
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

JOINT ENCODING OF KV-CACHE BLOCKS FOR
SCALABLE LLM SERVING

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern large language models (LLMs) drive interactive AI systems but are bot-
tlenecked by the memory-heavy growth of key-value (KV) caches, which limits
real-time throughput under concurrent loads. Existing KV-cache compression
methods rely on rigid heuristics, disrupt tensor layouts, or require specialized
compute, hindering scalability and deployment.
We propose joint encoding of KV-cache blocks, which fuses similar blocks across
requests and input chunks into shared representations while preserving standard
cache structure. This alleviates the KV-cache memory bottleneck, supporting
high-concurrency serving without specialized hardware. Theoretically, we ana-
lyze the rate-distortion tradeoff of fused cache blocks under a Poisson process
model. Empirically, our method achieves up to 4.38× KV-cache compression with
negligible accuracy loss across diverse LLMs and benchmarks, outperforming
recent structured and adaptive compression baselines. Our results establish a scal-
able, plug-and-play pathway for memory-efficient, high-throughput autoregressive
inference. Code is available at kv_joint_encoding-55B0.

1 INTRODUCTION

Large Language Model (LLM) services have recently gained tremendous popularity, but their serving
pipeline faces distinct challenges across two stages. In the prefill stage, the model processes the input
sequence. This stage is compute-bound but executed only once per request. In contrast, the decode
stage generates the subsequent output tokens, is repeated for every token, and is primarily constrained
by memory bandwidth. The bottleneck arises because each decoding step requires fetching large
model parameters from memory to maintain fast computation (Xie et al., 2025). This implies that
batch size can be increased to serve more concurrent users without increasing generation latency, up to
the point where computation time aligns with memory access time and becomes the new bottleneck.

Scaling LLM services for high concurrency rapidly encounters memory constraints. On-chip memory
is consumed by three main components: the model weights, the inference activations, and the
key–value (KV) cache. The weights, though large, are static and do not grow with users concurrency.
Activations are lightweight, scale linearly with the number of users, and vanish after each step. The
KV-cache, however, is both persistent and expansive: it scales with the number of active sessions,
and requires reserving memory proportional to the maximum sequence length per user. In practice,
the KV-cache rapidly becomes the dominant memory consumer, and hence, it is the primary obstacle
to scaling users concurrency.

To alleviate these memory constraints, recent serving frameworks borrow ideas from virtual memory
and paging in operating systems. In particular, vLLM introduces Paged-Attention (PA) Kwon
et al. (2023a), which partitions the KV-cache of each request into fixed-size blocks, each holding
a predefined number of key-value tokens. These blocks do not need to be contiguous in memory;
instead, a block table tracks their locations, allowing the attention mechanism to retrieve relevant
entries efficiently (Kwon et al., 2023b). This design removes the need of reserving per-user memory
proportional to the maximum sequence length. Instead, memory consumption scales with the actual
demand, which is typically far smaller on average.

Although Paged-Attention mitigates memory fragmentation, it does not address the fundamental
asymmetry between the compute-bound prefill stage and the memory-bound decode stage. To address

1

https://anonymous.4open.science/r/kv_joint_encoding-55B0/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

this, the vLLM scheduler prioritizes prefill requests, reducing the Time-To-First-Token (TTFT) and
allowing larger decode batches. Yet, this prioritization comes at a cost of delaying decode requests,
increasing the Time-Between-Tokens (TBT). In long-context scenarios, this elevated TBT can become
severe, stalling generation for several seconds (Agrawal et al., 2023). Recently, studies suggested
to separate the two stages: requests are first processed on prefill servers, and their KV-cache is then
migrated to decode servers. This separation enables independent optimization of the stages, reducing
TTFT during prefill and TBT during decoding (Qin et al., 2024; Zhong et al., 2024; Hu et al., 2024).

In the prefill phase, strategies such as Tensor Parallelism and chunked-prefilling have been shown to
reduce TTFT and increase compute utilization (Agrawal et al., 2023; 2024). In the decode phase,
however, compute utilization remains low because each step requires fetching the model parameters
to generate only a single token per request. Increasing the batch size can mitigate this inefficiency,
but larger batches demand proportionally more KV-cache and are limited by the memory.

To reduce this overhead, prefix sharing has been proposed: grouping requests with identical prefixes so
they can share the cached blocks and hence minimize memory (Zhu et al., 2024; Juravsky et al., 2024).
Yet, exact prefix matches are rare in heterogeneous workloads, limiting its practical benefit. This
limitation motivates the need for more general block-sharing mechanisms that extend the advantages
of prefix sharing without relying on exact prefix matches.

In this paper, we address the KV-cache bottleneck in LLM serving by introducing a joint-encoding
scheme that compresses and reuses similar cache blocks across requests. We develop two comple-
mentary methods: Batch Fast-Fusion (BFF), which fuses blocks across different requests prior to
decoding, and Chunks Fast-Fusion (CFF), which fuses blocks across input chunks during prefill-
ing. Both schemes reduce KV-cache size, enable larger batch sizes, and lower network bandwidth
demands. At the core of our approach is a tree-structured fusion strategy that efficiently identifies
encoding opportunities while preserving model accuracy. By applying joint encoding in both prefill
and decode phases, our scheme delivers high throughput even under heterogeneous workloads with
diverse input/output lengths and arrival patterns. These new fusion strategies substantially extend
the generality and efficiency of cache sharing, delivering both memory and bandwidth savings in
heterogeneous, real-world workloads.

The remainder of this paper is organized as follows: Section 2 discusses the most relevant related
work. Section 3 outlines the motivation behind block fusion in LLM serving systems. Section 4
describes the proposed scheme in detail. Section 5 analyzes the scheme in lens of the point processes,
Section 6 presents the experimental results and evaluation, and Section 7 concludes the paper.

2 RELATED WORK

A major line of research has focused on reducing the memory footprint of the KV-cache, primarily
through compression. Key approaches include quantization, low-rank approximation, and selective
eviction. Quantization-based methods, such as Hooper et al. (2024); Liu et al. (2024d), compress key
and value embeddings to 2–3 bits with minimal accuracy loss, substantially increasing batch size and
throughput over standard precision. Low-rank and latent representations, for example, Multi-Head
Latent Attention (MLA) Liu et al. (2024a) and ReCalKV Yan et al. (2025) stored KV matrices
in compact subspaces that are later reconstructed as needed. This approach achieves a significant
reduction in the KV-cache size while maintaining attention accuracy. Recently, Meng et al. (2025)
suggested a method for transforming the attention of pretrained models to MLA architectures.

Given the redundancy of KV states across adjacent layers, other works interpolate vector directions or
use SVD to compress cross-layer states (e.g., Liu et al. (2024b); Chang et al. (2025)), often retaining
only a subset of tokens for quality. Combining quantization with these techniques achieves KV-cache
compression ratios up to 5×. Recent work leverages adaptive arithmetic encoding (Liu et al., 2024c),
head-level token importance with residual merging (Liu et al., 2025), and sensitivity-driven dynamic
sparsity (Zhang et al., 2024; Yang et al., 2025) to further boost cache efficiency.

A complementary research direction explores memory sharing across requests by reusing computation
for common input segments. Frameworks like HydraGen (Juravsky et al., 2024), RelayAttention
(Zhu et al., 2024), and vLLM/SGLang (Wu et al., 2025; Zheng et al., 2023) exploit prefix sharing,
where requests with identical prefixes share cached states, reducing both computation and memory
requirements. However, such methods are limited by the rarity of exact prefix matches in practical

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 1: Attention computation (a) batch of requests with similar keys blocks. After the fusion,
the KV=cache footprint is smaller and batch decoding is optimized by performing matrix-matrix
multiplication. (b) After fusing chunks into a unified representation, the blocks computation of
chunks 0 and 1 can be reused in chunk 2 (same color).

workloads. Fragmentation and fine-grained reuse of overlapping segments are considered in (Zhang
et al., 2025; Prabhu et al., 2025; Yang et al., 2025).

Despite significant progress, most prior methods rely on rigid heuristics, disrupt native tensor layouts,
or require exact prefix matches, limiting scalability and flexible integration into modern LLM serving
pipelines. Our work directly addresses these limitations by introducing joint compression of KV-
cache blocks, allowing finer-grained, layout-preserving, and general block sharing that extends the
benefits of prefix reuse to arbitrarily similar segments. This flexibility is critical for memory- and
bandwidth-efficient serving in real-world settings.

3 MOTIVATION

Improving the throughput of LLM serving is often achieved by increasing batch size. Since the
decoding phase is primarily memory-bound, dominated by repeated fetching of large weight matrices,
larger batch sizes do not substantially increase per-request decoding latency. However, serving
scalability remains constrained by the memory footprint of the KV-cache, which must be reserved per
user session. Apart from the common compression methods like quantization and sparsification (by
eviction), prefix-sharing techniques like Juravsky et al. (2024) and Zheng et al. (2024) demonstrate
that overlapping prompt segments across requests enable KV-cache sharing. In addition, reuse of com-
puted blocks as well as improved computation can improve throughput by up to 36% (Huijong Jeong
& Kim, 2024). Nonetheless, these approaches rely on exact prefix matches, which severely limits
applicability in real-world settings where variations in phrasing or task-specific inputs are common
(Wu et al., 2025; Zheng et al., 2024). For example, two translation requests with slightly different
introductory phrases (“Help me translate” vs. “Translate this”) would fail to share any KV blocks
under strict prefix matching (Wu et al., 2025).

To overcome the strict requirement of an exact match, we propose a KV-cache blocks joint-encoding
scheme that fuses blocks based on similarity threshold. This approach extends the benefits of prefix
sharing to non-identical contexts. Figure 1 highlights the memory and computational benefits of
jointly encoding blocks in Softmax Attention (SA). Specifically, Figure 1(a) illustrates the benefits in
the decoding phase, where keys with similar representations (indicated by color) can be combined
into a unified representation. Fusing these keys (and values) into a unified representation not only
allows increasing the batch size but also facilitates optimized matrix-matrix multiplication, instead
of multiple matrix-vector multiplications. In the prefill phase, Figure 1(b) illustrates how chunking
input requests allows joint encoding of blocks across chunks, which reduces KV blocks memory, and
thus, facilitates handling longer inputs and further reusing computation in SA. Consequently, any SA
computation involving a fused block can be reused in subsequent chunks that include instances of
this block, maximizing efficiency and throughput.

In both cases, after encoding, some blocks share the same representation and the block table points to
the shared representation. Thus, any SA computation that involves a fused block can be reused in
later chunks that comprise an instance of this block. The final SA result is derived by merging the SA
of the fused components with that of the unique components (and rescaling). The recent version of
vLLM can take advantage of the computation of SA with shared blocks.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 KV BLOCKS JOINT-ENCODING

In this section, we introduce our KV blocks joint-encoding scheme for the chunk-prefilling setting, to
further facilitate the joint encoding of the chunks while they are processed in the LLM (Qin et al.,
2024; Agrawal et al., 2023). The main objective of our scheme is to maximize the batch size by
jointly encoding KV blocks. The impact is threefold. First, in the decode phase, benefit from a
higher arithmetic efficiency due to a larger batch size, and further, minimize KV-cache prefetching,
mitigating the memory bandwidth limit. Second, in the prefill phase, it also enables the reuse of fused
blocks computations, alleviating the compute limitation (see Figure 1). Third, reduce the usage of
network bandwidth, which often becomes a bottleneck, especially when considering a high degree of
parallelism (Agrawal et al., 2024). Certainly, it is crucial to achieve this goal while maintaining the
model’s accuracy.

To fulfill this goal, we propose Fast-Fusion (FF) method that jointly encodes similar blocks into a
unified representation if the cosine similarity between contexts of different blocks is above predefined
threshold. The similarity threshold is substantial for both the resulting compression ratio and model’s
accuracy. To avoid excessive blocks comparisons overhead, we design an efficient tree-like fusion
strategy that scales as O(B logB) and O(C logC), where B is the batch size and C is the number
of chunks, respectively. This strategy allows the parallelization of the fusion process at each level of
the tree. Accordingly, the fusion can be done over blocks of different requests (i.e., BFF) or blocks of
different chunks (i.e., CFF).

In practice, the KV-cache layout in vLLM is (B, p, t, h, d), where p, t, h, and d are the number of
blocks, tokens per block, number of heads, and the head embedding size, respectively. Before encod-
ing, the KV-cache is unfolded into a convenient layout of blocks per request or chunk. Specifically, let
r = t · h · d, and note that C = ⌊p · t/(size of chunk)⌋, we use a layout of (B, p, r) and (C, p/C, r)
for the BFF and the CFF, respectively. The norm of each r is stored to allow a proper rescaling of the
fused blocks. The algorithm is applied iteratively for every N chunks or requests in each layer.

A pseudo-code of the FF algorithm is given in Algorithm 1. Roughly speaking, after unfolding
the KV-cache into a convenient layout and storing the norms, we recursively call the FF method
in Algorithm 1, which fuses blocks of different requests or chunks if their similarity level is above
threshold. Intuitively, blocks represented by r-dimensional vectors can also be expressed in terms
of their norm and corresponding r-dimensional unit (direction) vectors. In this view, fusion can be
understood as aligning multiple unit vectors into a single unified direction, while preserving the
distinctiveness of the original blocks through their norms. This allows representing multiple blocks
using a single unit vector and a norm (scalar) per block. To further enhance the compute, the fused
blocks are taken into account in the attention computation, allowing low-level kernels to leverage
jointly encoded blocks in the decoding phase, and reuse computations in the prefill phase. Only one
copy of the fused blocks is needed, and redundant copies can be evicted to reduce memory usage.
Further, different number of blocks may be encoded in each layer, which requires running each layer
with its own block table, as implemented in vLLM. Note that our scheme attains a compression that
is at least the compression attained by shared prefix methods, since we further compress inputs that
do not share prefixes.

Consequently, the joint encoding allows us to reuse computations to address the limitations of
compute, memory bandwidth, and network bandwidth. The tree structure is beneficial for detecting
fusion opportunities at a reasonable cost in large-scale prefill and decoding serving systems.

Remark 1. The order of requests impact the resulting compression. Specifically, it is beneficial to
place shorter requests (in terms of number of blocks) on the left tree to gain higher diversity per block.
At the best case, all the blocks in the right tree will be unified into the left tree blocks representation,
yielding the maximal compression. However, the responsibility of ordering the requests belongs to
the scheduler, which is out of the scope of this paper.

5 ANALYSIS

The similarity threshold is substantial to the algorithm performance as it dictates the resulting
accuracy (or distortion) on the one hand, and the compression (or rate) on the other. In terms of
rate-distortion, high threshold ensures low KV cache distortion, yet may result in low exceedance

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Fast Fusion
Require: KV-cache (k,v), threshold (thr)

if len(k) == 1 then
return normalize(k), normalize(v)

end if
(*tree left*)
kl, vl ← FastFusion(k[: len(k)//2], v[: len(v)//2], thr)
(*tree right*)
kr, vr ← FastFusion(k[len(k)//2 :], v[len(v)//2 :], thr)
sim← (klk⊤

r) (*similarity per block of kl*)
for each row in sim do

idxfused ← indices where sim(row) > thr
if |idxfused| > 0 then

(*block fusion*)
kl(row)← normalize(kl(row) +

∑
i∈idxfused

kr(i))
vl(row)← normalize(vl(row) +

∑
i∈idxfused

vr(i))
evict fused blocks at kr(idxfused) and vr(idxfused)
(*for matrix-matrix efficiency*)
mark shared blocks at kl(row), and vl(row)

end if
end for
update block-table bt
return cat([kl | kr non-shared blocks]),

cat([vl | vr non-shared blocks])

Figure 2: BFF example for 6 request, where
each request has a different number of
blocks (and a different color). The Fast Fu-
sion is recursively called, fusing every pair
of requests (fused blocks are depicted by a
mixed color). Then, fusing pairs of pairs,
and so on, until all the requests’ blocks are
jointly described in the KV-cache. Clearly,
some blocks are not fused (remain their
original color), and some are fused more
than once while traversing the tree.

rate, and consequently, moderate compression. Similarly, low threshold value allows unifying many
blocks into a single representation (high compression), yet may degrade the performance due to a
highly distorted KV cache. Hence, it is crucial to thoroughly study the impact of the threshold.

As mentioned, Algorithm 1 recursively fuses pairs of requests (see Figure 2 for illustration). Assume a
pair of requests with m1 and m2 blocks, respectively, for which there are n = m1 ·m2 similarity sam-
ples {xi}ni=1. Then, using Kernel Density Estimation (KDE) with a Gaussian kernel (Wand & Jones,
1994, Ch. 2), the similarity density in each layer is approximately fh(x) = 1

nh

∑n
i=1 ϕ

(
x−xi

h

)
,

where h is the kernel bandwidth (standard deviation). Therefore, the similarity distribution is
approximately

Fh(x) =
1

n

n∑
i=1

Φ

(
x− xi

h

)
, (1)

where ϕ and Φ are the Gaussian density and distribution functions, respectively. In other words,
each sample xi contributes a Gaussian kernel function with mean value xi to the overall estimated
probability density function, thus contributing a different probability of exceeding the threshold.

Proposition 1. For a sufficiently high similarity threshold u, the number of above-threshold similari-
ties is asymptotically a Poisson variable with rate

Λ(u) =
1

n

n∑
i=1

exp

{
−u− (hbn + xi)

han

}
, (2)

where an = (2 log n)−1/2 and bn = (2 log n)1/2− 1
2 (2 log n)

−1/2(log log n+log(4π)) are normal-
ization constants.

Proof. We wish to analyze the asymptotic threshold exceedance rate of eq. (1). Since the indices
of high threshold exceedance are random and are relatively rare, the number of above-threshold
observations can be modeled as a Poisson random variable when the threshold is sufficiently high
(Leadbetter et al., 2012, Ch. 5). In particular, let u be a threshold such that the kernel of each sample i
satisfies Pr(xi > u) =

(
1− Φ

(
u−xi

h

))
= Θ(1/n). Then, according to the uniformly asymptotically

negligible condition, the number of threshold arrivals is approximately a Poisson variable with rate

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
x

0

5

10

15

20

25

f(x)

thr=0.8thr=0.8thr=0.8thr=0.8
layer 4
layer 11
layer 19
layer 25

(a)

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975
x

0

25

50

75

100

125

150

175

200

f(x)

layer 4
layer 11
layer 19
layer 25

(b)

Figure 3: Empirical similarity and analysis for DeepSeek-R1-Distill-Qwen-7B (2025) on nVidia
HelpSteer (2024) dataset for several layers. Bars represents the empirical similarity and solid line the
KDE approximation. (a) Blocks similarity density. (b) Above-threshold density for threshold=0.8.

Λ(u) when the samples are independent (Falk et al., 2010, Ch. 8.3). Similar treatment for dependent
samples is given in (Coles et al., 2001, Ch. 5).

For the Gaussian case, the threshold exceedance rate is Λ(u) given in eq. (2), where an =
(2 log n)−1/2 and bn = (2 log n)1/2 − 1

2 (2 log n)
−1/2(log log n + log(4π)) are normalizing con-

stants (Kampeas et al., 2014, Theorem 5).

Figure 3(a) depicts the empirical similarity and the above-threshold distribution together with the
KDE approximation for DeepSeek-R1-Distill-Qwen-7B (2025) on nVidia HelpSteer (2024) dataset in
several layers. Evidently, for this model and dataset, the similarity appears Gaussian, yet with different
mean and variance in each layer. Interestingly, letting the similarity in layer ℓ be approximately
Gaussian with mean µℓ = 1

n

∑n
i=1 xi and variance σ2

ℓ = 1
n

∑n
i=1 x

2
i − µ2

ℓ , by the Poisson point

process, the threshold exceedance rate is approximately Λℓ(u) = n ·
(
1− Φ

(
u−µℓ

σℓ

))
. Moreover,

even though each layer follows a different distribution and, therefore, has a different threshold
exceedance rate, by Proposition 1, the overall exceedance rate for all model layers can be evaluated.

The Poisson formulation facilitates analyzing the probability of observing non-compressible layer,
and the expected compression ratio over the entire model. From the properties of the Poisson, we
have the following corollary.
Corollary 1. After the fusion, the compression ratio over L layers is

compression ratio = L(m1 +m2)/

(
(L(m1 +m2)−

L∑
ℓ=1

Λℓ(u)

)
.

The probability of no fusion in layer ℓ is

Pr(no fusion in layer ℓ) = exp(−Λℓ(u))

The analysis provides a theoretical foundation for understanding the trade-offs inherent in block fusion
for LLM serving. The Poisson point process modeling indeed shows that the similarity threshold
directly governs the balance between compression and distortion in the KV cache. Our per-layer
analysis predicts the expected compression for a given threshold, allowing skipping non-compressible
layers in probability.

6 RESULTS

In this section, we present the results of our context fusion scheme for the KV cache-centric disaggre-
gated architecture using CFF and BFF. To assess our approach, we first fuse and replicate the cache
across all fused blocks, allowing us to measure compression rates and accuracy. Then, However, this
setup does not allow for direct assessment of performance acceleration. We evaluate the performance
of our approach using a commodity GPU on various benchmarks and models and compare it to the
baseline performance. The results demonstrate the effectiveness of our scheduling algorithm in terms
of compute efficiency, memory reduction, and network bandwidth consumption.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 100 200 300 400
batch size

1

2

3

4

5

6

co
m

pr
es

sio
n

ra
tio

8 blocks
16 blocks
32 blocks
64 blocks

(a)

1.0 1.5 2.0 2.5 3.0 3.5
compression ratio

50

55

60

65

70

75

F1
 sc

or
e

baseline
BFF

(b)

1.1 1.2 1.3 1.4 1.5
compression ratio

57.5

60.0

62.5

65.0

67.5

70.0

F1
 sc

or
e

baseline
CFF

(c)

Figure 4: CR and F1 score of BFF and CFF for Llama-2 7B. (a) CR vs. batch size for diverse
number of blocks on vLLM random-data benchmark. (b) BFF F1 score vs. CR for batch size 256 on
conversational dataset. (c) CFF F1 score vs. CR, for 4 chunks on conversational dataset.

6.1 BLOCK DIVERSITY AND RATE-DISTORTION

Both the number of requests (or chunks) and the number of blocks in each request (or chunk) influence
the resulting Compression Ratio (CR). The larger the batch, the more requests to fuse, and the more
blocks per request, the greater diversity of blocks for fusion, which yields a better CR. To assess
the significance of each, we examine the BFF CR on the random data benchmark in vLLM API
(2023), using a fixed similarity threshold for a various number of requests and blocks per request
using Llama2-7B with 16 tokens per block. Interestingly, Figure 4(a) reveals that the diversity of
blocks per request is more significant than the diversity of requests, since the CR grows faster when
more blocks per request are used.

Figure 4(b) and 4(c) depict the the rate distortion trade-off for BFF and CFF, respectively. The rate
distortion curve is given for Llama2-7B on Das (2024) conversational dataset, where the number
of requests (chunks) is fixed, and the similarity threshold varies. The baseline result is given for
reference. Specifically, in Figure 4(b) the BFF achieves a CR of ∼ 2.15×, without degrading accuracy
for batch size 256 with a block size of 16 tokens. In Figure 4(c), the CFF achieves a CR of ∼ 1.25×
without losing accuracy for 4 chunks with a block size of 16 tokens.

Remarkably, this rate distortion formulation indicates that a higher CR can be achieved without
sacrificing accuracy when fixing the similarity threshold value. In particular, since only the threshold
determines the resulting accuracy (distortion), once the threshold is fixed, increasing the batch size or
the number of blocks per request yields a better CR due to diversity in requests and blocks.

6.2 BATCH FAST-FUSION DURING DECODING

The impact of diversity on the CR and the resulting F1 score is of great practical interest, as it
indicates the gain of a larger batch using our enhancement. Specifically, in this section, we investigate
the CR and the F1 score when increasing the number of requests in the BFF scheme, where the
similarity threshold is set to a fixed value, using the nVidia OpenMathInstruct-2 (2024) dataset.

Figure 5(a) depicts the CR versus batch size for the Llama3.1-8B model and Qwen2.5-72B. Notably,
in both cases, the CR grows logarithmically with the batch size, reaching CR of ∼ 3.11× and
∼ 4.38× for batch sizes of 128 and 64, respectively.

Using the same settings, we further evaluate the behavior of the F1 score when increasing the number
of requests in a batch in Figure 5(b). Interestingly, the F1 score is a bit higher on average for both
models, and especially for the Qwen2.5 72B model. The phenomenon where averaging similar blocks
improves the model accuracy can be interpreted through the lens of the crowd wisdom effect. Each
block representation, akin to an individual expert, contributes unique insights about the block context
over the layers. When focusing on relatively similar representations, averaging these representations
reduces individual biases and errors, much as a group makes more accurate decisions (Trott, 2024).

Table 1 describes the F1 score and the CR behavior when applying BFF to every 8 requests (i.e., batch
size 8) for various thresholds in a variety of MMLU (2020) tasks and GSM8k (2022). These results

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100 120
batch size

1

2

3

4

co
m

pr
es

sio
n

ra
tio

baseline
BFF CR Llama3.1-8B
BFF CR Qwen2.5-72B

(a)

0 20 40 60 80 100 120
batch size

66

68

70

72

74

76

F1
 sc

or
e Baseline Llama3.1-8B

BFF Llama3.1-8B
Baseline Qwen2.5-72B
BFF Qwen2.5-72B

(b)

Figure 5: CR and F1 score of BFF vs. baseline for Llama-3.1 8B and Qwen2.5 72B on nVidia
OpenMathInstruct-2 (2024) dataset. (a) CR vs. batch size. (b) F1 score vs. batch size.

highlight the ability of the BFF to significantly reduce the KV cache size in many cases, without
compromising accuracy, showcasing its value in improving decoding efficiency.

Table 1: F1 score and CR (in parenthesis) achieved by BFF for Llama3.1-8B.

Model Method GSM8K Con.Phy. E.Eng. F.Logic HS.Bio misc. sociology Average

BFF 41.47 37.87 40.69 35.2 44.19 51.72 40.8 41.71
thr=0.7 (×3.1) (×3.29) (×3.21) (×2.69) (×2.51) (×2.93) (×3.11) (×2.98)

BFF 51.91 40.85 38.62 40 46.13 51.34 39.3 44.02
Llama3.1-8B thr=0.74 (×2.52) (×2.52) (×2.48) (×2.21) (×2.04) (×2.32) (×2.4) (×2.36)

BFF 62.86 40.43 40 41.27 45.48 54.79 38.31 46.16
thr=0.78 (×2.09) (×1.63) (×1.59) (×1.53) (×1.37) (×1.52) (×1.61) (×1.62)
Baseline 62.46 40.85 40.69 40 48.39 54.79 40.8 46.85

‘

Practically, these results indicate up to ∼ 3.11× and ∼ 4.38× reduction of KV cache blocks, for
Llama3.1-8B and Qwen2.5-72B, respectively. Of course, this also mitigates the memory fetching and
the network bottleneck which is significant, especially when considering a high level of parallelism.
Furthermore, using fused blocks is beneficial for performing hardware-optimized matrix-matrix
multiplications (Juravsky et al., 2024).

6.3 CHUNKS FAST FUSION DURING PREFILL

In this section, we examine the CR and the resulting F1 score for the CFF. Even though eliminating
the distance that stems from RoPE can yield a higher CR, it disables reusing computations, which is
substantial for the prefill phase. Thus, the CFF is applied to blocks within chunks, together with their
positioning. In addition to compression, the results also indicate the computation reuse factor.

To characterize the impart of CFF on the CR and F1 score, the similarity threshold is set to a fixed
value, and the number of chunks to fuse is varied. The evaluation is performed on Llama3.1-8B and
Qwen2.5-72B models with 16 tokens per block on the Longbench qmsum dataset Bai et al. (2023).
This dataset contains relatively long inputs, which allows characterizing the CR and accuracy of CFF
when applied to increasing number of chunks. Figure 6(a) depicts the CR and when applying CFF to
the chunks. As we see, the CFF uses up to ∼ 3.25× fewer blocks, for which their computation can
be reused, thus mitigating computational and network bottlenecks. Figure 6(b) depicts the F1 score
of the CFF when scaling the number of chunks to fuse on the same task. The CFF manages to keep
the accuracy in most cases, and experiences only a negligible accuracy loss.

Table 2 describes the F1 score and the CR behavior when applying CFF to every 8 chunks for various
thresholds in a variety of Longbench tasks (Bai et al., 2023). The table highlights consistent gains in
compression with minimal or no loss in accuracy. Notably, even at lower thresholds, the F1 scores
remain comparable to the baseline, while achieving compression ratios of up to ×1.87.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30
#chunks

1.0

1.5

2.0

2.5

3.0

co
m

pr
es

sio
n

ra
tio

baseline
CFF CR Llama3.1-8B
CFF CR Qwen2.5-72B

(a)

0 5 10 15 20 25 30
#chunks

82

84

86

88

F1
 sc

or
e

baseline Llama3.1-8B
CFF Llama3.1-8B
baseline Qwen2.5-72B
CFF Qwen2.5-72B

(b)

Figure 6: CR (a) and F1 score (b) of CFF vs. number of chunks for Llama3.1-8B and Qwen2.5-72B
using the Longbench qmsum dataset.

Table 2: F1 score and CR (in parenthesis) achieved by CFF for Llama3.1-8B.

Model Method LCC RepoBench-P PR-en TREC 2wikimqa GovReport MQA-zh Average

CFF 75.77 74.07 21.04 40.48 45.9 83.8 27.34 52.63
thr=0.62 (×1.87) (×1.59) (×1.32) (×1.43) (×1.38) (×1.59) (×1.53) (×1.53)

CFF 77.12 74.8 18.3 40.3 45.88 81.39 38.08 53.7
Llama3.1-8B thr=0.64 (×1.49) (×1.3) (×1.15) (×1.16) (×1.17) (×1.25) (×1.24) (×1.25)

CFF 77.24 75.99 18.38 41.15 44.94 83.83 40.31 54.55
thr=0.66 (×1.26) (×1.15) (×1.06) (×1.06) (×1.06) (×1.09) (×1.1) (×1.11)
Baseline 77.73 75.57 18.74 40.95 44.12 82.81 39.18 54.16

‘

Overall, the results presented in this section demonstrate the effectiveness of our context-sharing
scheduling scheme for the KV cache-centric disaggregated architecture. Our approach significantly
improves compute efficiency, reduces memory and network bandwidth consumption, and scales
well with increasing system size, making it a promising solution for accelerating LLM serving in
resource-constrained scenarios.

7 CONCLUSION

In this paper, we presented Fast Fusion, a novel context-sharing enhancement that can improve
LLM serving efficiency by introducing BFF and CFF. These techniques enable fine-grained fusion
of similar KV cache blocks across requests or chunks, achieving up to ×4.38 compression without
compromising accuracy. By significantly reducing KV cache transfers, our method reduces signifi-
cantly the average number of blocks, and thus, allows to scale the serving capacity effectively under
heterogeneous workloads. Theoretical analysis based on Poisson point processes provides insight into
the rate-distortion trade-offs, and extensive empirical evaluations across multiple benchmarks and
model sizes validate the practical benefits. Looking forward, we plan to explore the impact on serving
throughput, using adaptive threshold tuning, integration with quantization, and pruning methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Amey Agrawal, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav S Gulavani, and Ra-
machandran Ramjee. Sarathi: Efficient LLM inference by piggybacking decodes with chunked
prefills. arXiv preprint arXiv:2308.16369, 2023.

Amey Agrawal, Junda Chen, Íñigo Goiri, Ramachandran Ramjee, Chaojie Zhang, Alexey Tumanov,
and Esha Choukse. Mnemosyne: Parallelization strategies for efficiently serving multi-million
context length LLM inference requests without approximations. arXiv preprint arXiv:2409.17264,
2024.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Chi-Chih Chang, Chien-Yu Lin, Yash Akhauri, Wei-Cheng Lin, Kai-Chiang Wu, Luis Ceze, and
Mohamed S Abdelfattah. xkv: Cross-layer svd for kv-cache compression. arXiv preprint
arXiv:2503.18893, 2025.

Stuart Coles, Joanna Bawa, Lesley Trenner, and Pat Dorazio. An introduction to statistical modeling
of extreme values, volume 208. Springer, 2001.

Bhaskar Lal Das. Synthetic therapy conversations, 2024. URL https://huggingface.co/
datasets/Mr-Bhaskar/Synthetic_Therapy_Conversations. Accessed: 2025-
05-6.

DeepSeek-R1-Distill-Qwen-7B. Deepseek-r1-distill-qwen-7b, 2025. URL deepseek-ai/
DeepSeek-R1-Distill-Qwen-7B. Accessed: 2025-05-6.

Michael Falk, Jürg Hüsler, and Rolf-Dieter Reiss. Laws of small numbers: extremes and rare events.
Springer Science & Business Media, 2010.

GSM8k. Open-ai gsm8k benchmark, 2022. URL https://huggingface.co/datasets/
openai/gsm8k. Accessed: 2025-05-6.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun S Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv
cache quantization. Advances in Neural Information Processing Systems, 37:1270–1303, 2024.

Cunchen Hu, Heyang Huang, Liangliang Xu, Xusheng Chen, Jiang Xu, Shuang Chen, Hao Feng,
Chenxi Wang, Sa Wang, Yungang Bao, et al. Inference without interference: Disaggregate LLM
inference for mixed downstream workloads. arXiv preprint arXiv:2401.11181, 2024.

Yeonjoon Jung Huijong Jeong, Daehyun Ahn and Taesu Kim. [vllm vs tensorrt-llm]
#12. automatic prefix caching, 2024. URL https://blog.squeezebits.com/
vllm-vs-tensorrtllm-12-automatic-prefix-caching-38189. Accessed:
2025-05-11.

Jordan Juravsky, Bradley Brown, Ryan Ehrlich, Daniel Y Fu, Christopher Ré, and Azalia Mirhoseini.
Hydragen: High-throughput LLM inference with shared prefixes. arXiv preprint arXiv:2402.05099,
2024.

Joseph Kampeas, Asaf Cohen, and Omer Gurewitz. Capacity of distributed opportunistic scheduling
in nonhomogeneous networks. IEEE Transactions on Information Theory, 60(11):7231–7247,
2014.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Yu, Joey Gon-
zalez, Hao Zhang, and Ion Stoica. vllm: Easy, fast, and cheap llm serving with pagedatten-
tion. See https://vllm. ai/(accessed 9 August 2023), 2023a. URL https://github.com/
vllm-project/vllm.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611–626, 2023b.

10

https://huggingface.co/datasets/Mr-Bhaskar/Synthetic_Therapy_Conversations
https://huggingface.co/datasets/Mr-Bhaskar/Synthetic_Therapy_Conversations
deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://huggingface.co/datasets/openai/gsm8k
https://huggingface.co/datasets/openai/gsm8k
https://blog.squeezebits.com/vllm-vs-tensorrtllm-12-automatic-prefix-caching-38189
https://blog.squeezebits.com/vllm-vs-tensorrtllm-12-automatic-prefix-caching-38189
https://github.com/vllm-project/vllm
https://github.com/vllm-project/vllm

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Malcolm R Leadbetter, Georg Lindgren, and Holger Rootzén. Extremes and related properties of
random sequences and processes. Springer Science & Business Media, 2012.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Reza Haffari, and Bohan Zhuang. Minicache: Kv cache
compression in depth dimension for large language models. Advances in Neural Information
Processing Systems, 37:139997–140031, 2024b.

Xin Liu, Pei Liu, and Guoming Tang. Zsmerge: Zero-shot kv cache compression for memory-efficient
long-context llms. arXiv preprint arXiv:2503.10714, 2025.

Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray, Yuyang Huang, Qizheng Zhang, Kuntai Du,
Jiayi Yao, Shan Lu, Ganesh Ananthanarayanan, et al. Cachegen: Kv cache compression and
streaming for fast large language model serving. In Proceedings of the ACM SIGCOMM 2024
Conference, pp. 38–56, 2024c.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024d.

Fanxu Meng, Pingzhi Tang, Xiaojuan Tang, Zengwei Yao, Xing Sun, and Muhan Zhang. Transmla:
Multi-head latent attention is all you need. arXiv preprint arXiv:2502.07864, 2025.

MMLU. Massive multitask language understanding (MMLU) benchmark, 2020. URL https:
//huggingface.co/datasets/cais/mmlu. Accessed: 2025-05-6.

nVidia HelpSteer. nvidia helpsteer, 2024. URL https://huggingface.co/datasets/
nvidia/HelpSteer. Accessed: 2025-05-6.

nVidia OpenMathInstruct-2. nvidia openmathinstruct-2, 2024. URL https://huggingface.
co/datasets/nvidia/OpenMathInstruct-2. Accessed: 2025-05-6.

Ramya Prabhu, Ajay Nayak, Jayashree Mohan, Ramachandran Ramjee, and Ashish Panwar. vatten-
tion: Dynamic memory management for serving llms without pagedattention. In Proceedings of
the 30th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 1, pp. 1133–1150, 2025.

Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang, Yongwei Wu, Weimin Zheng, and Xinran
Xu. Mooncake: A kvcache-centric disaggregated architecture for LLM serving. arXiv preprint
arXiv:2407.00079, 2024.

Sean Trott. Large language models and the wisdom of small crowds. Open Mind, 8:723–738, 05
2024. ISSN 2470-2986. doi: 10.1162/opmi_a_00144. URL https://doi.org/10.1162/
opmi_a_00144.

vLLM API. Randomdataset, 2023. URL https://docs.vllm.ai/en/latest/
api/vllm/vllm.benchmarks.datasets.html#vllm.benchmarks.datasets.
RandomDataset. Accessed: 2025-05-11.

Matt P Wand and M Chris Jones. Kernel smoothing. CRC press, 1994.

Guanlong Wu, Zheng Zhang, Yao Zhang, Weili Wang, Jianyu Niu, Ye Wu, and Yinqian Zhang.
I know what you asked: Prompt leakage via kv-cache sharing in multi-tenant llm serving. In
Proceedings of the 2025 Network and Distributed System Security (NDSS) Symposium. San Diego,
CA, USA, 2025.

Rui Xie, Asad Ul Haq, Linsen Ma, Yunhua Fang, Zirak Burzin Engineer, Liu Liu, and Tong Zhang.
Reimagining memory access for llm inference: Compression-aware memory controller design.
arXiv preprint arXiv:2503.18869, 2025.

11

https://huggingface.co/datasets/cais/mmlu
https://huggingface.co/datasets/cais/mmlu
https://huggingface.co/datasets/nvidia/HelpSteer
https://huggingface.co/datasets/nvidia/HelpSteer
https://huggingface.co/datasets/nvidia/OpenMathInstruct-2
https://huggingface.co/datasets/nvidia/OpenMathInstruct-2
https://doi.org/10.1162/opmi_a_00144
https://doi.org/10.1162/opmi_a_00144
https://docs.vllm.ai/en/latest/api/vllm/vllm.benchmarks.datasets.html#vllm.benchmarks.datasets.RandomDataset
https://docs.vllm.ai/en/latest/api/vllm/vllm.benchmarks.datasets.html#vllm.benchmarks.datasets.RandomDataset
https://docs.vllm.ai/en/latest/api/vllm/vllm.benchmarks.datasets.html#vllm.benchmarks.datasets.RandomDataset

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xianglong Yan, Zhiteng Li, Tianao Zhang, Linghe Kong, Yulun Zhang, and Xiaokang Yang. Recalkv:
Low-rank kv cache compression via head reordering and offline calibration. arXiv preprint
arXiv:2505.24357, 2025.

Jingbo Yang, Bairu Hou, Wei Wei, Yujia Bao, and Shiyu Chang. Kvlink: Accelerating large language
models via efficient kv cache reuse. arXiv preprint arXiv:2502.16002, 2025.

Chen Zhang, Kuntai Du, Shu Liu, Woosuk Kwon, Xiangxi Mo, Yufeng Wang, Xiaoxuan Liu, Kaichao
You, Zhuohan Li, Mingsheng Long, et al. Jenga: Effective memory management for serving llm
with heterogeneity. arXiv preprint arXiv:2503.18292, 2025.

Yanqi Zhang, Yuwei Hu, Runyuan Zhao, John Lui, and Haibo Chen. Unifying kv cache compression
for large language models with LeanKV. arXiv preprint arXiv:2412.03131, 2024.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff Huang, Chuyue Sun, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Efficiently programming large language
models using sglang. CoRR, 2023.

Zhen Zheng, Xin Ji, Taosong Fang, Fanghao Zhou, Chuanjie Liu, and Gang Peng. Batchllm:
Optimizing large batched llm inference with global prefix sharing and throughput-oriented token
batching. arXiv preprint arXiv:2412.03594, 2024.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao
Zhang. DistServe: Disaggregating prefill and decoding for goodput-optimized large language
model serving. In 18th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 24), pp. 193–210, 2024.

Lei Zhu, Xinjiang Wang, Wayne Zhang, and Rynson WH Lau. Relayattention for efficient large
language model serving with long system prompts. arXiv preprint arXiv:2402.14808, 2024.

12

	Introduction
	Related Work
	Motivation
	KV Blocks Joint-Encoding
	Analysis
	Results
	Block Diversity and Rate-Distortion
	Batch Fast-Fusion During Decoding
	Chunks Fast Fusion During Prefill

	Conclusion

