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ABSTRACT

Recent advancements in Multimodal Large Language Models (MLLMs) have
accelerated the development of Graphical User Interface (GUI) agents capable of
automating complex tasks across digital platforms. However, precise GUI element
grounding remains a key challenge for accurate interaction and generalization.
In this work, we present an effective GUI grounding framework, which includes
an automated data collection engine that gathers extensive GUI screenshots and
annotations to ensure broad generalization. We also propose a lightweight and
flexible GUI grounding module designed to efficiently localize UI elements by
pre-training on the collected data, and introduce a novel method to integrate this
module with MLLMs for the effective execution of GUI tasks. Our approach
demonstrates superior performance in task accuracy and adaptability, as validated
by benchmarks such as ScreenSpot, MiniWob, AITW, and Mind2Web.

1 INTRODUCTION

Data Collection Engine

118 Domains, 0.5M Screenshots, 35M UI Element Annotations
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Figure 1: Overview of our pipeline for building a vision-based GUI agent. (A) A data collection
engine gathers a diverse set of GUI screenshots spanning a broad range of topics. (B) A GUI
grounding model trained on the collected data with dense elements and annotations. (C) The
grounding model is integrated with MLLMs to form a vision-based agent.

Recent advancements in Large Language Models (LLMs)(Achiam et al., 2023; Touvron et al.,
2023a;b; Jiang et al., 2023; Chiang et al., 2023) and Multimodal Large Language Models
(MLLMs) (Li et al., 2023; Zhu et al., 2023; Liu et al., 2024; Bavishi et al., 2023; Hong et al.,
2023) have significantly improved multimedia comprehension, logical reasoning, and decision-
making capabilities, driving the evolution of Graphical User Interface (GUI) agents. These agents are
designed to automate complex tasks on digital platforms such as PCs and mobile devices, reducing
human effort in performing monotonous duties(Cheng et al., 2024; Gao et al., 2024; Shi et al., 2017;
Zhou et al., 2023; Koh et al., 2024; Deng et al., 2023; Chen et al., 2024a;b; Lu et al., 2024a; Yan
et al., 2023; Wang et al., 2024; Yang et al., 2023; Shaw et al., 2023).
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Some pioneering works (Deng et al., 2023; Gur et al., 2023; Zheng et al., 2023; Kim et al., 2024)
have designed text-only agents that feed structured plain text representations of screen content, such
as HTML and DOM, to LLMs for reasoning, planning, and executing specific GUI actions. However,
plain text representations of GUIs have inherent limitations. First, structured text is not always
readily available, restricting its use. Second, raw text metadata—often extensive and noisy—requires
substantial preprocessing and filtering, which increases computational latency and inference costs
and may compromise model accuracy.

Humans interact with digital interfaces by visually perceiving content, making decisions, and ex-
ecuting actions accordingly. Drawing inspiration from this natural interaction with GUIs, another
approach adopted by GUI agents is to use visual renderings as inputs. This approach circumvents
the limitations associated with text metadata processing and is better suited for generalization across
various platforms. Several pretrained MLLMs (Bavishi et al., 2023; Hong et al., 2023) included UI
data during pre-training and have demonstrated their ability to understand basic elements within
UI screenshots. A recent work, SeeClick (Cheng et al., 2024), trained a visual GUI agent using
screenshots from web and mobile interfaces, enhancing vision-based capabilities in GUI tasks. De-
spite these advancements, their performance in GUI automation tasks still falls short compared to
text-based models.

We identify a primary bottleneck is GUI element grounding, which involves aligning the LLM-
generated textual plan with precise screen locations. Robust GUI agents require strong grounding
capabilities, characterized by: 1) Precision in Targeting and Interaction: The agent must accurately
identify and interact with the necessary elements at each step of a task, ensuring the reliable execution
of complex tasks. 2) Generalization Across GUI Scenarios: The agent should effectively generalize
across diverse real-world scenarios, such as online shopping, entertainment, and software-based office
tasks. 3) Flexible Grounding Adaptation: The grounding model should seamlessly integrate with any
LLM planner, enabling easy invocation and adaptation for planning and decision-making.

The main challenge of building such a system is developing this capability in the absence of large-scale
annotations available on the internet, similar to a relevant topic, segmentation (Kirillov et al., 2023a).
Therefore, a carefully tailored approach to data curation and methodical model training is essential.
From the data curation, the grounding model should be trained on a comprehensive and diverse set
of GUI screenshots and annotations to ensure strong generalization to various GUI applications.
Currently, public datasets lack dense, diverse, and richly annotated GUI grounding data. To resolve
this, we have created an automated GUI data collection engine to gather relevant screenshots and
grounding annotations, as shown in Figure 1 (A). We also perform data cleaning to maintain high
quality and augment query expression for different GUI elements to enhance generalizability.

From a model perspective, our goal is to develop a lightweight yet powerful grounding model and
seamlessly integrate it into an MLLM to perform complex GUI tasks, as shown in Figure 1 (B) &
(C). Therefore, we first design a GUI Grounding model with a robust image encoder for generating
embeddings and a language encoder for processing queries, combined in a lightweight decoder to
predict bounding boxes. This well-trained model is then integrated with the MLLM for downstream
tasks like navigation. We add a <|POS|> token to the MLLM’s vocabulary, which triggers grounding
when needed. Its hidden embedding is passed to the GUI grounding model to locate the corresponding
position for operation. This design separates reasoning and grounding into modular components,
utilizing the MLLM for reasoning and the grounding model for precise localization.

We evaluated our approach on the ScreenSpot (Cheng et al., 2024) benchmark, demonstrating
the efficacy of our GUI grounding pre-training methods. Additionally, we integrated our model
with MLLMs to function as a comprehensive GUI agent. This agent has been adapted for various
mobile and web-based tasks, including MiniWob (Shi et al., 2017), AITW (Rawles et al., 2024), and
Mind2Web (Deng et al., 2023). Our evaluations show significant improvements in task accuracy and
adaptability compared to previous methodologies.

2 RELATED WORK

Datasets for GUI Understanding. Several noteworthy benchmarks have been developed as testbeds
for GUI agents, each incorporating test data or GUI environments for evaluating the performance of
models. Examples include MiniWob (Shi et al., 2017), MiniWob++Liu et al. (2018), Mind2Web(Deng
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et al., 2023), and VisualWebArena Koh et al. (2024), which provide environments for web-based
navigation tasks. Additionally, OS-World (Xie et al., 2024) introduces a simulated environment for
system operations, while AssistGUI (Gao et al., 2024) focuses on PC software navigation tasks.

In addition to these benchmarks, various publicly available datasets have contributed to training
models for UI understanding. For instance, Widget Captioning (Li et al., 2020) offers a dataset
that includes mobile UI elements across 88 tasks. RICO (Deka et al., 2017; Sunkara et al., 2022)
provides approximately 66k mobile screenshots with view hierarchies, alongside around 500k human
annotations that identify various icons by their shapes and semantics. Moreover, datasets such as
Pix2Struct (Lee et al., 2023) and Pix2Act (Shaw et al., 2023) have been employed to train models
with screen parsing capabilities, leveraging in-house data. Recently, SeeClick (Cheng et al., 2024)
has gathered a set of pretraining data to develop an MLLM-based GUI agent.

Nevertheless, these existing datasets are still insufficient in terms of diversity and scale to support
the development of a robust GUI grounding model (Lu et al., 2024b). To address this limitation, we
have designed an automated data collection engine to assemble a dataset for GUI element grounding,
characterized by its high diversity and dense annotations.

Multimodal LLM for GUI Understanding. Multimodal Large Language Models (MLLMs) (Liu
et al., 2024; Zhu et al., 2023; OpenAI, 2023b; Abdin et al., 2024; Bavishi et al., 2023) have recently
made significant advancements, integrating visual perception and language generation to perform
tasks such as image captioning (Li et al., 2023; Wang et al., 2020), visual question answering (Hudson
& Manning, 2019), and particularly in OCR-free image text comprehension (Luo et al., 2024). The
Qwen-VL series (Bai et al., 2023b;a) adds grounding capabilities, allowing models to localize image
regions based on language input. LISA (Lai et al., 2024) adds segmentation capabilities to MLLMs
by introducing an additional segmentation modules to MLLMs.

These newly added capabilities enable models to better observe the details of images, which supports
tasks in GUI environments. As a result, some models (Hong et al., 2023; You et al., 2024; Shaw
et al., 2024; Cheng et al., 2024) have been proposed to generate actions in these environments.
GUI-based tasks, often requiring the understanding of high-resolution images, are addressed by
models like (Cheng et al., 2024; Hong et al., 2023) , enabling interaction with GUIs through visual
grounding, thus improving accessibility and widget localization.

While existing models exhibit strong object grounding capabilities, accurately localizing GUI ele-
ments in screenshots remains challenging due to their typically small size and similar visual features,
such as icons. To overcome this, we designed a specialized decoder, inspired by LISA (Lai et al.,
2024), dedicated to grounding GUI elements. Unlike previous approaches that rely solely on pure
Transformer architectures to predict bounding boxes for GUI elements (Cheng et al., 2024; Hong et al.,
2023; Bavishi et al., 2023), our method addresses the unique challenges posed by GUI screenshots.

3 DATA COLLECTION ENGINE

A robust GUI grounding model means strong performance across diverse GUI applications. To
achieve this, it is essential to collect a large, high-quality, and varied dataset. The most effective way
to gather such a comprehensive dataset is through web screenshots, given their vast quantity and
diversity in layouts and elements, which can be generalized to various application scenarios.

Therefore, we propose a data collection engine that automates the browsing of websites and collects
high-quality annotations of GUI elements. The collected data includes screenshots of graphical user
interfaces, the corresponding GUI elements with basic details (including names and bounding boxes),
and the hierarchical information of these elements. The data we aim to collect through this engine is
characterized by:
• Dense Annotations: Screens should have comprehensive annotations of elements, including but

not limited to types, displayed content, and positional information.
• Rich Elements: This includes actionable elements, such as various buttons or controls, as well as

static elements like embedded images and static text.
• Diverse Domains: The data should cover a broad range of styles and layouts, spanning multiple

domains, to ensure versatility and the ability to generalize to various application scenarios.
To achieve these goals, our data engine is structured around the following stages:
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Dataset Task Platform Vis. Input # Inst. # Anno. Anno. type
MiniWob (Shi et al., 2017) Navigation Web Image 2.8K 9.8K traj., pos.
Mind2Web (Deng et al., 2024) Navigation Web (multi.) Image 2.3K 17K traj., pos.
AITW (Rawles et al., 2023) Navigation Mobile (multi.) Image 4.6K 23.6K traj., pos.
AITZ (Zhang et al., 2024) Navigation Mobile (multi.) Image 2.5K 18.6K traj., pos.
Odyssey (Lu et al., 2024a) Navigation Mobile (multi.) Image 7.7K 119K traj., pos.
GUIWord (Chen et al., 2024a) Understanding Diverse Video 12.4K 98K cap., QA
ScreenSpot (Cheng et al., 2024) Grounding Web, Desk, Mobile Image 1.3K 1.3K type, cont., pos.

GUIAct (Chen et al., 2024b) Navigation Web, Mobile (multi.) Image 79K 191K type, cont., pos.
Screen2words (Wang et al., 2021) Understanding Mobile Image 79K 79K cap.,type,cont.,class,pos,hier.
GUIChat (Chen et al., 2024b) Understanding Web, Mobile Image 50K 50K chat, pos.
RICO (Deka et al., 2017) Grounding Mobile Image 243K 763K type, cont., pos.
GUIEnv (Chen et al., 2024b) Grounding Web, Mobile Image 70K 589K type, cont., pos.
AMEX (Chai et al., 2024) Grounding Mobile Image 97K 885K type, cont., pos.
SeeClick (Cheng et al., 2024) Grounding Web Image 0.3M 3.0M type, cont., pos.
Ours Grounding Web Image 0.5M 35M type,cont.,class,pos,hier.

Table 1: Statistics for GUI related datasets. The upper upper half datasets of smaller size are
used for downstream evaluation. The lower half datasets of larger size can be used for pretraining.
Understanding type includes chat and/or captioning data. “traj.”: trajactory, “pos.”: position, “cap”:
captioning, “QA”: quesntion answer, “cont.”: displayed content, “class”: class type defined by system,
“hier”: hierarchy info. Among these datasets, our collected data provides the most screenshots and
element annotations.

Topic Selection. We follow previous work (Cheng et al., 2024; Hong et al., 2023), sourcing URLs
from the Common Crawl. However, many web pages in Common Crawl only contain plain texts with
simple layouts, such as pages consisting of only a few lines of text, a few links, or simple images,
thus offering few interactive elements. This simplicity creates a significant gap when compared to the
complex GUI structures in common GUI tasks. To collect a large number of interactive elements, we
selected 11 topics and identified 118 domains related to those topics. These domains were then used
to filter URLs from the Common Crawl dataset. The selection of topics and website domains was
guided by GPT-4 (Achiam et al., 2023), which proposed a diverse set of topics relevant to real-world
applications. This domain list then extracts relevant web page instances from the original Common
Crawl dataset. In the Appendix, we display the selected topics and their associated domains.

GUI Data Collection. Given the URLs for the selected websites, we built a system that automatically
loads these web pages in a web browser, such as Chrome. Since web pages are often lengthy, our
system simulates user interaction by pressing the “Page Down” key to scroll through the entire content
until the bottom of the page is reached. During this process, we capture screenshots of the web pages
along with corresponding element data. The element data, which includes attributes, class names,
display contents, and bounding boxes, is obtained using UI Automation (UIA). This approach allows
us to comprehensively capture both the visual and structural aspects of the user interface, ensuring
that we accurately document and analyze the interactive elements present on each webpage.

Data Cleaning. The goal of the data cleaning stage is to ensure the quality and usability of the
collected data. Following the gathering of screenshots and element data from various websites,
we implement several critical cleaning steps to filter out unusable or irrelevant data, resulting in a
high-quality dataset. First, we eliminate websites that are either empty or inaccessible as many URLs
may lead to pages with no meaningful content, broken links, or require authentication that cannot
be handled automatically. This step is crucial for maintaining the reliability of our dataset. Next,
we clean the element data by removing entries with erroneous or missing element names. We also
address cases where the element hierarchy is ambiguous or misrepresented by restructuring it to
accurately reflect the parent-child relationships between GUI elements. By performing these steps,
we refine the dataset to ensure it contains accurate, meaningful, and well-structured data, which is
essential for further processing and the effective training of robust GUI grounding models.

Augmenting GUI Grounding Queries. To ensure the model’s generalization capabilities, it must
adapt to various query types and handle a range of tasks such as element identification, grounding,
and referring expression. However, the metadata collected primarily provides basic information like
class names and display contents, which are insufficient for generating diverse queries.

We address this by generating instructions through a set of defined templates that guide the model
to focus on specific aspects of the GUI data. For example, a button labeled “go back” could be
augmented to a query like “Where is the button to go back to the previous page?” These templates,
created using GPT-4 after categorizing the collected elements, enable us to generate a diverse set of
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queries that encompass a wide range of interactions and contexts. Some examples of constructed
templates are shown in Appendix. This augmentation process ensures that the model can effectively
manage various tasks, improving its ability to generalize across different application scenarios and
enhancing its practical usability and robustness.

Data Overview. In total, we collected 0.5M screenshots with 35M UI element annotations. Our
collected data covers a broad range of topics and features rich elements with dense annotations. We
provide a comparison of our collected dataset with previous GUI data in Table 1.

4 MODEL ARCHITECTURE

Within our scope, the GUI grounding model should exhibit generalized capabilities and be easily
adaptable for seamless integration with current MLLMs, requiring minimal modifications and
ensuring minimal performance loss.

We propose AssistGUIGrounder (AGG), a GUI grounding model designed with these objectives
in mind. For the GUI grounding model itself, it takes a GUI image and a textual query about the
target element as inputs and outputs the position of the target element corresponding to the query.
In terms of integrating the GUI grounding model with an MLLM, it should excel in vision-based
GUI agent tasks. The inputs include a GUI image representing the current status, a text description of
the user goal, and optionally, a history of past actions. The MLLM, acting as a “planner”, generates
the representation of the action and target element for the next step. Meanwhile, the GUI grounding
model extracts visual features from the input image and combines them with the decision information
from the MLLM, thus outputting the position of the target element when required.

In the following sections, we will outline the model architecture of the GUI grounding model and
discuss how it can be effectively integrated with MLLMs.

4.1 GUI GROUNDING MODEL

Language Prompt Encoder

Grounding Query:  Locate the “Search destinations” item

GUI Screenshot

Self-Attn

Query-to-Img-Attn

MLP

Img-to-Query-Attn

Learnable embeddings

Query 

Tokens

Decoder

x2

Updated 

Embed.

Image 

Encoder

Image 

Embedding

(Bbox , Score)

Figure 2: Overview of GUI Grounding model. The model consists of three main components: an
image encoder, a language prompt encoder, and a lightweight decoder. The image encoder extracts
visual features from the input GUI image, while the language prompt encoder transforms the textual
query into query embeddings. The lightweight decoder then combines these visual features and query
embeddings to predict the position of the target GUI element.

Our GUI grounding model AGG comprises an image encoder I, a language prompt encoder L, and
a lightweight decoder D, as illustrated in Fig. 2. As an overview, the image encoder extracts the
visual features of a GUI image Ximg, while the language prompt encoder learns to represent the
textual query Xquery. The lightweight decoder then fuses these visual features and the textual query
representation, learning to predict the position of the target GUI element, denoted as b̂. This can be
formulated as: b̂ = D (I(Ximg),L(Xquery)). Below is a detailed description of these components:

Image Encoder. We leverage the scalable pretraining benefits by employing the SAM (Kirillov et al.,
2023b) pretrained Vision Transformer (ViT)(Dosovitskiy et al., 2021). This choice is made due to its
demonstrated effectiveness in promptable point-to-mask segmentation tasks, showcasing its strong
visual perception capabilities. For handling high-resolution GUI inputs, we utilize windowed attention
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along with four equally spaced global attention blocks, following the methodology in(Kirillov et al.,
2023b; Li et al., 2022).

Language Prompt Encoder. The language encoder is applied to maps text queries into query
embeddings. Specifically, we employ a language transformer model (Devlin et al., 2019) as the
prompt encoder. We prepend <CLS> to each text query and use its output hidden states from the final
transformer layer as the query embedding.

Lightweight decoder. The decoder’s role is to process the embeddings from both the image encoder
and the language prompt encoder, mapping them to the output bounding boxes which indicate the
precise locations of GUI elements. Our decoder architecture is inspired by the design principles
outlined in SAM (Kirillov et al., 2023b). Before inputting the embeddings into the decoder, we
introduce a set of learnable embeddings and concatenate them with the query embeddings from the
prompt encoder. These combined embeddings are collectively referred to as “query tokens”.

The decoder comprises two layers, each performing a series of operations: (1) Bi-directional self-
attention on the query tokens, allowing the model to convey information within the tokens; (2)
Cross-attention from query tokens (as query) to the image embedding; (3) An MLP updates the query
tokens; (4) Cross-attention from the image embedding (as query) to the query tokens, which updates
the image embeddings with contextual information derived from the queries. The next decoder layer
then takes the updated query tokens and the updated image embeddings from the previous layer.
Finally, the output of the query tokens from the last decoder layer is used for grounding prediction.

Training for Grounding. For the GUI image input, we follow (Kirillov et al., 2023b) to rescale
the input image to 1024 × 1024, by adjusting the long side while maintaining the aspect ra-
tio and padding the short side. For the textual query input, to enhance the generalizability of
the grounding model, we augment the text queries by sampling templates from a predefined
set for different elements. For instance, the metadata from the data collection engine might
only provide structured information such as {"class_name":"button","content":"go
back","level-info":["navigation bar","go back"],...} for a button. Instead
of merely concatenating this information into "button: go back," we generate more diverse queries
like “Seek the go back button and click”, or “Help me find the go back button in the navigation bar”.

Following object detection methods (Carion et al., 2020), we add prediction heads to the decoder
outputs for bounding box prediction. Each output from the learnable embeddings predicts both a score
and bounding box coordinates. The predicted score is optimized to match the IoU of the predicted and
ground-truth boxes using mean-square-error loss Lmse. For bounding box regression, we use a linear
combination of l1 loss Ll1 and the generalized IoU loss LGIoU (Rezatofighi et al., 2019). The overall
training loss for GUI grounding is given by: L = λmseLmse+λl1Ll1+λGIoULGIoU, where λmse, where
λmse, λl1 , and λGIoU are hyper-parameters. Unlike Kirillov et al. (2023b), which backpropagates
only from the lowest loss, we found that backpropagating from all predictions improves performance
in GUI grounding. During inference, bounding boxes are ranked by score, and the top-1 box is
selected as the final prediction.

4.2 INTEGRATING GROUNDING MODEL WITH MLLM AS AGENT

Image 

Encoder

Multimodal

LLM

Decoder

User Goal:  I want to buy a power adapter for my 

iPhone. Can you help on this?

History: Step 1: Click at (797.0, 54.0).

GUI Screenshot: <image of S.2>

S.1 S.2

S.4S.3

S.1 Output: 

{“Action”: “click”, “position”: 

“<|POS|>”, “value”: “”}

S.2 Output: 

{“Action”: “click”, “position”: 

“<|POS|>”, “value”: “”}

S.3 Output: {“Action”: “type 

text”, “position”: “”, “value”: 

“iPhone power adapter”}

S.4 Output: 

{“Action”: “click”, “position”: 

“<|POS|>”, “value”: “”}

Embeddings of <|POS|>

Visualization of Grounding Results:

…

S.1

S.2

S.4

S.3 No grounding is required for the typing action

…

Figure 3: Integrate AGG with MLLM as a GUI agent. The proposed agent integrates an MLLM
with a trained GUI grounding model. MLLM processes textual inputs (user goals, action history) and
visual inputs (GUI screenshot) to generate a response. A special token triggers GUI grounding. The
image encoder extracts visual features, then the lightweight decoder predicts the target GUI element’s
position. The figure illustrates the process of task completion and highlights the step 2.
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For vision-based agents, completing a complex GUI task typically involves several steps, each
requiring the model to: (1) Perceive and understand: gather and interpret information from GUI
images, user goals, and action history to understand the current state. (2) Reason and plan: analyze
the current state to decide on the next action. (3) Execute: perform the desired action on the target
GUI element. In this work, we propose the simple yet effective embeddings-as-position paradigm to
integrate the GUI grounding model’s capabilities into an MLLM, thereby creating a vision-based
agent tailored for these tasks. We detail the design below.

Architecture for the integrated agent. The proposed agent consists of an MLLM M and a well-
trained GUI grounding model. Inspired by Lai et al. (2024), this approach involves several key
steps. Initially, we add a new token <|POS|> to the original MLLM vocabulary, indicating a
request for a GUI grounding output. Given the textual input Xusr, which includes the user goal
and optionally, the action history, along with the visual input of the GUI image Ximg, these inputs
are fed into the MLLM, which generates a text-form response ôusr. This process is formulated as
ôusr = M(Ximg, Xusr). When the MLLM aims to generate a bounding box, the text-form output
includes a <|POS|> token. We then extract the last layer embedding corresponding to the <|POS|>
token and apply a linear projection layer to it. We denote this output as hpos. Meanwhile, the image
encoder from the grounding model extracts visual features from the input GUI image. Finally, these
visual features and the projected embedding are fed into the lightweight decoder of the grounding
model to predict the position P of the desired GUI element, formulated as P = D (hpos, I(Ximg)).

Training for agent tasks. The model is trained using the text token prediction loss Ltext and the
grounding loss Lgrd. The overall objective for training the vision-based agent is: L = λtextLtext +
λgrdLgrd, where λtext and Lgrd are hype-parameters. Especially, when the form of the target position
is a bounding box, Lgrd is the same as that used in GUI grounding training. When the form of the
target position is point, we slightly modify the prediction head upon the decoder output to predict the
normalized distance to the ground truth point as a score indicator and predict the 2D point coordinates
as the position output.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Training data for GUI Grounding. We train our GUI grounding model on two datasets: web UI
data collected by our engine and mobile UI data reorganized from public sources. For web UI, we
applied a data smoothing strategy (Hudson & Manning, 2019), resulting in 0.36M images with 22M
element annotations. For mobile UI, following (Cheng et al., 2024), we used 27K screenshots and
275K query-bbox annotations from the WidgetCaption (Li et al., 2020) and RICO (Deka et al., 2017).

Evaluation on Grounding and Agent Benchmarks. We evaluate our GUI grounding model on the
ScreenSpot (Cheng et al., 2024) benchmark, which tests grounding capabilities across platforms and
applications. We then integrate the model with various MLLMs using the embeddings-as-position
approach and evaluate on tasks like MiniWob (Shi et al., 2017), AITW (Rawles et al., 2023), and
Mind2Web (Deng et al., 2024). Following (Cheng et al., 2024), we pretrain Qwen-VL (Bai et al.,
2023b) with our data and a mixed public split to build an MLLM for GUI tasks, and further combine
it with our trained grounding model. Instructions and previous action memory are provided as
per (Cheng et al., 2024) during training and inference.

Main implementation details. We configure the image encoder and lightweight decoder of the
GUI grounding model using the ViT-SAM-Large (Kirillov et al., 2023b) and the language prompt
encoder with a BERT-based (Devlin et al., 2019) setup. Training runs on 32 V100 GPUs with a
global batch size of 128 for 150K steps. The AdamW (Loshchilov, 2017) optimizer is used with
β1 = 0.9, β2 = 0.98, and a weight decay of 1e-4. A Cosine Annealing scheduler manages the
learning rate, starting with a warm-up over 200 steps. The max learning rate is 1e-3, dropping to
5e-5. Hyperparameters for the training objective are set as λmse = 10, Ll1 = 5, and λGIoU = 2. For
vision-based agent tasks, we fine-tune with 2 A100 GPUs, applying LoRA (Hu et al., 2021) tuning
(rank 8, alpha 16) for the language model. The decoder parameters are unfrozen, while the image
encoder remains frozen. We use AdamW with β1 = 0.9, β2 = 0.98, and no weight decay. The
training objective hyperparameters are λtext = 1 and Lgrd = 1.
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5.2 EXPERIMENTAL RESULTS

Results on ScreenSpot. ScreenSpot is a benchmark comprising over 600 interface screenshots and
more than 1200 annotations for query-element pairs. It spans mobile platforms (iOS, Android),
desktop platforms (macOS, Windows), and web platforms.

For this benchmark, we compare our GUI grounding model with generalist MLLMs capable of
recognition and reasoning (Chen et al., 2023; Bai et al., 2023b; Yan et al., 2023; Abdin et al., 2024),
as well as recent MLLMs that have incorporated GUI-related tasks during pretraining (Bavishi et al.,
2023; Hong et al., 2023; Cheng et al., 2024).

The results, shown in Table 2, highlight that while generalist MLLMs possess extensive knowledge
about natural images, their GUI grounding performance on ScreenSpot is subpar due to the significant
differences between GUIs and natural images. Even GPT-4V struggles to accurately locate screen
elements. GUI-specific MLLMs demonstrate better performance. In paticular, Our AGG achieves
the highest performance across different platforms and for both text and icon elements, even with
fewer model parameters. This underscores the advantages of our collected data for GUI grounding
training, allowing AGG to effectively handle diverse queries and rich elements encountered during
training. With rich elements and diverse query seen during training, AGG possess the capability for
GUI grounding, even for the very less scenarios like iOS. Compared to text element grounding, the
model’s performance is less strong on icon-based tasks, indicating that grounding non-text elements
in GUIs remains challenging.

Method GUI.S Model size Mobile Desktop Web Avg.Text Icon Text Icon Text Icon

MiniGPTv2 (Chen et al., 2023) ✗ 7B 8.4 6.6 6.2 2.9 6.5 3.4 5.7
Qwen-VL (Bai et al., 2023b) ✗ 9.6B 9.5 4.8 5.7 5.0 3.5 2.4 5.2
Phi-3.5-V (Abdin et al., 2024) ✗ 4.2B 1.7 1.7 4.1 0.7 4.7 2.0 2.5
GPT-4V OpenAI (2023a) ✗ - 22.6 24.5 20.2 11.8 9.2 8.8 16.2
Fuyu (Bavishi et al., 2023) ✓ 8B 41.0 1.3 33.0 3.6 33.9 4.4 19.5
CogAgent (Hong et al., 2023) ✓ 18B 67.0 24.0 74.2 20.0 70.4 28.6 47.4
SeeClick (Cheng et al., 2024) ✓ 9.6B 78.0 52.0 72.2 30.0 55.7 32.5 53.4
AGG (Ours) ✓ 0.4B 86.1 62.8 81.8 46.2 74.2 48.4 66.6

Table 2: Performance of various models on ScreenSpot. “GUI.S” indicates “GUI Specific”, denoting
whether the model was trained using domain-specific data. The best results in each column are
highlighted in bold.

Results on MiniWob. MiniWob Shi et al. (2017) features around 100 distinct web automation tasks,
requiring the agent to navigate a simplified web environment and execute human-given instructions.
In line with the approach used in (Cheng et al., 2024), we conduct 2.8K episode rollouts for training.

Method Modality Dataset Score

CC-Net(SL) (Humphreys et al., 2022) DOM+Image 2.4M 36.5
WebN-T5 (Gur et al., 2022) HTML 12K 55.2
WebGUM (Furuta et al., 2024) HTML+Image 2.8K 65.5
WebGUM (Furuta et al., 2024) HTML+Image 347K 86.1
SeeClick Cheng et al. (2024) Image 2.8K 73.6
MLLM ◦ AGG (Ours) Image 2.8K 75.8

Table 3: Results on MiniWob over 45-tasks split.

Method Modality Dataset Score

CC-Net(SL) (Humphreys et al., 2022) Image 2.4M 23.4
Pix2Act (Shaw et al., 2024) Image 12K 55.2
Qwen-VL (Bai et al., 2023b) HTML+Image 2.8K 48.4
SeeClick Cheng et al. (2024) Image 2.8K 67.0
MLLM ◦ AGG (Ours) Image 2.8K 69.3

Table 4: Results on MiniWob over-35 tasks split.

We compared our method with models using image-only inputs, text-only inputs, and a combination
of both. Note that with text input from the environment, the model selects the HTML element from
candidates as the action target.

Due to variations in the evaluation task sets used by different methods, we follow (Cheng et al., 2024)
and report performance on two groups of data splits. We compute the success rate over 50 random
seeds for each task and then calculate the mean success rate across all tasks as the final score.

Results are presented in Table 3 and Table 4. We denote our method as “MLLM ◦ AGG”. The
results show that our vision-based agent surpasses previous methods. Notably, with 2.8K training
episodes, it outperforms WebGUM, which uses both HTML and GUI images as input and exceeds
the vision-based Pix2Act, which used less than 0.3% as much training data. Furthermore, our method
outperforms MLLM-involved models like Qwen-VL and the SOTA SeeClick, demonstrating the
efficacy of our framework.
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Results on AITW. Android In The Wild (AITW) (Rawles et al., 2023) dataset is a mobile navigation
benchmark including 30K instructions and 715K corresponding operation trajectories. Following
the approach detailed in(Cheng et al., 2024), we apply the same train/test split based on instructions,
retaining a single trajectory per instruction and ensuring no overlap between the training and test sets.

We compare our method to API-based LLMs and previous MLLM-based methods. We use the
screen-wise action matching score as the main metric, as outlined in (Rawles et al., 2023), and
follow (Cheng et al., 2024) to compute click accuracy to evaluate grounding capabilities.

Results are illustrated in Table 5. Our method achieved the best performance across all tasks,
surpassing both the API-based LLMs and the previous GUI data pretrained MLLMs. Notably, our
method exhibits higher click accuracy than other methods, demonstrating stronger GUI grounding
capabilities in this scenario.

Method Modality General Install GoogleApps Single WebShopping Overall ClickAcc

ChatGPT-CoT (Zhang & Zhang, 2024) Text 5.9 4.4 10.5 9.4 8.4 7.7 -
PaLM2-CoT (Rawles et al., 2023) Text - - - - - 39.6 -
GPT-4V (Yan et al., 2023) Image 41.7 42.6 49.8 72.8 45.7 50.5 -

Qwen-VL Bai et al. (2023b) Image 49.5 59.9 46.9 64.7 50.7 54.3 57.3
SeeClick Cheng et al. (2024) Image 54.0 66.4 54.9 63.5 57.6 59.3 66.4
MLLM ◦ AGG (Ours) Image 56.4 67.8 56.6 67.2 63.1 62.2 68.1

Table 5: Performance of different models on AITW. The upper half corresponds to the performance
of API-based LLMs.

Method PT Cross-Task Cross-Website Cross-Domain
Ele.Acc Op.F1 Step.SR Ele.Acc Op.F1 Step.SR Ele.Acc Op.F1 Step.SR

MindAct (Gen) – 20.2 52.0 17.5 13.9 44.7 11.0 14.2 44.7 11.9
MindAct (Deng et al., 2024) – 55.1 75.7 52.0 42.0 65.2 38.9 42.1 66.5 39.6
GPT-3.5-Turbo – 20.3 56.6 17.4 19.3 48.8 16.2 21.6 52.8 18.6
GPT-4 (OpenAI, 2023a) – 41.6 60.6 36.2 35.8 51.1 30.1 37.1 46.5 26.4
Qwen-VL (Bai et al., 2023a) ✗ 15.9 86.7 13.3 13.2 83.5 9.2 14.1 84.3 12.0
SeeClick (Cheng et al., 2024) ✓ 28.3 87.0 25.5 21.4 80.6 16.4 23.2 84.8 20.8
MLLM ◦ AGG (Ours) ✓ 41.2 87.4 36.8 39.2 84.8 33.8 38.9 85.2 34.2

Table 6: Performance of different models on Mind2Web. “Ele.Acc” denotes element accuracy,
“Op.F1” denotes operation F1 score and “Step.SR” denotes step success rate. “PT” indicates if the
MLLM is pretrained on GUI data.

Results on Mind2Web. Mind2Web (Deng et al., 2024) is a benchmark that evaluates an agent’s
capabilities in web navigation tasks. It encompasses over 2000 open-ended tasks sourced from
137 real website URLs, each accompanied by high-level instructions and corresponding human
action trajectories. The original Mind2Web was originally designed for text-based agents, which
select actionable elements from filtered and simplified HTML elements in each step. In this work,
following (Cheng et al., 2024), we use parsed screenshots and target element bounding boxes from
the raw HTML data of Mind2Web.

We compare our approach with both text-based web agents Deng et al. (2024); OpenAI (2023a) and
vision-based agents (Bai et al., 2023b; Cheng et al., 2024). Mind2Act employs a two-step process:
a small language model first generates candidate elements from raw HTML, followed by a large
language model that selects the target via multiple-choice QA. Mind2Act(gen) directly generates
the target element. GPT-3.5 and GPT-4 use the same multiple-choice QA formulation and include
three demonstrations for in-context learning. Qwen-VL, SeeClick and our model are fine-tuned using
trajectory annotations.

Following the evaluation metrics from (Cheng et al., 2024; Deng et al., 2024), we measure element
accuracy, operation F1, and step success rate (StepSR). For vision-based models, a prediction is
considered correct if the predicted point (or the center of the predicted bounding box) falls within the
target element’s ground-truth bounding box.

The results presented in Table 6 demonstrate that pretraining on GUI grounding data significantly
enhances agent performance. Our method also surpasses the previous state-of-the-art vision-based
agent, SeeClick, by a large margin in terms of element accuracy, underscoring the robust grounding
capabilities of our model. However, our model still falls short of the top-performing text-based
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GUI agents, as grounding elements in images is inherently more complex than selecting an element
from multiple choices. This highlights the challenges associated with GUI element grounding and
suggests that there remains substantial room for improvement in deploying vision-based GUI agents
for real-world applications.

5.3 ABLATION STUDY

In this section, we conduct ablation studies to analyze the effectiveness of various design elements in
the grounding model and vision-based GUI agent.

Model Var avg. ele.acc
Qwen-VL 14.4
Qwen-VL ◦ AGG 27.4
Qwen-VL(SC data) 24.3
Qwen-VL(SC data) ◦ AGG 35.2
Qwen-VL(our data) 30.7
Qwen-VL(our data) ◦ AGG 39.8

Table 7: Effective factors for agent tasks:
different data to pretrain the MLLM and
whether incorporate AGG. The default set-
ting is marked with a color box .

Training config avg.
#1. Random init, Full 41.1
#2. SAM init, Lora 46.8
#3. prop min 47.3
#4. prop max 48.6
#5. w/o aug 44.5
#6. default 49.2

Table 8: Training configura-
tion for AGG training. De-
fault setting is marked with
color box .

# prompt emb. avg.
1 46.2
2 48.4
3 49.2
4 49.0
5 49.8

Table 9: Number of
prompt embedding for
decoder. Default set-
ting is marked with
color box .

Effective factors for improving agent tasks. We assess the impact of our collected data and AGG.
Specifically, we evaluate the Qwen-VL (Bai et al., 2023b) MLLM without GUI data pretraining,
trained with SeeClick’s pretraining data, and trained with our pretraining data. We then integrate
AGG to these model variants. The average element accuracy on Mind2Web Deng et al. (2024) is
reported. Results in Table 7 indicate that using our collected data during pretraining results in an
MLLM with superior GUI grounding capabilities. Additionally, integrating AGG leads to further
improvements, demonstrating the effectiveness of our proposed paradigm.

Training Configurations for the Image Encoder. We examine the impact of using SAM model
weights for initialization and different tuning strategies for the image encoder during training. The
results in Table 8(#1,2,6) demonstrate that initializing the image encoder with SAM model weights
and fully tuning it during training yields the best performance.

Grounding Loss Propagation During Training. We examine the impact of loss propagation
configurations for GUI grounding training. The results shown in Table 8(#3,4,6) indicate that
propagating the loss from all prompt embeddings during training yields the best performance for GUI
grounding.

Effectiveness of augmenting prompt queries. We investigate the effect of augmenting the query
from metadata during GUI grounding training. Results in Table 8(#5,6) show that augmenting
query significantly enhance the GUI grounding capability, which is important to build a generalized
vision-based GUI agent.

Number of Learnable Prompt Embeddings for Decoder. We investigate the impact of the number
of learnable prompt embeddings used in the decoder. Table 9 shows that increasing the number of
prompts beyond 3 yields no significant improvement in grounding performance.

6 CONCLUSION

In this work, we investigated the critical challenge of precise GUI element grounding, which is essen-
tial for accurate interaction and generalization in GUI agents. We developed a simple yet effective
GUI grounding framework that includes an automated data collection engine to gather extensive
GUI screenshots and annotations, ensuring broad generalization. We introduced a lightweight GUI
grounding module designed for efficient UI element localization by pre-training on the collected data.
By integrating this module with MLLMs, we demonstrated superior performance in task accuracy and
adaptability across multiple benchmarks, including ScreenSpot, MiniWob, AITW, and Mind2Web.
Our results highlight the effectiveness of our approach in enhancing the capabilities of GUI agents
for complex tasks on digital platforms.
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APPENDIX

A MORE INFORMATION FOR THE COLLECTED DATA

In this section, we provide additional details about our collected data.

Topics and Domains. We list the topics and some sampled domains in our collected data, as is shown
in Table 10.

Topic Related Domains
News and Journalism www.bbc.com, www.cnn.com, ...
Technology and Science www.wired.com, www.sciencedaily.com, ...
Sports www.espn.com, www.cbssports.com, ...
Entertainment www.imdb.com, www.netflix.com, ...
Lifestyle and Wellness www.wellandgood.com, www.goop.com, ...
Shopping and E-commerce www.amazon.com, www.ebay.com, ...
Travel www.airbnb.com, www.booking.com, ...
Food and Cooking tasty.co, www.foodnetwork.com, ...
DIY and Home Improvement www.diynetwork.com, www.houzz.com, ...
Educational and Learning www.coursera.org, www.ted.com, ...
Others www.github.com, www.capcut.com, ...

Table 10: Examples topics and some corresponding domains in our collected data.

Data Example Visualization. In Figure 4, we present several samples from our collected dataset.
These visualizations include bounding boxes highlighting the corresponding elements.

Examples of Augmented Query Templates. In Table 11, we showcase a portion of the augmented
query templates used to generate queries for GUI grounding training. These templates include both
common templates and element-specific templates. During training, the query is generated using
either the common templates or the element-specific templates.
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Figure 4: Data examples from our collected data.
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Augmented Query Examples.

Examples for common queries
◦ "Look for {content}",
◦ "Identify the element {content}",
◦ "Locate the {class name} called {content}",
◦ "Scroll to the {class name} with {content}",
◦ "Highlight the {class name} that contains {content}",
◦ "Focus on the {class name} that displays {content}",
◦ "Locate the {class name} that is part of {parent info} with the name {content}" ...

Examples for specific element (button)
◦ "Click the {content} button",
◦ "Press the button labelled {content}",
◦ "Activate the {content} button",
◦ "Find and click the {content} on the page",
◦ "Where is the {content} button located?",
◦ "Can you locate the button that says {content}?",
◦ "Click the {content} button in the {parent info}" ...

Examples for specific element (DataItem)
◦ "Tick the {content} checkbox",
◦ "Check the {content} option",
◦ "Mark the checkbox for {content}",
◦ "Select the {content} checkbox from the list",
◦ "Ensure the {content} checkbox is checked",
◦ "Activate the checkbox labeled {content}",
◦ "Verify that the {content} checkbox is selected" ...

Examples for specific element (checkbox)
◦ "Identify the data item labeled {content}",
◦ "Locate the {content} data field on the page",
◦ "Find the {content} item in the dataset",
◦ "Access the information for {content}",
◦ "Highlight the data item {content}",
◦ "Explore the {content} item for more info" ...

Examples for specific element (hyperlink)
◦ "Use the {content} link to access the desired page",
◦ "Identify the link called {content} and click on it",
◦ "Proceed by using the hyperlink {content}",
◦ "Check the {content} link for more details",
◦ "Open the web page linked by {content}",
◦ "Access resources through the {content} hyperlink",
◦ "Click the {content} URL to navigate",
◦ "Follow the online pointer marked as {content}" ...

Examples for specific element (static text)
◦ "Highlight the statement {content}",
◦ "Observe the static text {content} on this page",
◦ "Search for the label {content} in the content",
◦ "Inspect the static field titled {content}",
◦ "See the displayed static text {content}",
◦ "Look for the static description {content}",
◦ "Spot the phrase {content} in the view",
◦ "Find the static wording {content}" ...

Table 11: Augmented query examples during GUI grounding training. Shown are examples of some
of the augmented templates.
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