Under review as a conference paper at ICLR 2026

JOINT ENCODING OF KV-CACHE BLOCKS FOR
SCALABLE LLLM SERVING

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern large language models (LLMs) drive interactive Al systems but are bot-
tlenecked by the memory-heavy growth of key-value (KV) caches, which limits
real-time throughput under concurrent loads. Existing KV-cache compression
methods rely on rigid heuristics, disrupt tensor layouts, or require specialized
compute, hindering scalability and deployment.

We propose joint encoding of KV-cache blocks, which fuses similar blocks across
requests and input chunks into shared representations while preserving standard
cache structure. This alleviates the KV-cache memory bottleneck, supporting
high-concurrency serving without specialized hardware. Theoretically, we ana-
lyze the rate-distortion tradeoff of fused cache blocks under a Poisson process
model. Empirically, our method achieves up to 4.38x KV-cache compression with
negligible accuracy loss across diverse LLMs and benchmarks, outperforming
recent structured and adaptive compression baselines. Our results establish a scal-
able, plug-and-play pathway for memory-efficient, high-throughput autoregressive
inference. Code is available at kv__joint_encoding—55B0.

1 INTRODUCTION

Large Language Model (LLM) services have recently gained tremendous popularity, but their serving
pipeline faces distinct challenges across two stages. In the prefill stage, the model processes the input
sequence. This stage is compute-bound but executed only once per request. In contrast, the decode
stage generates the subsequent output tokens, is repeated for every token, and is primarily constrained
by memory bandwidth. The bottleneck arises because each decoding step requires fetching large
model parameters from memory to maintain fast computation (Xie et al.,2025). This implies that
batch size can be increased to serve more concurrent users without increasing generation latency, up to
the point where computation time aligns with memory access time and becomes the new bottleneck.

Scaling LLM services for high concurrency rapidly encounters memory constraints. On-chip memory
is consumed by three main components: the model weights, the inference activations, and the
key—value (KV) cache. The weights, though large, are static and do not grow with users concurrency.
Activations are lightweight, scale linearly with the number of users, and vanish after each step. The
KV-cache, however, is both persistent and expansive: it scales with the number of active sessions,
and requires reserving memory proportional to the maximum sequence length per user. In practice,
the KV-cache rapidly becomes the dominant memory consumer, and hence, it is the primary obstacle
to scaling users concurrency.

To alleviate these memory constraints, recent serving frameworks borrow ideas from virtual memory
and paging in operating systems. In particular, VLLM introduces Paged-Attention (PA)|Kwon
et al.| (2023a)), which partitions the KV-cache of each request into fixed-size blocks, each holding
a predefined number of key-value tokens. These blocks do not need to be contiguous in memorys;
instead, a block table tracks their locations, allowing the attention mechanism to retrieve relevant
entries efficiently (Kwon et al.,[2023b)). This design removes the need of reserving per-user memory
proportional to the maximum sequence length. Instead, memory consumption scales with the actual
demand, which is typically far smaller on average.

Although Paged-Attention mitigates memory fragmentation, it does not address the fundamental
asymmetry between the compute-bound prefill stage and the memory-bound decode stage. To address

https://anonymous.4open.science/r/kv_joint_encoding-55B0/

Under review as a conference paper at ICLR 2026

this, the vLLM scheduler prioritizes prefill requests, reducing the Time-To-First-Token (TTFT) and
allowing larger decode batches. Yet, this prioritization comes at a cost of delaying decode requests,
increasing the Time-Between-Tokens (TBT). In long-context scenarios, this elevated TBT can become
severe, stalling generation for several seconds (Agrawal et al., 2023). Recently, studies suggested
to separate the two stages: requests are first processed on prefill servers, and their KV-cache is then
migrated to decode servers. This separation enables independent optimization of the stages, reducing
TTFT during prefill and TBT during decoding (Qin et al.,|2024;[Zhong et al., 2024; Hu et al., 2024).

In the prefill phase, strategies such as Tensor Parallelism and chunked-prefilling have been shown to
reduce TTFT and increase compute utilization (Agrawal et al., 2023 2024). In the decode phase,
however, compute utilization remains low because each step requires fetching the model parameters
to generate only a single token per request. Increasing the batch size can mitigate this inefficiency,
but larger batches demand proportionally more KV-cache and are limited by the memory.

To reduce this overhead, prefix sharing has been proposed: grouping requests with identical prefixes so
they can share the cached blocks and hence minimize memory (Zhu et al.|[2024; |Juravsky et al., [2024).
Yet, exact prefix matches are rare in heterogeneous workloads, limiting its practical benefit. This
limitation motivates the need for more general block-sharing mechanisms that extend the advantages
of prefix sharing without relying on exact prefix matches.

In this paper, we address the KV-cache bottleneck in LLM serving by introducing a joint-encoding
scheme that compresses and reuses similar cache blocks across requests. We develop two comple-
mentary methods: Batch Fast-Fusion (BFF), which fuses blocks across different requests prior to
decoding, and Chunks Fast-Fusion (CFF), which fuses blocks across input chunks during prefill-
ing. Both schemes reduce KV-cache size, enable larger batch sizes, and lower network bandwidth
demands. At the core of our approach is a tree-structured fusion strategy that efficiently identifies
encoding opportunities while preserving model accuracy. By applying joint encoding in both prefill
and decode phases, our scheme delivers high throughput even under heterogeneous workloads with
diverse input/output lengths and arrival patterns. These new fusion strategies substantially extend
the generality and efficiency of cache sharing, delivering both memory and bandwidth savings in
heterogeneous, real-world workloads.

The remainder of this paper is organized as follows: Section 2]discusses the most relevant related
work. Section [3] outlines the motivation behind block fusion in LLM serving systems. Section 4]
describes the proposed scheme in detail. Section [5]analyzes the scheme in lens of the point processes,
Section [6] presents the experimental results and evaluation, and Section [7]concludes the paper.

2 RELATED WORK

A major line of research has focused on reducing the memory footprint of the KV-cache, primarily
through compression. Key approaches include quantization, low-rank approximation, and selective
eviction. Quantization-based methods, such as Hooper et al.|(2024)); Liu et al.|(2024d)), compress key
and value embeddings to 2-3 bits with minimal accuracy loss, substantially increasing batch size and
throughput over standard precision. Low-rank and latent representations, for example, Multi-Head
Latent Attention (MLA) [Liu et al.| (2024a) and ReCalKV |Yan et al. (2025) stored KV matrices
in compact subspaces that are later reconstructed as needed. This approach achieves a significant
reduction in the K'V-cache size while maintaining attention accuracy. Recently, Meng et al.| (2025)
suggested a method for transforming the attention of pretrained models to MLA architectures.

Given the redundancy of KV states across adjacent layers, other works interpolate vector directions or
use SVD to compress cross-layer states (e.g., Liu et al.|(2024b);|Chang et al.| (2025))), often retaining
only a subset of tokens for quality. Combining quantization with these techniques achieves KV-cache
compression ratios up to 5x. Recent work leverages adaptive arithmetic encoding (Liu et al.| [2024c)),
head-level token importance with residual merging (Liu et al.,|2025), and sensitivity-driven dynamic
sparsity (Zhang et al.l 2024} |Yang et al.|[2025) to further boost cache efficiency.

A complementary research direction explores memory sharing across requests by reusing computation
for common input segments. Frameworks like HydraGen (Juravsky et al., 2024)), RelayAttention
(Zhu et al2024), and vLLM/SGLang (Wu et al.| 2025 |Zheng et al.| |2023) exploit prefix sharing,
where requests with identical prefixes share cached states, reducing both computation and memory
requirements. However, such methods are limited by the rarity of exact prefix matches in practical

Under review as a conference paper at ICLR 2026

G50 1] o]

] A l Keys chunks
= L | &
—Slhared rep.; | | | | |{ | | | | H
i i i i Keys chunks
(@ (b

Figure 1: Attention computation (a) batch of requests with similar keys blocks. After the fusion,
the KV=cache footprint is smaller and batch decoding is optimized by performing matrix-matrix
multiplication. (b) After fusing chunks into a unified representation, the blocks computation of
chunks 0 and 1 can be reused in chunk 2 (same color).

workloads. Fragmentation and fine-grained reuse of overlapping segments are considered in (Zhang
et al.| 2025; [Prabhu et al.| 2025} |Yang et al.| 2025).

Despite significant progress, most prior methods rely on rigid heuristics, disrupt native tensor layouts,
or require exact prefix matches, limiting scalability and flexible integration into modern LLM serving
pipelines. Our work directly addresses these limitations by introducing joint compression of KV-
cache blocks, allowing finer-grained, layout-preserving, and general block sharing that extends the
benefits of prefix reuse to arbitrarily similar segments. This flexibility is critical for memory- and
bandwidth-efficient serving in real-world settings.

3 MOTIVATION

Improving the throughput of LLM serving is often achieved by increasing batch size. Since the
decoding phase is primarily memory-bound, dominated by repeated fetching of large weight matrices,
larger batch sizes do not substantially increase per-request decoding latency. However, serving
scalability remains constrained by the memory footprint of the KV-cache, which must be reserved per
user session. Apart from the common compression methods like quantization and sparsification (by
eviction), prefix-sharing techniques like Juravsky et al.|(2024)) and Zheng et al.| (2024)) demonstrate
that overlapping prompt segments across requests enable KV-cache sharing. In addition, reuse of com-
puted blocks as well as improved computation can improve throughput by up to 36% (Huijong Jeong
& Kim, [2024). Nonetheless, these approaches rely on exact prefix matches, which severely limits
applicability in real-world settings where variations in phrasing or task-specific inputs are common
(Wu et al.| 2025 |Zheng et al.,[2024)). For example, two translation requests with slightly different
introductory phrases (“Help me translate” vs. “Translate this”) would fail to share any KV blocks
under strict prefix matching (Wu et al.| [2025)).

To overcome the strict requirement of an exact match, we propose a KV-cache blocks joint-encoding
scheme that fuses blocks based on similarity threshold. This approach extends the benefits of prefix
sharing to non-identical contexts. Figure [T] highlights the memory and computational benefits of
jointly encoding blocks in Softmax Attention (SA). Specifically, Figure [I(a)|illustrates the benefits in
the decoding phase, where keys with similar representations (indicated by color) can be combined
into a unified representation. Fusing these keys (and values) into a unified representation not only
allows increasing the batch size but also facilitates optimized matrix-matrix multiplication, instead
of multiple matrix-vector multiplications. In the prefill phase, Figure[I(b)]illustrates how chunking
input requests allows joint encoding of blocks across chunks, which reduces KV blocks memory, and
thus, facilitates handling longer inputs and further reusing computation in SA. Consequently, any SA
computation involving a fused block can be reused in subsequent chunks that include instances of
this block, maximizing efficiency and throughput.

In both cases, after encoding, some blocks share the same representation and the block table points to
the shared representation. Thus, any SA computation that involves a fused block can be reused in
later chunks that comprise an instance of this block. The final SA result is derived by merging the SA
of the fused components with that of the unique components (and rescaling). The recent version of
vLLM can take advantage of the computation of SA with shared blocks.

Under review as a conference paper at ICLR 2026

4 KV BLOCKS JOINT-ENCODING

In this section, we introduce our KV blocks joint-encoding scheme for the chunk-prefilling setting, to
further facilitate the joint encoding of the chunks while they are processed in the LLM (Qin et al.,
2024; |Agrawal et al} [2023)). The main objective of our scheme is to maximize the batch size by
jointly encoding KV blocks. The impact is threefold. First, in the decode phase, benefit from a
higher arithmetic efficiency due to a larger batch size, and further, minimize KV-cache prefetching,
mitigating the memory bandwidth limit. Second, in the prefill phase, it also enables the reuse of fused
blocks computations, alleviating the compute limitation (see Figure[T). Third, reduce the usage of
network bandwidth, which often becomes a bottleneck, especially when considering a high degree of
parallelism (Agrawal et al.| 2024)). Certainly, it is crucial to achieve this goal while maintaining the
model’s accuracy.

To fulfill this goal, we propose Fast-Fusion (FF) method that jointly encodes similar blocks into a
unified representation if the cosine similarity between contexts of different blocks is above predefined
threshold. The similarity threshold is substantial for both the resulting compression ratio and model’s
accuracy. To avoid excessive blocks comparisons overhead, we design an efficient tree-like fusion
strategy that scales as O (B log B) and O(C'log C'), where B is the batch size and C' is the number
of chunks, respectively. This strategy allows the parallelization of the fusion process at each level of
the tree. Accordingly, the fusion can be done over blocks of different requests (i.e., BFF) or blocks of
different chunks (i.e., CFF).

In practice, the KV-cache layout in vLLM is (B, p, t, h,d), where p, t, h, and d are the number of
blocks, tokens per block, number of heads, and the head embedding size, respectively. Before encod-
ing, the KV-cache is unfolded into a convenient layout of blocks per request or chunk. Specifically, let
r =t-h-d, and note that C' = |p - t/(size of chunk) |, we use a layout of (B, p,) and (C,p/C,r)
for the BFF and the CFF, respectively. The norm of each r is stored to allow a proper rescaling of the
fused blocks. The algorithm is applied iteratively for every /N chunks or requests in each layer.

A pseudo-code of the FF algorithm is given in Algorithm [I| Roughly speaking, after unfolding
the KV-cache into a convenient layout and storing the norms, we recursively call the FF method
in Algorithm[I] which fuses blocks of different requests or chunks if their similarity level is above
threshold. Intuitively, blocks represented by r-dimensional vectors can also be expressed in terms
of their norm and corresponding r-dimensional unit (direction) vectors. In this view, fusion can be
understood as aligning multiple unit vectors into a single unified direction, while preserving the
distinctiveness of the original blocks through their norms. This allows representing multiple blocks
using a single unit vector and a norm (scalar) per block. To further enhance the compute, the fused
blocks are taken into account in the attention computation, allowing low-level kernels to leverage
jointly encoded blocks in the decoding phase, and reuse computations in the prefill phase. Only one
copy of the fused blocks is needed, and redundant copies can be evicted to reduce memory usage.
Further, different number of blocks may be encoded in each layer, which requires running each layer
with its own block table, as implemented in vVLLM. Note that our scheme attains a compression that
is at least the compression attained by shared prefix methods, since we further compress inputs that
do not share prefixes.

Consequently, the joint encoding allows us to reuse computations to address the limitations of
compute, memory bandwidth, and network bandwidth. The tree structure is beneficial for detecting
fusion opportunities at a reasonable cost in large-scale prefill and decoding serving systems.

Remark 1. The order of requests impact the resulting compression. Specifically, it is beneficial to
place shorter requests (in terms of number of blocks) on the left tree to gain higher diversity per block.
At the best case, all the blocks in the right tree will be unified into the left tree blocks representation,
vielding the maximal compression. However, the responsibility of ordering the requests belongs to
the scheduler, which is out of the scope of this paper.

5 ANALYSIS

The similarity threshold is substantial to the algorithm performance as it dictates the resulting
accuracy (or distortion) on the one hand, and the compression (or rate) on the other. In terms of
rate-distortion, high threshold ensures low KV cache distortion, yet may result in low exceedance

Under review as a conference paper at ICLR 2026

Algorithm 1 Fast Fusion

Require: KV-cache (k,v), threshold (th7)
if len(k) == 1 then
return normalize(k), normalize(v)
end if
(*tree left*)
ki, v; < FastFusion(k[: len(k)//2], v[: len(v)//2], thr)
(*tree right*)
kr, vr « FastFusion(k[len(k)//2 :],v[len(v)//2 :], thr)

sim « (k;k,) (*similarity per block of k;*) = = m
for each row in sim do B "T,—

1dZtused — indices where sim(row) > thr %
if |id2fusea| > O then

(*block fusion*) Figure 2: BFF example for 6 request, where

ki(row) < normal?ze(kl(row) + 2 idune kT@) each request has a different number of
Vi (mw) < ”ormallze(vl_<row) + Zieidz_fuaed Vr(8) blocks (and a different color). The Fast Fu-
evict fused blocks at ki (id@rusea) and vr (idZnsea) gjon is recursively called, fusing every pair

(*for matrix-matrix efficiency*) :
mark shared blocks at k; (rot), and v, (row) of requests (fused blocks are depicted by a

end if mixed color). Then, fusing pairs of pairs,
end for and so on, until all the requests’ blocks are
update block-table bt jointly described in the KV-cache. Clearly,
return cat([k; | k, non-shared blocks]), some blocks are not fused (remain their
cat([v; | v, non-shared blocks]) original color), and some are fused more

than once while traversing the tree.

rate, and consequently, moderate compression. Similarly, low threshold value allows unifying many
blocks into a single representation (high compression), yet may degrade the performance due to a
highly distorted KV cache. Hence, it is crucial to thoroughly study the impact of the threshold.

As mentioned, Algorithm[T|recursively fuses pairs of requests (see Figure2]for illustration). Assume a
pair of requests with m; and mo blocks, respectively, for which there are n = my - mo similarity sam-
ples {z;}._,. Then, using Kernel Density Estimation (KDE) with a Gaussian kernel (Wand & Jones|
1994, Ch. 2), the similarity density in each layer is approximately f,(z) = - > | ¢ (£5%),
where h is the kernel bandwidth (standard deviation). Therefore, the similarity distribution is

approximately
1 — Tr—x;
F = = E o 1
h(x) n g (L > ’ ()

where ¢ and ® are the Gaussian density and distribution functions, respectively. In other words,
each sample z; contributes a Gaussian kernel function with mean value x; to the overall estimated
probability density function, thus contributing a different probability of exceeding the threshold.

Proposition 1. For a sufficiently high similarity threshold u, the number of above-threshold similari-
ties is asymptotically a Poisson variable with rate

A(u):iZexp{—u_(hbM},)
i=1

ha,,

where a,, = (2logn) =% and b, = (2logn)*/? — L(2log n)~/?(log log n + log(4)) are normal-
ization constants.

Proof. We wish to analyze the asymptotic threshold exceedance rate of eq. (I)). Since the indices
of high threshold exceedance are random and are relatively rare, the number of above-threshold
observations can be modeled as a Poisson random variable when the threshold is sufficiently high
(Leadbetter et al.}[2012] Ch. 5). In particular, let u be a threshold such that the kernel of each sample 4
satisfies Pr(x; > u) = (1 — ® (“521)) = ©(1/n). Then, according to the uniformly asymptotically
negligible condition, the number of threshold arrivals is approximately a Poisson variable with rate

Under review as a conference paper at ICLR 2026

25
jayer 11 200

thr=0.8

338

20 layer 25

f(x) 15 fix) 125
0

»

5 A :

LA ‘ v

0
0.0 02 0.4 06 08 10 0.800 0.825 0.850 0875 0.900 0925 0950 0975
X X

(a) (b)

0

Figure 3: Empirical similarity and analysis for |DeepSeek-R1-Distill-Qwen-7B| (2025) on [nVidia
HelpSteer| (2024) dataset for several layers. Bars represents the empirical similarity and solid line the
KDE approximation. (a) Blocks similarity density. (b) Above-threshold density for threshold=0.8.

A(u) when the samples are independent (Falk et al.,[2010, Ch. 8.3). Similar treatment for dependent
samples is given in (Coles et al.|[2001} Ch. 5).

For the Gaussian case, the threshold exceedance rate is A(u) given in eq. (2), where a,, =
(2logn)~*/% and b, = (2logn)'/? — L (2logn)~'/2(loglogn + log(4r)) are normalizing con-
stants (Kampeas et al.,|2014, Theorem 5). O

Figure [3(a)] depicts the empirical similarity and the above-threshold distribution together with the
KDE approximation for DeepSeek-R1-Distill-Qwen-7B|(2025) onnVidia HelpSteer| (2024)) dataset in
several layers. Evidently, for this model and dataset, the similarity appears Gaussian, yet with different
mean and variance in each layer. Interestingly, letting the similarity in layer ¢ be approximately

Gaussian with mean p, = £ 3" =z, and variance 07 = 2 """ 22 — 42, by the Poisson point

n n

U— My
o

process, the threshold exceedance rate is approximately Ay(u) =n - (1 -d (.)) Moreover,

even though each layer follows a different distribution and, therefore, has a different threshold
exceedance rate, by Proposition|[I] the overall exceedance rate for all model layers can be evaluated.

The Poisson formulation facilitates analyzing the probability of observing non-compressible layer,
and the expected compression ratio over the entire model. From the properties of the Poisson, we
have the following corollary.

Corollary 1. After the fusion, the compression ratio over L layers is

L
compression ratio = L(my + mz)/ <(L(m1 +mg) — Z Ag(u)> .
(=1

The probability of no fusion in layer { is
Pr(no fusion in layer £) = exp(—A¢(u))

The analysis provides a theoretical foundation for understanding the trade-offs inherent in block fusion
for LLM serving. The Poisson point process modeling indeed shows that the similarity threshold
directly governs the balance between compression and distortion in the KV cache. Our per-layer
analysis predicts the expected compression for a given threshold, allowing skipping non-compressible
layers in probability.

6 RESULTS

In this section, we present the results of our context fusion scheme for the KV cache-centric disaggre-
gated architecture using CFF and BFF. To assess our approach, we first fuse and replicate the cache
across all fused blocks, allowing us to measure compression rates and accuracy. Then, However, this
setup does not allow for direct assessment of performance acceleration. We evaluate the performance
of our approach using a commodity GPU on various benchmarks and models and compare it to the
baseline performance. The results demonstrate the effectiveness of our scheduling algorithm in terms
of compute efficiency, memory reduction, and network bandwidth consumption.

Under review as a conference paper at ICLR 2026

—— 8 blocks

16 blocks 70 4
—— 32 blocks 67.5
—— 64 blocks

o
L

w A~ u
| L |
F1 score
o

)

sco

compression ratio

N)
N

504 baseline —— baseline
BFF 5754 CFF

-
L

T T T T T T T T T T T
0 100 200 300 400 1.0 15 2.0 25 3.0 35 1‘,1 1‘.2 1.‘3 14‘4 1‘,5
batch size compression ratio compression ratio

(@) (b) ()

Figure 4: CR and F1 score of BFF and CFF for Llama-2 7B. (a) CR vs. batch size for diverse
number of blocks on vLLM random-data benchmark. (b) BFF F1 score vs. CR for batch size 256 on
conversational dataset. (c) CFF F1 score vs. CR, for 4 chunks on conversational dataset.

6.1 BLOCK DIVERSITY AND RATE-DISTORTION

Both the number of requests (or chunks) and the number of blocks in each request (or chunk) influence
the resulting Compression Ratio (CR). The larger the batch, the more requests to fuse, and the more
blocks per request, the greater diversity of blocks for fusion, which yields a better CR. To assess
the significance of each, we examine the BFF CR on the random data benchmark in vLLM API
(2023)), using a fixed similarity threshold for a various number of requests and blocks per request
using Llama2-7B with 16 tokens per block. Interestingly, Figure ff(a)| reveals that the diversity of
blocks per request is more significant than the diversity of requests, since the CR grows faster when
more blocks per request are used.

Figure [4(b)] and [A(c)| depict the the rate distortion trade-off for BFF and CFF, respectively. The rate
distortion curve is given for Llama2-7B on |Das| (2024)) conversational dataset, where the number
of requests (chunks) is fixed, and the similarity threshold varies. The baseline result is given for
reference. Specifically, in Figure[d(b)]the BFF achieves a CR of ~ 2.15x, without degrading accuracy
for batch size 256 with a block size of 16 tokens. In Figure [d(c)] the CFF achieves a CR of ~ 1.25x
without losing accuracy for 4 chunks with a block size of 16 tokens.

Remarkably, this rate distortion formulation indicates that a higher CR can be achieved without
sacrificing accuracy when fixing the similarity threshold value. In particular, since only the threshold
determines the resulting accuracy (distortion), once the threshold is fixed, increasing the batch size or
the number of blocks per request yields a better CR due to diversity in requests and blocks.

6.2 BATCH FAST-FUSION DURING DECODING

The impact of diversity on the CR and the resulting F1 score is of great practical interest, as it
indicates the gain of a larger batch using our enhancement. Specifically, in this section, we investigate
the CR and the F1 score when increasing the number of requests in the BFF scheme, where the
similarity threshold is set to a fixed value, using the |nVidia OpenMathInstruct-2|(2024])) dataset.

Figure depicts the CR versus batch size for the Llama3.1-8B model and Qwen2.5-72B. Notably,
in both cases, the CR grows logarithmically with the batch size, reaching CR of ~ 3.11x and
~ 4.38x for batch sizes of 128 and 64, respectively.

Using the same settings, we further evaluate the behavior of the F1 score when increasing the number
of requests in a batch in Figure[5(b)] Interestingly, the F1 score is a bit higher on average for both
models, and especially for the Qwen2.5 72B model. The phenomenon where averaging similar blocks
improves the model accuracy can be interpreted through the lens of the crowd wisdom effect. Each
block representation, akin to an individual expert, contributes unique insights about the block context
over the layers. When focusing on relatively similar representations, averaging these representations
reduces individual biases and errors, much as a group makes more accurate decisions (Trott, 2024).

Table[T]describes the F1 score and the CR behavior when applying BFF to every 8 requests (i.e., batch
size 8) for various thresholds in a variety of MMLU| (2020) tasks and (GSM8Kk|(2022). These results

Under review as a conference paper at ICLR 2026

44 76 -
ke
® 74 -
c 3 o ——- Baseline Llama3.1-8B
2 S 721 BFF Llama3.1-8B
¢ 2 . —— Baseline Qwen2.5-728
Qo o 4
E2- baseline BFF Qwen2.5-72B
o BFF CR Llama3.1-8B 68
BFF CR Qwen2.5-72B
14 66 &~~~ -~ Fgiininnnnnnnnng
0 20 40 60 80 100 120 0 20 40 60 80 100 120
batch size batch size
(@) (b)

Figure 5: CR and F1 score of BFF vs. baseline for Llama-3.1 8B and Qwen2.5 72B on nVidia
OpenMathlnstruct-2| (2024) dataset. (a) CR vs. batch size. (b) F1 score vs. batch size.

highlight the ability of the BFF to significantly reduce the KV cache size in many cases, without
compromising accuracy, showcasing its value in improving decoding efficiency.

Table 1: F1 score and CR (in parenthesis) achieved by BFF for Llama3.1-8B.

Model Method GSM8K Con.Phy. E.Eng. F.Logic HS.Bio misc. sociology Average
BFF 41.47 37.87 40.69 352 44.19 51.72 40.8 41.71

thr=0.7 (x3.1) (x3.29) (x3.21) (x2.69) (x2.51) (x2.93) (x3.11) (x2.98)
BFF 51.91 40.85 38.62 40 46.13 51.34 393 44.02

Llama3.1-8B thr=0.74 (x2.52) (x2.52) (x2.48) (x221) (x2.04) (x2.32) (x2.4) (x2.36)
BFF 62.86 40.43 40 41.27 45.48 54.79 38.31 46.16

thr=0.78 (x2.09) (x1.63) (x1.59) (x1.53) (x1.37) (x1.52) (x1.61) (x1.62)
Baseline 62.46 40.85 40.69 40 48.39 54.79 40.8 46.85

Practically, these results indicate up to ~ 3.11x and ~ 4.38x reduction of KV cache blocks, for
Llama3.1-8B and Qwen2.5-72B, respectively. Of course, this also mitigates the memory fetching and
the network bottleneck which is significant, especially when considering a high level of parallelism.
Furthermore, using fused blocks is beneficial for performing hardware-optimized matrix-matrix
multiplications (Juravsky et al., 2024).

6.3 CHUNKS FAST FUSION DURING PREFILL

In this section, we examine the CR and the resulting F1 score for the CFF. Even though eliminating
the distance that stems from RoPE can yield a higher CR, it disables reusing computations, which is
substantial for the prefill phase. Thus, the CFF is applied to blocks within chunks, together with their
positioning. In addition to compression, the results also indicate the computation reuse factor.

To characterize the impart of CFF on the CR and F1 score, the similarity threshold is set to a fixed
value, and the number of chunks to fuse is varied. The evaluation is performed on Llama3.1-8B and
Qwen2.5-72B models with 16 tokens per block on the Longbench gqmsum dataset Bai et al.| (2023).
This dataset contains relatively long inputs, which allows characterizing the CR and accuracy of CFF
when applied to increasing number of chunks. Figure[6(a)]depicts the CR and when applying CFF to
the chunks. As we see, the CFF uses up to ~ 3.25x fewer blocks, for which their computation can
be reused, thus mitigating computational and network bottlenecks. Figure depicts the F1 score
of the CFF when scaling the number of chunks to fuse on the same task. The CFF manages to keep
the accuracy in most cases, and experiences only a negligible accuracy loss.

Table[2[describes the F1 score and the CR behavior when applying CFF to every 8 chunks for various
thresholds in a variety of Longbench tasks (Bai et al.,[2023)). The table highlights consistent gains in
compression with minimal or no loss in accuracy. Notably, even at lower thresholds, the F1 scores
remain comparable to the baseline, while achieving compression ratios of up to x1.87.

Under review as a conference paper at ICLR 2026

88
3.0 A
2 56 |
£ 254 , o | e
c —— baseline =4
i) S
@ 20 CFF CR Llama3.1-8B % 84 4
[U7 —
a CFF CR Qwen2.5-728B w --- baseline Llama3.1-8B
g CFF Llama3.1-8B
O 1.5 1 82 A .
—— baseline Qwen2.5-72B
CFF Qwen2.5-72B
1.0 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30
#chunks #chunks
(@) (b)

Figure 6: CR (a) and F1 score (b) of CFF vs. number of chunks for Llama3.1-8B and Qwen2.5-72B
using the Longbench gqmsum dataset.

Table 2: F1 score and CR (in parenthesis) achieved by CFF for Llama3.1-8B.

Model Method LCC RepoBench-P PR-en TREC 2wikimqa GovReport ~ MQA-zh Average
CFF 75.77 74.07 21.04 40.48 45.9 83.8 27.34 52.63

thr=0.62 (x1.87) (x1.59) (x1.32) (x143) (x1.38) (x1.59) (x1.53) (x1.53)
CFF 77.12 748 183 40.3 45.88 81.39 38.08 53.7

Llama3.1-8B thr=0.64 (x1.49) (x1.3) (x1.15) (x1.16) (x1.17) (x1.25) (x1.24) (x1.25)
CFF 7724 75.99 18.38 41.15 44.94 83.83 40.31 54.55

thr=0.66 (x1.26) (x1.15) (x1.06) (x1.06) (x1.06) (x1.09) (x1.1) (x1.11)
Baseline 71.73 75.57 18.74 40.95 44.12 82.81 39.18 54.16

Overall, the results presented in this section demonstrate the effectiveness of our context-sharing
scheduling scheme for the KV cache-centric disaggregated architecture. Our approach significantly
improves compute efficiency, reduces memory and network bandwidth consumption, and scales
well with increasing system size, making it a promising solution for accelerating LLM serving in
resource-constrained scenarios.

7 CONCLUSION

In this paper, we presented Fast Fusion, a novel context-sharing enhancement that can improve
LLM serving efficiency by introducing BFF and CFF. These techniques enable fine-grained fusion
of similar KV cache blocks across requests or chunks, achieving up to x4.38 compression without
compromising accuracy. By significantly reducing KV cache transfers, our method reduces signifi-
cantly the average number of blocks, and thus, allows to scale the serving capacity effectively under
heterogeneous workloads. Theoretical analysis based on Poisson point processes provides insight into
the rate-distortion trade-offs, and extensive empirical evaluations across multiple benchmarks and
model sizes validate the practical benefits. Looking forward, we plan to explore the impact on serving
throughput, using adaptive threshold tuning, integration with quantization, and pruning methods.

Under review as a conference paper at ICLR 2026

REFERENCES

Amey Agrawal, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav S Gulavani, and Ra-
machandran Ramjee. Sarathi: Efficient LLM inference by piggybacking decodes with chunked
prefills. arXiv preprint arXiv:2308.16369, 2023.

Amey Agrawal, Junda Chen, [fiigo Goiri, Ramachandran Ramjee, Chaojie Zhang, Alexey Tumanov,
and Esha Choukse. Mnemosyne: Parallelization strategies for efficiently serving multi-million
context length LLM inference requests without approximations. arXiv preprint arXiv:2409.17264,
2024.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Chi-Chih Chang, Chien-Yu Lin, Yash Akhauri, Wei-Cheng Lin, Kai-Chiang Wu, Luis Ceze, and
Mohamed S Abdelfattah. xkv: Cross-layer svd for kv-cache compression. arXiv preprint
arXiv:2503.18893, 2025.

Stuart Coles, Joanna Bawa, Lesley Trenner, and Pat Dorazio. An introduction to statistical modeling
of extreme values, volume 208. Springer, 2001.

Bhaskar Lal Das. Synthetic therapy conversations, 2024. URL https://huggingface.co/
datasets/Mr-Bhaskar/Synthetic_Therapy_Conversations. Accessed: 2025-
05-6.

DeepSeek-R1-Distill-Qwen-7B. Deepseek-r1-distill-qwen-7b, 2025. URL |deepseek-ai/
DeepSeek-R1-Distill-Qwen—"7B. Accessed: 2025-05-6.

Michael Falk, Jiirg Hiisler, and Rolf-Dieter Reiss. Laws of small numbers: extremes and rare events.
Springer Science & Business Media, 2010.

GSMBS8k. Open-ai gsm8k benchmark, 2022. URL https://huggingface.co/datasets/
openai/gsm8k. Accessed: 2025-05-6.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun S Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length Ilm inference with kv
cache quantization. Advances in Neural Information Processing Systems, 37:1270-1303, 2024.

Cunchen Hu, Heyang Huang, Liangliang Xu, Xusheng Chen, Jiang Xu, Shuang Chen, Hao Feng,
Chenxi Wang, Sa Wang, Yungang Bao, et al. Inference without interference: Disaggregate LLM
inference for mixed downstream workloads. arXiv preprint arXiv:2401.11181, 2024.

Yeonjoon Jung Huijong Jeong, Daehyun Ahn and Taesu Kim. [vllm vs tensorrt-1lm]
#12. automatic prefix caching, 2024. URL https://blog.squeezebits.com/
vlilm-vs—-tensorrtllm-12-automatic-prefix—caching-38189. Accessed:
2025-05-11.

Jordan Juravsky, Bradley Brown, Ryan Ehrlich, Daniel Y Fu, Christopher Ré, and Azalia Mirhoseini.
Hydragen: High-throughput LLM inference with shared prefixes. arXiv preprint arXiv:2402.05099,
2024.

Joseph Kampeas, Asaf Cohen, and Omer Gurewitz. Capacity of distributed opportunistic scheduling
in nonhomogeneous networks. IEEE Transactions on Information Theory, 60(11):7231-7247,
2014.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Yu, Joey Gon-
zalez, Hao Zhang, and Ion Stoica. vllm: Easy, fast, and cheap llm serving with pagedatten-
tion. See https://vllm. ai/(accessed 9 August 2023), 2023a. URL https://github.com/
vllm-project/vllm.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611-626, 2023b.

10

https://huggingface.co/datasets/Mr-Bhaskar/Synthetic_Therapy_Conversations
https://huggingface.co/datasets/Mr-Bhaskar/Synthetic_Therapy_Conversations
deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://huggingface.co/datasets/openai/gsm8k
https://huggingface.co/datasets/openai/gsm8k
https://blog.squeezebits.com/vllm-vs-tensorrtllm-12-automatic-prefix-caching-38189
https://blog.squeezebits.com/vllm-vs-tensorrtllm-12-automatic-prefix-caching-38189
https://github.com/vllm-project/vllm
https://github.com/vllm-project/vllm

Under review as a conference paper at ICLR 2026

Malcolm R Leadbetter, Georg Lindgren, and Holger Rootzén. Extremes and related properties of
random sequences and processes. Springer Science & Business Media, 2012.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Reza Haffari, and Bohan Zhuang. Minicache: Kv cache
compression in depth dimension for large language models. Advances in Neural Information
Processing Systems, 37:139997-140031, 2024b.

Xin Liu, Pei Liu, and Guoming Tang. Zsmerge: Zero-shot kv cache compression for memory-efficient
long-context llms. arXiv preprint arXiv:2503.10714, 2025.

Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray, Yuyang Huang, Qizheng Zhang, Kuntai Du,
Jiayi Yao, Shan Lu, Ganesh Ananthanarayanan, et al. Cachegen: Kv cache compression and
streaming for fast large language model serving. In Proceedings of the ACM SIGCOMM 2024
Conference, pp. 38-56, 2024c.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024d.

Fanxu Meng, Pingzhi Tang, Xiaojuan Tang, Zengwei Yao, Xing Sun, and Muhan Zhang. Transmla:
Multi-head latent attention is all you need. arXiv preprint arXiv:2502.07864, 2025.

MMLU. Massive multitask language understanding (MMLU) benchmark, 2020. URL https:
//huggingface.co/datasets/cais/mmlu. Accessed: 2025-05-6.

nVidia HelpSteer. nvidia helpsteer, 2024. URL https://huggingface.co/datasets/
nvidia/HelpSteer. Accessed: 2025-05-6.

nVidia OpenMathlInstruct-2. nvidia openmathinstruct-2, 2024. URL https://huggingfacel
co/datasets/nvidia/OpenMathInstruct—-2L Accessed: 2025-05-6.

Ramya Prabhu, Ajay Nayak, Jayashree Mohan, Ramachandran Ramjee, and Ashish Panwar. vatten-
tion: Dynamic memory management for serving llms without pagedattention. In Proceedings of
the 30th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 1, pp. 1133-1150, 2025.

Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang, Yongwei Wu, Weimin Zheng, and Xinran
Xu. Mooncake: A kvcache-centric disaggregated architecture for LLM serving. arXiv preprint
arXiv:2407.00079, 2024.

Sean Trott. Large language models and the wisdom of small crowds. Open Mind, 8:723-738, 05
2024. ISSN 2470-2986. doi: 10.1162/opmi_a_00144. URL https://doi.org/10.1162/
opmi_a_00144\

vLLM API Randomdataset, 2023. URL https://docs.vllm.ai/en/latest/
api/vllm/v1lm.benchmarks.datasets.htmlfvllim.benchmarks.datasets.
RandomDatasetl Accessed: 2025-05-11.

Matt P Wand and M Chris Jones. Kernel smoothing. CRC press, 1994.

Guanlong Wu, Zheng Zhang, Yao Zhang, Weili Wang, Jianyu Niu, Ye Wu, and Yinqgian Zhang.
I know what you asked: Prompt leakage via kv-cache sharing in multi-tenant llm serving. In
Proceedings of the 2025 Network and Distributed System Security (NDSS) Symposium. San Diego,
CA, USA, 2025.

Rui Xie, Asad Ul Haq, Linsen Ma, Yunhua Fang, Zirak Burzin Engineer, Liu Liu, and Tong Zhang.

Reimagining memory access for llm inference: Compression-aware memory controller design.
arXiv preprint arXiv:2503.18869, 2025.

11

https://huggingface.co/datasets/cais/mmlu
https://huggingface.co/datasets/cais/mmlu
https://huggingface.co/datasets/nvidia/HelpSteer
https://huggingface.co/datasets/nvidia/HelpSteer
https://huggingface.co/datasets/nvidia/OpenMathInstruct-2
https://huggingface.co/datasets/nvidia/OpenMathInstruct-2
https://doi.org/10.1162/opmi_a_00144
https://doi.org/10.1162/opmi_a_00144
https://docs.vllm.ai/en/latest/api/vllm/vllm.benchmarks.datasets.html#vllm.benchmarks.datasets.RandomDataset
https://docs.vllm.ai/en/latest/api/vllm/vllm.benchmarks.datasets.html#vllm.benchmarks.datasets.RandomDataset
https://docs.vllm.ai/en/latest/api/vllm/vllm.benchmarks.datasets.html#vllm.benchmarks.datasets.RandomDataset

Under review as a conference paper at ICLR 2026

Xianglong Yan, Zhiteng Li, Tianao Zhang, Linghe Kong, Yulun Zhang, and Xiaokang Yang. Recalkv:
Low-rank kv cache compression via head reordering and offline calibration. arXiv preprint
arXiv:2505.24357, 2025.

Jingbo Yang, Bairu Hou, Wei Wei, Yujia Bao, and Shiyu Chang. Kvlink: Accelerating large language
models via efficient kv cache reuse. arXiv preprint arXiv:2502.16002, 2025.

Chen Zhang, Kuntai Du, Shu Liu, Woosuk Kwon, Xiangxi Mo, Yufeng Wang, Xiaoxuan Liu, Kaichao
You, Zhuohan Li, Mingsheng Long, et al. Jenga: Effective memory management for serving llm
with heterogeneity. arXiv preprint arXiv:2503.18292, 2025.

Yanqi Zhang, Yuwei Hu, Runyuan Zhao, John Lui, and Haibo Chen. Unifying kv cache compression
for large language models with LeanKV. arXiv preprint arXiv:2412.03131, 2024.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff Huang, Chuyue Sun, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Efficiently programming large language
models using sglang. CoRR, 2023.

Zhen Zheng, Xin Ji, Taosong Fang, Fanghao Zhou, Chuanjie Liu, and Gang Peng. Batchllm:
Optimizing large batched 1lm inference with global prefix sharing and throughput-oriented token
batching. arXiv preprint arXiv:2412.03594, 2024.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao
Zhang. DistServe: Disaggregating prefill and decoding for goodput-optimized large language
model serving. In 18th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 24), pp. 193-210, 2024.

Lei Zhu, Xinjiang Wang, Wayne Zhang, and Rynson WH Lau. Relayattention for efficient large
language model serving with long system prompts. arXiv preprint arXiv:2402.14808, 2024.

12

	Introduction
	Related Work
	Motivation
	KV Blocks Joint-Encoding
	Analysis
	Results
	Block Diversity and Rate-Distortion
	Batch Fast-Fusion During Decoding
	Chunks Fast Fusion During Prefill

	Conclusion

