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ABSTRACT

Audio-visual speech processing leverages visual cues (e.g., lip movements) to en-
hance speech robustness in noisy environments. However, current research is
heavily focused on Audio-Visual Speech Recognition (AVSR), which primarily
addresses the surface-level task of transcription, overlooking the need for deeper
semantic understanding under challenging auditory conditions. To bridge this
gap, we introduce Audio-Visual Speech Understanding (AVSU), a new task that
aims to comprehend semantics and context beyond mere transcription. To support
AVSU, we build AVSU-Bench, a large-scale dataset with 50k question-answer
pairs aligned with audio-visual speech videos. We further propose VSpeech-
R1, the first-ever end-to-end multimodal large language model tailored for AVSU.
A key component of this model is VSpeech-CoT, a structured Chain-of-Thought
reasoning framework enabled by a training strategy combining supervised cold-
starting and reinforcement learning. Extensive evaluations on AVSU-Bench
demonstrate that our end-to-end framework consistently outperforms traditional
cascaded pipelines. Specifically, VSpeech-R1 achieves a BERTScore of 92.43%,
an absolute improvement of 2.33% over the best cascaded baseline.

1 INTRODUCTION

In the world of ubiquitous noise, audio-visual speech processing has emerged as a vital approach
for enhancing human-machine communication. By integrating acoustic signals with visual cues
such as lip movements, audio-visual speech recognition (AVSR) (Son Chung et al., 2017) systems
improve robustness and transcription accuracy than traditional audio-only automatic speech recog-
nition (ASR), particularly under noisy conditions. Recent efforts in AVSR (Shi et al., 2022a; Ma
et al., 2023; Haliassos et al., 2024; Djilali et al., 2024; Cappellazzo et al., 2024) have primarily
focused on improving transcription accuracy from the multimodal inputs. However, this exclusive
focus on transcription constrains the applicability of audio-visual speech processing in many real-
world scenarios, where successful interaction depends not only on recognizing what is said but also
on understanding what is meant. For instance, in applications such as vibe coding or autonomous
driving, systems must interpret user intent rather than simply produce verbatim textual transcrip-
tions. This gap highlights a key limitation in current audio-visual speech processing research and
underscores the need for next-generation systems capable of semantic understanding in challenging
acoustic environments.

To address the limitations of AVSR, we propose a new task: Audio-Visual Speech Understanding
(AVSU). Unlike AVSR, which focuses on transcription, AVSU aims to comprehend the speaker’s
intent in challenging auditory conditions by leveraging both speech and lip movement cues. To
facilitate research in this new direction, we present AVSU-Bench, a large-scale dataset compris-
ing over 50k question-answer pairs aligned with audio-visual speech videos, to support the training
and evaluation of speech understanding models in complex, noisy environments. The proposed
AVSU task presents unique challenges that go beyond those of AVSR. First, semantic understand-
ing is inherently more ambiguous and context-dependent than transcription, requiring reasoning
over incomplete or corrupted multimodal cues. While AVSR relies on word-level alignment, AVSU
demands a deeper fusion of acoustic and visual information to infer speaker intent. Second, the cas-
cading approach, where the output of an AVSR model feeds into a language understanding module,
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commonly the Large Language Models (LLMs), struggles in noisy environments due to error prop-
agation. Recognition errors in the first stage can degrade downstream understanding, and modality
interactions are still under exploration in such pipeline architectures. Finally, modeling intent un-
derstanding requires not only perceptual fidelity but also compositional reasoning and contextual
grounding. These challenges necessitate a rethinking of the dataset, architecture, and evaluation
protocols, specifically tailored for AVSU.

Building on AVSU-Bench, we propose VSpeech-R1, the first unified framework to simultaneously
perform audio-visual speech recognition and semantic understanding in a single end-to-end model.
This integrated design is fundamental to our approach, as recognition and understanding are in-
herently intertwined in AVSU. A key component of VSpeech-R1 is VSpeech-CoT, a multimodal
chain-of-thought (CoT) reasoning mechanism designed to perform inference by jointly leveraging
audio and visual inputs. Specifically, VSpeech-CoT aligns acoustic and lip movement cues tempo-
rally and integrates them into a four-stage structured reasoning process, promoting context-aware
and interpretable intent predictions. This design is particularly effective in noisy auditory environ-
ments, where lip movement cues play a crucial role in maintaining robust semantic understanding.
To fully leverage the reasoning potential of VSpeech-CoT, we employ a two-phase training strategy.
We first use cold-start fine-tuning to initialize the model’s reasoning pathways. Subsequently, we
apply reinforcement learning to refine its decision-making capabilities with format and accuracy
rewards, encouraging coherent and interpretable reasoning chains. This hybrid training strategy en-
ables the model to rapidly acquire structured reasoning capabilities from a small set of annotated
samples, and then stabilize and generalize these capabilities through large-scale unlabeled data.

Through extensive experiments, we demonstrate that even a strong cascaded system combining a
powerful AVSR model with a language understanding module, still exhibits significant performance
limitations on the AVSU task. These pipelines suffer from downstream error propagation and fail
to capture the tight coupling of perception and reasoning needed for robust intent understanding.
In contrast, our end-to-end baseline performs better, highlighting the advantage of jointly modeling
audio-visual-language signals for semantic understanding. Furthermore, our proposed VSpeech-R1,
enhanced by the VSpeech-CoT reasoning paradigm, delivers additional performance gains through
structured multimodal CoT reasoning. These results not only validate the effectiveness of a unified
modeling approach for AVSU, but also underscore the potential and challenges of this task in real-
world auditory conditions.

To summarize, our key contributions are as follows:

• We formulate a new task, Audio-Visual Speech Understanding (AVSU), aims at achieving
robust semantic understanding using both speech signals and lip movement cues.

• To support the AVSU task, we introduce AVSU-Bench, a large-scale dataset designed to train
and evaluate models under realistic and challenging auditory conditions.

• For the AVSU task, we propose VSpeech-R1, the first end-to-end framework. To further
enhance multimodal reasoning in adverse auditory scenarios, we introduce VSpeech-CoT, a
structured reasoning paradigm with audio-visual context awareness.

• We conduct extensive evaluations showing that our unified, end-to-end approach consistently
outperforms strong cascaded baselines that decouple audio-visual speech recognition and se-
mantic understanding. These results highlight the effectiveness of our proposed task, dataset,
and method for robust audio-visual speech understanding.

2 RELATED WORK

2.1 AUDIO-VISUAL SPEECH PROCESSING MEETS LLMS

Audio-Visual Speech Processing (AVSP) leverages the synergy between audio signals and visual
cues, particularly lip movements, to enhance speech processing in challenging auditory environ-
ments (Summerfield, 1979; Ivanko et al., 2023). Within this domain, AVSR has emerged as a central
task, attracting increasing attention due to its potential for robustness in real-world noisy conditions.
Landmark foundational models, such as AV-HuBERT (Shi et al., 2022b), have demonstrated that
self-supervised learning can effectively capture powerful cross-modal speech representations, while
methods like Auto-ASVR (Ma et al., 2023) demonstrate that scaling up datasets can significantly
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improve model robustness and accuracy. More recently, the integration of large pre-trained models
into AVSR has attracted growing and sustained research interest. For instance, Whisper-Flamingo
(Rouditchenko et al., 2024) introduces lip movement features into the speech foundation model
Whisper (Radford et al., 2023), thereby producing a notable improvement in AVSR performance.
Notably, Multimodal Large Language Models (MLLMs) like LLaMA-AVSR (Cappellazzo et al.,
2024) and LLaMA-SMoP (Cappellazzo et al., 2025) align speech and lip movement features with
text embeddings, leveraging the power of LLMs to achieve state-of-the-art results in AVSR. De-
spite these advancements, current research in AVSP has primarily concentrated on improving robust
speech recognition or transcription through ASVR. However, human-machine communication in
real-world settings involves not only speech recognition but also comprehensive spoken language
understanding (Marslen-Wilson & Tyler, 1980; Wang et al., 2005; Serdyuk et al., 2018; Qin et al.,
2021), which needs deeper semantic and context understanding. In this work, we introduce the
concept of Audio-Visual Speech Understanding (AVSU), aiming to propel the AVSP field beyond
superficial multimodal semantic recognition and toward more nuanced semantic comprehension un-
der challenging auditory conditions.

2.2 MULTIMODAL CHAIN-OF-THOUGHT REASONING

CoT reasoning (Wei et al., 2022; Kojima et al., 2022; Chen et al., 2025) emulates human-like
problem-solving by breaking down complex problems into smaller and tractable sub-components,
thereby enabling stepwise solution construction. The intermediate reasoning steps (i.e., rationale),
explicitly articulate the logical progression toward a final conclusion, enhancing transparency and
interpretability. Extending this paradigm, Multimodal Chain-of-Thought (MCoT) reasoning (Wang
et al., 2025b) integrates multimodal signals (e.g., images, videos, audio) into the CoT process.
This augmentation expands the reasoning framework’s capacities, enabling it to address more com-
plex and diverse scenarios with greater efficacy. Within MCoT, structured reasoning has emerged
as a key approach. It seeks to provide better control and interpretability of reasoning processes,
thereby improving the accuracy of the reasoning results. However, a critical bottleneck lies in the
CoT labeling process, which typically requires substantial human effort and resources, limiting the
scalability of structured reasoning approaches. Recently, inspired by the success of DeepSeek-
R1 (Guo et al., 2025), numerous studies (Meng et al., 2025; Deng et al., 2025; Shen et al., 2025;
Xing et al., 2025) have leveraged reinforcement learning (RL) to enable LLMs to autonomously
explore and sustain long CoT reasoning. By aligning the stage labels within the model outputs (e.g.,
< think > ... < /think >) with reward signals that prioritize logical coherence and final results
accuracy, reinforcement learning significantly reduce the resource demands for executing structured
reasoning workflows, thereby enhancing their practical applicability in real-world scenarios. In-
spired by these techniques, we propose a four-stage VSpeech-CoT framework to enable structured
multimodal reasoning in AVSU. To bootstrap this capability, we begin with supervised training on
on a small set of ∼2.5K samples, each carefully annotated with explicit rationales to ensure reliable
reasoning pathways. Building upon this foundation, we then scale up CoT training using reinforce-
ment learning, allowing the model to perform behaviorally consistent and context-aware reasoning
across both speech and lip modalities.

3 AVSU TASK AND DATASET

As shown in Figure 1, the proposed AVSU task aims to develop a multimodal system that is capa-
ble of interpreting and understanding spoken language through both audio (i.e., speech) and visual
(i.e., lip movement) modalities, while also considering a text-based question. Also, to comprehen-
sively evaluate the quality of generated answers, we adopt BERTScore (Zhang et al., 2019) (SBERT)
as our primary metric to capture semantic similarity through contextual embeddings. In the fol-
lowing sections, we present a detailed description of the AVSU-Bench dataset construction and
verification, which serves as the dataset foundation for training and evaluating models on this newly
proposed task.

3.1 DATASET CONSTRUCTION

Figure 2 illustrates the construction pipeline for the AVSU-Bench dataset. In specific, we use speech
transcriptions as contextual input to prompt a text-only LLM, GLM-4-Flash, to generate question-
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Lip (vision) cues

Speech context

Transcription

Question-Answer

like we evolved on this planet in the context of all the other animals with which we share

what is the subject of the evolution being discussed? humans. 

···    ··· ···

Figure 1: Example of the AVSU-Bench dataset format. The proposed AVSU task is designed to
integrate both lip movements and speech context to enable robust and accurate speech understanding
in complex auditory environments.

Table 1: Comparison between AVSR and AVSU datasets. AVSU-Bench offers large-scale and high-
quality audio-visual data curated from the subset of LRS3 (TED talks), specifically designed to
facilitate research in multimodal speech understanding. †: AVSU-Bench includes 49,545 training
samples and 2,539 test samples.

Dataset Task Source #Samples #Hours

GRID (Cooke et al., 2006) Recognition N/A 33,000 27.5
MODALITY (Czyzewski et al., 2017) Recognition N/A 5,880 31
LRW (Chung & Zisserman, 2017) Recognition BBC 1,000 173
LRS2 (Son Chung et al., 2017) Recognition BBC 144,243 224.5
LRS3 (Afouras et al., 2018) Recognition YouTube 152,452 438

AVSU-Bench (ours, 2025) Understanding YouTube 52,084† 104

answer pairs based on the given context. To ensure training stability, we first filter out videos that
are either too short or too long. To improve the quality and relevance of the generated question-
answer pairs, we design carefully engineered prompts that contain multiple context-question-answer
demonstrations1. This method enhances the overall data quality while significantly reduces the
effort required for subsequent manual verification. Using this pipeline, we initially generate ∼100k
question-answer pairs for the training split and ∼10k for the test split. A notable feature of our
dataset, as shown in the middle of Figure 2, is that we also extract ∼10k samples from the training
set to construct reasoning paths from questions to answers, which we refer to as rationales.

3.2 DATASET VERIFICATION

To ensure the quality and reliability of AVSU-Bench, we implemented a rigorous validation protocol.
For the training set, given its large scale, we first perform an initial validation using GLM-4-Flash
(denoted as “junior check” in Figure 2), followed by a more thorough review using GPT-4o (denoted
as “senior check”). For the subset of training samples augmented with CoT rationales, we directly
apply the senior check with GPT-4o to verify the correctness and coherence of the reasoning paths.
For the test set, we adopt a similar multi-stage validation strategy, but with a crucial difference:
instead of relying on LLMs, we perform a manual review to ensure maximum accuracy and quality.
We also control the ratio of question types (e.g., yes/no vs. open-ended) to maintain a balanced
evaluation.. Finally, as summarized in Table 5, we introduce AVSU-Bench, a dataset specifically
designed for audio-visual speech understanding.

1During the dataset construction, we use speech transcriptions to simulate spoken context within the text-
based LLM.
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Figure 2: Overview of AVSU-Bench construction pipeline. The annotation process incorporates
three-level quality assurance, including junior check, senior check, and manual check to balance the
annotation efficiency and reliability.

Figure 3: VSpeech-R1 architecture overview (right) and training strategies (left) with activated mod-
ules. VSpeech-R1 consists of separate encoders for speech and vision (e.g., lip) modalities. The
speech and vision tokens are aligned with text embedding space via a single-layer linear projection,
while the base text LLM is optimized through LoRA for parameter-efficient training.

4 VSPEECH-COT AND VSPEECH-R1

4.1 OVERALL ARCHITECTURE

Figure 3 illustrates the overall architecture of the proposed VSpeech-R1, leveraging the reasoning
capabilities of an LLM for audio-visual speech understanding.

Multimodal Encoder: We use Whisper (Radford et al., 2023) and AV-HuBERT (Shi et al., 2022b)
as the speech and vision encoders for our VSpeech-R1, respectively. Both encoders are kept frozen
to leverage their powerful pre-trained representations. We further use a single-layer projection as a
modality adapter to align these multimodal features with the LLM’s text embedding space.

Language Decoder: We use Qwen3-8b (Yang et al., 2025) as the base LLM for language decoding.
We train the base LLM using LoRA, which allows us to adapt its behavior for our specific task
while keeping the base LLM itself frozen. Textual information and prompts are processed together
by a tokenizer before being input into the LLM. Multimodal features are concatenated with text
modality and fed into LLM for the next token prediction.

VSpeech-CoT Framework: To advance AVSU with robust multimodal reasoning, we propose a
novel four-stage VSpeech-CoT reasoning framework, which serves as a core reasoning mechanism
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of VSpeech-R1. As shown at the top of Figure 3, VSpeech-CoT systematically progresses through
four key stages: (1) Lip-enhanced Perception for lip-enhanced robust speech context perception;
(2) Question Analysis for identifying the reasoning objectives; (3) Cues Exploration for integrat-
ing cross-modal evidence for final answer derivation; and (4) Formal Conclusion for generating the
final answer. To operationalize this framework, we collect 2.5K VSpeech-CoT samples for super-
vised cold-starting, which activates the model’s initial capability to follow the reasoning structure of
VSpeech-CoT. We then scale up the training capacity with reinforcement learning, which enables
the model to perform consistent and context-aware reasoning across both speech and lip modalities.

4.2 MODEL TRAINING

4.2.1 MULTIMODAL ALIGNMENT

Given that AVSR aims to learn semantically aligned representations across modalities, we formu-
late this task as aligning speech and lip movements with the textual modality to enable effective
multimodal integration. To this end, we use the LRS3 dataset, which provides over 400 hours of
speech-video data. Speech and lip features are independently projected into the LLM’s embedding
space using modality-specific single-layer linear projectors. We then perform a joint tri-modal align-
ment training to enhance cross-modal consistency. Notably, directly align tri-modal features led to
a slow alignment process and suboptimal performance in our practical experience.

4.2.2 TASK-SPECIFIC TRAINING

Once the modalities are aligned, we bootstrap the model’s core audio-visual speech understand-
ing capability with the proposed AVSU-Bench dataset. At this stage, we employ LoRA-based
parameter-efficient training on both the base LLM and the multimodal adapters, enabling task-
specific adaptation for AVSU while preserving cross-modal consistency. The overall training proce-
dure, including data augmentation, follows a similar setup used in the multimodal alignment phase.

4.2.3 SUPERVISED COLD-STARTING

While task-specific training enables the model to acquire fundamental audio-visual speech un-
derstanding capabilities, it falls short of imparting the structured reasoning skills required by our
VSpeech-CoT framework. To bridge this gap, we adopt a supervised cold-starting strategy by train-
ing the model on a curated set of VSpeech-CoT samples annotated with explicit reasoning rationales,
thereby bootstrapping its ability to perform structured CoT reasoning.

4.2.4 REINFORCEMENT LEARNING

Reinforcement learning forms the core training paradigm of VSpeech-R1, enabling the model to
efficiently and scalably learn structured reasoning patterns within the VSpeech-CoT framework. To
implement this, we employ Group Relative Policy Optimization (GRPO) (Guo et al., 2025) as the
reinforcement learning strategy and design a set of simple yet effective rule-based rewards to guide
the model in generating reasoning chains that align with the VSpeech-CoT structure.

Specifically, we define five hierarchical format rewards to ensure both behavioral consistency and
adherence to the CoT format: (a) Rationale Existence Reward encourages the generation of a ra-
tionale for each inference; (b) Stage Completeness Reward ensures the full completion of each
reasoning stage; (c) Stage Uniqueness Reward promotes uniqueness and avoids redundancy in rea-
soning; (d) Stage Consistency Reward ensures the model covers the same reasoning stages pre-
scribed by VSpeech-CoT; and (e) Stage Ordering Reward enforces the correct order of reasoning
stages. Additionally, these format rewards are combined with an Answer Accuracy Reward, directly
optimizing the correctness of the final answer. This comprehensive reward structure enables the
model to improve both its structured reasoning process and the accuracy of its output. The afore-
mentioned rule-based rewards impose progressively finer constraints on the rationale construction
within VSpeech-CoT. Compared with using supervised cold-starting alone, VSpeech-CoT enhanced
with reinforcement learning for scalable reasoning pattern training achieves improved reasoning
completeness and answer accuracy, as discussed in Sections 5.1 and 5.2. In addition, the effects of
the format and accuracy rewards on overall performance are discussed in Section 5.3.
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Figure 4: Hit rate comparison across different reasoning stages of VSpeech-CoT, evaluating the
impact of reinforcement learning on the reasoning completeness. Subfigures (a) to (d) correspond
to the four reasoning stages: (a) lip-enhanced perception, (b) question analysis, (c) cues exploration,
and (d) formal conclusion.

Table 2: Results on AVSU-Bench under varying SNR levels, evaluated with SBERT (higher is better).
“SFT” denotes supervised fine-tuning, and “+Inf” indicates the clean audio setting. All experiments
use the Qwen3-8B backbone.

Pattern Model +Inf +15 +5 0 -5 -15
Cascaded Whisper-Flamingo + Qwen (w/o SFT) 79.90 79.85 79.72 79.54 78.99 75.30
Cascaded Whisper-Flamingo + Qwen (w/ SFT) 90.10 89.78 89.60 88.91 87.41 85.25
End-to-End VSpeech-R1 (SFT) 90.41 90.12 89.60 89.03 87.96 86.11
End-to-End VSpeech-R1 (Cold-start) 91.92 91.45 90.96 90.42 89.04 87.13
End-to-End VSpeech-R1 (RL) 92.43 91.94 91.53 91.17 90.01 87.98

5 EXPERIMENTS

5.1 VSPEECH-COT COMPLETENESS

As illustrated in Figure 4, we evaluate the effectiveness of cold-starting and reinforcement learning
on the hit rate, which computes the rate that the model successfully completes each single stage of
the VSpeech-CoT reasoning process. After cold-starting, the model exhibits a preliminary ability
to follow the structured reasoning stages of VSpeech-CoT. However, due to the limited scale of
annotated samples in this phase, the consistency of output format and reasoning behavior remains
suboptimal. Specifically, following cold-start initialization, the hit rates for Stage 1 and Stage 2 reach
approximately 70%, while Stage 4 achieves a hit rate between 60% and 70%. In contrast, Stage 3
lags behind, with a hit rate of only around 50% to 60% across different Signal-to-Noise Ratio (SNR)
conditions. Moreover, since rationale construction and verification in the cold-start phase rely on
automated processes, there remains a risk of introducing incorrect or noisy supervision.

To mitigate the limitations of cold-start initialization and improve the completion rate of reasoning
under the VSpeech-CoT framework, we further apply reinforcement learning. As shown in Figure
4, after the reinforcement learning phase, the model achieves near-perfect performance across all
reasoning stages, with hit rates approaching or reaching 100%. In addition, the reasoning process
demonstrates strong robustness under varying SNR conditions. In contrast, the model trained solely
with cold-start initialization is significantly more vulnerable to noise, exhibiting a 5%–10% hit rate
drop under extreme noise settings.

5.2 QUANTITATIVE RESULTS ON AVSU-BENCH

As shown in Table 2, we conduct comprehensive evaluations on AVSU-Bench under varying SNR
conditions, ranging from clean audio (“+Inf”) to severely degraded signals (-15dB). We report re-
sults using the SBERT metric, which measures semantic alignment between generated and reference
responses, with higher scores indicating better understanding.

We compare two system paradigms: (1) Cascaded systems, which decouple speech recognition and
language understanding, and (2) End-to-End systems, which jointly model audio-to-text reasoning
within a unified architecture.

7
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The cascaded baseline, Whisper-Flamingo + Qwen (w/o SFT), exhibits consistently poor perfor-
mance across all SNR levels. It achieves only 79–80% SBERT under clean and moderate conditions,
with performance further degrading to 75.30% at -15dB. These results indicate that, such a cas-
caded system struggles to effectively leverage contextual and cross-modal cues, especially under
noisy conditions. Through supervised fine-tuning, the cascaded baseline (i.e., Whisper-Flamingo +
Qwen (w/ SFT)) demonstrates substantial gains, raising SBERT from 79.90% to 90.10%. This im-
provement underscores the critical role of our proposed AVSU-Bench in enhancing the robustness
and effectiveness, even when applied to cascaded pipelines.

In contrast, our proposed end-to-end VSpeech-R1 model consistently surpasses all cascaded coun-
terparts across every SNR conditions. Both its SFT and Cold-start variants exhibit strong robustness
to noise, even without reinforcement learning. Remarkably, VSpeech-R1 (Cold-start) attains 91.92%
on clean inputs and sustains performance above 87.0% at -15dB, indicating that the model effec-
tively acquires noise-invariant and structured reasoning capabilities. The best overall performance
is achieved by VSpeech-R1 (RL), which leverages reinforcement learning to further align model
inference with downstream reasoning objectives. This variant reaches a peak SBERT of 92.43% in
clean conditions and retains 87.98% under severe noise, consistently outperforming all baselines.
These results highlight the critical role of structured, CoT-driven reasoning in enhancing semantic
robustness and maintaining consistency under adverse auditory conditions.

5.3 ABLATION STUDIES

Table 3: Ablation study of VSpeech-R1.

Setting SFT Cold-start RL
SBERTRfmt Racc

1 ✓ ✗ ✗ ✗ 90.41
2 ✓ ✓ ✗ ✗ 91.92
3 ✓ ✓ ✓ ✓ 92.43
4 ✓ ✗ ✓ ✓ 90.64
5 ✓ ✓ ✓ ✗ 92.26
6 ✓ ✓ ✗ ✓ 91.86

As shown in Table 3, to better understand the
contribution of each component in our frame-
work, we conduct an ablation study with dif-
ferent model configurations. The settings vary
across three key dimensions: supervised fine-
tuning (SFT), CoT cold-starting (Cold-start),
and reinforcement learning (RL) with two re-
ward signals (i.e., format consistency Rfmt and
result accuracy Racc).

Effectiveness of Cold-start: The compari-
son between Setting 1 and Setting 2 high-
lights the effectiveness of cold-start initializa-
tion. While SFT alone achieves 90.41% SBERT, introducing cold-start (Setting 2) further improves
performance to 91.92%. This demonstrates that a pre-fixed and well-initialized reasoning pathway
can enhance reasoning capability, even without reinforcement learning.

Effectiveness of RL: Setting 3, which integrates the complete reinforcement learning framework
and jointly optimizes both the format reward (Rfmt) and task accuracy reward (Racc), achieves the
highest overall performance with an SBERT score of 92.43%. This demonstrates the effectiveness of
rule-based reward-driven optimization in enhancing audio-visual speech understanding.

Ablating Individual Rewards: To better understand the contribution of each reward signal, we
further disentangled their effects. In Setting 5, removing Racc results in a slight performance decline
to 92.26%. However, in Setting 6, removing Rfmt results in a larger drop to 91.86%, highlighting
the importance of well-defined format reward in enhancing AVSU with reinforcement learning.

Necessity of Cold-Start in RL: To assess whether reinforcement learning benefits from cold-start
initialization, we compare Setting 4 (RL w/o cold-start) with Setting 3 (RL w/ cold-start). The
performance in Setting 4 drops to 90.64%, almost on par with SFT-only baseline. This indicates
that without proper initialization, reinforcement learning may struggle to find effective reasoning
pathways, underscoring the necessity of our cold-starting phase.

5.4 QUALITATIVE RESULTS

As shown in Table 4, we present a qualitative evaluation on AVSU-Bench under challenging speech
conditions. Sample (a) highlights the effectiveness of different baselines, covering both cascaded
and end-to-end paradigms. Sample (b) illustrates the limitations of cascaded baselines, which fail to
provide correct responses in challenging auditory scenarios. Sample (c) further demonstrates these
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Table 4: Qualitative results on the test set of AVSU-Bench under -15 and -5 NSR condition. The
phrases marked in red indicate incorrect answers (i.e., text responses), while the phrases marked in
green indicate correct answers, in comparison with the ground truth labels marked in orange.

Sample (a) Sample (b) Sample (c)

Context (speech) So we decided to go to the mosque. That’s not an improbable sample. Actually studied hormones.

Question-Answer What is the destination they chose? mosque Can this sample be regarded as probable? yes What subject was studied? hormones

-15 NSR -5 NSR -15 NSR -5 NSR -15 NSR -5 NSR

Cascade (w/o SFT) they decided ... mosque they decided ... mosque invalid content we cannot guarantee ... invalid content telephone

Cascade (w/ SFT) mosque mosque no yes psychology music

VSpeech-R1 (SFT) mosque mosque it is true yes not specified hormones

VSpeech-R1 (Cold-start) they may ... mosque mosque yes yes not mentioned hormones

VSpeech-R1 (RL) mosque mosque yes yes hormones hormones

limitations, while a comparison across different end-to-end variants of our proposed VSpeech-R1
clearly showcases its superior robustness under adverse conditions.

6 DISCUSSION AND FUTURE WORKS

Reasoning Efficiency. While CoT reasoning enhances response accuracy by encouraging struc-
tured and interpretable inference (Wang et al., 2025b; Chen et al., 2025), it may incur higher latency
(Feng et al., 2025). VSpeech-R1 integrates VSpeech-CoT to enable chain-based reasoning within
the AVSU framework. To balance reasoning performance and computational efficiency, future work
could investigate hybrid reasoning strategies (Shang et al., 2024; Jiang et al., 2025). In this setup, the
model dynamically adjusts its inference depth based on question complexity, in specific, CoT rea-
soning is applied to more difficult or ambiguous queries, while direct, single-step inference is used
for simpler ones. Furthermore, large scale VSpeech-CoT models may serve as teacher models to
distill structured reasoning patterns into smaller and faster student models. This approach preserves
reasoning quality while reducing inference overhead.

Emotional Cues. While lip movements provide strong phonetic cues for speech recognition, they
also carry subtle emotional and affective information. Micro-expressions, facial muscle tension,
and speaking dynamics (e.g., pauses, tempo, lip tightness) can offer critical cues for understanding
speaker intent, attitude, and context, especially in emotionally charged or ambiguous utterances.
Future work can explore integrating visual emotion recognition modules into the AVSU pipeline,
enabling the model to infer not only what is being said, but also how it is being said. This integration
holds promise for enhancing downstream applications such as affective computing (Wang et al.,
2022; Canal et al., 2022; Wang et al., 2023; Amin et al., 2024), persuasive dialogue understanding
(Wang et al., 2019; Chen et al., 2021; Jin et al., 2023) and beyond semantic speech (Wang et al.,
2025a), ultimately enabling more human-aligned and contextually aware speech understanding.

7 CONCLUSION

This work introduces Audio-Visual Speech Understanding (AVSU), a new task that aims to bridge
audio-visual speech recognition and semantic understanding by leveraging auditory and visual
modalities, either independently (i.e., the cascade pattern) or end-to-end. To facilitate the devel-
opment of this novel task, we present AVSU-Bench, the first dataset for AVSU, which contains
∼50k question-answer pairs and over 100 hours of annotated audio-visual speech data. AVSU-
Bench includes a manually curated test set of ∼2.5k samples, specifically designed to enable a
rigorous assessment of model performance in challenging auditory conditions. We further propose
VSpeech-R1, the first MLLM tailored for AVSU, equipped with VSpeech-CoT, a four-stage MCoT
reasoning framework for robust AVSU. Our experimental results, both quantitative and qualitative,
demonstrate that visual cues from lip movements substantially enhance semantic understanding,
particularly in scenarios with severe acoustic degradation. These findings highlight the importance
of tightly integrated audio-visual-language modeling and point toward promising directions for ad-
vancing audio-visual speech processing in complex real-world settings. Future work could further
explore more efficient hybrid reasoning strategies and investigate using emotional cues to facilitate
more accurate intent understanding.
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A APPENDIX

A.1 DATASET STATISTICS

After thorough validation, we finalized approximately 50k training samples and 2.5k test samples.
Among them, ∼2.5k instances in the training set are additionally annotated with explicit rationales
to facilitate structural reasoning during the cold-starting phase. Table 1 summarizes the statistics of
AVSU-Bench alongside other related datasets. Figure 5 presents detailed statistics on the distribu-
tion of question formats as well as the average length of videos, contexts, questions, and answers.
Notably, For the test set, we manually balanced the distribution of question types to ensure fair and
comprehensive evaluation across different semantic understanding conditions. To the best of our
knowledge, AVSU-Bench is the first dataset specifically designed to advance robust speech under-
standing by incorporating lip movements as visual cues.

Figure 5: Data distribution of the AVSU-Bench dataset. The duration of videos is reported in sec-
onds, whereas the lengths of questions and answers are quantified by word count.

A.2 REINFORCEMENT LEARNING REWARD

We design a set of complementary rewards to guide reinforcement learning, each addressing a spe-
cific aspect of the reasoning process. In this section, we describe the design and purpose of each
reward used in reinforcement learning. The Rationale Existence Reward encourages the model
to explicitly generate a rationale for each inference, assigning +0.25 when the output begins with
<context> and another +0.25 when it ends with </answer>, without imposing further con-
straints on intermediate reasoning. The Stage Completeness Reward enforces the proper closure of
reasoning stages by granting +0.25 for each matched start–end pair (<stage> and </stage>),
or +0.1 when only a single unmatched marker is present. To promote diversity and discourage re-
dundancy, the Stage Uniqueness Reward penalizes repeated stages with -0.05 for each additional
occurrence. The Stage Consistency Reward aligns reasoning with the VSpeech-CoT framework
by imposing a penalty of -0.1 whenever a stage outside the prescribed framework appears, while
the Stage Ordering Reward further enforces structural coherence by granting +0.333 for each
pair of consecutive stages that follows the correct predefined order. Finally, the Answer Accuracy
Reward directly optimizes the model based on the correctness of its final predicted answer.

A.3 EXPLORING THE BASELINE ARCHITECTURE

We report the ablation results conducted during the pretraining phase to support the final model
architecture choice we used. As shown in Table 5, we explore the performance under different
Q-Former settings. The performance is evaluated based on the Word Error Rate (WER). The sec-
ond and third columns represent the Q-Former configurations for the speech and vision branches,
respectively. Specially, “/” in Q-Former configuration represents there is no Q-Former used for
cross-modal alignment, hence multimodal features encoded by the encoders are fed into linear pro-
jection layer directly without the integration of Q-Former. By comparing settings (1) and (2), we
observe that introduce the Q-Former does not affect the ASR performance. In settings (3), (4), and
(5), we investigate the effect of using a Q-Former in the vision branch for Visual Speech Recognition
(VSR) task. In setting (3), we use a standard vision Q-Former with learned vision-relative queries. In
contrast, setting (4) initializes the vision-relative queries with the parameters of the speech-relative
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Table 5: Early architectural exploration of Q-Former configurations. “/” denotes no Q-Former is
used. While Q-Former can improve inference efficiency by reducing token length, it may lead to
performance degradation due to the loss of fine-grained information.

Setting Speech Q-Former Vision Q-Former ASR (%) ↓ VSR (%) ↓

(1) / / 1.1 -
(2) speech query / 1.1 27.1
(3) speech query vision query - 27.7
(4) speech query speech query - 28.0
(5) speech query speech query (frozen) - 29.3

queries obtained from the first pretraining stage (i.e., ASR), based on the idea that speech and lip
movement share temporally aligned semantic information. In setting (5), we follow the configura-
tion of setting (4) but further freeze the queries, aiming to ensure that both speech and lip features
are queried using the same queries. The experimental results reveal that the standard configuration
in setting (3), where vision queries are randomly initialized, achieves relatively better performance
(27.7% vs. 28.0% vs. 29.3%). Nevertheless, it still underperforms compared to the best result
(27.1%) obtained in setting (2), which omits the use of a Q-Former. A plausible explanation is that
although lip movements provide temporally synchronized semantic cues aligned with speech, their
inherently complex spatiotemporal dynamics, involving both motion and structural facial informa-
tion, make them highly sensitive to information compression. As a result, applying a Q-Former to
reduce or downsample the lip feature may inevitably cause information loss. To mitigate this issue
and improve performance, we ultimately abandon the Q-Former structure and directly leverage the
raw encoder outputs followed by a single-layer linear projection.

A.4 PERFORMANCE ON PRETRAINING TASK

Table 6 presents the AVSR performance on the LRS3 dataset, measured in terms of word error rate
(WER). Although the model is primarily designed for general audio-visual speech understanding, it
attains competitive results in audio-visual speech recognition, achieving a WER of 0.98 compared to
0.95 from specialized AVSR models. It is worth noting that in speech recognition, WER differences
below 3% are typically regarded as not statistically significant (Gemini et al., 2024).

Table 6: Comparison of AVSR performance on the LRS3 test set against specialized AVSR models.
Bold text indicates the optimal performance, while underlined text represents the suboptimal.

Models Year Encoders (Speech) Encoders (Lip) WER% ↓
ASR VSR AVSR

CM-seq2seq (Ma et al., 2021) 2021 Transformer Transformer 2.3 46.9 2.3
AV-HuBERT (Shi et al., 2022b) 2022 Transformer Transformer 1.3 26.9 -
AV-data2vec (Lian et al., 2023) 2023 Transformer Transformer 1.3 28.5 1.3
RAVEn (Haliassos et al., 2022) 2023 Transformer Transformer 1.4 24.4 -
BRAVEn (Haliassos et al., 2024) 2024 Transformer Transformer 1.1 20.1 -
Whisper-finetuned (Rouditchenko et al., 2024) 2024 Whisper - 2.3 - -
Whisper-Flamingo (Rouditchenko et al., 2024) 2025 Whisper AV-HuBERT - - 1.0
LLaMA-AVSR (Cappellazzo et al., 2024) 2025 Whisper AV-HuBERT 1.1 26.9 0.95
VSpeech-R1 (ours) 2025 Whisper AV-HuBERT 1.1 27.0 0.98

A.5 EXPERIMENT DETAILS FOR REPRODUCIBILITY

To improve model robustness, we apply modality-specific data augmentation strategies: horizon-
tal flipping and random cropping for visual inputs, and white noise injection, gain adjustment, and
pitch shifting for audio inputs. The multimodal alignment process is conducted on 4 × A800 (80GB)
GPUs with 1e-5 learning rate, and takes approximately seven days to complete. Task-specific train-
ing is conducted on 4 × A800 (80GB) GPUs with 1e-5 learning rate and is completed within three
days. The cold-starting is conducted on 4 × A800 (80GB) GPUs with 1e-5 learning rate and is
completed within two days. The final reinforcement learning is conducted on 2 × A800 (80GB)
GPUs with 5e-6 learning rate and is completed within two weeks.
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A.6 VSPEECH-COT DEMONSTRATIONS

In this section, we provide representative data samples from our dataset. The goal is to illustrate the
structure and format of the data instances used in our experiments. Each sample contains four fields:
(i) the raw speech transcription, (ii) a corresponding question, (iii) a rationale that demonstrates the
reasoning process based on the given context, and (iv) the final answer.

"speech_transcription": "happens is that the research focuses on changing
them a little bit not too much so they stay",

"question": "how much change is considered acceptable in the research?",
"rationale": "<context>happens is that the research focuses on changing

them a little bit not too much so they stay</context>
<question_analysis>the question asks for the extent of change deemed

acceptable in the context of the research, which implies a need to
identify the parameters of change mentioned.</question_analysis>

<cues_explore>the context indicates that the focus is on changing them a
little bit, and specifies that the change should not be too much.</
cues_explore>",

"answer": "not too much."

Sample 1

"speech_transcription": "but guess how most people find work today",
"question": "what is the primary method used by most people to find work

today?",
"rationale": "<context>but guess how most people find work today</context

>
<question_analysis>the question seeks to identify the main method people

use to find employment, implying that the context should provide
information about job searching methods.</question_analysis>

<cues_explore>the context hints at a discussion about job searching but
does not specify any methods or details.</cues_explore>",

"answer": "not specified."

Sample 2

"speech_transcription": "what i found the most valuable was when she said
that as she started to get healthy that need to share is gone she

wants to leave those events behind her and move on with her life",
"question": "what action does she wish to take regarding the past events

?",
"rationale": "<context>what i found the most valuable was when she said

that as she started to get healthy that need to share is gone she
wants to leave those events behind her and move on with her life</
context> <question_analysis>the question is focused on the action the
subject wishes to take concerning past events, indicating a desire

to move forward.</question_analysis> <cues_explore>the context
mentions that she wants to leave those events behind her and move on
with her life, suggesting a clear intention to not dwell on the past
.</cues_explore>",

"answer": "leave them behind."

Sample 3

A.7 DIFFICULTY CONTROL

During dataset construction, we applied a difficulty control strategy. Specifically, we used the Flesch
Reading Ease (FRE) score as a measure of sentence readability and retained only the data with read-
ability scores between 20 and 80. The FRE score is computed based on both the average sentence
length and the average number of syllables per word, as shown in Equation 1. A higher FRE score
indicates greater readability, while a lower score suggests increased difficulty.

FRE = 206.835− 1.015×
(

total words
total sentences

)
− 84.6×

(
total syllables

total words

)
, (1)
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where total words
total sentences represents the average sentence length, and total syllables

total words represents the average syl-
lables per word. The constant term 206.835 and the coefficients 1.015 and 84.6 were empirically
determined by Flesch (1948) through statistical analysis of English corpora, ensuring that the re-
sulting scores generally fall within the range of 0 to 100. In this scale, higher scores correspond to
easier texts, whereas lower scores are associated with more complex or technical writing.

A.8 USE OF LLMS

In this work, LLMs were used solely to refine and polish the authors’ manually written draft for
better readability. No LLMs were involved in idea generation or experimental execution.

16


	Introduction
	Related Work
	Audio-Visual Speech Processing Meets LLMs
	Multimodal Chain-of-Thought Reasoning

	AVSU Task and Dataset
	Dataset Construction
	Dataset Verification

	VSpeech-CoT and VSpeech-R1
	Overall Architecture
	Model Training
	Multimodal Alignment
	Task-specific Training
	Supervised Cold-Starting
	Reinforcement Learning


	Experiments
	VSpeech-CoT Completeness
	Quantitative Results on AVSU-Bench
	Ablation Studies
	Qualitative Results

	Discussion and Future Works
	Conclusion
	Appendix
	Dataset Statistics
	Reinforcement Learning Reward
	Exploring the Baseline Architecture
	Performance on Pretraining Task
	Experiment Details for Reproducibility
	VSpeech-CoT Demonstrations
	Difficulty Control
	Use of LLMs


