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Abstract— Long-horizon tasks require intelligent agents, such
as robots, to handle both temporal uncertainty and temporal
dependency. Although world models have shown promise for
solving tasks across many domains, they often struggle with
managing long context in tasks due to the limited representation
ability of their latent dynamics models. To overcome this issue,
we propose a novel hierarchical latent dynamics model that
takes into account multiple-timescale dynamics. Specifically,
our proposed model, called the “multiple timescale recurrent
state-space model” (MTRSSM), comprises a higher level with
slow dynamics and a lower level with fast dynamics, each
incorporating both deterministic and stochastic latent states.
We demonstrate, both quantitatively and qualitatively, that
a world model with our proposed MTRSSM can generate
superior video predictions for long-horizon robotic object-
manipulation tasks through latent imagination compared with
other baselines. Importantly, we emphasize the critical role of
the higher level in effectively handling temporal uncertainty
and temporal dependency in long-horizon tasks. These findings
indicate that the proposed MTRSSM enables intelligent agents
to acquire a better understanding of the environment and
generate more accurate predictions, thereby facilitating their
learning and planning of long-horizon tasks.

I. INTRODUCTION

Performing long-horizon tasks is challenging for intelli-
gent agents due to the presence of “temporal uncertainty” and
“temporal dependency” in environmental and task dynamics.
As an example, consider a robot tasked with making a
pot of soup. To complete this task, the robot needs to
perform multiple steps, including removing the lid of the
pot, adding ingredients to the pot, closing the lid, moving
the pot to a stove, and boiling the ingredients. Whereas
the cooking steps must be followed in order, the sequence
of ingredient addition may vary probabilistically. Moreover,
although the scene looks the same before opening the lid as
after closing it, the subsequent actions required depend on
the context of cooking. This scenario reflects the challenge
of temporal uncertainty and temporal dependency that makes
long-horizon tasks difficult for intelligent agents to perform.
To overcome these challenges, the robot must recognize the
probability of the dynamics transition depending on its own
actions and retain a memory of the completed steps.

Learning world models is a promising approach to pre-
dicting temporal uncertainty in environmental and task dy-
namics [1], [2]. For instance, the recurrent state-space model
(RSSM) is a widely used latent dynamics model for world
models [2], [3] because of its strong representation ability.
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However, RSSMs often have difficulty learning long-term
temporal dependencies [4], [5]. One possible approach to
solving this problem is introducing hierarchical levels with
different time intervals [4], [6], [7]. Although this imple-
mentation of a temporal hierarchy can be effective in some
scenarios, the use of a reset mechanism [6] and fixed intervals
[4], [7] may not be suitable for continuously and dynamically
changing real-world environments.

Another approach to learning temporal dependencies
involves incorporating continuous multiple-timescale dy-
namics. The multiple timescale recurrent neural network
(MTRNN) [8], inspired by the human brain’s functional
hierarchy, is known for its ability to learn long-term temporal
dependencies. Nevertheless, its deterministic nature makes
it difficult to represent temporal uncertainty. The predictive-
coding-inspired RNN (PV-RNN) [9], which is a probabilistic
extension of the MTRNN, is another candidate for learning
both temporal uncertainty and temporal dependency. How-
ever, its backpropagation-based online inference process is
computationally expensive, and thus applying it to real-world
scenarios is not straightforward.

In this paper, we propose the “multiple timescale recurrent
state-space model” (MTRSSM), which combines the advan-
tages of the RSSM and MTRNN. The MTRSSM can learn
not only temporal uncertainty through its stochastic latent
representations but also long-term temporal dependencies
through its hierarchical levels with continuous multiple-
timescale dynamics. We evaluate the performance of our
proposed model using complex real-world robotic data and
show that it outperforms other baselines.

II. RELATED WORK

A. World Model

World models, initially proposed by Ha and Schmidhuber
[1], have shown great promise in the field of model-based
reinforcement learning (RL). One of their key advantages
is the ability to predict future latent states without the
need for computationally expensive encoding and decod-
ing observations, a concept known as “latent imagination.”
This advantage has led to the development of policies that
generate actions based on the state of the world model,
resulting in achievements in both RL [2], [3], [7], [10]–
[13] and imitation learning (IL) [14], [15]. In addition, the
RSSM has enhanced this advantage by incorporating both
deterministic and stochastic latent states [2], [16], leading to
achievements in simulated environments [2] as well as real-
world environments [11]. However, the RSSM has difficulties
in learning long-term temporal dependencies [4], [6], which
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limits its performance on long-horizon tasks learned through
latent imagination.

B. Hierarchy for Long-Horizon Imagination
Several models having a temporal hierarchy have been

proposed for capturing temporal dependencies [4]–[7], [17].
In these models, higher levels with slower dynamics cap-
ture long-horizon transitions, while lower levels with faster
dynamics focus on momentary changes in observations. For
example, the variational temporal abstraction (VTA) [6] uti-
lizes two RSSMs, with the lower level determining when to
update the higher level. Similarly, the clockwork variational
autoencoder (CW-VAE) [4] employs multiple RSSMs, with
different clock speeds per level resulting in slower changes in
the higher levels. However, the VTA exhibits discontinuous
lower-level representations, and the clock speeds in the CW-
VAE are fixed. Given the continuous and dynamic nature of
real-world environments, the applicability of these models
may be potentially limited.

In contrast, although our proposed MTRSSM also com-
prises two levels of RSSMs, it differs from the VTA and CW-
VAE in its approach to implementing a temporal hierarchy.
Instead of using a sparse update mechanism to introduce slow
dynamics, we employ multiple-timescale dynamics, which
we will elaborate upon in the following subsection.

C. Multiple Timescale Recurrent Neural Network
The MTRNN [8] is a hierarchically organized continuous-

time RNN (CTRNN) in which each layer has a distinct
time constant. Previous studies [8], [18] have demonstrated
that the MTRNN can self-organize a functional hierarchy,
where higher levels with slower dynamics encode combina-
tions of primitive patterns represented by lower levels with
faster dynamics. However, the MTRNN struggles to capture
temporal uncertainty because of its deterministic hidden
state dynamics. To overcome this limitation, the PV-RNN
adds the capability of variational inference to the MTRNN,
enabling the representation of temporal uncertainty in its
latent dynamics. However, because the PV-RNN is a model
of dynamic predictive coding, it requires gradient-based
optimization with backpropagation through time (BPTT)
to realize variational inference. This limitation prevents its
practical application in real-world environments, including
action generation by robots.

In contrast, our proposed MTRSSM combines the deter-
ministic state dynamics of the MTRNN with the stochastic
state dynamics of the RSSM. Additionally, we leverage
amortized inference, similar to the RSSM, to realize vari-
ational inference, thereby eliminating the need for gradient-
based optimization with BPTT. This leads to improved
time efficiency compared with the PV-RNN, making our
approach more suitable for practical applications in real-
world environments.

III. METHODS

A. World Model
The world model in this study comprises our proposed

MTRSSM, which is used as a latent dynamics model, as
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Fig. 1. The world model employed in this study. The model comprises our
proposed MTRSSM, which is used as a latent dynamics model, as well as
an image encoder and an image decoder. The higher level of the MTRSSM
changes slowly while the lower level changes quickly. Generating video
predictions without external inputs can be realized by “latent imagination”
using the priors of the MTRSSM, as shown in the figure after time step t.
The latent state zt is divided into the lower-level latent state zlt and the
higher-level latent state zht , where the latent state in each level is the
concatenation of the deterministic state dt and the stochastic state st.

well as an image encoder and an image decoder (Fig. 1).
The formulation of the MTRSSM is described below.

The MTRSSM comprises a lower-level RSSM with faster
dynamics and a higher-level RSSM with slower dynamics.
Each level has its own latent states, which are concatenations
of a deterministic state and a stochastic state. Specifically,
at time step t ∈ [1, T ], the latent state zt is divided into the
lower-level latent state zlt and the higher-level latent state zht ,
where the latent state in each level is the concatenation of
the deterministic state dt and the stochastic state st. Using
this architecture, we expect that the lower level learns to
represent primitive patterns and their uncertainty, while the
higher level learns to capture combinations of the primitive
patterns and their uncertainty.

The deterministic state dt is described by the following
deterministic function fθ based on the hidden state dynamics
of the MTRNN:

ut =

(
1− 1

τ

)
ut−1 +

1

τ
(Wxdxt +Wdddt−1 + bd)

dt = tanh(ut),

(1)

where ut is the internal state before activation, xt is the
input state, and τ is the time constant. A larger value of τ
corresponds to slower changes in the state. In this study, we
set the time constant for the lower level as τ l = 8, and that
for the higher level as τh = 32.

The stochastic state st is represented by a set of one-hot
vectors sampled from the prior or posterior with categorical
distribution. The lower-level and higher-level priors, plθ and
phθ , are predicted from the deterministic state in the same
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level, dlt and dht , respectively. In contrast, the lower-level
posterior qlθ is inferred from the observation ot and the
deterministic state dlt in the same level, while the higher-
level posterior qhθ is inferred from both the lower-level and
higher-level deterministic states, dlt and dht , respectively.

The image encoder uses a convolutional neural network
(CNN) to embed a high-dimensional visual observation ot
into the low-dimensional feature state. The decoder uses a
transposed CNN to reconstruct the visual observation as ôt
from the lower-level latent state zlt.

In summary, the MTRSSM components are:

Model state: zt =
(
zlt, z

h
t

)
zlt =

(
dlt, s

l
t

)
zht =

(
dht , s

h
t

)
Lower Layer

Deterministic state: dlt = f lθ
(
zlt−1, s

h
t−1, at−1

)
Prior: ŝlt ∼ plθ

(
ŝlt | dlt

)
Approximate Posterior: slt ∼ qlθ

(
slt | dlt, ot

)
Higher Layer

Deterministic state: dht = fhθ
(
ẑht−1

)
Prior: ŝht ∼ phθ

(
ŝht | dht

)
Approximate Posterior: sht ∼ qhθ

(
sht | dlt, dht

)
.

(2)
Note that the higher level does not have any observation
or action inputs. The only input from the lower level to
the higher level is the deterministic state for inferring the
approximate posterior.

All model components are jointly trained in order to min-
imize the following negative value of the modified evidence
lower bound objective (ELBO), similar to the VAE [19],
RSSM [2], [3], and CW-VAE [4]:

L (θ) =
T∑
t=1

Eqlθ(zlt|at−1,ot)qhθ (z
h
t )
[Lrecon (θ) + LKL (θ)] ,

Lrecon (θ) = − log pθ
(
ot | zlt

)
=

[
(ôt − ot)

2
+ ϵ2

] 1
2

,

LKL (θ) = βlDKL

[
qlθ

(
slt | dlt, ot

)
|| plθ

(
ŝlt | dlt

)]
+ βhDKL

[
qhθ

(
sht | dlt, dht

)
|| phθ

(
ŝht | dht

)]
,

(3)
where DKL denotes the Kullback–Leibler (KL) divergence,
and βl and βh are the weights of the KL divergence
terms. For the reconstruction loss Lrecon(θ), we assume the
Charbonnier loss [20], [21]. In this study, we set ϵ = 10−3,
βl = 1, and βh = 0.1.

B. Behavior Cloning Policy

The policy employed in this study is a simple behavior
cloning (BC) policy that learns to mimic expert demon-
strations. This BC policy generates actions from the latent
states of the world model, and the generated actions are
utilized for the latent imagination. To reduce overlaps [8],
different action patterns are sparsely encoded by categorical
distributions through softmax transformation [22], [23]. The

Fig. 2. Experimental environment. A dual-arm robot named Rakuda-2
performed long-horizon tasks involving the manipulation of multiple objects.

gripper state (opening or closing) is represented by binary
encoding. We use a single-layer CTRNN to generate smooth
actions. For the time constant, we set a relatively smaller
value τBC = 4 compared with that of the RSSMs in order to
prevent inheriting past information in the policy. The policy
is described as follows:(

harm
t , hgripper

t

)
= MLPψ

(
CTRNNψ

(
zht , z

l
t

))
âarm
t = softmax (harm

t )

âgripper
t = sigmoid

(
hgripper
t

)
.

(4)

In practice, the policy predicts the action five steps ahead
at+5 from the current latent state zt. The predicted actions
are appended to a buffer and utilized as the action input after
five time steps.

The BC policy is trained to minimize the following cross
entropy loss:

L (ψ) = βarmLarm (ψ) + βgripperLgripper (ψ)

Larm (ψ) =

T∑
t=1

∑
arm

−ãarm
t log (âarm

t )

Lgripper (ψ) =

T∑
t=1

∑
gripper

−ãgripper
t log

(
âgripper
t

)
,

(5)

where ãt denotes expert demonstrations, and βarm and βgripper

are the weights of the arm and gripper losses, respectively.
In this study, we set βarm = 1 and βgripper = 10.

IV. EXPERIMENTAL SETUP

A. Task Setting

To evaluate our proposed model, we designed a long-
horizon robotic object-manipulation task that emulates a
cooking procedure. In the task space shown in Fig. 2, a
dual-arm robot named Rakuda-2, which was developed by
ROBOTIS Japan, faces a table on which there are various
objects, including a pot, its lid, a stove, red and blue balls,
cups, and upturned bowls.
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(1)

(2) (3)

(4) (5) (6) (7)

Fig. 3. Flow of a long-horizon robotic object-manipulation task. The robot sequentially manipulates multiple objects. The task includes a probabilistic
branch after step (1), which represents temporal uncertainty. Additionally, the visual scene after step (4) is identical to the initial scene because of the
temporal dependency of the task.

In this task, the robot was required to manipulate the
objects from an initial fixed state to a final fixed state
while considering both temporal uncertainty and temporal
dependency. Specifically, the robot was required to (1) pick
up the pot lid and place it on the stove, (2) pick up the red
(or blue) cup and put the red (or blue) ball inside the cup in
the pot, (3) pick up the blue (or red) cup and put the blue
(or red) ball inside the cup in the pot, (4) pick up the pot lid
and place it on the pot, (5) pick up the pot and place it on
the stove, (6) pick up the red cup and place it on the front
of the table, and (7) pick up the blue cup and place it on the
front of the table (Fig. 3). After the first step, the robot was
allowed to probabilistically decide the order for manipulating
the red and blue cups. This required the robot to recognize
the probabilitiy of the dynamics transition depending on the
action. Moreover, the visual scene after the fourth step was
identical to the initial scene. This required the robot to retain
a memory of the completed steps in order to decide the
subsequent actions. We consider that the world model with
our proposed MTRSSM efficiently captures and represents
both the temporal uncertainty and temporal dependency.

For the training of the world model and BC policy, we
collected demonstration data by controlling the robot in
a leader–follower manner. Specifically, 6-degree-of-freedom
(DoF) arms, 1-DoF grippers, and a 1-DoF torso (yaw di-
rection) were controlled. To fix the view from the camera
mounted on the head, the head yaw direction was automat-
ically controlled to face the opposite direction of the torso
yaw direction.

B. Training Details

We collected 50 sets of demonstration data containing
the total time-series data of 15-dimensional joint angles as
actions and 64×48×3-dimensional camera images as visual
observations. Half of the sets are for the upper flow in Fig.
3, and the remaining sets are for the lower flow. One set of
demonstration data from each flow was used for validation,
and the rest were used for training. Each set of demonstration
data contains T = 1, 000 time steps, and the entire steps were
used to train the world model and BC policy. The learning
rate for both the world model and BC policy was set to 0.01,
and AdaBerief [24] was used for parameter optimization.
The world model and BC policy were trained for 4,000 and
10,000 epochs, respectively. For testing, we used the world

model and BC policy at the epoch with the lowest validation
loss throughout the epochs.

C. Baselines

We compared our proposed MTRSSM with three other
models: the original RSSM, a hierarchical RSSM (H-RSSM),
and a clockwork RSSM (CW-RSSM). The architecture of the
original RSSM is the same as that used in the DreamerV2
[3]. The architecture of the H-RSSM is the same as that of
the MTRSSM, except that it employs gated recurrent units
(GRUs) [25] for the deterministic function fθ at each level,
instead of Eq. 1. The architecture of the CW-RSSM is similar
to that of the H-RSSM, except that the higher level of the
CW-RSSM is updated at a slower, fixed interval compared
with the lower level. Specifically, the higher level is updated
every eight steps. This update mechanism is derived from the
CW-VAE [4]. The architecture of the encoder and decoder of
the world model as well as the BC policy and the number of
stochastic states are shared across all the models. The number
of deterministic states (MTRNN or GRU) is adjusted so that
all models have a nearly equal number of parameters for a
fair comparison.

D. Video Prediction Using Latent Imagination

To compare the representation capability of the proposed
model and baselines, we generated video predictions using
latent imagination. During latent imagination, visual observa-
tions and actions from a demonstration were provided to each
model for the initial 10 steps. Using the last state inferred
from the approximate posterior, the subsequent state and
action were predicted from the prior and policy, respectively.
Predicted states and actions were then utilized to predict
subsequent states and actions. In addition, by providing the
predicted states to the image decoder, we were able to obtain
video predictions without any external inputs after the initial
10 steps. We used the two hold-out (validation) data for the
initial 10 steps and generated five video predictions from
each by sampling stochastic states.

V. RESULTS AND DISCUSSION

A. Video Prediction

We computed the structural similarity index (SSIM; higher
is better), peak signal-to-noise ratio (PSNR; higher is better),
and learned perceptual image patch similarity (LPIPS; lower
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TABLE I
QUANTITATIVE EVALUATION OF VIDEO PREDICTIONS BY MTRSSM

AND BASELINES.

Model SSIM PSNR LPIPS
MTRSSM (ours) 0.458 14.321 0.138
RSSM 0.371 13.119 0.182
H-RSSM 0.334 12.058 0.205
CW-RSSM 0.403 13.509 0.165

is better) [26] for each of the 10 video predictions and each
of the 50 demonstrations. These metrics were then averaged
across the 500 combinations and 1,000 time steps. The
results are summarized in Table I. Our proposed MTRSSM
outperformed all of the baselines in all evaluation metrics. At
the same time, the H-RSSM, a hierarchical extension of the
RSSM, performed worse than the RSSM on all evaluation
metrics. This suggests that the simple introduction of a
hierarchical structure did not enable the higher level to learn
useful representations for long-term video predictions. In
contrast, the CW-RSSM outperformed the RSSM, indicating
that the slow update mechanism of the higher level enabled
the model to retain the long context. The crucial difference
between the proposed MTRSSM and the CW-RSSM is
their update mechanism. Specifically, the higher level of the
MTRSSM changes slowly in a continuous manner depending
on its time constant, while that of the CW-RSSM changes
slowly in a more discrete manner depending on its update
interval. This difference in the higher level dynamics might
have affected the representation ability of each model.

We visualized the video predictions of the MTRSSM with
the best and worst LPIPS, as well as those of the baselines
with the worst LPIPS in Fig. 4 along with the ground truth.
Although the best predictions of the MTRSSM captured
detailed parts such as small balls, the worst predictions
of the MTRSSM failed to accurately represent these parts,
and some images are distorted. However, regardless of the
best and worst predictions, the MTRSSM succeeded in
representing the overall flow of the long-horizon task. The
RSSM produced similar images throughout all time steps,
which can be attributed to its difficulty in representing long-
term temporal dependency. Similarly, the H-RSSM produced
similar images until around time step 200, after which
it started producing distorted images after time step 300.
The CW-RSSM successfully maintained the task flow until
around time step 600 but then produced the pot lid in unstable
positions thereafter.

These quantitative and qualitative results indicate that the
introduction of hierarchical levels with continuous multiple-
timescale dynamics enables the learning of long-term tem-
poral dependency.

B. Analysis of Latent State Representation

To analyze how temporal uncertainty and temporal depen-
dency are represented in the MTRSSM, we visualized the
stochastic state dynamics of the higher level and the deter-
ministic state dynamics of both the higher and lower levels

as well as the deterministic state dynamics of the RSSM for
comparison. Note that for this analysis, we used the states
inferred from the approximate posterior by providing visual
observations and actions from demonstrations. The results
are shown in Fig. 5. In the figure, a subtle yet noteworthy
representation can be observed, particularly in the first row
with (“dim 0”). Around time step 200 (indicated by the red
arrows in the figure), two classes (“0” and “2”) are gray,
indicating that one of them can be sampled. This time step
corresponds to the second step of the task flow, where the
robot probabilistically decides the order for manipulating the
red and blue cups. Further analysis revealed that the sampled
stochastic latent states at this point significantly influenced
the decision regarding the manipulation order in the second
step. Thus, the higher-level stochastic latent states serve as
a representation of temporal uncertainty in the long-horizon
task.

The deterministic state dynamics of the MTRSSM and
RSSM were analyzed using principal component analysis
(PCA), as illustrated in Fig. 6. The higher-level deterministic
states of the MTRSSM in Fig. 6a exhibit a branching pattern
around time step 200 and converge between time steps 400
and 500. These time steps correspond to the branch point in
the task structure depicted in Fig. 3. Moreover, despite having
the same visual observations, the states at the initial time step
and at time step 700 are significantly different. Meanwhile,
the lower-level deterministic states of the MTRSSM in Fig.
6b display a similar pattern at these time steps. Similarly, the
deterministic states of the RSSM in Fig. 6c also demonstrate
a similar pattern at these steps. These findings indicate that
the deterministic states of the lower level in the MTRSSM
and those of the RSSM are unable to differentiate the same
visual observations with different contexts. Consequently,
we can conclude that the higher-level deterministic states of
the MTRSSM plays a crucial role in maintaining long-term
temporal dependency.

VI. CONCLUSIONS

In this study, we presented the MTRSSM, a hierarchical
extension of the conventional RSSM, aimed at learning
long-horizon robotic tasks with temporal uncertainty and
temporal dependency. The proposed model is characterized
by its hierarchical latent representations, consisting of deter-
ministic states with continuous multiple-timescale dynamics
and stochastic states. The experimental results—specifically
the video predictions generated by the latent imagination—
demonstrated that our proposed MTRSSM outperformed the
other baselines. These findings indicate the superiority of our
approach in capturing and predicting complex long-term task
dynamics. Furthermore, analysis of the latent representations
of the MTRSSM revealed that temporal uncertainty and tem-
poral dependency in long-horizon tasks are represented by
higher-level stochastic and deterministic states, respectively.
In future work, we plan to evaluate the capability of our
proposed MTRSSM for real-world robot control.
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Fig. 4. Video predictions through latent imagination by our proposed MTRSSM and the baselines. The upper row shows an example of ground truth
images collected during human demonstrations. From the subsequent row, the video predictions of the MTRSSM with the best and worst LPIPS, and those
of the RSSM, H-RSSM, and CW-RSSM with the worst LPIPS are shown. To generate these video predictions, visual observations and actions from a
demonstration were provided to each model for the initial 10 steps and images for the subsequent steps were generated through latent imagination without
any external inputs.

Fig. 5. Higher-level stochastic latent state dynamics corresponding to the
upper flow (left) and the lower flow (right) in Fig. 3. At each time step,
in each dimension, one of the four classes was randomly selected based
on the distribution represented by grayscale, where white represents higher
probability and black represents lower probability. In “dim 0,” around time
step 200 (indicated by the red arrows) two classes (“0” and “2”) are gray,
indicating that one of them can be probabilistically sampled at this moment.
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