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ABSTRACT

Ensuring long-term fairness is crucial when developing automated decision mak-
ing systems, specifically in dynamic and sequential environments. By maximizing
their reward without consideration of fairness, AI agents can introduce disparities
in their treatment of groups or individuals. In this paper, we establish the con-
nection between bisimulation metrics and group fairness in reinforcement learn-
ing. We propose a novel approach that leverages bisimulation metrics to learn
reward functions and observation dynamics, ensuring that learners treat groups
fairly while reflecting the original problem. We demonstrate the effectiveness
of our method in addressing disparities in sequential decision making problems
through empirical evaluation on a standard fairness benchmark consisting of lend-
ing and college admission scenarios.

1 INTRODUCTION

As machine learning continues to shape decision making systems, understanding and addressing its
potential risks and biases becomes increasingly imperative. This concern is especially pronounced in
sequential decision making, where neglecting algorithmic fairness can create a self-reinforcing cycle
that amplifies existing disparities (Jabbari et al., 2017; D’Amour et al., 2020). In response, there is a
growing recognition of the importance of leveraging reinforcement learning (RL) to tackle decision
making problems that have traditionally been approached through supervised learning paradigms, in
order to achieve long-term fairness (Nashed et al., 2023). Yin et al. (2023) define long-term fairness
in RL as the optimization of the cumulative reward subject to a constraint on the cumulative utility,
reflecting fairness over a time horizon.

Recent efforts to achieve fairness in RL have primarily relied on metrics adopted from supervised
learning, such as demographic parity (Dwork et al., 2012) or equality of opportunity (Hardt et al.,
2016b). These metrics are typically integrated into a constrained Markov decision process (MDP)
framework to learn a policy that adheres to the criterion (Wen et al., 2021; Yin et al., 2023; Satija
et al., 2023; Hu & Zhang, 2022). However, this approach is limited by its requirement for complex
constrained optimization, which can introduce additional complexity and hyperparameters into the
underlying RL algorithm. Moreover, these methods make the implicit assumption that stakeholders
are incorporating these fairness constraints into their decision making process. However, in reality,
this may not occur due to various external and uncontrollable factors (Kusner & Loftus, 2020).

In this work, we highlight a surprising connection between group fairness in RL and the bisimula-
tion metric (Ferns et al., 2004; 2011), an equivalence metric that captures the behavioral similarity
between states. We show that minimizing the bisimulation metric between members of different
groups results in demographic parity fairness. Building upon this insight, we propose a practical al-
gorithm that, guided by the bisimulation metric, adjusts the reward and observation dynamics (how
the observations change in the environment) to achieve long-term fairness in RL.

By modifying the observable MDP—the rewards and the observations seen by the agent—we show
that unconstrained policy optimization inherently satisfies the fairness constraint in the original,
unmodified MDP. This concept is analogous to real-world practices, where regulatory frameworks
are established to influence decision making processes—for instance, governments impose lending
regulations on banks to ensure fairness and equity (FDIC, 2005). A significant advantage of our
method is that it does not require modifying the underlying RL solver. This allows us to lever-
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age the strengths of deep RL while avoiding the complexities and intricacies associated with other
constrained optimization methods used to achieve fairness in RL.

Through comprehensive evaluation on a standard fairness benchmark (D’Amour et al., 2020), widely
used in the literature (Xu et al., 2024; Deng et al., 2024; Hu et al., 2023; Yu et al., 2022), we show
that our unconstrained approach outperforms strong baselines for long-term fairness. Our code is
submitted in the supplemental material and will be publicly available. Our contributions are:

1. Establishing the connection between bisimulation metrics and group fairness in RL.
2. Developing a novel method that allows unconstrained optimization of a policy to automat-

ically achieve demographic parity fairness.
3. Implementing a practical algorithm, guided by bisimulation metrics, that when coupled

with an unmodified RL algorithm, achieves fairness on a standard benchmark.

Ultimately, the connection to bisimulation metrics offers a novel unconstrained perspective on
achieving fairness in RL, and we establish the initial foundations in this direction.

2 BACKGROUND

We consider an MDP defined by a 5-tuple (S,A, τa, R, γ), with state space S, action space A,
transition dynamics τa : S ×A → Dist(S), where Dist(S) is the probability simplex over S, re-
ward function R : S×A → R, and discount factor γ ∈ (0, 1]. The Value function V π(st) =
Eπ

[∑∞
k=0 γ

kR(St+k, At+k) | St = s
]

denotes the expected return from s under policy π. The
goal is to find a policy π : S→Dist(A) that maximizes the expected return Jπ = Es∼ρπ(s)[V π(s)].

The bisimulation relation for MDPs (Desharnais et al., 2002; Givan et al., 2003) captures the concept
of behavioral similarity and is defined below.

Definition 1 (Bisimulation). A bisimulation relation on an MDP M is an equivalence relation
B ⊆ S × S such that if siBsj holds for si, sj ∈ S, the following properties are true:

R(si, a) = R(sj , a) and τa(C|si) = τa(C|sj), ∀a ∈ A,∀C ∈ SB
where SB is the state partition of equivalence classes defined by B. Two states si, sj∈S are bisimilar
if there exists a bisimulation relation B such that (si, sj) ∈ B. The largest B is denoted as ∼.

The bisimulation relation is a rigid concept of state equivalence as it requires the exact equivalence of
the reward and the transition probabilities for any pair of bisimilar states. Instead, the bisimulation
metric (Ferns et al., 2004; 2011) measures this equivalence relation as an approximation and is
defined as an operator F : M → M, where M is the set of all pseudometrics on S, by:

F(d)
(
si, sj

)
= max

a∈A

(∣∣R(si, a)−R(sj , a)
∣∣+ γW1(d)(τa(·|si), τa(·|sj))

)
(1)

where d ∈ M is a pseudometric, W1 is the 1-Kantorovich (Wasserstein) metric measuring the dis-
tance between the transition probabilities. Ferns et al. (2004; 2011) show that F has a unique fixed
point d∼ ∈ M that is a bisimulation metric. F can be iteratively used to compute d∼, starting from
an initial state d0 and applying dn+1 = F(dn) = Fn+1(d0). Ferns et al. (2011) also show that the
bisimulation metric provides an upper bound on the difference between the optimal value functions:

|V ∗(si)− V ∗(sj)| ≤ d∼(si, sj) (2)

Bisimulation relations require equivalence under all actions, even actions that may lead to negative
outcomes, whereas we care about optimal actions. Castro (2020) defines the on-policy bisimulation
relation, referred to as the π-bisimulation relation, that takes the behavioral policy into account when
measuring behavioral similarity by considering the policy-induced dynamics and reward:

Definition 2 (π-Bisimulation). A π-bisimulation relation on an MDP M is an equivalence relation
Bπ ⊆ S × S such that if siBπsj holds for si, sj ∈ S, then the following properties are true:

Rπ(si) = Rπ(sj) and τπ(C|si) = τπ(C|sj), ∀C ∈ SBπ

where Rπ(s) =
∑
a∈A π(a|s)R(s, a), τπ(C|s) =

∑
a∈A π(a|s)

∑
s′∈C τa(s

′|s), and SBπ is the
state partition of equivalence classes defined by Bπ .

2
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Building on the work of Ferns et al. (2004; 2011), Castro (2020) defines the operator Fπ as:

Fπ(d)
(
si, sj

)
=

∣∣Rπ(si)−Rπ(sj)
∣∣+ γW1(d)

(
τπ(·|si), τπ(·|sj)

)
, (3)

where F has a least fixed point dπ∼ that is also the π-bisimulation metric. Note that compared to
Equation (1), the maxa∈A operator is dropped because we are considering actions according to π.
Moreover, Castro (2020) obtains the upper bound on the difference between the value functions as:

|V π(si)− V π(sj)| ≤ dπ∼(si, sj) (4)

3 PROBLEM FORMULATION

Fairness in ML entails ensuring unbiased decision making, and is generally categorized into individ-
ual and group fairness. While individual fairness aims to treat individuals similarly, group fairness
focuses on ensuring that the distribution of outcomes is similar across different groups (Mehrabi
et al., 2021). In this work, we specifically adopt group fairness, where a group is defined as:
Definition 3 (Group). A group is a population associated with the sensitive attribute g ∈ G.

In the above definition, a sensitive attribute can include factors such as race, gender, sexual orienta-
tion, etc. We further make the following assumptions regarding the sensitive attributes:
Assumption 1. Sensitive attributes G are observable to the decision making algorithm.
Assumption 2. Sensitive attributes G and group memberships remain constant during training.

These assumptions are commonly made in prior works on fairness in RL (Jabbari et al., 2017; Wen
et al., 2021; Satija et al., 2023; Yin et al., 2023; Xu et al., 2024). Notably, prior works on fairness
have showed that removing sensitive attributes from the decision making process, also known as
“fairness through unawareness”, is largely ineffective (Pedreshi et al., 2008; Barocas et al., 2023).
Building upon the assumptions above, we define group-conditioned MDPs as:
Definition 4 (Group-conditioned MDP). A group-conditioned MDP is a 6-tuple:

Mgroup = (S,A,G, τa : S ×A× G → Dist(S), R : S ×A× G → R, γ)

where S is the state space, A is the action space, and G represents the sensitive attribute space.
The group-specific transition dynamics are denoted by τa(s

′ | s, g), and Dist(S) is the probability
simplex over S. The reward function specific to each group is R(s, a, g), and γ ∈ (0, 1] is the
discount factor. The stationary policy is represented by π(a|s, g), and the group-specific value
function is defined as: V π(s, g) = Eπ

[∑∞
k=0 γ

kR(St+k, At+k, g) | St = s,G = g
]

for s ∈ S and
g ∈ G. The return of the policy is the expected return, given by: Jπ = Es,g∼ρπ(s,g)[V π(s, g)] where
s, g are sampled from the specific stationary state-group distribution ρπ(s, g) according to π.

We use demographic parity (Dwork et al., 2012; Satija et al., 2023) as the group fairness definition.
Informally, demographic parity requires that different groups should have similar returns. Formally,
this fairness constraint is defined by Satija et al. (2023) as follows:
Definition 5 (Demographic parity fairness in RL (Satija et al., 2023)). For some ϵ ≥ 0, denoting
the acceptable margin of error, a policy π satisfies demographic parity fairness at state s if:

|Jπ(s, gi)− Jπ(s, gj)| ≤ ϵ, ∀gi, gj ∈ G.

The demographic parity notion aims to prevent disparate impact, where one group experiences sig-
nificantly different outcomes than another. As an example, we can consider a credit scoring model
that provides similar approval rates for different racial, gender, or socioeconomic groups. We refer
to Satija et al. (2023) for a detailed discussion on the applicability and limitations of Definition 5.

4 BISIMULATION METRICS FOR LONG-TERM FAIRNESS IN RL

Our overarching goal is to develop a method that allows unconstrained policy optimization to in-
herently satisfy the fairness constraint. Rather than imposing the demographic parity constraint of
Definition 5 or other fairness measures during policy optimization, we aim to adjust the reward

3
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and observation dynamics of the MDP guided by the bisimulation metric. To achieve this, we first
establish the connection between bisimulation metrics and the demographic parity fairness in RL.

Our objective is to make the group-conditioned MDP from Definition 4 behave as closely as possi-
ble for each group under a group-conditioned behavioral policy π(a|s, g) over a long-term period.
The π-bisimulation relation (Definition 2) is a natural fit for this goal as it essentially captures the
behavioral similarity induced by a given policy. To that end, we develop a conditional form of the
π-bisimulation relation (Castro, 2020) that takes the sensitive attributes into account:

Definition 6 (Group-conditioned π-Bisimulation). A group-conditioned π-bisimulation relation on
an MDP Mgroup is an equivalence relation Bπ

group ⊆ S×G → S×G such that if (si, gi)Bπ
group(sj , gj)

holds for (si, gi), (sj , gj) ∈ S × G, then the following properties are true:

Rπ(si, gi) = Rπ(sj , gj) and τπ(C|si, gi) = τπ(C|sj , gj), ∀C ∈ SBπ
group

where Rπ(s, g) =
∑
a∈A π(a|s, g)R(s, a, g), τπ(C|s, g) =

∑
a∈A π(a|s, g)

∑
s′∈C τa(s

′|s, g), and
SBπ

group
is the partition of equivalence classes on the Cartesian product S × G defined by Bπ

group.

Building on definitions of Castro (2020), we extend the operator Fπ to a group-conditional variant:

Fπ
group(d)(si, gi), (sj , gj)= |Rπ(si, gi)−Rπ(sj , gj)|+ γW1(d)(τ

π(s′i|si, gi), τπ(s′j |sj , gj)) (5)

Theorem 1. Fπ
group as defined in Equation (5) has a least fixed point dπgroup∼, and dπgroup∼ is a group-

conditioned π-bisimulation metric.

The proof is in Appendix A.1 and consists of a reduction to the definitions of Castro (2020). The key
idea allowing us to perform a reduction is that the sensitive attributes g ∈ G remain constant and have
deterministic transitions. Similar to our work, the conditional form of π-bisimulation metrics has
also been explored by Hansen-Estruch et al. (2022) in the context of goal-conditioned RL. Hansen-
Estruch et al. (2022) used bisimulation for goal inference for robotic manipulation tasks. Here, we
are defining the conditional form based on the sensitive attribute space which is not a subset of the
state space, unlike the goal space in goal-conditioned RL.

Theorem 2. For any two state-group pairs:

|V π(si, gi)− V π(sj , gj)| ≤ dπgroup∼((si, gi), (sj , gj)) (6)

The proof is in Appendix A.1 and follows the same logic as for Theorem 1. By comparing the result
of Theorem 2 with the demographic fairness from Definition 5, we derive the following result:

Theorem 3. Minimizing the bisimulation metric dπgroup∼((si, gi), (sj , gj)) results in demographic
fairness as defined in Definition 5 between the two state-group pairs.

The proof is in Appendix A.2 and is based on the convergence guarantees of the π-bisimulation met-
ric. To achieve group fairness, we propose to reduce the group-conditioned π-bisimulation metric
between state-group pairs for different groups in expectation over the stationary state distribution
induced by the behavioral policy π(a|s, g) by adjusting the reward function Jrew. and observation
dynamics Jdyn.. More formally, we propose to minimize:

J = Eρπ(s,g)
[
|Rπ(si, gi)−Rπ(sj , gj)|︸ ︷︷ ︸

Jrew.

+ γW1(d
π
group∼)(τ

π(s′i|si, gi), τπ(s′j |sj , gj))︸ ︷︷ ︸
Jdyn.

]
(7)

where ρπ(s, g) is the stationary state-group distribution under the policy π. Notably, we use quantile
matching to select state pairs from the group distributions. Quantile matching is a well-known statis-
tical technique to map quantiles of two or more different populations for statistical analysis (McKay
et al., 1979). In this context, we compare samples from corresponding quartiles of the population
across different groups. This approach is essential because, in many cases, the state distributions of
the groups may have little to no overlap. As we can split the expectation of Equation (7) into two
terms J = Jrew. + Jdyn., in subsequent sections, we outline practical algorithms for optimization of
each term alongside the policy optimization.

4
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4.1 BISIMULATION-DRIVEN OPTIMIZATION OF THE REWARD FUNCTION

We first describe our approach for optimization of the reward function by minimizing Jrew.:

Jrew. = Esi,sj ,gi,gj∼ρπ(s,g) [|R
π(si, gi)−Rπ(sj , gj)|] (8)

This approach is closely related to bi-level optimization methods for reward shaping (Hu et al.,
2020), however, the novelty of our method is that the reward shaping procedure is guided by the
π-bisimulation metric. We assume the reward function R(s, a, g) consists of the following terms:

R(s, a, g) = Roriginal(s, a) + αRcorrection
ϕ (s, a, g) (9)

where the first term is defined by the original MDP and is fixed; besides, this reward term is often not
conditioned on the group membership. The second term is a learnable group-conditioned function,
parameterized by ϕ, that is used as a correction for the original reward, and α is a scalar weight.

Since modifying the reward function during the RL training may result in instability, our method
learns the reward correction term outside the policy optimization loop. We take a sampling-based
approach for minimizing Jrew.; first, we collect a dataset of trajectories using the policy π, then we
use Equation (8) to estimate the discrepancy between the reward functions among different state-
group pairs using quantile matching. Consequently, we optimize the estimated loss with respect to
the learnable reward parameters ϕ using a gradient-based optimizer.

4.2 BISIMULATION-DRIVEN OPTIMIZATION OF THE OBSERVATION DYNAMICS

We now describe our approach for optimization of the observation dynamics by minimizing Jdyn.:

Jdyn. = Esi,sj ,gi,gj∼ρπ(s,g)
[
γW1(d

π
group∼)(τ

π(s′i|si, gi), τπ(s′j |sj , gj))
]

(10)

Critically, these modifications are carried out by the agent and only affect the observation space,
leaving the underlying dynamics of the environment unchanged. In this approach, we assume that
the observation dynamics has modifiable parameters ω, examples of which are provided in Sec-
tion 5. Notably, many real-world problems allow these types of modifications to the observations;
for instance, a bank can consider to override the credit score of a loan applicant under certain cir-
cumstances (FDIC, 2005). Similarly to Section 4.1, we take a sampling-based approach for mini-
mizing Jdyn. while ensuring the stability of training. First, we collect a dataset of trajectories using
the policy π, then we train a group-conditioned dynamics model Tψ(s′|s, a, g) that outputs a nor-
mal distribution over the next state. For an efficient method of evaluating the Kantorovich metric in
Equation (10), we follow Zhang et al. (2020) and substitute the distance measure with 2-Wasserstein
(W2) which has an analytical solution for normal distributions:

W2

(
N (µ1, σ1),N (µ2, σ2)

)2
= ∥µ1 − µ2∥22 + ∥σ

1
2
1 − σ

1
2
2 ∥2F (11)

where N (µ, σ) is a normal distribution, and ∥ · ∥F is the Frobenius norm. Since Jdyn. is not dif-
ferentiable with respect to the adjustable parameters ω in the MDP observation dynamics, we use
gradient-free optimization methods to minimize this loss function. Note that unlike Section 4.1, we
need to recollect the dataset of trajectories when the observation dynamics is modified.

4.3 BISIMULATOR: O PTIMIZATION OF THE REWARD FUNCTION AND OBSERVATION
DYNAMICS

We can combine the algorithms outlined in Sections 4.1 and 4.2 to simultaneously optimize the
reward function and observation dynamics of a given group-conditioned MDP so that its behaves
π-bisimilarly for all groups, with the ultimate goal of achieving demographic fairness. The pseudo-
code of our proposed method, referred to as the Bisimulator, is described in Algorithm 1. We can use
any RL algorithm as the RL solver (L15), and we experiment with PPO (Schulman et al., 2017) and
DQN (Mnih et al., 2015). We utilize Adam (Kingma & Ba, 2014) as the gradient-based optimizer of
Jrew. (L6), and use One-Plus-One (Juels & Wattenberg, 1995; Droste et al., 2002) as the gradient-free
optimizer of Jdyn. (L12). Additional implementation details are in Appendix D.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Bisimulator: Optimization of the Reward Function and Observation Dynamics
Inputs: Reward optimization steps M , dynamics optimization steps N , learning steps K, and scalar weight α.
1: Initialize policy πθ(a|s, g), dynamics model Tψ(s′i|si, ai, gi), and reward function Rϕ(s, a, g).
2: while not done do
3: Collect dataset D of trajectories using πθ(a|s, g) and the environment
4: for optimization iteration m = 1 to M do ▷ Optimize the learnable reward function Rϕ(s, a, g)
5: Estimate Jrew ≈ ED [|Rorig.(si, ai) + αRϕ(si, ai, gi)−Rorig.(sj , aj)− αRϕ(sj , aj , gj)|]
6: ϕ← argmin Jrew. ▷ Gradient-based optimization
7: end for
8: for optimization iteration n = 1 to N do ▷ Optimize parameters ω of the observation dynamics
9: Collect dataset D of trajectories using πθ

10: Train the dynamics model Tψ(s′|s, a, g) using samples from D
11: Estimate Jdyn. ≈ ED

[
γW2(Tψ(s′i|si, ai, gi), Tψ(s′j |sj , aj , gj))

]
▷ Equation (11)

12: ω ← argmin Jdyn. ▷ Gradient-free optimization
13: end for
14: for learning iteration k = 1 to K do ▷ Optimize the policy
15: Update policy πθ(a|s, g) using an RL algorithm
16: end for
17: end while

5 EXPERIMENTAL RESULTS

Our experimental setup consists of sequential problems where fair decision making is crucial. We
have utilized and extended a standard and well-established benchmark in this domain (D’Amour
et al., 2020). Our aim is to showcase the versatility and applicability of our method, regardless of
the specific fairness measures used, and importantly, without explicitly imposing those constraints.

As modifying the observation dynamics may not be feasible in certain real-world applications, we
evaluate two variants of our method: the standard variant that optimizes both the reward and ob-
servation dynamics (Bisimulator), and the variant that only optimizes the reward (Bisimulator -
Reward only). Furthermore, to showcase the versatility of our method across various RL algorithms,
we apply Bisimulator to PPO (Schulman et al., 2017) and DQN (Mnih et al., 2015). All results are
obtained on 10 seeds and 5 evaluation episodes per seed. Notably, we conducted grid search to tune
the hyperparameters of all baselines, leading to an improvement over their original implementations.

5.1 CASE STUDY: LENDING

In this scenario, introduced by Liu et al. (2018), an agent representing the bank makes binary deci-
sions on loan applications aimed at maximizing profit. The challenge is that these decisions result
in changes in the population and their credit scores. Thus, even policies constrained to fairness
measures at each time step can inadvertently increase the credit gap over a long-term horizon.

Environment. Each applicant has an observable group membership and a discrete credit score
sampled from unequal group-specific initial distributions. At each time step, an applicant is sampled
from the population, and the agent decides to accept or reject the loan. Successful repayment raises
the applicant’s credit score, benefiting the agent financially. Defaulting, however, reduces the credit
score and the agent’s profit. The probability of repayment in Liu et al. (2018); D’Amour et al. (2020)
is a deterministic function of the applicant’s credit score, however, this oversimplifies the actual
dynamics of the problem1 Therefore, we extend upon this by adding a latent variable representing
the applicant’s conscientiousness for repayment, regardless of their credit score. In both cases, an
episode spans 10,000 steps and involves two groups, with the second group facing a disadvantage.

Finally, as an example of adjustable observation dynamics, described in Section 4.2, we utilize
credit changes that depend on the applicant’s group membership; for instance, applicants from the
disadvantaged group may receive a higher credit increase upon loan repayment, compared to those
who belong to the advantaged group. This is a realistic assumption since in practice, banks or
other regulators are allowed to override credit scores during their decision making process (FDIC,

1A common counterexample is the population that is assigned a low credit score due to limited credit history,
rather than their true likelihood of loan repayment.
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(g) Recall, group 2.
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Figure 1: Lending results. The first row (a-d) shows the lending scenario where the repayment
probability is only a function of the credit score, while the second row (e-f) presents the case where
the repayment probability is a function of the credit score and a latent conscientiousness parameter.
(a, e) Average return. (b, f) Recall for group 1. (c, g) Recall for group 2. (d, h) Credit gap measured
as the Kantorovich distance between the credit score distributions at the end of evaluation episodes.
The shaded regions show 95% confidence intervals and plots are smoothed for visual clarity.

2005). Importantly, these changes are on the agent side and only affect the observation dynamics,
leaving the underlying dynamics and the probability of repayment unchanged. In other words, these
modifications affect how the agent “sees” the world. Additional details are in Appendix B.1
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Figure 2: Credit gaps of Bisim-
ulator and PPO. Solid lines show
the gap between the actual credit
scores that govern the MDP dy-
namics, and the dashed line shows
the gap between the modified
credit scores that are observed by
the agent.

Fairness Metrics. Similarly to D’Amour et al. (2020), we use
three metrics for evaluating the long-term fairness: (a) changes
in the credit score distributions measured by the Kantorovich
distance, (b) the cumulative number of loans given to each
group, and (c) agent’s aggregated recall—tp/(tp + fn)—for
loan decisions over the entire episode horizon, that is the ratio
between the number of successful loans given to the number
of applicants who would have repaid a loan.

Baselines. We evaluate our method against: a classifier that
maximizes profits (Max-util) (Liu et al., 2018), an equality of
opportunity (EO) classifier that maximizes profits constrained
to equalized recalls (D’Amour et al., 2020), standard PPO and
DQN, Lagrangian-PPO (Lag-PPO) (Satija et al., 2023) that is
constrained to Definition 5, Advantage-regularized PPO (A-
PPO) (Yu et al., 2022) that is constrained to equalized recalls,
and ELBERT-PO (Xu et al., 2024), a recent state-of-the-art
method that is constrained to equalized benefit rates. Addi-
tional details are in Appendix D.

Results. Figure 1 and Table 1 present the results of the two lending scenarios. Our method effec-
tively achieves high recall values for both groups while narrowing down the credit gap. Notably,
Bisimulator proves to be equally effective with both PPO and DQN, highlighting the versatility of
our approach across different RL algorithms, unlike A-PPO or ELBERT-PO that are tightly coupled
with PPO due to the modifications of the advantage function with fairness constraints. As antici-
pated, the greedy baselines (PPO, DQN, Max-util) obtain high recall values for group 1, but they
fall short in achieving similar values for the disadvantaged group. A-PPO is constrained to small
recall gaps, thus it naturally achieves low recall gaps, however, its recall values and credit gap are
worse than those of Bisimulator. Bisimulator is able to match or surpass ELBERT-PO, the current
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Table 1: Lending results. Reported values are the means and 95% confidence intervals, evaluated at
the end of the training. Highlighted entries indicate the best values and any other values within 5%
of the best value.

Avg. Return Credit Gap Recall (G1) Recall (G2) Recall Gap
C

re
di

tO
nl

y

PPO + Bisimulator 3582.63 ± 53.71 2.24 ± 0.05 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00
PPO + Bisimulator (Reward only) 3568.20 ± 37.06 2.22 ± 0.04 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00
DQN + Bisimulator 3547.02 ± 47.37 2.20 ± 0.05 0.99 ± 0.02 0.99 ± 0.02 0.01 ± 0.02
DQN + Bisimulator (Reward only) 3590.27 ± 40.53 2.21 ± 0.04 0.99 ± 0.01 1.00 ± 0.00 0.01 ± 0.01
ELBERT-PO 3636.42 ± 100.64 2.28 ± 0.10 1.00 ± 0.00 0.98 ± 0.03 0.02 ± 0.03
Lag-PPO 3439.51 ± 237.18 2.52 ± 0.21 0.94 ± 0.03 0.72 ± 0.18 0.25 ± 0.16
A-PPO 3365.82 ± 433.46 2.31 ± 0.15 0.87 ± 0.16 0.84 ± 0.17 0.06 ± 0.08
PPO 3869.42 ± 113.24 3.02 ± 0.05 0.95 ± 0.01 0.42 ± 0.06 0.54 ± 0.06
DQN 3849.40 ± 133.92 3.05 ± 0.06 0.97 ± 0.02 0.40 ± 0.07 0.56 ± 0.06
Max-util 3670.66 ± 42.40 3.08 ± 0.04 0.92 ± 0.00 0.32 ± 0.01 0.60 ± 0.01
EO 3793.72 ± 99.53 2.71 ± 0.07 0.83 ± 0.03 0.73 ± 0.01 0.10 ± 0.03

C
re

di
t+

C
on

s.

PPO + Bisimulator 2116.16 ± 52.13 1.55 ± 0.04 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00
PPO + Bisimulator (Reward only) 2082.24 ± 32.54 1.52 ± 0.05 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00
DQN + Bisimulator 2085.93 ± 44.28 1.55 ± 0.03 0.99 ± 0.01 1.00 ± 0.00 0.01 ± 0.01
DQN + Bisimulator (Reward only) 2128.07 ± 28.62 1.52 ± 0.04 0.99 ± 0.01 1.00 ± 0.00 0.01 ± 0.01
ELBERT-PO 2110.56 ± 42.99 1.52 ± 0.03 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00
Lag-PPO 2007.80 ± 90.66 1.70 ± 0.19 0.95 ± 0.05 0.87 ± 0.12 0.15 ± 0.11
A-PPO 1915.77 ± 498.95 1.82 ± 0.42 0.89 ± 0.21 0.84 ± 0.22 0.05 ± 0.10
PPO 2012.98 ± 70.02 2.54 ± 0.05 0.94 ± 0.02 0.35 ± 0.07 0.60 ± 0.07
DQN 2131.00 ± 50.84 2.47 ± 0.04 0.95 ± 0.01 0.46 ± 0.05 0.49 ± 0.05
Max-util 1840.06 ± 30.92 2.56 ± 0.04 0.86 ± 0.00 0.24 ± 0.01 0.62 ± 0.01
EO 1971.54 ± 67.78 2.24 ± 0.05 0.74 ± 0.03 0.65 ± 0.01 0.09 ± 0.03

state-of-the-art method, demonstrating the effectiveness of our unconstrained approach in achiev-
ing long-term fairness. See Appendix C.1 for cumulative loans, the recall gap, and the results for
Bisimulator (Reward only).

Generally, fairness interventions come at the expense of a decrease in the return, representing the
bank’s profit. Therefore, Bisimulator and fairness aware baselines expectedly achieve lower returns
compared to the greedy ones. But interestingly, Bisimulator achieves similar or higher returns in the
scenario with conscientiousness, showing its capability in handling more challenging scenarios.

To further shed light on how Bisimulator changes the observation dynamics, Figure 2 shows the
credit gap between the groups for two sets of credit scores: the actual credit scores that govern
the MDP dynamics and applicant’s probability of repayment, and the agent-modified credit scores
that only affect the observation space. The credit gap in the latter is much smaller, indicating that
Bisimulator has indeed optimized the observation dynamics to favor fair outcomes. Interestingly,
examining the optimized parameters reveals that Bisimulator has learned to provide higher credit
increase upon loan repayment to the disadvantaged group and penalize them less upon loan default.

Finally, to demonstrate the scalability of our method to more complicated scenarios, Figure 3 and
Table 2 present the results obtained for the lending scenario with 10 groups. In such problems,
Equation (7) is evaluated and summed across all possible group pairs during a single update to
optimize the reward and/or observation dynamics.
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(b) Recall gap
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(c) Recall mean.
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Figure 3: Lending results with 10 groups. (a) Average return. (b) Recall gap, (c) Mean, and (d)
Standard deviation of the recall across all groups. The shaded regions show 95% confidence intervals
and plots are smoothed for visual clarity.
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Table 2: Lending results for 10 groups. Reported values are the means and 95% confidence intervals,
evaluated at the end of the training. Highlighted entries indicate the best values and any other values
within 5% of the best value.

Avg. Return Recall Mean Recall SD Recall Gap

PPO + Bisimulator 3918.87 ± 67.58 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
PPO + Bisimulator (Reward only) 3872.32 ± 86.35 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
ELBERT-PO 3921.36 ± 62.30 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
PPO 4127.90 ± 108.06 0.76 ± 0.03 0.15 ± 0.02 0.55 ± 0.07

5.2 CASE STUDY: COLLEGE ADMISSIONS

In this scenario, known as strategic classification (Hardt et al., 2016a), an agent representing the
college makes binary decisions regarding admissions. The challenge arises when applicants can in-
cur costs to alter their observable features, such as test scores. This manipulation disproportionately
burdens individuals from disadvantaged groups who lack the financial means to afford these costs.

Environment. Each applicant has an observable group membership and a test score, along with an
unobservable budget, both sampled from unequal group-specific distributions. At each time step,
an applicant is sampled from the population and has a probability ϵ of being able to pay a cost to
increase their score, provided their budget allows. The probability of success (e.g., the applicant
eventually graduating) is a deterministic function of the true, unmodified score, and the agent’s
goal is to increase its accuracy in admitting applicants who will succeed. Importantly, since each
applicant has a finite budget, over the episode horizon, the budget of the population decreases,
hence making the problem sequential. Note that this environment is relatively different than that in
(D’Amour et al., 2020) by having a more sequential nature due to its changing population. We study
a scenario over 1,000 steps involving two groups, with group 2 facing a disadvantage.

As an example of adjustable observation dynamics, described in Section 4.2, we can consider group-
specific costs for score modification. These adjustments can be seen as subsidized education for
disadvantaged groups, a common practice. Additional details are in Appendix B.2.

Fairness Metrics. Following D’Amour et al. (2020), we use three metrics to assess fairness: (a) the
social burden (Milli et al., 2019) that is the average cost individuals of each group have to pay to
get admitted, (b) the cumulative number of admissions for each group, and (c) agent’s aggregated
recall—tp/(tp+ fn)—for admissions over the entire episode horizon, that is the ratio between the
number of admitted successful applicants to the number of applicants who would have succeeded.

Baselines. We evaluate our method against the same RL baselines described in Section 5.2. As a
non-RL baseline, we employ a classifier that maximizes its accuracy through supervised learning,
based on (D’Amour et al., 2020). Additional details are in Appendix D.

Results. Figure 4 and Table 3 show the results of the college admission environment. Bisimulator
achieves the lowest recall gap and social burden for the disadvantaged group (group 2) compared to
other methods. Similarly to Section 5.2, Bisimulator achieves equal performance when paired with
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(b) Recall gap
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(c) Social burden, group 1
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(d) Social burden, group 2

PPO+Bisimulator DQN+Bisimulator ELBERT-PO Lag-PPO A-PPO
PPO DQN Classifier

Figure 4: College admission results. The shaded regions show 95% confidence intervals and plots
are smoothed for visual clarity.
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Table 3: College admission results. Reported values are the means and 95% confidence intervals,
evaluated at the end of the training. Highlighted entries indicate the best values and any other values
within 5% of the best value. Social burden is abbreviated as Soc. Bdn.

Avg. Return Soc. Bdn. (G1) Soc. Bdn. (G2) Recall (G1) Recall (G2) Recall Gap

PPO + Bisimulator 192.42 ± 7.05 1.32 ± 0.01 1.18 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00
PPO + Bisimulator (Rew. only) 191.34 ± 6.65 1.31 ± 0.01 1.16 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00
DQN + Bisimulator 197.34 ± 6.93 1.32 ± 0.00 1.19 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00
DQN + Bisimulator (Rew. only) 197.12 ± 9.91 1.31 ± 0.01 1.19 ± 0.01 1.00 ± 0.00 0.99 ± 0.02 0.01 ± 0.02
ELBERT-PO 201.60 ± 10.91 1.31 ± 0.00 1.22 ± 0.02 1.00 ± 0.00 0.92 ± 0.04 0.08 ± 0.04
Lag-PPO 151.94 ± 40.48 1.39 ± 0.10 1.30 ± 0.15 0.85 ± 0.17 0.79 ± 0.16 0.34 ± 0.20
A-PPO 172.30 ± 35.49 1.31 ± 0.01 1.25 ± 0.11 0.88 ± 0.17 0.74 ± 0.27 0.14 ± 0.15
PPO 193.92 ± 6.55 1.32 ± 0.01 1.83 ± 0.42 1.00 ± 0.00 0.22 ± 0.06 0.78 ± 0.06
DQN 197.04 ± 5.14 1.31 ± 0.01 1.69 ± 0.09 1.00 ± 0.00 0.28 ± 0.04 0.72 ± 0.04
Classifier 194.78 ± 6.13 1.32 ± 0.01 1.45 ± 0.09 1.00 ± 0.00 0.53 ± 0.09 0.47 ± 0.09

either DQN or PPO, demonstrating its applicability to various RL algorithms. See Appendix C.2 for
cumulative admissions, recall values, and the results for Bisimulator (Reward only).

Analyzing the optimized parameters of the observation dynamics shows that Bisimulator has suc-
cessfully learned to lower the cost of score modifications for the disadvantaged group. This aligns
with the expected behavior, aiming to reduce the social burden on individuals of that group.

6 RELATED WORK

Fairness in Sequential Decision Making. In recent years, there has been a growing emphasis
on the significance of dynamic analysis of fairness measures (Nashed et al., 2023). However, the
exploration of these issues remains relatively restricted. The majority of existing studies focus on
investigating fairness in multi-armed bandits (Liu et al., 2017; Joseph et al., 2016; Do et al., 2022;
Metevier et al., 2019; Bistritz et al., 2020; Hossain et al., 2021). While the simplicity of the bandit
problem allows for easier theoretical analysis, its practical applications often extend no further than
recommender systems, failing to fully encompass the broader spectrum of real-world applications.
In the context of RL, Jabbari et al. (2017) have proposed a fairness constraint suitable for the MDP
setting, while providing a provably fair algorithm under an approximate notion of this constraint.
Similarly, in the majority of the recently proposed approaches, fairness notions are adapted from
the supervised learning setting and imposed as constraints during training of the optimal policy
(Wen et al., 2021; Yu et al., 2022; Satija et al., 2023; Yin et al., 2023; Hu et al., 2023; Frauen et al.,
2024). The recently proposed method of Xu et al. (2024) has adapted the concept of benefit rates
to the RL setting and has demonstrated state-of-the-art performance. Another set of approaches use
multi-objective MDPs (Siddique et al., 2020; Blandin & Kash, 2024), causal inference (Nabi et al.,
2019), or the concept of welfare (Cousins et al., 2024; Yu et al., 2023). Finally, fairness is particularly
important in multi-agent MDPs to ensure an optimal agent does not hinder the performance of other
agents (Zhang & Shah, 2014; Jiang & Lu, 2019; Mandal & Gan, 2022; Ju et al., 2023).

Optimization of MDP Reward (Reward Shaping). Reward shaping is a technique involving
the optimization of the reward signal to encourage desirable behaviors and discourage undesirable
ones, ultimately leading to more effective learning (Ng et al., 1999). Common approaches include
potential-based (Ng et al., 1999; Devlin & Kudenko, 2012; Gao & Toni, 2015), heuristics-based
(Cheng et al., 2021), intrinsic motivation (Chentanez et al., 2004; Singh et al., 2010), bi-level opti-
mization (Hu et al., 2020), and gradient-based (Sorg et al., 2010; Zheng et al., 2018) methods. Our
proposed approach is closest to the bi-level optimization of Hu et al. (2020), however, the novelty
of our approach is that the reward shaping procedure is guided by the bisimulation metric.

Optimization of MDP Dynamics. In contrast to the extensively explored concept of reward shap-
ing, the optimization of MDP dynamics remains relatively less investigated. This disparity could
be due to its stricter prerequisites, necessitating access to certain parameters within the dynamics
model. The predominant focus in this domain revolves around the control and co-optimization of
robots (Bächer et al., 2021; Spielberg et al., 2019; 2021; Ma et al., 2021; Wang et al., 2022; 2023;
Evans et al., 2022). These works primarily aim to achieve an enhanced performance by concurrently
learning to control a robot and optimizing its design and dynamical properties. Given the intertwined
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nature of learning and optimization, the problem poses significant challenges, leading to the proposi-
tion of both gradient-based (Spielberg et al., 2019; Hu et al., 2019) and gradient-free (Cheney et al.,
2018) optimization techniques. Notably, our method only optimizes the observation dynamics and
leaves the underlying transitions, that affect the inherent behavior of the system, unchanged.

7 BROADER IMPACT AND LIMITATIONS

Addressing fairness in machine learning algorithms holds significant promise for promoting social
justice and equity in various domains. By mitigating disparities, our proposed algorithm improves
fairness in sequential decision making processes. However, it is important to acknowledge the lim-
itations of our simulated experiments, which are based on simplified problems that may not fully
capture real-world complexities. While we recognize the need for more sophisticated benchmarks,
developing them is beyond the scope of this paper. Instead, we have utilized and extended the only
well-established benchmark in this area (D’Amour et al., 2020), which has been widely used in
recent studies (Xu et al., 2024; Deng et al., 2024; Hu et al., 2023; Yu et al., 2022).

Additionally, in this work, our focus is on group fairness, particularly the notion of demographic
parity (Dwork et al., 2012) and its adaptation to RL (Satija et al., 2023). Our method’s consistent
success across various scenarios and metrics confirms that the demographic parity definition has
broad applicability and effectiveness, laying a solid foundation for future research into other fair-
ness notions. Finally, convergence proofs for RL methods based on π-bisimulation metrics are an
open topic of research (Kemertas & Aumentado-Armstrong, 2021). It requires an intricate analy-
sis on how the fixed-point properties of π-bisimulation interact with the convergence properties of
a bisimulation-dependent policy, as they both rely on one another. This is an interesting research
avenue on its own, beyond the primary focus of our paper, which is the application of bisimulation
metrics for group fairness. Nonetheless, our approach and other methods (Zhang et al., 2020) have
demonstrated strong and consistent empirical performance.

8 CONCLUSION

In this paper, we established the connection between bisimulation metrics and group fairness in
reinforcement learning. Based on this insight, we proposed a novel approach that optimizes the
reward function and observation dynamics of an MDP such that unconstrained optimization of the
policy inherently results in the satisfaction of the fairness constraint. Crucially, these adjustments
are carried out by the agent or a third-party regulator, without modifying the original MDP or its dy-
namics. A significant advantage of our approach is that it does not require modifying the underlying
reinforcement learning algorithms, hence preserving the integrity of current decision making algo-
rithms. Our method outperforms strong baselines on a standard fairness benchmark, highlighting its
effectiveness.
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A PROOFS

A.1 BISIMULATION

Bisimulation Bisimulation is a fundamental concept in concurrency theory (Larsen & Skou,
1991). It defines an equivalence relation between state-transition systems, ensuring that two systems
can simulate each other’s long-term behavior and remain indistinguishable to an external observer.
Our work builds on the established theory of bisimulation developed by Larsen & Skou (1991); De-
sharnais et al. (2002); Ferns et al. (2004; 2011); Castro (2020), among others. Notably, we do not
fully explore the potential of the conditional form of bisimulation metrics in this work. Our defini-
tions, similarly to Hansen-Estruch et al. (2022), possess specific properties that allow us to reduce
them to existing definitions. A comprehensive examination of the conditional form of bisimulation
should be addressed as a standalone topic, as it lies beyond the scope of this work.

Given that our work extensively relies on the concept of metric spaces, we provide a summary of
their definition below for completeness. For a more detailed introduction, we refer the reader to the
existing literature and the work of Panangaden (2009).

A metric space is a pair (X, d), where X is a set and d : X × X → R≥0 is a function satisfying
the following properties: (i) ∀x, y ∈ X , d(x, y) = 0 if and only if x = y (identity), (ii) ∀x, y ∈
X , d(x, y) = d(y, x) (symmetry), and (iii) ∀x, y, z ∈ X , d(x, z) ≤ d(x, y) + d(y, z) (triangle
inequality). If d satisfies these properties, it is called a metric; if the identity property is relaxed, it is
called a pseudometric. The bisimulation metrics defined in this work are pseudometrics, as they relax
the identity property—specifically, d(si, sj) = 0 when si and sj are behaviorally indistinguishable,
but not necessarily when si = sj . With this foundation, we can now proceed with the proofs of the
definitions.

For convenience, we restate Theorem 2 of Castro (2020) using our notation.

Define Fπ : M → M by Fπ(d)(s, t) = |Rπ(s)−Rπ(t)|+ γW1(d)(τ
π(s), τπ(t)). Then, Fπ has a

least fixed point dπ∼, and dπ∼ is a π-bisimulation metric.

Theorem 1. Fπ
group as defined in Equation (5) has a least fixed point dπgroup∼, and dπgroup∼ is a group-

conditioned π-bisimulation metric.

Proof. Consider the MDP MG = (S,A,G, τa, R, γ). Define a new MDP MG = (S,A, τa, R, γ),
where S = S × G, τa : S × A → Dist(S), and R : S × A → R. We can rewrite Fπ

group from
Equation (5) as follows:

Fπ
group(d)(si, sj) =

∣∣∣Rπ(si)−R
π
(sj)

∣∣∣+ γW1(d)(τ
π(s′i | si), τπ(s′j | sj))

The state transition function τa now outputs the group membership for the next state, which re-
mains constant by assumption in Definition 3. Thus, the transition probability for this variable is
deterministic, allowing us to concatenate S and G without altering the original definitions.

This formulation of Fπ
group matches Castro’s definition of Fπ , and the remainder of the proof follows

the same steps as in Theorem 2 of Castro (2020). In summary, this proof mimics the argument of
Ferns et al. (2011), with the added demonstration that Fπ is continuous.

Similarly, we restate Theorem 3 of Castro (2020).

Given any two states s, t ∈ S in an MDP M, |V π(s)− V π(t)| ≤ dπ∼(s, t).
Theorem 2. For any two state-group pairs:

|V π(si, gi)− V π(sj , gj)| ≤ dπgroup∼((si, gi), (sj , gj)) (6)

Proof. Consider the MDP MG = (S,A,G, τa, R, γ) and define the new MDP

MG = (S,A, τa, R, γ), where S = S × G, τa : S × A → Dist(S), and R : S × A → R. We can
rewrite Equation (6) as:

|V π(si)− V π(sj)| ≤ dπgroup∼(si, sj)
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This bound on the value function difference matches Castro’s definition, and the remainder of the
proof follows Theorem 3 in Castro (2020), using induction on the standard value update.

A.2 DEMOGRAPHIC FAIRNESS WITH BISIMULATION

Extending Demographic Fairness to Infinite Horizon. Satija et al. (2023) defines the notion of
demographic fairness using the expected cumulative reward in a finite-horizon setting on finite state
and action spaces. Similarly to the case studies presented in our work, one can easily imagine the
number of applicable scenarios where such assumptions hold true. An advantage of using bisimula-
tion metrics in this setting is that they are defined for infinite horizon. As such, we must extend the
definition of Satija et al. (2023) to an infinite horizon case. To do so, we simply use the discounted
expected cumulative return instead. More precisely, we use the definition of Jπ that includes a
discount factor γ ∈ (0, 1].

Given an MDP Mgroup as introduced in Definition 4, at a specific time step t, the return of the
policy Jπ is as follows:

Jπ =
∑
s,g

ρ(st, gt)Eπ

[ ∞∑
k=0

γkR(St+k, At+k, g) | St = s,G = g

]
As opposed to Satija et al. (2023), who defines it for a horizon H as:

Jπ =
∑
s,g

ρ(st, gt)Eπ

[
H∑
k=0

R(St+k, At+k, g) | St = s,G = g

]

Bounding group-conditioned π-bisimulation metric. An important result that Castro (2020)
shows in his work is the convergence of the π-bisimulation metric. Specifically, by assuming that we
can sample transitions infinitely often, for a time step t, updating limt→∞ dπt = dπ∼ almost certainly.
We use this result to bound dπ∼ by an arbitrary ϵ ∈ R.

Achieving Demographic Parity Fairness. Given the previous statements, we can now derive the
proof for Theorem 3.
Theorem 3. Minimizing the bisimulation metric dπgroup∼((si, gi), (sj , gj)) results in demographic
fairness as defined in Definition 5 between the two state-group pairs.

Proof. We begin from the definition of demographic fairness as in Definition 5:

|Jπ(si, gi)− Jπ(sj , gj)| = |Eρ(s,g)[V π(si, gi)]− Eρ(s,g)[V π(sj , gj)]|
≤ Eρ(s,g)

[
|V π(si, gi)− V π(sj , gj)|

]
≤ Eρ(s,g)

[
dπgroup∼

(
(si, gi), (sj , gj)

)]
≤ ϵ

Where the second line follows from the triangle inequality. We can see that the third line follows
from Theorem 2 and is exactly equal to our definition of J in Equation (7). Then, since we can bind
the group-conditioned π-bisimulation metric by an epsilon, it follows that minimizing the metric
in expectation leads to minimizing the fairness bound. Thus, we can achieve fairness up to an
acceptable margin of error ϵ using bisimulation metrics.
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B ENVIRONMENT DETAILS

The code for the environments is included in the supplemental material, and will be made publicly
available. These environments are accurate re-implementations of ml-fairness-gym (D’Amour et al.,
2020). In comparison, our environments have additional features and more user-friendly implemen-
tations, and follow the updated Gymnasium (Towers et al., 2023) API rather than the deprecated
OpenAI Gym (Brockman et al., 2016) interface.

B.1 LENDING ENVIRONMENT

Environment. In the lending scenario, an agent representing the bank makes binary decisions
loan applications with the goal of increasing its profit. Each applicant has an observable group
membership g ∈ G and a discrete credit score 1 ≤ c ≤ Cmax sampled from group-specific and
unequal initial distributions p0(c|g). At each time step t, applicants are sampled uniformly with
replacement from the population, and the agent decides to accept or reject the loan application.
Successful repayment raises the applicant’s credit score by c+, benefiting the agent financially with
r+. Defaulting, however, reduces the credit score by c− and the agent’s profit by r−. If the agent
rejects the loan, it receives no reward. As discussed in Section Section 5.1, we examine two variants
of the lending scenario:

1. Credit only: The probability of repayment is a deterministic function of the applicant’s
credit score, similarly to D’Amour et al. (2020). However, this model oversimplifies cer-
tain dynamics, as the probability of repayment in reality can be a function of many factors
beyond the credit score. Additionally, this model fails to capture the case where an individ-
ual is assigned a low credit score due to their limited credit history, rather than their true
likelihood of loan repayment.

2. Credit + Conscientiousness: The probability of repayment is a function of the applicants
credit score and an unobservable latent variable representing the applicants conscientious-
ness. The conscientiousness for each individual is sampled from a Normal distribution and
is independent from their group membership.

The observation space in both variants include the applicant’s credit score, group membership, the
ratio of the past loan repayments, and the ratio of the past loan defaults. As discussed Section 4.2, the
Bisimulator algorithm, is allowed to change the observation dynamics. In this scenario, Bisimulator
changes the group-specific values for c+ and c−. For instance, applicants from the disadvantaged
group may receive a higher credit increase upon loan repayment, compared to those who belong to
the advantaged group. This is a realistic assumption since in practice, banks or other regulators are
allowed to override credit scores during their decision making process (FDIC, 2005). Importantly,
these changes are carried out by the agent and only affect the observation space, leaving the under-
lying dynamics and the probability of repayment unchanged. In other words, the changes are on the
agent side and affect how it “sees” the observations and they do not impact the actual dynamics.

Figure 5 shows the initial credit score distribution for each group, and Table 4 presents additional
details of this environment.
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Figure 5: Initial credit score distribution for each group.
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Table 4: Details of the lending environment.

Parameter Value
Number of groups 2
Group distributions (0.5, 0.5)
Cmax 7
c+ and c− +1 and −1
r+ and r− +1 and −1
Probability of repayment for each credit score (0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)
Conscientiousness distribution N (0.55, 0.1)
Population size 1000
Episode horizon (steps) 10000

Fairness Metrics Following D’Amour et al. (2020), we use three metrics to assess fairness: (a)
the social burden (Milli et al., 2019) that is the average cost individuals of each group have to pay
to get admitted, (b) the cumulative number of admissions for each group, and (c) agent’s aggregated
recall—tp/(tp+ fn)—for admissions over the entire episode horizon, that is the ratio between the
number of admitted successful applicants to the number of applicants who would have succeeded.

B.2 COLLEGE ADMISSIONS ENVIRONMENT

Environment In the college admissions scenario, an agent representing the college makes binary
decisions regarding admissions. Each applicant has an observable group membership g ∈ G and a
discrete test score 1 ≤ c ≤ Cmax, along with an unobservable budget 0 ≤ b ≤ Bmax, both sampled
from unequal group-specific distributions p0(c|g) and p0(b|g). At each time step t, an applicant is
sampled from the population and has a probability ϵ of being able to pay a cost to increase their score,
provided their budget allows. The probability of success (e.g., the applicant eventually graduating) is
a deterministic function of the true, unmodified score, and the agent’s goal is to increase its accuracy
in admitting applicants who will succeed. If the agent correctly admits an applicant, it receives
a reward r+ and if it rejects an applicant who would have been successful, it receives a reward
of r−, otherwise its reward is zero. If an applicant is admitted during an episode, it is no longer
sampled. Importantly, since each applicant has a finite budget, over the episode horizon, the budget
of the population decreases, hence making the problem sequential. Note that this environment is
substantially different than that in (D’Amour et al., 2020) by having a more sequential nature due to
its changing population.

As discussed Section 4.2, the Bisimulator algorithm, is allowed to change the observation dynam-
ics. In this scenario, Bisimulator changes the group-specific costs for score modification. These
adjustments can be seen as subsidized education for disadvantaged groups, a common practice. Im-
portantly, these changes are carried out by the agent and only affect the observation space, leaving

Table 5: Details of the college admissions environment.

Parameter Value
Number of groups 2
Group distributions (0.5, 0.5)
Cmax 10
Bmax 5
r+ and r− +1 and −1
Probability of success for each score (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)
Probability of score modification (ϵ) 0.5
Score distributions Group 1: N (8, 1), Group 2: N (5, 1)
Budget distributions Group 1: N (4, 1), Group 2: N (2, 1)
Population size 1000
Episode horizon (steps) 1000
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the underlying dynamics and the probability of success unchanged, since the probability of success
is a function of the true, unchanged score. Table 5 presents additional details of this environment.

Fairness Metrics Following D’Amour et al. (2020), we use three metrics to assess fairness: (a)
the social burden (Milli et al., 2019) that is the average cost individuals of each group have to pay
to get admitted, (b) the cumulative number of admissions for each group, and (c) agent’s aggregated
recall—tp/(tp+ fn)—for admissions over the entire episode horizon, that is the ratio between the
number of admitted successful applicants to the number of applicants who would have succeeded.
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C ADDITIONAL EXPERIMENTAL RESULTS

This section includes additional experimental results to complement that of Section 5.

C.1 CASE STUDY: LENDING

Figure 6 shows the cumulative loans given to each group over the course of evaluation episodes.
While all methods regularly approve loans of the first group, Bisimulator and ELBERT-PO are
giving an equal amount of loans to the second group while keeping high recall values (refer to
Figure 1 and Table 1).
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(a) Cumulative loans for group 1.
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(b) Cumulative loans for group 2.
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(c) Cumulative loans for group 1.
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(d) Cumulative loans for group 2.

PPO+Bisimulator DQN+Bisimulator ELBERT-PO Lag-PPO A-PPO
PPO DQN Max-util EO

Figure 6: Lending results. Cumulative loans given to each group over the course of evaluation
episodes. The first row (a, b) shows the lending scenario where the repayment probability is only
a function of the credit score, while the second row (c, d) presents the case where the repayment
probability is a function of the credit score and a latent conscientiousness parameter. Results are
obtained on 10 seeds and 5 evaluations episodes per seed. Confidence intervals are not shown for
visual clarity.

Figure 7 shows the recall gap between the two groups over the training steps. Since A-PPO and
EO are explicitly constrained to minimize the recall gap, they achieve low recall gaps, similarly
to Bisimulator. However, the recall values for each group are considerably lower than those of
Bisimulator (refer to Figure 1 and Table 1).

Figure 8 presents a comparison between Bisimulator and Bisimulator (Reward Only), complement-
ing the results in Table 1. Although optimizing both dynamics and rewards improves the overall
performance, the variant focusing solely on reward optimization remains competitive.
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(a) Recall gap for the credit only scenario.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Training Steps (1e5)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
ec

al
l G

ap

(b) Recall gap for the credit + cons. scenario.

PPO+Bisimulator DQN+Bisimulator ELBERT-PO Lag-PPO A-PPO
PPO DQN Max-util EO

Figure 7: Lending results. Recall gaps between the two groups over the training steps. (a) shows
the lending scenario where the repayment probability is only a function of the credit score, while
the second row (b) presents the case where the repayment probability is a function of the credit
score and a latent conscientiousness parameter. Results are obtained on 10 seeds and 5 evaluations
episodes per seed. The shaded regions show 95% confidence intervals and plots are smoothed for
visual clarity.
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(a) Average return.
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(b) Recall, group 1.
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(c) Recall, group 2.
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(d) Credit gap.
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(e) Average return.
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(f) Recall, group 1.
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(g) Recall, group 2.
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(h) Credit gap.

PPO+Bisimulator PPO+Bisimulator (Rew. only)
DQN+Bisimulator DQN+Bisimulator (Rew. only)

Figure 8: Comparison of Bisimulator and Bisimulator (Reward only). The first row (a-d) shows the
lending scenario where the repayment probability is only a function of the credit score, while the
second row (e-f) presents the case where the repayment probability is a function of the credit score
and a latent conscientiousness parameter. (a, e) Average return. (b, f) Recall for group 1. (c, g)
Recall for group 2. (d, h) Credit gap measured as the Kantorovich distance between the credit score
distributions at the end of evaluation episodes. Results are obtained on 10 seeds and 5 evaluations
episodes per seed. The shaded regions show 95% confidence intervals and plots are smoothed for
visual clarity.
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C.2 CASE STUDY: COLLEGE ADMISSIONS

Figure 9 shows the cumulative admissions granted to each group over the course of evaluation
episodes. All methods regularly accept applicants from group 1, however, only Bisimulator and
ELBERT-PO are granting an equal amount of admissions to group 2 while keeping high recall val-
ues (refer to Figure 4 and Table 3).
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(a) Cumulative admissions for group 1.
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(b) Cumulative admissions for group 2.

PPO+Bisimulator DQN+Bisimulator ELBERT-PO Lag-PPO A-PPO
PPO DQN Classifier

Figure 9: College admission results. Cumulative admissions granted to each group over the course
of evaluation episodes. Results are obtained on 10 seeds and 5 evaluations episodes per seed. Con-
fidence intervals are not shown for visual clarity.

Figure 10 shows the recall values for each group. Bisimulator obtains high recall values for both
groups. Notably, the recall gap obtained by Bisimulator is the smallest among all the methods (refer
to Figure 4 and Table 3).

Figure 11 presents a comparison between Bisimulator and Bisimulator (Reward Only), comple-
menting the results in Table 3. Similarly to the lending experiments, optimizing both dynamics and
rewards improves the overall performance, specifically in terms of recall gap. However, the variant
focusing only on reward optimization remains competitive.
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(a) Recall, group 1.
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(b) Recall, group 2.

PPO+Bisimulator DQN+Bisimulator ELBERT-PO Lag-PPO A-PPO
PPO DQN Classifier

Figure 10: College admission results. Recall values for each group over the training steps. (a) Recall
for group 1. (b) Recall for group 2. Results are obtained on 10 seeds and 5 evaluations episodes per
seed. The shaded regions show 95% confidence intervals and plots are smoothed for visual clarity.
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(a) Average return
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(b) Recall gap
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(c) Social burden, group 1
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(d) Social burden, group 2

PPO+Bisimulator PPO+Bisimulator (Rew. only)
DQN+Bisimulator DQN+Bisimulator (Rew. only)

Figure 11: College admission results. (a) Average return. (b) Recall gap. (c) Social burden for
group 1. (d) Social burden for group 2. Results are obtained on 10 seeds and 5 evaluations episodes
per seed. The shaded regions show 95% confidence intervals and plots are smoothed for visual
clarity.

D IMPLEMENTATION DETAILS

The codes for Bisimulator and all of the baselines is included in the supplemental material, and will
be made publicly available.

D.1 HYPERPARAMETERS

Our PPO and DQN implementations are based on CleanRL (Huang et al., 2022). We have further
tuned their hyperparameters, listed in Tables 6 and 7, with grid search. The actor and critic have
MLP networks with the Tanh activation function and one hidden layer with dimension of 256. As
discussed in Section 4, one of the advantages of Bisimulator is that is has very few hyperparameters;
Table 8 present these values. We use PPO and DQN as the RL backbone, utilize Adam (Kingma
& Ba, 2014) as the gradient-based optimizer of Jrew., and use One-Plus-One (Juels & Wattenberg,
1995; Droste et al., 2002) as the gradient-free optimizer of Jdyn..

The dynamics model Tψ(s′|s, a, g) in Algorithm 1 is implemented as an MLP that outputs a Gaus-
sian distribution over the next state. Since the state space is discrete, we use straight-through-
estimator (Bengio et al., 2013) to propagate the gradients.

Finally, as discussed in Section 4, we use quantile matching (McKay et al., 1979) to select the state-
group pairs from the on-policy distribution. In practice, we use quartiles obtained on the batch of

Table 6: Hyperparameters for PPO.

Hyperparameter Setting
Optimizer Adam
Hidden layer width 256
Learning rate 5e-5
Discount factor γ 0.99
λ for GAE 0.95
Batch size 512
Mini batch size 64
Policy update epochs 5
Surrogate clipping coefficient 0.2
Entropy coefficient 0.01
Value function coefficient 0.5
Maximum norm for gradient clipping 0.5
Clip value function loss True
Anneal learning rate True
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Table 7: Hyperparameters for DQN.

Hyperparameter Setting
Optimizer Adam
Hidden layer width 256
Learning rate 5e-5
Discount factor γ 0.99
Batch size 512
Target network update rate τ 1
Target network update frequency 10
Update epochs 4
Anneal learning rate True

the data. For example, the first quartile of group 1 is matched with the first quartile of group 2 in
order to estimate Jrew. and Jdyn..

Table 8: Hyperparameters for Bisimulator in lending and college admission environments, to ac-
company Algorithm 1.

Hyperparameter Setting
PPO DQN

Reward optimization iterations (M ) 1 1
Observation dynamics optimization iterations (N ) 300 300
Policy update iterations (K) 1 1
Reward coefficient (α) 5 1.5

D.2 BASELINES

All of the baselines follow their official implementations. We started from the the suggested hy-
perparameters for each baseline and further tuned it with grid search for each environment. For a
fair comparison among the deep RL algorithms that are based on PPO (Bisimulator+PPO, A-PPO,
Lag-PPO, and ELBERT-PO), the architecture of the MLP networks and the hyperparameters of the
PPO algorithm follow the details outlined in Table 6.

D.3 COMPUTING INFRASTRUCTURE

Our results are obtained using Python v3.11.5, PyTorch v2.2.1 and CUDA 12.2. Experiments have
been conducted on a cloud computing service with Nvidia V100 GPUs, Intel Gold 6148 Skylake
CPU, and 32 GB of RAM. In this setting, each experiment takes between 1 to 2 hours for 400
thousands steps of training.
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