logic error category.

SQL Functions Error: This category, the third-largest source of errors, includes queries where
the error results from the incorrect use of, or failure to include, SQL functions such as COUNT(),
CAST(), AVG(), ROUND(), and others. Fig. 17 illustrates a case where none of the candidate
queries used the ROUND() function as required by the question.

Joins Error: This category represents a smaller portion of the error cases, where the source of the
error is missing one or more tables in the JOIN clauses of the predicted SQL queries.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Question: How much of the hydrogen in molecule TR206 is accounted for?
Please provide your answer as a percentage with four decimal places.

Evidence: hydrogen refers to element = 'h'; TR206 is the molecule id;
percentage = DIVIDE(SUM(element = 'h'), COUNT(atom_id)) as percent
where molecule_id = 'TR206'

Gold SQL: SELECT ROUND(CAST(COUNT(CASE WHEN T.element = 'h' THEN
T.atom_id ELSE NULL END) AS REAL) * 100 / COUNT(T.atom_id),4) FROM atom
AS T WHERE T.molecule_id = 'TR206'

Random Candidate SQL: SELECT CAST(SUM(CASE WHEN T1.element = 'h'
THEN 1 ELSE 0 END) AS REAL) * 100 / COUNT(T1.atom_id) FROM atom AS T1
WHERE T1.molecule_id = 'TR206'

Figure 17: An example of wrong usage of SQL functions error category.

Ignoring Evidence Error: This category represents the smallest portion of error cases, where the
correct column or table is explicitly mentioned in the provided evidence, but the LLM disregards it
and uses its own selection instead.

A.8 DIVIDE AND CONQUER PROMPT

In this section, we provide an example of a divide-and-conquer prompt used in one of the few-shot
in-context learning demonstrations to illustrate the decomposition and aggregation steps.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Database Info
{DATABASE SCHEMA}

Question
Question: What is the gender of the youngest client who opened account in the lowest average
salary branch?
Hint: Given that Later birthdate refers to younger age; A11 refers to average salary

1. Divide and Conquer:

* **Main Question:** What is the gender of the youngest client who opened account in
the lowest average salary branch?
* **Analysis:** Question asking about ‘gender‘, and it appears in table ‘client‘. We will use this
as the output column, selecting it from the youngest client in the lowest average salary branch.
* **Pseudo SQL:** SELECT ‘T1‘.‘gender‘ FROM ‘client‘ AS ‘T1‘ WHERE youngest client in
the lowest average salary branch

* **Sub-question 1:** youngest client in the lowest average salary branch
* **Analysis:** According to the hint, we need to use the ‘A11‘ from ‘district‘ to get the salary
info, and the youngest client can be obtained from using the ‘birth date‘ column of table ‘client‘.
The items between these two tables can be INNER JOIN using district id.
* **Pseudo SQL:** SELECT ‘T1‘.‘client id‘ FROM ‘client‘ AS ‘T1‘ INNER JOIN ‘district‘
AS ‘T2‘ ON ‘T1‘.‘district id‘ = ‘T2‘.‘district id‘ WHERE lowest average salary branch ORDER
BY ‘T1‘.‘birth date‘ DESC NULLS LAST LIMIT 1

* **Sub-question 1.1:** lowest average salary branch
* **Analysis:** We can get the lowest average salary branch using order by ‘A11‘ ASC and pick
top 1. The column ‘A11‘ is not NULLABLE, so we do not need to add ”IS NOT NULL” filter *
Pseudo SQL: SELECT ‘district id‘ FROM ‘district‘ ORDER BY ‘A11‘ ASC LIMIT 1

2. Assembling SQL:

* **Sub-question 1.1 (lowest average salary branch):** * **SQL:** SELECT ‘district id‘
FROM ‘district‘ ORDER BY ‘A11‘ ASC LIMIT 1

* **Sub-question 1 (youngest client in the lowest average salary branch):**
* **SQL:** SELECT ‘T1‘.‘client id‘ FROM ‘client‘ AS ‘T1‘ INNER JOIN ‘district‘ AS ‘T2‘
ON ‘T1‘.‘district id‘ = ‘T2‘.‘district id‘ WHERE ‘T2‘.‘district id‘ IN (SELECT ‘district id‘
FROM ‘district‘ ORDER BY ‘A11‘ ASC LIMIT 1) ORDER BY ‘T1‘.‘birth date‘ DESC NULLS
LAST LIMIT 1

* **Main Question (gender of the client):**
* **SQL:** SELECT ‘T1‘.‘gender‘ FROM ‘client‘ AS ‘T1‘ WHERE ‘T1‘.‘client id‘ =
(SELECT ‘T1‘.‘client id‘ FROM ‘client‘ AS ‘T1‘ INNER JOIN ‘district‘ AS ‘T2‘ ON
‘T1‘.‘district id‘ = ‘T2‘.‘district id‘ WHERE ‘T2‘.‘district id‘ IN (SELECT ‘district id‘ FROM
‘district‘ ORDER BY ‘A11‘ ASC LIMIT 1) ORDER BY ‘T1‘.‘birth date‘ DESC NULLS LAST
LIMIT 1)

3. Simplification and Optimization:
* The nested queries can be combined using a single ‘INNER JOIN‘ and the filtering can be
done within a single ‘ORDER BY‘ clause.

Final Optimized SQL Query:
SELECT ‘T1‘.‘gender‘ FROM ‘client‘ AS ‘T1‘ INNER JOIN ‘district‘ AS ‘T2‘ ON
‘T1‘.‘district id‘ = ‘T2‘.‘district id‘ ORDER BY ‘T2‘.‘A11‘ ASC, ‘T1‘.‘birth date‘ DESC
NULLS LAST LIMIT 1

Figure 18: An example of the divide and conquer CoT method

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

An example of question/SQL pair where the divide-and-conquer CoT approach was the only gener-
ator that solved the problem.

Question: How much faster in percentage is the champion than the driver
who finished the race last in the 2008 Australian Grand Prix?

Query:
WITH time_in_seconds AS (
 SELECT
 T1.positionOrder,
 CASE
 WHEN T1.positionOrder = 1 THEN
 (CAST(SUBSTR(T1.time, 1, 1) AS REAL) * 3600) +
 (CAST(SUBSTR(T1.time, 3, 2) AS REAL) * 60) +
 CAST(SUBSTR(T1.time, 6) AS REAL)
 ELSE
 CAST(SUBSTR(T1.time, 2) AS REAL)
 END AS time_seconds
 FROM
 results AS T1
 INNER JOIN
 races AS T2
 ON T1.raceId = T2.raceId
 WHERE
 T2.name = 'Australian Grand Prix'
 AND T1.time IS NOT NULL
 AND T2.year = 2008
),
champion_time AS (
 SELECT time_seconds
 FROM time_in_seconds
 WHERE positionOrder = 1
),
last_driver_incremental AS (
 SELECT time_seconds
 FROM time_in_seconds
 WHERE positionOrder = (
 SELECT MAX(positionOrder)
 FROM time_in_seconds
)
)
SELECT
 (CAST((SELECT time_seconds FROM last_driver_incremental) AS REAL) *
100) /
 (SELECT time_seconds +
 (SELECT time_seconds FROM last_driver_incremental)
 FROM champion_time);

Figure 19: An example of query that has been solved only with the divide and conquer CoT method.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

A.9 QUERY PLAN PROMPT

In this section, we provide an example of a query (execution) plan prompt used in one of the few-shot
in-context learning demonstrations to illustrate the steps.

Database Info
{DATABASE SCHEMA}

Answer Repeating the question and evidence, and generating the SQL with a query plan.
Question: How many Thai restaurants can be found in San Pablo Ave, Albany?
Evidence: Thai restaurant refers to food type = ’thai’; San Pablo Ave Albany refers to
street name = ’san pablo ave’ AND T1.city = ’albany’

Query Plan:
** Preparation Steps:**
1. Initialize the process: Start preparing to execute the query.
2. Prepare storage: Set up storage space (registers) to hold temporary results, initializing them to
NULL.
3. Open the location table: Open the location table so we can read from it.
4. Open the generalinfo table: Open the generalinfo table so we can read from it.

** Matching Restaurants:**
1. Start reading the location table: Move to the first row in the location table.
2. Check if the street matches: Look at the street name column of the current row in location. If
it’s not ”san pablo ave,” skip this row.
3. Identify the matching row: Store the identifier (row ID) of this location entry.
4. Find the corresponding row in generalinfo: Use the row ID from location to directly find the
matching row in generalinfo.
5. Check if the food type matches: Look at the food type column in generalinfo. If it’s not ”thai,”
skip this row.
6. Check if the city matches: Look at the city column in generalinfo. If it’s not ”albany,” skip
this row.

** Counting Restaurants:**
1. Prepare to count this match: If all checks pass, prepare to include this row in the final count.
2. Count this match: Increment the count for each row that meets all the criteria.
3. Move to the next row in location: Go back to the location table and move to the next row,
repeating the process until all rows are checked.
4. Finalize the count: Once all rows have been checked, finalize the count of matching rows.
5. Prepare the result: Copy the final count to prepare it for output.

** Delivering the Result:**
1. Output the result: Output the final count, which is the number of restaurants that match all the
specified criteria.
2. End the process: Stop the query execution process.
3. Setup phase: Before starting the actual query execution, the system prepares the specific
values it will be looking for, like ”san pablo ave,” ”thai,” and ”albany.”

Final Optimized SQL Query:

SELECT COUNT(T1.id restaurant) FROM generalinfo AS T1 INNER JOIN location AS
T2 ON T1.id restaurant = T2.id restaurant WHERE T1.food type = ’thai’ AND T1.city =
’albany’ AND T2.street name = ’san pablo ave’

Figure 20: An example of the query plan CoT method

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Fig. 21 provides an example of a query plan generated by using the EXPLAIN command.

Figure 21: An example of SQLite query plan generated by using the EXPLAIN command.

Additionally Fig. 22 provides an example question that was solved by using the query plan-based
CoT strategy.

Question: State the names and full communication address of high schools
in Monterey which has more than 800 free or reduced price meals for ages
15-17?

Query Plan CoT SQL:
SELECT T1.`School Name`, T2.Street, T2.City, T2.State, T2.Zip
FROM frpm AS T1
INNER JOIN schools AS T2 ON T1.CDSCode = T2.CDSCode
WHERE T1.`County Name` = 'Monterey' AND T1.`Free Meal Count (Ages 5-17)`
> 800 AND T1.`School Type` = 'High Schools (Public)';

Divide and Conquer CoT SQL:
SELECT `T1`.`School Name`, `T2`.`Street`, `T2`.`City`, `T2`.`State`, `T2`.`Zip`
FROM `frpm` AS `T1`
INNER JOIN `schools` AS `T2` ON `T1`.`CDSCode` = `T2`.`CDSCode`
WHERE `T2`.`SOCType` = 'High Schools (Public)' AND `T2`.`County` =
'Monterey' AND `T1`.`FRPM Count (Ages 5-17)` > 800

Figure 22: An example of query that has been solved only with the query plan CoT method.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

A.10 QUERY FIXING PROMPT

In this section, we provide the prompt template for the SQL query fixing step.

Task Description:
You are an SQL database expert tasked with correcting a SQL query. A previous attempt to
run a query did not yield the correct results, either due to errors in execution or because the
result returned was empty or unexpected. Your role is to analyze the error based on the provided
database schema and the details of the failed execution, and then provide a corrected version of
the SQL query.

Procedure:
1. Review Database Schema:
- Examine the table creation statements to understand the database structure.
2. Analyze Query Requirements:
- Original Question: Consider what information the query is supposed to retrieve.
- Hint: Use the provided hints to understand the relationships and conditions relevant to the
query.
- Executed SQL Query: Review the SQL query that was previously executed and led to an error
or incorrect result.
- Execution Result: Analyze the outcome of the executed query to identify why it failed (e.g.,
syntax errors, incorrect column references, logical mistakes).
3. Correct the Query:
- Modify the SQL query to address the identified issues, ensuring it correctly fetches the
requested data according to the database schema and query requirements.

Output Format:

Present your corrected query as a single line of SQL code, after Final Answer. Ensure
there are no line breaks within the query.

Here are some examples:
{EXAMPLES}
======= Your task =======

Table creation statements
{DATABASE SCHEMA}

The original question is:
Question:
{QUESTION}
Evidence:
{HINT}
The SQL query executed was:
{QUERY}
The execution result:
{RESULT}

Based on the question, table schema and the previous query, analyze the result try to fix the query.

Figure 23: The prompt template used for query fixing

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

A.11 SELECTION AGENT PROMPT

In this section, we provide the prompt template used for training and query picking at test time by the
trained selection agent. Note that the database schema used in this step is the union of the columns
and tables by the two candidates instead of using the full-schema of all tables in the database.

Instruction:
Given the DB info and question, there are two candidate queries. There is correct one and
incorrect one, compare the two candidate answers, analyze the differences of the query and the
result. Based on the original question and the provided database info, choose the correct one.

Database Schema
{DATABASE SCHEMA}

Question:
{QUESTION}
Evidence:
{HINT}

Candidate A
{CANDIDATE A QUERY}
Execution result
{CANDIDATE A RESULT}

Candidate B
{CANDIDATE B QUERY}
Execution result
{CANDIDATE B RESULT}

Just output the correct answer ”A” or ”B”.

Figure 24: The prompt template used for query fixing

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

A.12 GENERATED SYNTHETIC EXAMPLES ANALYSIS

Figure 25: Synthetic examples generated for the ‘california schools‘ database question with different guide-
lines for common SQL features and filtered columns.

Table 8: Ablation studies on synthetic example generation guidelines, Rf with common SQL features and
Rt with filtered schema. The baseline is the original BIRD prompt Zero-shot CoT with Gemini 1.5 pro on the
BIRD dev set. Total of 75 examples are generated for each example set (Rf , Rt) and for the mixed (Rf + Rt)

Method Execution Accuracy (%) ∆(%)

Baseline (Zero-shot) 57.75 -
OS w/ Rf 65.45 +7.7
OS w/ Rt 66.75 +9.0
OS w/ Rf + Rt 67.09 +9.34

Table 8 illustrates the ablation studies done with different guidelines and their generated example
sets. Compared to the baseline (no example), the user question and its associated data schema
targetted synthetic examples can help; we try to promote the diversity of the examples to avoid over-
fitting the output to certain patterns (e.g., the model always writes a SQL with JOIN if shown mostly
JOIN examples).

Figure 26: Distribution (normalized) of synthetic vs. ground truth examples in different SQL features/clauses.
All examples are generated using gemini-1.5-pro for the questions and schemas from the BIRD-Bench dev
dataset.

(a) Our synthetic examples with explicit guidelines,
Rf and Rt

(b) Synthetic examples following cross-domain data
augmentation strategy (Li et al., 2024b)

Fig. 26a shows the SQL feature distribution of the generated synthetic examples for the BIRD dev
dataset, which closely follows the actual SQL features distribution, except CASE statement. We

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

omit CASE statement examples, since showing examples with CASE statement did not help with
the generation, unless the ground-truth SQL query actually used it.

Table 9: Example quality comparison between our synthetic examples (OS) and other example sets, prepared
by two other approaches: relevant training examples by question similarity (σ(train)) and a different synthetic
example generation strategy (CodeS). To isolate the impact of example quality, we only generated a single
output candidate without any self-correction with varying numbers of examples n.

n 5 25 75 125

σ(train) 58.80 58.54 57.69 56.91
CodeS 60.76 60.63 59.97 59.06
OS 62.13 64.02 64.41 63.69

Table 9 demonstrates how the online synthetic example generation (OS) yields more useful example
set for in-context learning, compared to two other approaches. Training dataset is a commonly used
source of few-shot examples, where examples are selected by question similarity (σ(train)). Data
augmentation is another technique used for cross-domain adaptation, where either extra fine-tuning
data or few-shot examples are synthesized.The proposed technique in (Li et al., 2024b) uses two-
step example generation, where the model is 1) asked to come up with questions to ask given the
schema; 2) asked to fill in the blanks of example templates with the schema elements. There is no
specific guidelines to the example and SQl structures for the first step, and the second step uses a
set of universal question/SQL templates with limited complexity (e.g., only single table, non-nested
queries with up to 3 columns). The resulting example SQL feature distribution is shown in Fig. 26b.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

A.13 SYNTHETIC EXAMPLE GENERATION PROMPTS

In this section we provided the prompt template for the online synthetic example generation step.

You are a SQLite SQL expert. Your job is to create {k} examples, where each example consists
of a question and a SQL query to fetch the data for it. I want each example to look like this,
question input and SQL output pairs:

```
”input”: ”What’s the description of the series code SM.POP.TOTL for Aruba?
(Hints: Aruba is the name of the country where ShortName = ’Aruba’)”

”output”: ”SELECT T2.Description FROM Country AS T1 INNER JOIN CountryNotes
AS T2 ON T1.CountryCode = T2.Countrycode WHERE T1.ShortName = ’Aruba’ AND
T2.Seriescode = ’SM.POP.TOTL’”
```

You should generate examples that examine and showcase different aspects and relation-
ships of the following table schemas, described in ”Table creation statements”. Understand the
database tables and their relationships. Understand the columns and their types and meanings to
construct intresting examples.
Generate a mixture of SQL examples that include:

• some simple SQL query examples without JOIN
• some SQL query examples with aggregates, like COUNT
• some simple SQL query examples with JOIN
• some complex SQL query examples with nested JOIN

###Table creation statements###

{TARGET DATABASE SCHEMA}

Generate total of {k} examples. Only outputs the examples (question input and SQL output
pairs), and each example can be separated by a new line.

Figure 27: Synthetic example generation prompt used for common SQL features examples genera-
tion . TARGET DATABASE SCHEMA contains all the tables from the target database.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

You are a SQLite SQL expert. Your job is to create a set of examples, where each example
consists of a question and a SQL query to fetch the data for it.
You should generate examples that examine and showcase different aspects and relationships of
the following table schemas. Understand the database tables and their relationships. Understand
the columns and their types and meanings to construct intresting examples.
I will also show you multiple examples generated for the other database and its table schemas, so
you can see what kind of examples can be generated for a given database.

###Examples from other database### The following is the table schemas and column examples
for other database:
The database ({̈TRAIN DATABASE NAME})̈ structure is defined by the following table
schemas (comments after ’–’ provide additional column descriptions).

{TRAIN DATABASE SCHEMA}

————————–

The folloiwing are the examples generated for the above database schemas:
Example 1) ”input”: ”Among the countries in the group of Heavily Indebted Poor Countries, how
many of them are under the lending category of the International Development Associations?
(Hints: group of Heavily Indebted Poor Countries is OtherGroups = ’HIPC’; International
Development Associations refers to lendingcategory = ’IDA’)”

”output”: ”SELECT COUNT(CountryCode) FROM Country WHERE LendingCategory =
’IDA’ AND OtherGroups = ’HIPC’”

...

Example 10) ”input”: ”What is the description of the footnote on the series code
AG.LND.FRST.K2 in 1990 for Aruba?
(Hints: Year = 1990; Aruba is the name of country where ShortName = ’Aruba’)”

”output”: ”SELECT T2.Description FROM Country AS T1 INNER JOIN FootNotes AS T2 ON
T1.CountryCode = T2.Countrycode WHERE T1.ShortName = ’Aruba’ AND T2.Seriescode =
’AG.LND.FRST.K2’ AND T2.Year = ’YR1990’”

Now similarly, generate examples (question input and SQL output pairs) for the table schemas
defined below, in ”Table creation statements”.

###Table creation statements###
TARGET DATABASE SCHEMA

Only outputs the examples (question input and SQL output pairs), and each example can be
separated by a new line.

Figure 28: Synthetic example generation prompt. This is use TARGET DATABASE SCHEMA
filtered with column selection result, and the model is asked to generate simple examples similar to
the ones taken from the training dataset (separate from the test or dev dataset).

32

	Introduction
	Methods
	Overall Framework
	Value Retrieval
	Multi-path Candidate Generation
	Query Fixer
	Selection Agent

	Experiments
	Generator and selection performance
	Ablation Studies

	Conclusion
	Appendix
	Limitations and Future Works
	Related works
	Models
	Value Retrieval Example
	Performance Based On Database
	Token Usage Analysis
	Error Analysis
	Selection Agent Error Analysis
	Error Analyses

	Divide and Conquer Prompt
	Query Plan Prompt
	Query Fixing Prompt
	Selection Agent Prompt
	Generated Synthetic Examples Analysis
	Synthetic Example Generation Prompts

