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Abstract 9 

The anaerobic digestion (AD) process poses challenges in maintaining process 10 

stability and time series-based prediction and forecasting due to the intricate nature 11 

of the system. Process instability is a consequence of the unpredictability in the raw 12 

material received at the facility, as well as temperature fluctuations and pH changes 13 

resulting from microbiological processes. Consequently, it is necessary to implement 14 

constant monitoring and control measures for higher biogas production. The 15 

challenges associated with anaerobic digestion (AD) systems can be effectively 16 

addressed through the integration of advanced machine learning (ML) algorithms and 17 

industry 4.0 systems within biogas facilities. This integration holds the potential to 18 

enhance system efficiency and enable on-site control capabilities. Machine learning 19 

(ML) based solutions have the potential to enhance process performance in AD 20 

facilities, leading to improved system operation and maintenance. The present study 21 

focuses on advanced ML techniques, specifically time series algorithms (ARIMA and 22 

SARIMAX), have been employed to forecast the daily biogas production. These 23 

algorithms are trained to discern critical process parameters and forecast daily biogas 24 

production rates, measured in Liters. For forecasting 117 days of experimental data 25 
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used and identified ARIMA was best algorithm to forecast the daily production. This 26 

algorithm excelled not only in predicting biogas production but also in forecasting 27 

yield, resulting in a Root Mean Square Error (RMSE) of 3.26. Furthermore, a 28 

comparison between the forecasted values of both ARIMA and SARIMAX was 29 

conducted. The predictive ARIMA model underwent statistical validation with 30 

unknown data, resulting in a P-value is >0.05. 31 

Keywords: 32 

Biogas;  Anaerobic digestion; Modelling and prediction; Forecasting; Time series; 33 

Machine learning 34 

 35 

Highlights 36 

• Forecast the biogas production with time series algorithms using ARIMA and 37 

SARIMAX. 38 

• Feature Engineering and Hyperparameter tuning is done for better modelling. 39 

• Predicted and forecasted biogas production with an RMSE of 3.26 and 24.02 40 

respectively. 41 

• By using this model, Biogas production can be forecasted for only the shorter 42 

period.  43 

 44 

 45 
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1. Introduction 91 

Utilizing the promising approach like anaerobic digestion (AD) for the manufacturers achieve 92 

the production of biogas, guaranteeing improved yields. The process of anaerobic digestion 93 

involves microorganisms like acetogens, acidogens, and methanogens breaking down organic 94 

matter such as animal manure, wastewater, and food waste, in the absence of oxygen (Nguyen 95 

et al., 2019). AD is efficiently designed and free from risks, ensuring that it structures its 96 

processes in a manner that preserves human health. The outcomes of the anaerobic digestion 97 

process were, biogas (energy) and digestate (manure). The central primary focus revolves 98 

around biogas production. Biogas consists of 25% - 45% carbon dioxide and 50% - 70% 99 

methane and some other traces gas. The usage of biogas finds extensive application in the 100 

heating, electricity, and transportation sectors, serving as renewable fuels (Abanades et al., 101 

2022).  102 

In 2013, the worldwide recorded biogas production capacity reached approximately 14.173 103 

MW, and this capacity increased to 18.505 MW by 2018, signifying a compound annual growth 104 

rate (CAGR) of 30.69%. By 2022, the capacity further increases to 21.512 MW, demonstrating 105 

a production rate increase of 16.24% between 2018 and 2022. Over the span of 10 years, from 106 

2013 to 2022, the potential for biogas production escalation is estimated to be around 51.84%. 107 

This decade-long surge in biogas production exemplifies a substantial achievement in growth. 108 

The potential of biogas is widely spread for the utilization across diverse sectors. The 109 

distribution of biogas percentages across sectors indicates allocations of 45% in electricity, 35% 110 

in heating, and 10% in transport. In 2022, the global biogas market held a valuation of $71.59 111 

billion, and this value escalated to $78.25 billion in 2023, showcasing a growth rate of 9.3% in 112 

CAGR. The projection for global market growth in 2027 stands at an estimated $102.7 billion, 113 

featuring a CAGR of 7.0%. 114 

 115 
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Table 1.  Similar studies have been reported in literature. 116 

Algorithm 
used 

Parameter 
considered 

Best 
Algorithm 

Emphasis of 
the study 

Model 
Evaluation 

Author(s) 

DA-LSTM-
VSN, 
DA-LSTM, 
LSTM 
 

Continuous: 
Qsludge, Qsludge, 
SRT, temperature. 
Discontinuous: 
VS/TS ratio, BOD, 
COD, SS, Total 
nitrogen (TN), and 
total phosphorus 
(TP) 

DA-LSTM-
VSN 

Prediction of 
biogas 
production in 
anaerobic co-
digestion of 
organic wastes 
using deep 
learning models 

R2 = 0.76 
NRMSE = 
0.09 

(Jeong et 
al., 2021) 

RF, KNN, 
SVM, ANN, 
Xgboost 

%TS, %VS, 
temperature, pH, 
alkalinity, VFA, CH4 

and CO2. 

RF Prediction of 
biogas 
production of 
industrial scale 
anaerobic 
digestion plant 
by machine 
learning 
algorithms 

R2 = 0.92 
RMSE=1405.8 

(Yildirim 
and 
Ozkaya, 
2023) 

DNN COD, BOD, TSS, PH, 
T, Total Nitrogen 
(TN), Total 
Phosphorus (TP) 

DNN DNN model 
development of 
biogas 
production 
from an 
anaerobic 
wastewater 
treatment plant 
using Bayesian 
hyperparameter 
optimization 

R2 = 0.712 (Sadoune 
et al., 
2023) 

Extra Tree TS%, VS, VFA mg/L, 
ALK mg/L, and 
VFA/ALK ratio 

Extra Tree Tree-Based 
Automated 
Machine 
Learning to 
Predict Biogas 
Production for 
Anaerobic Co-
digestion of 
Organic Waste 

R2 = 0.72 (Wang et 
al., 2021) 

KNN, 
ARIMA, 
Decoder-
ANN, 
Temporal 
Fusion 
Transformer 

Raw sludge dry 
matter load, Sludge 
loss on ignition, 
Hydraulic retention 
time, Overnight stay, 
Raw sludge dry 
matter, 
Temperature, 
Sludge dry matter 
load, public holiday, 
Time index, Ambient 
temperature, 

Temporal 
Fusion 
Transformer 

Machine 
learning for 
quantile 
regression of 
biogas 
production 
rates in 
anaerobic 
digesters 

RMSE=246.1 (Sappl et 
al., 2023) 
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Co-fermentation 
biowaste, 
Month, Sludge total, 
Sludge, 
Raw sludge, 
pH value, 
Sludge dry matter, 
Weekday 

 117 

In literature, the authors showed the comparison of biogas predictions using various 118 

algorithms are represented in Table 1. (Jeong et al., 2021) They assembled time series data to 119 

facilitate the training of diverse algorithms in deep learning. For both continuous and 120 

discontinuous time series data, they utilized DA-LSTM-VSN as the optimal model for biogas 121 

prediction, achieving a test R2 of 0.76 and a normalized root mean square error (NRMSE) of 122 

0.68. Trained DA-LSTM with continuous input features, resulting in a test NRMSE of 0.10, 123 

while LSTM, which was also trained with continuous input features, resulted in a test NRMSE 124 

of 0.14. This model exclusively focused on biogas prediction and did not venture into future 125 

forecasting. (Yildirim and Ozkaya, 2023) Named a total of 8 input features to predict biogas 126 

production, utilizing 5 machine learning algorithms. Among these, Random Forest (RF) stood 127 

out as the top performer, attaining an R2 of 0.92 and an RMSE of 1405.84. Although the R2 128 

value showcases satisfactory performance, the notable error rate indicates instances of high 129 

model overfitting. Furthermore, the model restricted its application to singular sample 130 

predictions, and it did not include provisions for forecasting. (Sadoune et al., 2023) Deep 131 

Neural Networks (DNN) to train the model using 7 parameters. To enhance data modelling 132 

through scaling, utilized three different scaling techniques: Minmax scaler, Robustscaler, and 133 

Standardscaler. Among these techniques, Robustscaler emerged as the most effective for the 134 

neural network, resulting in an R2 of 0.712, considering a dense layer of 1 and a dropout rate 135 

of 0.144, activation function (SELU), and optimizer (RMSprop). The model was limited to 136 

singular sample predictions without delving into forecasting. (Wang et al., 2021) Extra Tree 137 

Regressor algorithm with 5 parameters as a tree-based model for biogas prediction. Artificial 138 
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Neural Network (ANN) modelled for result comparison with the Extra Tree algorithm. The 139 

tree-based algorithm yielded an R2 of 0.72, whereas the ANN algorithm resulted in an R2 of 140 

0.56. Their research mainly focus was solely on prediction, without incorporating biogas 141 

forecasting into the study. (Sappl et al., 2023) Total of 4 prediction algorithms for biogas 142 

forecasting, with one of them being a time series algorithm, namely ARIMA. All these 143 

algorithms underwent consideration and were trained with the dataset. Among them, the 144 

Temporal Fusion Transformers algorithm yielded the best result, achieving an RMSE of 145 

246.17, outperforming the other algorithms. On the other hand, ARIMA generated a 146 

prediction result with an RMSE of 569.67, which is notably high compared to all the other 147 

algorithms. It's important to note that ARIMA solely focused on prediction and didn't involve 148 

forecasting biogas production daily. Currently, no published work has achieved the 149 

development of a time series model for forecasting biogas production with significantly low 150 

RMSE and MAE. This is a crucial concern as the demand for biogas is rapidly increasing and 151 

holds high significance for the future. Various sectors will actively utilize biogas in the 152 

upcoming days. 153 

In this study focuses on biogas production, utilizing a dataset covering 117 experimental days. 154 

Leveraging the advanced algorithm of time series within the realm of machine learning 155 

techniques, the primary focus is on forecasting and predicting model outcomes. Prediction 156 

involves determining a solitary value for a given parameter or day, while forecasting entails 157 

the continuous projection of outputs in accordance with the data sequence. Hyperparameter 158 

tuning was conducted to select optimal parameters for AIC and BIC, crucial for model 159 

training. Matplotlib library was utilized for clear graph visualization. Through the 160 

comparison of model evaluation, particularly RMSE and MAE, the model was chosen for both 161 

prediction and data forecasting. If the model's performance falls short, it's retrained with 162 

varying AIC and BIC values. The entire methodology of this paper is depicted in Figure 2. 163 
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2. Methodology 164 

2.1 Data Collection and pre-processing 165 

The data was collected from previously published research article from Scopus 166 

database (Bautista Angeli et al., 2022). which was conducted experiment on a batch 167 

mode to produce daily biogas production for a period of 117 days. This 168 

comprehensive experiment incorporated several crucial operating and process 169 

parameters, including VS consumed, initial pH, and final pH, Temperature, HRT 170 

(hydraulic retention time), CH4 mean production, , CH4 content. To facilitate a 171 

comprehensive analysis of biogas yield production, the experiment timeline was 172 

segmented into three distinct periods based on these parameters. In the initial period, 173 

first 12 days, an initial pH was 6.8 and a final pH of 5.5 were measured and a CH4 174 

composition in produced biogas was measured at 44% (±6%). After the completion of 175 

initial period, period 2 extended up to 63 days, continuously from 13 day. In this stage 176 

an initial pH of 5.8, a final pH was 7.0, and a % CH4 (% biogas) was 49% (±8%). The 177 

subsequent phase, period 3, covered the duration from the end of period 2 to till 117th 178 

day, comprising around 54 days. During this final stage, the experiment adhered to 179 

an initial pH of 7.0 and a final pH of 7.0, and a measured % CH4 (% biogas) content 180 

was 52% (±3%), as detailed in Table 2 (Bautista Angeli et al., 2022). 181 

Table 2. Analytical follow-up of the co-digestion in the reactor 182 

 183 

 CH4 mean 
production 
(mL/ gVS) 

VS 
consumed 
(%) 

VS consumed 
(%) 

Initial 
pH 
 

Final 
pH 

Period 1 94 (±21) 94 (±1) 44 (±6) 6.8 5.5 
Period 2 353 (±115) 83 (±7) 49 (±8) 5.8 7.0 
Period 3 321 (±39) 83 (±7) 52 (±3) 7.0 7.0 
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The dataset encompasses 117 days, facilitating a day-by-day examination of biogas 184 

yield production data. We undertook data cleaning to address null values or missing 185 

entries within the dataset, utilizing the front fill method to ensure a comprehensive 186 

dataset for biogas yield analysis. This cleaned dataset was harnessed for the 187 

application of machine learning (ML) techniques, specifically time series analysis, to 188 

forecast and predict the biogas production. Two distinct time series algorithms, 189 

namely ARIMA and SARIMAX, were employed to predict or forecast biogas 190 

production. To performance of these models can evaluate by using Root Mean Square 191 

Error (RMSE) and Mean Absolute Error (MAE), for ensure the robust model 192 

assessment. Figure 1 illustrates the relationship between biogas production with the 193 

number of days. This visualization provides a clear overview of the trend over time. 194 

In Figure 2 understanding of the entire methodology, in-depth for visually outlines 195 

the comprehensive process employed in this study. 196 

 197 

Figure 1. Biogas plot with respect to days 198 
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2.2 Time Series Algorithms 199 

2.2.1 ARIMA 200 

Autoregressive Integrated Moving Average (ARIMA) constitutes a generalized model 201 

derived from Autoregressive Moving Average (ARMA) in the realm of time series 202 

analysis. Application of algorithms are supposed to time-based data inputs 203 

predominantly called for time series algorithms (Brockwell and Davis, 2016a), with 204 

these being tailored to predict or forecast the patterns within the data. Often, such data 205 

exhibits non-stationary behavior, and is characterized by variations in statistical 206 

properties. To enable the effective use of time series models for forecasting, it's 207 

imperative to transform this data into a stationary form. Achieving stationarity 208 

ensures that the mean average of data points remains consistent throughout time. The 209 

augmented Dickey-Fuller test (ADF) serves as a reliable method to assess data 210 

stationarity. The p-value is equal to or less than 0.05, else not the data is deemed 211 

stationary. Conversely, when data lacks stationarity, differencing becomes a vital step 212 

to induce stationarity. This process is repeated iteratively until the data achieves the 213 

desired stationary state (Brockwell and Davis, 2016b).  214 

The ARIMA framework contains three integral components that come into play: 215 

Autoregressive (AR), Integrated (I), and Moving Average (MA). The AR segment, 216 

denoted as "p" in Equation (1), embodies the autoregressive model. It signifies the 217 

number of observed lags in the model, commonly referred to as the lag order 218 

(Brockwell and Davis, 2016c). 219 

AR(p) model: 220 
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𝑦𝑡 = 𝑐 + (1 − ∑ 𝜑𝑖𝑦𝑡−𝑖

𝑝

𝑖=0
) + 𝜀𝑡                                                  (1) 221 

Where, 𝜑𝑖 = AR coefficients, 𝑦𝑡 = Time series at time t, 𝑦𝑡−𝑖 = lagged values of time 222 

series, 𝜀𝑡 = error time at time t, c = constant. 223 

The Moving Average (MA) component, denoted as "q" in Equation (2), represents the rolling 224 

window size, also referred to as the order of the moving average. This parameter defines the 225 

span of observations considered for calculating the moving average at a specific time point  226 

(Brockwell and Davis, 2016c). 227 

MA(q) model: 228 

𝑦𝑡 = 𝑐 + (1 − ∑ 𝜃𝑖𝜀𝑡−𝑖

𝑞

𝑖=0
) + 𝜀𝑡                                                   (2) 229 

Where, 𝑦𝑡 = Time series at time t, 𝜃𝑖 = MA coefficients, 𝜀𝑡−𝑖 = residual error at a lagged 230 

period, 𝜀𝑡 = error time at time t, c = constant. 231 

The selection of "p" and "q" values is derived from the Partial Autocorrelation Function 232 

(PACF) and Autocorrelation Function (ACF) plots from the data. These plots encompass the 233 

upper and lower boundaries. If the error bands cross these boundaries, they indicate time lags 234 

that significantly impact the time series. These crossing points dictate the values for "p" and 235 

"q". Specifically, "p" is determined from the PACF plots, and “q" is extracted from the ACF 236 

plots. Within the ARIMA framework, the "I" component signifies integration, denoted as "d" 237 

in Equation (3). This value represents the number of differencing operations applied to the 238 

data to achieve stationarity. Each difference operation reduces the data's non-stationary 239 

behavior, progressively rendering it suitable for time series analysis (Brockwell and Davis, 240 

2016b). 241 

𝐿𝑑𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−𝑑                                                           (3) 242 
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For the first differencing (d=1) of the data to make it stationary Equation (4), 243 

𝑦𝑡
1 = 𝑦𝑡 − 𝑦𝑡−1                                                              (4) 244 

In some cases, second differencing (d=2) also needed to make data to stationary 245 

Equation (5)                                         𝑦𝑡
2 = 𝑦𝑡

1 − 𝑦𝑡−1
1  246 

                                        = (𝑦𝑡 − 𝑦𝑡−1) − (𝑦𝑡−1 − 𝑦𝑡−2) 247 

                     = 𝑦𝑡 − 2𝑦𝑡−1 + 𝑦𝑡−2                                                 (5) 248 

During this process, the application of differencing is pivotal to achieve data stationarity, 249 

enhancing the predictive capabilities for forecasting. ARIMA's effectiveness is notably 250 

pronounced in short-term prediction scenarios, relying primarily on past data for its 251 

forecasting abilities. The optimal selection of "p" and "q" values is determined through 252 

statistical analysis, specifically utilizing metrics like the Akaike Information Criterion (AIC) 253 

and Bayesian Information Criterion (BIC). These metrics gauge the model's fit by assessing 254 

the goodness of fit relative to the complexity of the model. Lower AIC and BIC values signify 255 

a better-fitting model. This approach, ARIMA constructs a predictive model capable of 256 

accurate forecasting based on the learned data. The ARIMA equation, denoted as ARIMA (p, 257 

d, q), is represented in Equation (6), encapsulating the interplay of autoregressive, 258 

differencing, and moving average components (Brockwell and Davis, 2016c). 259 

ARIMA (p, d, q) model: 260 

(1 − ∑ 𝜑𝑖𝐿
𝑖

𝑝

𝑖=0
) (1 − 𝐿)𝑑𝑦𝑡 = (1 − ∑ 𝜃𝑖𝐿𝑖

𝑞

𝑖=0
) 𝜀𝑡                         (6) 261 

𝐿 = lag operator, 𝑑 = differencing term. 262 
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2.2.2 SARIMAX 263 

Seasonal Autoregressive Integrated Moving Average with Exogenous Variables 264 

(SARIMAX) extends from the foundation of Seasonal Autoregressive Integrated 265 

Moving Average (SARIMA) model. The inclusion of "X" in SARIMAX signifies its 266 

capability to handle exogenous variables. This algorithm is particularly effective for 267 

data displaying seasonality, making it a fitting choice for forecasting and prediction. 268 

Seasonal ARIMAX, denoted as SARIMA (p, d, q) (P, D, Q, s) in Equation (7), 269 

encompasses seasonal components in addition to the ARIMA parameters. The 270 

seasonal cycle length, represented as "s," typically corresponds to 12 months. The 271 

values "p," "d," and "q" are derived from the ACF and PACF plots of the ARIMA model 272 

(Brockwell and Davis, 2016c), indicated in Equations (1) & (2) & (3). Before modelling 273 

data need to achieve stationarity through differencing. Since SARIMAX is the 274 

algorithm with a seasonal cycle of 12 months requires a 12-month shift, differencing 275 

is performed iteratively to ensure stationarity. The number of times differencing is 276 

conducted is denoted as "D" in the SARIMAX model. The autoregressive model "P" in 277 

SARIMAX is determined by assessing the seasonal PACF plot, while the moving 278 

average "Q" is deduced from the seasonal ACF plot (Shumway and Stoffer, 2017). 279 

SARIMA (p, d, q) (P, Q, D, s) model: 280 

 (1 − ∑ 𝜑𝑖𝐿
𝑖

𝑝

𝑖=1
) (1 − ∑ 𝛷𝑖𝐿

𝑖𝑠
𝑃

𝑖=1
) (1 − 𝐿)𝑑(1 − 𝐿𝑠)𝐷𝑦𝑡  281 

                                     =  (1 + ∑ 𝜃𝑖𝐿𝑖
𝑞

𝑖=1
) (1 + ∑ Θ𝑖𝐿

𝑖𝑠
𝑄

𝑖=1
) 𝑋𝑡 + 𝜀𝑡                       (7) 282 
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𝛷𝑖 = Seasonal AR coefficients, Θ𝑖 = Seasonal MA coefficients, s= length of seasonal 283 

period, 𝑋𝑡 = exogenous variables. 284 

2.3 Hyperparameter Optimization 285 

Hyperparameter tuning is a technique for refining model performance and controlling the 286 

learning process to train the model efficiently. It aids to identifying the optimal parameters, 287 

leading to enhance the model performance. In the context of time series algorithm used for 288 

data modelling and forecasting, finding the best autoregressive (p, P) and moving average (q, 289 

Q) values, both for seasonal and non-seasonal components, holds utmost significance. 290 

Optimized values of these parameters contribute to improved model fitting, enhancing 291 

prediction and forecasting the outcomes. The selection process involves leveraging Akaike 292 

Information Criterion (AIC) and Bayesian Information Criterion (BIC) techniques (Brockwell 293 

and Davis, 2016a). These methods assist in identifying the most suitable AR (p, P) and MA (q, 294 

Q) values for both ARIMA and SARIMAX models. The chosen values exhibit lower AIC and 295 

BIC scores, aligning with better model performance. AIC and BIC values, calculated as per 296 

Equation (8) and (9), carry no fixed range. Instead, they are influenced by the specific AR and 297 

MA values derived from ACF and PACF plots. AIC and BIC scores need to be substantially 298 

lower compared to alternatives, indicating the ideal choice of parameters for optimal 299 

modelling. 300 

Akaike information criterion (AIC): 301 

𝐴𝐼𝐶 = 2𝑘 − 2 ln(𝐿)                                                           (8) 302 

𝑘 = number of parameters in the model, 𝐿 = max value of likelihood function of model 303 

Bayesian information criterion (BIC): 304 

𝐵𝐼𝐶 = 𝑘 ∗ ln(𝑛) − 2 ln(𝐿)                                                 (9) 305 
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𝑛 = number of observations. 306 

2.4 Model Evaluation 307 

Time series algorithms are utilized for both prediction and forecasting of the model. 308 

These models were effectively implemented and adapted to the dataset. The model 309 

performance was evaluated based on the metrics of Mean Absolute Error (MAE) and 310 

Root Mean Square Error (RMSE) (James et al., 2013).  MAE represents the average of 311 

the absolute differences between the true and predicted values. As the difference 312 

between the true and predicted values increases, the RMSE also increases, as 313 

demonstrated in Equation (10).  314 

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − �̂�𝑖|𝑛

𝑖=1

𝑛
                                         (10) 315 

Where, 𝑦𝑖 = Actual values,  �̂�𝑖 = Predicted values, n = Number of data points 316 

Root Mean Square Error is employed to calculate the squared differences between the 317 

actual and predicted values of the output variable. The RMSE provides insight into 318 

the proximity of the actual data points to the predicted data points. A lower RMSE 319 

signifies a minimal difference between the true and predicted values, as illustrated in 320 

Equation (11). 321 

𝑅𝑀𝑆𝐸 =

√∑ (𝑦𝑖 − �̂�𝑖)
2𝑛

𝑖=1

𝑛
                                  (11) 322 

𝑦𝑖 = Actual values,  �̂�𝑖 = Predicted values, n = Number of data points 323 
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 324 

Figure 2. Overview of the Research Methodology Process.325 
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3. Results and Discussion 326 

3.1 Data Statistics before Modelling  327 

The statistical analysis of the dataset involves 117 days of daily biogas production 328 

experiments. Throughout this period, the biogas produced ranged from a minimum 329 

of 1.86 to a maximum of 405.9 liters, with a mean production of 153.14 liters per day. 330 

The experiments were divided into three distinct periods, each characterized by 331 

specific parameters such as initial pH and final pH, which were detailed in Table 2. 332 

To address missing values, a front-fill method was employed. Additional insights into 333 

the data's distribution and variability can be assembled from the provided box plot in 334 

Figure 3. 335 

 336 

Figure 3. Statistics of the time series data 337 

 338 

 339 

 340 
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3.2 Seasonal Decomposition 341 

Seasonal decomposition involves utilizing statistical analysis to dissect time series 342 

data into distinct components such as trend, seasonality, and residual patterns. These 343 

components offer valuable insights into the various variations present within the data, 344 

aiding in comprehensive analysis. Two primary models utilized for seasonal 345 

decomposition are Additive and Multiplicative (Cowpertwait and Metcalfe, 2009). 346 

Additive models are employed when the magnitude of seasonal data remains 347 

consistent throughout the entire period without notable fluctuations. This model 348 

aggregates the seasonal component, trend, and residual. The formulation of the 349 

additive model is presented as Equation (12). 350 

𝑦𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑅𝑡                                                            (12) 351 

The Multiplicative model comes into play when the magnitude of seasonal data 352 

exhibits changes throughout the time span. This model is employed in situations 353 

where the fluctuations in seasonal patterns are not consistent. It involves calculating 354 

the product of seasonal components, trends, and residuals. The formulation of the 355 

multiplicative model is represented as Equation (13). 356 

𝑦𝑡 = 𝑇𝑡 ∗ 𝑆𝑡 ∗ 𝑅𝑡                                                             (13) 357 

𝑇𝑡 = Trend component, 𝑆𝑡 = Seasonal component, 𝑅𝑡 = Residual component. 358 

In seasonal decomposition, the trend component signifies the smoothed trajectory of 359 

the time series data. This component offers insights into whether the time series 360 

exhibits an upward, downward, or steady trend. On the other hand, the Seasonal 361 

Component is utilized to identify recurring patterns that manifest at regular intervals 362 
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within the time series data. These patterns can be associated with specific days, 363 

months, or years, and the periodicity can be adjusted based on analytical 364 

requirements. The Residual Component captures the residual noise that remains once 365 

the trend and seasonal patterns have been removed from the data. This segment 366 

encompasses short-term fluctuations that cannot be explained by the underlying trend 367 

and seasonality components.  368 

We collected 117 daily experimental observations for the present time series data 369 

concerning biogas production. Utilizing the multiplicative model for seasonal 370 

decomposition was appropriate (Cowpertwait and Metcalfe, 2009), given the varying 371 

nature of the data over time. Examining the decomposed components, the observed 372 

component presented a normal distribution of the data. The trend component 373 

depicted a discernible upward trajectory, indicating an increasing trend within the 374 

time series. In terms of the seasonal component, recognizable patterns were evident, 375 

showcasing periodicity in the data. The residual component, denoting the error, fell 376 

within a range of 0.5 to 1.5, suggesting relatively minor discrepancies. The seasonal 377 

decompose plot can be observed in Figure 4, visually encapsulating the outlined 378 

components and their behavior. 379 
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 380 

Figure 4. Seasonal decomposition of time series data. 381 

 382 

3.3 Time Series Analysis 383 

3.3.1 ADF (Augmented Dickey-Fuller test) 384 

The Augmented Dickey-Fuller test (ADF) is utilized to determine whether the data 385 

exhibits stationarity. Stationarity ensures a constant average mean across all data 386 

points over time. In the ADF test, you calculate a p-value; if this value is less than or 387 

equal to 0.05, the data is considered stationary. To achieve stationarity, the technique 388 

of differencing is employed. In the context of predicting biogas using the ARIMA 389 

model, the ADF test initially yielded a p-value of 0.57, indicating non-stationarity of 390 

the data. The first difference was applied by shifting the data by 1. Subsequently, the 391 

ADF test for this first-differenced data revealed an exceptionally low p-value of 9.99e-392 

07, confirming its stationarity. Transitioning to the Seasonal ARIMA (SARIMAX) 393 

model, which accounts for seasonality, a significant shift of 12 was required for 394 
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differencing due to its seasonal nature. Remarkably, after applying this seasonal 395 

difference, the SARIMAX model exhibited stationarity, supported by a p-value of 0.04. 396 

3.3.2 ACF & PACF plots 397 

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) serve 398 

as essential statistical analysis tools for enhancing time series models in the quest for 399 

improved prediction and forecasting accuracy. ACF plots play a pivotal role in 400 

determining the Moving Average (MA) model components, while PACF plots are 401 

instrumental in identifying the Autoregressive (AR) model components. These plots 402 

play a central role in the development of ARIMA and SARIMAX algorithms. Both 403 

ACF and PACF plots are accompanied by upper and lower bounds, which form a 404 

confidence interval. When the error bands within these plots intersect or cross over 405 

this confidence interval, it signifies the statistical significance of that lag. ACF plots 406 

encapsulate the correlation between a data point and its own past lags. These plots are 407 

particularly adept at unveiling patterns within the data. When ACF values exhibit a 408 

gradual decrease, it indicates the presence of a persistent pattern in the data. PACF 409 

plots, on the other hand, reveal the specific relationship between a data point and its 410 

immediately preceding value, effectively capturing the direct influence of past 411 

observations on the current point. The range of ACF and PACF values spans from -1 412 

to 1. Where, -1 indicates a negative correlation, 0 signifies no correlation, and 1 413 

represents a positive correlation (Shumway and Stoffer, 2017). 414 

In the ARIMA (p, d, q) model, we posit an AR(p) value of 40 based on observations 415 

from the PACF plot. For the MA(q) component, we designate a value of 10, informed 416 

by insights gleaned from the ACF plot. As for the differencing aspect denoted by 'd', 417 
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a value of 1 is selected. This decision aligns with the need to attain data stationarity, 418 

which was achieved through a single differencing operation, as illustrated in Figure 419 

5. 420 

 421 

Figure 5. ACF and PACF plots of ARIMA 422 

To build an accurate and efficient time series forecasting model, we also utilized the 423 

SARIMAX approach. The non-seasonal plots of the Autocorrelation Function (ACF) 424 

and Partial Autocorrelation Function (PACF) guided us in determining the non-425 

seasonal orders of differencing, represented as (2, 1, 2). For the seasonal component, 426 

we focused on the ACF and PACF plots after applying a seasonal shift of 12, 427 

corresponding to a yearly cycle. This allowed us to extract the seasonal orders of the 428 

SARIMAX model, which we established as (2, 1, 1, 12) Figure 6. For identifying the 429 

optimal parameters for our model, we relied on two key criteria: the Akaike 430 

Information Criterion (AIC) and the Bayesian Information Criterion (BIC). By 431 

comparing different parameter combinations using these metrics, we were able to 432 

select the parameters that provided the best fit for the time series data. Overall, these 433 

comprehensive analyses of the non-seasonal and seasonal plots of ACF and PACF, 434 

coupled with the utilization of AIC and BIC, facilitated the development of a robust 435 
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time series forecasting model. This model, based on SARIMAX, ensures a precise and 436 

efficient prediction of future values, thereby enhancing our ability to make informed 437 

decisions based on the insights derived from the time series data (Brockwell and 438 

Davis, 2016a). 439 

 440 

Figure 6. ACF and PACF plots of SARIMAX 441 

3.3.3 Plot Diagnostics 442 

The diagnostic analysis of the plotted statistics involves four main types of statistical 443 

graphs: Standardized residuals, Histogram plots, Normal Q-Q plot, and Correlogram. 444 

To assess the quality of the model's fit, various visualizations are utilized. 445 

Standardized residuals portray the discrepancies between actual values and predicted 446 

values. Calculating standardized residuals involves dividing normal residuals by the 447 

standard deviation of total residuals. This produces a standardized residual plot, 448 

illustrating the standardized differences in errors between actual and predicted 449 

values. Histogram plots showcase the distribution of residuals. The graph displays 450 

two curves: the normal distribution curve N (0,1) and the Kernel Density Estimate 451 

(KDE) curve. If the lines exhibit minimal disparity, the model is considered well-fitted. 452 

The KDE, a smoothed version of the histogram, generates a continuous representation 453 
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of data density. Particularly for ARIMA and SARIMAX models, a Gaussian kernel is 454 

employed for KDE plotting. Peaks in the KDE graph pinpoint areas of higher data 455 

density, while lower regions signify lower density. This visualization effectively 456 

communicates the data distribution's central tendency and variance. The Normal Q-457 

Q plot gauges data distribution against the normal distribution. When data points 458 

align with the red reference line, it indicates normal residuals. Both the ARIMA 459 

(Figure 7) and SARIMAX (Figure 8) models closely adhere to this red line, signifying 460 

a nearly normal distribution of residuals. 461 

 462 

Figure 7. Plot diagnostics for ARIMA. 463 

The Correlogram plot generates the Autocorrelation Function (ACF) plot using 464 

residuals instead of data. This plot reveals whether error bands fall within the 465 

confidence interval, indicating if residuals conform to a normal distribution. 466 

Consistency within the interval signifies normal distribution adherence, while 467 

deviations suggest potential data omission by the model. Notably, the lines of the 468 

ARIMA model fall insignificantly within the confidence interval, implying a lack of 469 

significance. Conversely, SARIMAX exhibits noticeable differences Figure 8. When 470 
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comparing both algorithms, it becomes evident that the ARIMA model predicts data 471 

more accurately than SARIMAX. Upon model evaluation, the ARIMA model 472 

demonstrates an RMSE of 3.26, whereas the RMSE for SARIMAX is 24.02. The 473 

superiority of the ARIMA model in this regard is apparent. These plot diagnostics 474 

leverage a variety of graphical tools to observe model residuals in time series analysis. 475 

 476 

Figure 8. Plot diagnostics for SARIMAX 477 

3.4 Comparison of Time Series algorithms 478 

3.4.1 Prediction 479 

We used time series analysis to predict the model by fitting two algorithms, namely 480 

ARIMA and SARIMAX, to the data. Both algorithms were applied to the output for 481 

prediction, specifically biogas production, with the p, d, q values determined from the 482 

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots. 483 

After observing AIC and BIC values of 1402.4 and 1542 for the order (40, 1, 10), the 484 

ARIMA model was trained and found to be better fitted to the data. In the case of 485 

SARIMAX, the seasonal orders (P, D, Q) were interpreted from seasonal ACF and 486 

PACF plots, resulting in an order of (2, 1, 2) and (2, 1, 1, 12). The AIC and BIC values 487 
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were 1245.3 and 1266.5, respectively, for this SARIMAX configuration, which was then 488 

fitted and used for prediction. Both ARIMA and SARIMAX algorithms provided 489 

predictions that were well-fitted to the actual biogas production, as shown in Figure 490 

9. The ARIMA model predicted daily biogas production with Mean Absolute Error 491 

(MAE) and Root Mean Squared Error (RMSE) values of 46.81 and 3.26 respectively. 492 

On the other hand, SARIMAX achieved MAE and RMSE values of 60.81 and 24.02. 493 

Considering the time series modelling, both ARIMA and SARIMAX algorithms 494 

exhibited very low prediction errors for biogas production. This underscores the 495 

effectiveness of these algorithms in accurately forecasting biogas production based on 496 

the time series data. 497 

 498 

Figure 9. Prediction of Biogas production in liters 499 

 500 

3.4.2 Forecasting 501 

Forecasting involves predicting future unknown days by training the model using 502 

past data. This type of modelling allows us to anticipate whether outcomes will 503 
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increase or decrease in the future. After fitting the model with the time series 504 

algorithms, namely ARIMA and SARIMAX, the focus shifts to the forecasting phase. 505 

To execute the forecasting technique, we introduce unknown days representing a 506 

future period. These days are initialized with "Not a Number" (NAN) values to 507 

facilitate predictions for unfamiliar data. These NAN values are then combined with 508 

the existing dataset, creating an extended dataset. This extended dataset is 509 

subsequently utilized to train the time series algorithms, enabling them to forecast the 510 

future data points. In our dataset, information is available for 117 days, while the final 511 

dataset incorporates new days to facilitate forecasting. To define the range for 512 

forecasting, we designate start and end dates as day 77 and day 150. This range 513 

signifies that forecasting spans from the 77th day to the 150th day, though this range 514 

can be customized to suit our requirements. Both ARIMA and SARIMAX algorithms 515 

perform well and effectively forecast biogas production up to the 150th day. The 516 

forecasting results of ARIMA and SARIMAX are visually represented in Figure 10. 517 

This visual representation provides insights into the predicted trends and variations 518 

in biogas production over the forecasting period. 519 

 520 
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Figure 10. Prediction of Biogas production in liters 521 

3.4.3 Testing model against new data 522 

To evaluate the model using unfamiliar data, we examined five new data points 523 

corresponding to days when biogas experiments were conducted. These data points 524 

were utilized to assess the variance between the biogas production predicted by the 525 

time series model and the actual biogas generated. Predictions using both the ARIMA 526 

and SARIMAX algorithms, which yielded RMSE values of 3.26 and 24.02, respectively. 527 

When we fed this data into the model for prediction, it yielded a significantly lower 528 

error in comparison to the outcomes generated by the time series algorithm. All these 529 

values are presented in Table 3 for reference.  To evaluate the forecasting results, both 530 

ARIMA and SARIMAX algorithms were employed to predict biogas production from 531 

the 77th day up to the 150th day (as depicted in Figure 10). These forecasts were made 532 

for the month. 533 

Table 3. Difference between the predicted yield and the actual yield 534 

 535 

Time Series 
Algorithm 

Day Observed Biogas  Forecasted 
Biogas  

Deviation (%) 

ARIMA 5 71.96 61.35 10.61 

13 83.03 89.03 -6 

19 77.49 63.54 13.95 

25 55.35 62.49 -7.14 

35 162.36 118.6 43.76 

 SARIMAX 5 71.96 84.59 -12.63 

13 83.03 57.61 25.42 

19 77.49 128.4 -50.91 

25 55.35 41.86 13.49 

35 162.36 116.59 45.77 

 536 
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3.4.4 Statistical Analysis 537 

This technique is utilized to test whether a statistically significant difference exists 538 

between the two models, or it can also be employed to assess the statistical difference 539 

between the actual and predicted values. This testing process is essential because, for 540 

a model to align with the null hypothesis, the p-value must be greater than 0.05. This 541 

implies that the newly predicted values fall within the 95% confidence interval of the 542 

data distribution, signifying no significant difference between the actual and 543 

predicted values. If the p-value is less than 0.05, the null hypothesis is rejected in Favor 544 

of the alternative hypothesis. In such cases, the model is deemed to exhibit a 545 

significant difference between the predicted and actual values (James et al., 2023). 546 

Based on the data presented in Table 3, we extracted the disparity between the actual 547 

and predicted models to execute the p-test. The outcome revealed a p-value exceeding 548 

0.05, signifying that both models demonstrate an insignificant difference in their 549 

predictive capabilities. This observation is consistent with the model comparison 550 

shown in Figure 11. 551 

 552 

Figure 11. Probability plot for the ARIMA and SARIMAX prediction with new data. 553 
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For the forecasting model, we calculated the discrepancy between the ARIMA and 554 

SARIMAX predictions from the 77th day to the 150th day. Subsequently, a paired t-555 

test was conducted between these two sets of predictions. The obtained p-value was 556 

greater than 0.05, indicating that the forecasting model similarly suggests an absence 557 

of significant difference between these two models, even in the context of biogas 558 

production forecasting. This outcome is illustrated in Figure 12. 559 

 560 

Figure 12. Probability plot for the ARIMA and SARIMAX Forecasting of 561 

the biogas production. 562 

4. Conclusion 563 

The culmination of this paper is the forecasting of biogas production through the 564 

utilization of time series algorithms, specifically ARIMA and SARIMAX. The dataset 565 

comprises 117 days of daily biogas production experimentation, organized into three 566 

distinct periods. Throughout each period, key parameters such as CH4 mean 567 

production, VS consumed, CH4 (% biogas), initial pH, and final pH are meticulously 568 

upheld, as detailed in Table 2. To address missing data for certain days, feature 569 

engineering techniques are employed. Additionally, hyperparameter tuning is 570 
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conducted to determine optimal values for ARIMA (p, d, q) and SARIMAX (p, d, q) 571 

(P, D, Q, s) parameters. This process is guided by the AIC and BIC values to ensure a 572 

well-fitted model for predictive and forecasting tasks. The identification of suitable 573 

parameter values is facilitated by examining the plots of the autocorrelation function 574 

(ACF) and partial autocorrelation function (PACF). Consequently, the dataset is fitted 575 

to the ARIMA and SARIMAX algorithms. The application of these models results in 576 

the prediction and forecasting of biogas production for future unknown days. The 577 

achieved RMSE values are 3.26 for ARIMA and 24.02 for SARIMAX, respectively. 578 

Subsequent statistical analysis of the new data confirms p-values greater than 0.05 for 579 

both prediction and forecasting, signifying the absence of significant differences 580 

between the two methods. Thus, these models are deemed viable for biogas 581 

production forecasting. 582 

  583 
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