
Under review as a conference paper at ICLR 2024

ON THE EFFECT OF DEFECTION IN FEDERATED LEARN-
ING AND HOW TO PREVENT IT

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning is a machine learning protocol that enables a large population of
agents to collaborate. These agents communicate over multiple rounds to produce a
single, consensus model. Despite this collaborative framework, there are instances
where agents may choose to defect permanently—essentially withdrawing from
the collaboration—if they are content with their instantaneous model in that round.
This work demonstrates the detrimental impact such defections can have on the
final model’s robustness and ability to generalize. We also show that current feder-
ated optimization algorithms fall short in disincentivizing these harmful defections.
To address this, we introduce a novel optimization algorithm with theoretical guar-
antees to prevent defections while ensuring asymptotic convergence to an effective
solution for all participating agents. We also provide numerical experiments to
corroborate our findings and demonstrate the effectiveness of our algorithm.

1 INTRODUCTION

Collaborative machine learning protocols have not only fueled significant scientific discoveries
(Bergen & Petryshen, 2012) but are also gaining traction in diverse sectors like healthcare networks
(Li et al., 2019; Powell, 2019; Roth et al., 2020), mobile technology (McMahan & Ramage, 2017;
Apple; Paulik et al., 2021), and financial institutions (Shiffman et al., 2021). A key factor propelling
this widespread adoption is the emerging field of federated learning (McMahan et al., 2016b).
Federated Learning allows multiple agents (also called devices) and a central server to tackle a
learning problem collaboratively without exchanging or transferring any agent’s raw data, generally
over a series of communication rounds.

Federated learning comes in various forms, ranging from models trained on millions of peripheral
devices like Android smartphones to those trained on a limited number of large data repositories. The
survey by Kairouz et al. (2019) categorizes these two contrasting scales of collaboration, which come
with distinct system constraints, as “cross-device” and “cross-silo” federated learning, respectively.
This paper concentrates on a scenario that falls between these two extremes. For example, consider
a nationwide medical study led by a government agency to explore the long-term side effects of
COVID-19. This agency selects several dozen hospitals to partake in the study to develop a robust
model applicable to the entire national populace. Specifically, the server (the governmental agency)
has a distribution P over agents (hospitals), and each agent m maintains a local data distribution Dm

(the distribution of its local patients). The server’s goal is to find a model w with low population
loss, i.e.,

Em∼P [Fm(w) := Ez∼Dm
[f(w; z)]] , (1)

where f(w; z) represents the loss of model w at data point z.

Due to constraints like communication overhead, latency, and limited bandwidth, training a model
across all agents (say all the hospitals in a country) is infeasible. The server, therefore, aims to achieve
its goal by sampling M agents from P and minimizing the “average loss”, given by

F (w) :=
1

M

M∑
m=1

Fm(w) . (2)

If the sample size M is sufficiently large and the server can identify a model with low average
loss, likely, the model will also have low population loss, provided the data is only moderately

1

Under review as a conference paper at ICLR 2024

(a) Dred (b) Dblue (c) Dred ∪ Dblue

Figure 1: Consider two agents {red, blue} with distributions Dred and Dblue on the ball in R2.
Figures 1a and 1b depict these distributions, where the number of + and − represent point masses
in the density function of each distribution. Note that each distribution has multiple zero-error
linear classifiers, but we depict the max-margin classifiers in plots (a) and (b). Figure 1c shows
the combined data from these agents and the best separator (black), classifying the combined data
perfectly. However, the red (blue) separator on the blue (red) data has a higher error rate of 20 percent.
Thus, if either agent defects during training, any algorithm converging to the max-margin separator
for the remaining agent will incur an average 10 percent error.

heterogeneous. Hence, our objective (from the agency’s perspective) is to find a model with a low
average loss. When all M agents share some optima—meaning a model exists that satisfies all
participating hospitals—such a model is also universally desirable. However, this paper reveals that
this collaborative approach falters when agents aim to reduce their workload or, in the context of
hospitals, aim to minimize data collection and local computation.

0 100 200 300 400 500 600
Iteration

20

25

30

35

40

45

A
cc

ur
ac

y Average accuracy
Population accuracy
Population loss
Average loss

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

Lo
ss

Figure 2: Impact of defections on both average
and population accuracy metrics when using fed-
erated averaging with local update steps K = 5
and step size η = 0.1. The CIFAR10 dataset
(Krizhevsky et al., 2009) is processed to achieve
a heterogeneity level of q = 0.9 (refer to ap-
pendix D for data generation details). Agents
aim for a precision/loss threshold of ϵ = 0.2,
and dashed lines indicate the moments when an
agent defects. It is evident that each defection
adversely affects the model’s accuracy. For ex-
ample, the peak average accuracy drops from
approximately 46% prior to any defections to
around 22% after 500 iterations. A similar de-
cline is observed in population accuracy.

More specifically, prevalent federated opti-
mization techniques like federated averaging
(FEDAVG) (McMahan et al., 2016a) and mini-
batch SGD (Dekel et al., 2012; Woodworth et al.,
2020) (refer to appendix A), employ a strategy of
intermittent communication. Specifically, for each
round r = 1, . . . , R:

• Server-to-Agent Communication: The server
disseminates a synchronized model wr−1 to all
participating agents;

• Local Computation: Every device initiates lo-
cal training of its model from wr−1 using its
own dataset;

• Agent-to-Server Communication: Each de-
vice transmits the locally computed updates
back to the server;

• Model Update: The server compiles these up-
dates and revises the synchronized model to wr.

If all agents provide their assigned model up-
dates and collaborate effectively, the synchronized
model should converge to a final model wR, with
a low average loss F (wR). However, agents face
various costs, such as data collection, computa-
tional effort, and potential privacy risks. Thus,
rational agents might exit the process once they
are content with their current model’s performance
on their local data. For instance, in our example,
hospitals may prioritize a model that performs
well solely for their local patient demographics.

Defections, or the act of permanently exiting before completing R rounds, can adversely
affect the quality of the final model wR. This occurs because defecting agents make
their data unavailable, leading to a loss of crucial information for the learning process.

2

Under review as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0

30

40

50

60

70

80

90

Av
er

ag
e

Ac
cu

ra
cy

q = 0.0

0.0 0.5 1.0 1.5 2.0
10

20

30

40

50

60

70

80

Av
er

ag
e

Ac
cu

ra
cy

q = 0.5

0.0 0.5 1.0 1.5 2.0
10

20

30

40

50

60

70

Av
er

ag
e

Ac
cu

ra
cy

q = 0.7
K=5
K=50
K=100

(a) Effect of defection on average accuracy.

0.0 0.5 1.0 1.5 2.0
25

30

35

40

45

50

Po
pu

la
tio

n
Ac

cu
ra

cy

q = 0.0

0.0 0.5 1.0 1.5 2.0
10

20

30

40

50

Po
pu

la
tio

n
Ac

cu
ra

cy

q = 0.5

0.0 0.5 1.0 1.5 2.0
10

20

30

40

50

Po
pu

la
tio

n
Ac

cu
ra

cy

q = 0.7
K=5
K=50
K=100

(b) Effect of defection on population accuracy.

0.0 0.5 1.0 1.5 2.0
20

40

60

80

100

De
vi

ce
 A

cc
ur

ac
y

q = 0.0

0.0 0.5 1.0 1.5 2.0

20

40

60

80

100

De
vi

ce
 A

cc
ur

ac
y

q = 0.5

0.0 0.5 1.0 1.5 2.0

20

40

60

80

100

De
vi

ce
 A

cc
ur

ac
y

q = 0.7

Max
Mean
Min

(c) Effect of defection on the min, mean, and max device accuracies.

Figure 3: Our study examines how variations in data heterogeneity
q (across different plots at each row), required precision ϵ (on the
x-axis in each plot), and the number of local update steps K
(different curves in plots 3a and 3b, while K is fixed as 100 in 3c)
affect multiple accuracy metrics impacted by agents’ defection
behavior during training with federated averaging (Algorithm 3).
In Figure 3a, we plot the final model’s accuracy for the average
objective. In Figure 3b, we plot the accuracy for the population
objective Em∼P,z∼Dm

[f(.; z)]. This captures the generalization
ability of the final model. In Figure 3c, we plot the min, max,
and mean device accuracy out of the M devices participating in
training for the final model. As ϵ increases, the likelihood of
each device defecting increases, so all the curves almost always
decrease. We also note that on increasing the heterogeneity of
the task, the accuracies all decrease while the variance between
different devices increases. The task is multi-class classification
on CIFAR-10. We plot the accuracy instead of the loss value
for better interpretability. More details are in appendix D. All
experiments are repeated ten times, and the plotted curves are
averaged across the runs with error bars for 95% confidence level.

The impact is particularly signif-
icant if the defecting agent had
a large or diverse dataset or was
the sole contributor to a specific
type of data (refer to Figure 1).
Consequently, the final model
wR may fail to achieve a low av-
erage loss F (wR). For empiri-
cal evidence, see Figures 2 and
3a, which show the effect of de-
fections on the average objective.
Defections can generally lead to
the following issues:

• Suboptimal Generalization.
Even if not all data is lost
due to defections, the result-
ing dataset may become imbal-
anced. This can happen if the
remaining agents do not ade-
quately represent the broader
population or their updates
are too similar. The model
may overfit the remaining data,
leading to poor performance
for unsampled agents from P .
This is experimentally simu-
lated in Figure 3b.

• Inconsistent Final Perfor-
mance. When agents be-
long to protected groups (e.g.,
based on gender or race), it is
crucial for the model to be fair
across these groups (Ezzeldin
et al., 2021). However, de-
fections can result in a model
that performs poorly for some
agents. The effects of defec-
tion on the performance of the
best, worst, and median agents
are illustrated in Figure 3c.

• Disproportionate Workload.
Even if defections do not di-
rectly harm the model’s per-
formance, they can increase
the workload for the remain-
ing agents. These agents may
need to provide additional up-
dates to compensate for the
lost data, leading to increased
latency and bandwidth usage. This is particularly problematic if agents are geographically dispersed
and can discourage them from continued participation due to resource constraints.

Besides the aforementioned issues, defections can also lead to unpredictable outcomes when agents
generate data in real-time (Huang et al., 2021; Patel et al., 2023), or when they undergo distribution
shifts, as seen in self-driving cars (Nguyen et al., 2022). Inspired by these observations, our work
aims to address the following key questions:

1. Under what conditions are defections detrimental to widely-used FL algorithms like FEDAVG?
2. Is it possible to develop an algorithm that mitigates defections while still optimizing effectively?

3

Under review as a conference paper at ICLR 2024

Contributions. In Section 2, we provide a formal framework for understanding defections in feder-
ated learning, which often arise due to agents’ desire to minimize computational and communication
overhead. Specifically, agents will likely exit the training process once they obtain a satisfactory
model. In Section 3, we distinguish between benign and harmful defections and explore the influence
of (i) initial conditions, (ii) learning rates, and (iii) aggregation methods on the occurrence of
harmful defections. Our findings indicate that simply averaging local updates is insufficient to prevent
harmful defections. We further validate our theoretical insights with empirical studies (see Figures 2
and 3), confirming that defections can substantially degrade the performance of the final model.

Lastly, in Section 4, we introduce our novel algorithm, ADA-GD. Under mild (and possibly neces-
sary) conditions, this algorithm converges to the optimal model for problem (2) without any agent
defecting. Unlike simple averaging methods used in FEDAVG and mini-batch SGD, our approach
tailors the treatment for each device. For devices on the verge of defecting, we utilize their gradient
information to define a subspace where the gradients of the remaining devices are projected. This
newly aggregated gradient is then employed to update the current model. This nuanced update
strategy is designed to improve the average objective while preventing defections, making the al-
gorithm complex to analyze. We tackle this complexity through a unique case-based analysis. We
also empirically contrast our algorithm with FEDAVG, showing that our method effectively prevents
defections and results in a superior final model (see Figure 7).

1.1 RELATED WORK

The complexity of managing defections in federated learning arises primarily from two factors: (i) the
ongoing interactions between the server and the agents, allowing devices to access all intermediate
models, and (ii) the fact that agents do not disclose their raw data to the server. This results in an
information asymmetry, as the server can only speculate about potential defections and has no way to
retract an intermediate model already exposed to an agent. This sets our problem apart as particularly
challenging, and no current theoretical research aims to mitigate agent defections while solving
problem (2). Most existing studies concentrate on single-round interactions (Karimireddy et al., 2022;
Blum et al., 2021), which essentially incentivize agents to gather and relinquish samples to the server.
The MW-FED algorithm by Blum et al. (2017) aligns with the intermittent communication model and
deliberately decelerates the advancement of agents nearing their target accuracy levels. This makes
it potentially useful for preventing defections (Blum et al., 2021). However, its applicability in our
context remains unclear, and no convergence analysis exists for this method in heterogeneous settings.
We provide an exhaustive review of these and other related works, including those concerning fairness
in federated learning, in appendix B.

2 PROBLEM SETUP

Recall that our (server’s/government agency’s) learning goal is to minimize F (w) =
1
M

∑
m∈[M] Fm(w) over all w ∈ W ⊆ Rd, where Fm(w) := Ez∼Dm

[f(w; z)] is the loss on
agent m’s data distribution. We assume the functions Fm’s are differentiable, convex, Lipschitz, and
smooth.

Assumption 1. Differentiable Fm :W → R is convex and H-smooth, if for all u, v ∈ W ,

Fm(v) + ⟨∇Fm(v), u− v⟩ ≤ Fm(u) ≤ Fm(v) + ⟨∇Fm(v), u− v⟩+ H

2
∥u− v∥22 .

Assumption 2 (Lipschitzness). Function Fm :W → R is L-Lipschitz, if for all u, v ∈ W ,

|Fm(u)− Fm(v)| ≤ L ∥u− v∥2 .

Furthermore, the data distributions Dm’s have to be “similar” so that all agents would benefit from
collaboratively learning a single consensus model. Following Blum et al. (2017), we capture the
similarity among the agents by assuming that a single model works well for all agents.

Assumption 3 (Realizability). There exists w⋆ ∈ W such that w∗ is the shared minima for all agents,
i.e., Fm(w∗) = minw∈W Fm(w) for all m ∈ [M]. We denote the set of shared minima byW⋆. For
simplicity, we assume that Fm(w⋆) = 0, for all m ∈ [M].

4

Under review as a conference paper at ICLR 2024

This assumption holds when using over-parameterized models that easily fit the combined training
data on all the agents. Furthermore, when this assumption is not satisfied, it is unclear if returning a
single consensus model, as usual in federated learning, is reasonable.

the server sends the synchronized model
wr−1 to all remaining agents Mr−1

Agents m ∈ Mr−1 eval-
uate their loss Fm(wr−1)

If Fm(wr−1) ≤ ϵ?

Let Mr ⊆ Mr−1 denote the set
of agents who want to stay. For
each m ∈ Mr, agent m sends
Om(wr−1) back to the server

A
gent

m
defects

The server aggregates the model by
wr = wr−1 − ηr · hr ({Om(wr−1)}m∈Mr)

no

yes

Figure 4: Round r of ICFO algorithms.

The learning goal is to output a model wR such
that F (wR) ≤ ϵ for some fixed precision parame-
ter ϵ > 0. We denote the ϵ-sub level sets of the
function Fm by S⋆

m, i.e., S⋆
m = {w ∈ W|Fm(w) ≤

ϵ}. Then our realizability assumption implies that,
S⋆ := ∩m∈[M]S

⋆
m ̸= ∅. The learning goal can be

achieved if we output wR ∈ S∗.

Intermittently Communicating First-order
(ICFO) Algorithms. We focus on intermittently
communicating first-order (ICFO) algorithms such
as FEDAVG. More specifically, at each round
r ∈ [R], the server sends out the current model
wr−1 to all agents participating in the learning
in this round. All participating agents m query
their first-order oracle 1 at the current model
Om(wr−1) = (Fm(wr−1),∇Fm(wr−1)) and send
it to the server, which makes an update to the model.
The detailed algorithm framework is described in
Figure 4 and Algorithm 2 in the appendix.

Note that in the ICFO algorithm class, different algo-
rithms can determine (i) the initialization w0, (ii) step
sizes η1:R, and (iii) an aggregation rule hr(·) for each
round, which takes input {Om(wr−1)}m∈Mr and outputs a vector in Span{∇Fm(wr−1)}m∈Mr .
For example, FEDAVG will use uniform aggregation, i.e., set hr ({Om(wr−1)}m∈Mr) =

1
|Mr|

∑
m∈Mr

∇Fm(wr−1) for all r ∈ [R]. We say an ICFO algorithm is convergent if the al-
gorithm will converge to optima when agents are irrational, i.e., when agents never drop out.

Rational Agents. Since agents have computation/communication costs to join this collaboration,
they will defect when they are happy with the instantaneous model’s performance on their local data.
In particular, in the r-th round, after receiving a synchronized model wr−1 from the server, agent
m will defect permanently if the current model wr−1 is satisfactory, i.e., Fm(wr−1) ≤ ϵ for some
fixed precision parameter ϵ > 0. Then, agent m will not participate in the remaining process of this
iteration, including local training, communication, and aggregation. Thus, m /∈ Mr′ for r′ ≥ r,
whereMr′ is the set of participating agents in round r′. Note that a sequence of agents may defect
for an algorithm A, running over a set of rational agents. We say the defection behavior (of this
sequence of agents) hurts (for algorithm A) if the final output wR /∈ S⋆, i.e., we don’t find a model
in the ϵ sub-level set of an otherwise realizable problem.

In the field of game theory (and economics), the rationality of agents is commonly modeled as aiming
to maximize their net utility, which is typically defined as the difference between their payoffs and
associated costs, such as the difference between value and payment in auctions or revenue and cost in
markets (Myerson, 1981; Huber et al., 2001; Börgers, 2015). In our model, each agent aims to obtain
a loss below ϵ over their local data distribution (and any loss below ϵ is indifferent), and therefore,
their payoff upon receiving a model w is v(w) = V · I[Fm(w) ≤ ϵ] for some V > 0. Their costs
increase linearly with the number of rounds they participate in the training process. Therefore, the
cost of participating in training for r rounds is given by c(r) = C · r for some constant C ≪ V . In
this case, the optimal choice for the agent is to defect once they receive a model with a local loss
below ϵ and never return in the future.

1In practical implementations of these algorithms, usually the agent sends back an
unbiased estimate (F̂m(wr−1),∇F̂m(wr−1)) of (Fm(wr−1),∇Fm(wr−1)). This is at-
tained by first sampling data-points {zmr,k ∼ Dm}k∈Km

r
on machine m and returning(

1
Km

r

∑
k∈[Km

r] f(wr−1; z
m
r,k),

1
Km

r

∑
k∈[Km

r] ∇f(wr−1; z
m
r,k)

)
. We focus on the setting with exact

gradients and function values in our theoretical results but have stochasticity in our experiments.

5

Under review as a conference paper at ICLR 2024

(a) Contour illustration of Example 1. (b) Contour illustration of Observation 4.

Figure 5: Illustrations of the contours of the examples presented in Section 3.

3 WHEN DO DEFECTIONS HURT?

One might naturally wonder whether defections in an optimization process are universally detrimental,
consistently harmless, or fall somewhere in between for any given algorithm. Our experiments, as
shown in Figure 3, confirm the existence of harmful defections. However, it’s worth noting that not
all defections have a negative impact; some are actually benign.

Observation 1. There exists a learning problem with two agents such that for any convergent ICFO
algorithm A, any defection will be benign, i.e., A will converge to a wR ∈ S∗.

Consider a 2-dimensional linear classification problem where each point x ∈ R2 is labeled by
w∗ = 1[e⊤1 x ≤ 0]. There are two agents where the marginal data distribution of agent 1 is uniform
over the unit ball {x| ∥x∥22 ≤ 1} while agent 2’s marginal data distribution is a uniform distribution
over {±e1}. In this case, any linear model w satisfying agent 1, i.e., F1(w) ≤ ϵ (for any appropriate
loss function) will also satisfy agent 2. Therefore, for any convergent ICFO algorithm, if there is a
defection, it must be either agent 2’s defection or the defection of both agents. In either case, the
defection is benign for any convergent ICFO algorithm. This example can be extended to a more
general case where agent 1’s ϵ-sub level set is a subset of agent 2, i.e., S∗

1 ⊂ S∗
2 .

In practice, the ideal scenario where defections are benign is uncommon, as most defections tend to
have a negative impact (refer to Figure 1 for an illustration). Thus, the extent to which defections
are harmful is largely algorithm-dependent. To gain insights into which algorithms can mitigate the
negative effects of defections, we will explore the roles of initialization, step size, and aggregation
methods in this section. These insights will inform our algorithmic design in the subsequent section.
Let’s consider the following example for further clarity.

Example 1. Consider an example with two agents with W = R2, F1(w) =
∣∣(0, 1)⊤w∣∣ and

F2(w) =
∣∣(1,−1)⊤w∣∣ as illustrated in Figure 5a. Then we have the optimal model w∗ = (0, 0)

and the subgradients∇F1(w) = sign((0, 1)⊤w) · (0, 1) and∇F2(w) = sign((1,−1)⊤w) · (1,−1).
Note that the functions can be smoothed, and the following observations remain.

Observation 2. There exists an initialization such that harmful defections are inevitable for any
ICFO algorithm in Example 1. Specifically, there exists a w0 ∈ S∗

1 ∪ S∗
2 such that for any ICFO

algorithm A, when initialized at w0, A will converge to a model wR /∈ S∗. Furthermore, there
exists a w0 ∈ S∗

1 ∪ S∗
2 such that any ICFO algorithm initialized at w0 will converge to a wR with

F (wR) ≥ 1/2 > 0 = F (w∗).

For example, if the algorithm is initialized at w0 = (1, 1), agent 2 defects given w0 and an ICFO
algorithm can only update in the direction of ∇F1(w) = (0, sign((0, 1)⊤w)). It will converge to a
wR ∈ {(1, β)|β ∈ R} and incurs F (wR) ≥ 1

2 since F (w) ≥ 1
2 for all w ∈ {(1, β)|β ∈ R}. Note

that if the algorithm is initialized at any point in the dotted region of Figure 5a, which is a subset of
S∗
1 ∪ S∗

2 \ S∗, one agent would defect immediately. The algorithm can only make updates according
to the remaining agent and leads to a wR /∈ S∗. We refer to the dotted region as the bad region. No
ICFO algorithm can avoid harmful defections when initialized in the bad region. The next question
is: can specific algorithms avoid harmful defections when initialized in the good region? We then

6

Under review as a conference paper at ICLR 2024

notice that we must be very careful about step sizes. We need to fix an aggregation method to discuss
the effects of step sizes, and here we consider uniform aggregation, for example.

Observation 3. Consider randomly choosing the initialization w0 from {w| ∥w∥2 ≤ 1}. In Exam-
ple 1, with probability 1− 2ϵ over w0, there exists a sequence of step sizes η1:R such that the ICFO
algorithm with uniform aggregation cannot avoid harmful defections, i.e., wR /∈ S∗.

In Figure 5a, if we initialize at any point in the white area, we can set the step size s.t. the algorithm
will converge to a wR /∈ S∗. For example, if we initialize at w1 or w2 in Figure 5a, the algorithm
will step into the bad initialization region after the update by setting step size according to the blue
trajectories. If we initialize at w3 or w4 in Figure 5a, then by appropriately setting the step sizes,
the algorithm will follow the purple trajectory in the figure. In this case, the algorithm will step
into S∗

2 after round 1, followed by agent 2 defecting, and eventually converge to a wR ∈ S∗
1 \ S∗

2 .
Observation 3 can be extended to other aggregation methods. If we initialize at w2, except making an
update in the direction towards (2ϵ, ϵ) (which requires more than local information), there is a choice
of step size s.t. the algorithm will step into the bad region. However, having a good initialization and
carefully selected step sizes will not be sufficient. Any ICFO algorithm with uniform aggregation
cannot avoid harmful defections.

Observation 4. For any ICFO algorithmA with uniform aggregation, there exists a learning problem
of two agents in which A initialized in the good region will converge to a model wR /∈ S∗.

Figure 6: In this illustration, agent 1’s loss function
F1 is piece-wise linear, while agent 2’s loss func-
tion F2 is quadratic. Both functions are truncated
to have a minimum value of zero and smoothed.
The figure highlights zero-loss regions: filled or-
ange for F1 and green for F2. Their shared opti-
mum is w⋆ where Fm(w⋆) = 0. Assumptions 1,
2, and 3 are satisfied, but Assumption 4 is not, as
the gradients ∇F1(w

′) and ∇F2(w
′) are parallel

at w′. Dashed contour lines indicate the ϵ level set
(Fm(w) = ϵ), and solid lines represent the 1 level
set (Fm(w) = 1). Starting from w0, any trajectory
must pass the orange region to reach the ϵ-sub level
set of F2. When the model updates to wt at time t,
agent 1 would defect as F1(wt) ≤ ϵ. Subsequent
updates follow∇F2(·), and with a small step size,
the model converges to wR. This final model devi-
ates from agent 1’s ϵ level set, resulting in a poor
performance with F1(wR) = 1.

We construct a slightly different example from
Example 1. As illustrated in Figure 5b,
we consider a set of problems {F1(w) =
max((0, 1)⊤w, 0), F2(w) = max((1,−1)⊤w+
α, 0)|α ≥ 0}. For all α ≥ 0 illustrated in Fig-
ure 5b, the problem characterized by α is de-
noted by Pα. Suppose we initialize at a w0

which is not in the union of ϵ-sub level sets
S∗
1 ∪ S∗

2 of Pα for all α. Otherwise, the initial-
ization will lie in the bad region of Pα for some
α. W.l.o.g., suppose the algorithm initializes at
w0 = (2, 1). When no agents defect, the aver-
age gradient ∇F (w) = (1/2, 0) is a constant,
and any ICFO algorithm can only move in the di-
rection of (−1, 0) until agent 2 defects. Among
all choices of α, agent 2 will defect earliest in
the problem P0 (since any model good for agent
2 for some α > 0 is also good for agent 2 for
α = 0). The algorithm will follow the purple
trajectory in Figure 5b. Before agent 2’s defec-
tion, the algorithm’s updates are identical for all
α ≥ 0. Denote by r0 the round at which agent 2
is defecting in P0. Then there exists an α′ (illus-
trated in the figure) s.t. wr0 lies in the bad region
of problem Pα′ . Therefore, in problem Pα′ , the
algorithm will output a wR /∈ S∗. Especially,
we have F (wR) = 1/2 > 0 = F (w∗).

Note that we can avoid defections by non-
uniform aggregation. For example, when the
algorithm reaches a w with low F2(w) and high
F1(w), we can project∇F1(w) into the orthogo-
nal space of∇F2(w) and update in the projected
direction. Figure 5b provides a visual represen-
tation of the effectiveness of the projection technique, which is shown by the black trajectory within
the context of this example. This not only showcases the benefits of projection but also serves as a
motivation behind the development of our algorithm.

7

Under review as a conference paper at ICLR 2024

Algorithm 1: Adaptive Defection-aware Aggregation for Gradient Descent (ADA-GD)
1 Parameters: step size η, initialization w0

2 for t = 1, 2, . . . do
3 Compute ∇Fm(wt−1) for all m ∈ [M]
4 Predict defecting agents: D = {m ∈ [M] : Fm(wt−1)− η ∥∇Fm(wt−1)∥2 ≤ 2ϵ}
5 Predict non-defecting agents: ND = [M] \D
6 if Both D and ND are non-empty then
7 Compute∇FND(wt−1) =

∑
m∈ND∇Fm(wt−1)

8 Let P = Span{∇Fn(wt−1) : n ∈ D}⊥

9 Project∇FND(wt−1) and normalize ∇F̃ND(wt−1) =
ΠP (∇FND(wt−1))

∥ΠP (∇FND(wt−1))∥2

10 gt = −min {∥ΠP (∇FND(wt−1))∥2 , 1} · ∇F̃ND(wt−1) ▷ Case 1
11 if D is empty then
12 gt = −min{∥∇F (wt−1)∥2 , 1} ·

∇F (wt−1)
∥∇F (wt−1)∥2

▷ Case 2

13 if ND is empty then
14 return ŵ = wt−1 ▷ Case 3
15 wt = wt−1 + ηgt

4 DISINCENTIVIZING DEFECTIONS THROUGH A DIFFERENT AGGREGATION
METHOD

In this section, we will introduce a new method. Before we state our algorithm, let’s recall the
definition of the orthogonal complement of a subspace.
Definition 1 (Orthogonal Complement). Let V be a vector space with an inner-product ⟨·, ·⟩. For any
subspace U of V , we define the orthogonal complement as U⊥ := {v ∈ V : ⟨v, u⟩ = 0, ∀u ∈ U}.
We also define the projection operator onto a subspace U by ΠU : V → U .

Our algorithm ADA-GD is stated in Algorithm 1. At our method’s core is an adaptive aggregation
approach for the gradients received from agents, which disincentivizes participating agents’ defection
during the training. However, disincentivizing defection is impossible if two agents are very “similar”.
Consider the example of F1(w) = ∥w∥22 and F2 = ϵ ∥w∥22. Whenever we reach some wt with
∥wt∥22 ∈ (ϵ, 1] (otherwise, we have to jump from some wt−1 with ∥wt−1∥22 > 1 to some wt with
∥wt∥22 ≤ ϵ), agent 2 will defect. Therefore, we must introduce some heterogeneity assumption
implying that the functions are “dissimilar enough”.
Assumption 4 (Minimal Heterogeneity). Consider differentiable functions {Fm : Rd → R}. Then
for all w ∈ W \W⋆, all non-zero vectors in {∇Fm(w) : m ∈ [M]} are linearly independent.
Remark. To justify the necessity of this linear independence assumption, one may argue that in the
above simple example, the defection is benign. We provide a more complicated example where linear
dependence leads to harmful defections in Fig 6.

Under Assumptions 1, 2, 3, 4, we show that our algorithm is legal (i.e., any denominator in Algorithm 1
is non-zero) and converges to an approximately optimal model.
Theorem 1. Suppose {Fm}m∈[M], satisfy Assumptions 1, 2, 3, 4. If we choose w0 /∈ ∪m∈[M]S

⋆
m

and η ≤ min
{

ϵ
L ,

√
ϵ

2H ,
√

2
H , 1

MH

}
, then no agents will defect and Algorithm 1 will output ŵ that

satisfies F (ŵ) ≤ 4ϵ.

Now we outline the high-level ideas behind Algorithm 1. Intuitively, an agent is close to defection if
a direction u exists such that she would defect after receiving wt−1 − ηu. Hence, the server has to
carefully tune the update direction to avoid the defection of this agent.

Suppose no agent has defected upon receiving wt−1. Then, the server will receive the first-order
information Om(wt−1) from all agents and determine a direction to update wt−1 to wt. In Algo-
rithm 1, the server first predicts which agents are close to defection through a linear approximation

8

Under review as a conference paper at ICLR 2024

0 100 200 300 400 500
Iteration

45

50

55

60

65

70

75

80

Av
er

ag
e

Ac
cu

ra
cy

ADA-GD
Local SGD
Local SGD
ADA-GD

0.50

0.55

0.60

0.65

0.70

Av
er

ag
e

Lo
ss

(a) Both algorithms use η = 0.001 and ϵ = 0.4.

0 100 200 300 400 500
Iteration

45

50

55

60

65

70

Av
er

ag
e

Ac
cu

ra
cy

ADA-GD
Local SGD
Local SGD
ADA-GD

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

Av
er

ag
e

Lo
ss

(b) ϵ = 0.5, ηLSGD = 2e−5, ηADA-GD = 2e−4.

Figure 7: We study the performance of our method and federated averaging (local SGD) for binary
classification on two classes of CIFAR-10 (Krizhevsky et al., 2009) with two agents. The data
heterogeneity q = 0.9 and local update step K = 1 for both experiments. Figure 7a shows that Local
SGD results in agent defection around the 130-th iteration, leading to a considerable decay in the
accuracy of the final model. In sharp contrast, our proposed method effectively eliminates defection,
enabling the continuous improvement of the model throughout the training process. Remark that it’s
unfair to compare the highest accuracy of Local SGD with our method as Local SGD is not defection
aware and could not simply stop at the highest point. In Figure 7b, we study the performance of both
algorithms with the largest step size such that no agents will defect. We observe that ADA-GD can
avoid defection even when employing a considerably larger step size than Local SGD. As a result,
this enables us to attain a significantly improved final model. These results support our theoretical
findings and validate the effectiveness of our method.

(see line 4) and calls them ‘defecting’ agents (although these agents might not defect because of
the slack in the precision in line 4). If all agents are ‘defecting’ (case 3), the server will output the
current model wt−1 as the final model (see line 14). The output model is approximately optimal since
each agent has a small Fm(wt−1) when they are ‘defecting’. If no agent is ‘defecting’ (case 2), the
server is certain that all agents will not defect after the update and thus will update in the steepest
descending direction, i.e., the gradient of the average loss ∇F (wt−1) (see line 12). If there exist
both ‘defecting’ and ‘non-defecting’ agents (case 1), the server will aggregate the gradients from
non-defecting agents and project them to the orthogonal complement of the space spanned by the
gradients of the ‘defecting’ agents to guarantee that ‘defecting’ agents will not defect. Then, the server
will update the current model using the normalized projected gradients (see line 10). By induction, we
can show that no agents will defect. Furthermore, we can prove that we will make positive progress
in decreasing the average loss at each round, and as a result, our algorithm will ultimately converge
to an approximately optimal model. Our analysis is inherently case-based, making it difficult to
replicate a simple distributed gradient descent analysis that proceeds by showing that we move in
a descent direction at each iteration. Consequently, offering a convergence rate poses a significant
challenge and remains an open question.

Note that Algorithm 1 fits in the class of ICFO algorithms specified in Section 2, as orthogonalization
and normalization return an output in the linear span of the machines’ gradients. In Figure 7, we
compare ADA-GD against FEDAVG, demonstrating the benefit of adaptive aggregation.

5 DISCUSSION

In this work, we initiate the study of defections in federated learning. Defections are an unavoidable
part of federated learning and can have drastic consequences for the performance/robustness of the
final model. We theoretically and empirically characterize the effects of defection and demarcate
between benign and harmful defections. We underline the importance of adaptive aggregation in
avoiding defections and propose an algorithm ADA-GD with a provable guarantee and a promising
empirical performance. There are several open questions and avenues for future work. Firstly, all
of the theoretical analyses in this paper assume access to the exact first-order oracles as opposed
to stochastic oracles. It is unclear how our Algorithm 1 can incorporate local steps. Local steps
complicate the defection model, as agents might not even wait until communication happens to defect.

9

Under review as a conference paper at ICLR 2024

This makes the orthogonalization trick in Algorithm 1 challenging to apply. We further discuss this
and other future directions for our work in appendix E.

REFERENCES

Apple. Designing for privacy - wwdc19 - videos. URL https://developer.apple.com/
videos/play/wwdc2019/708.

Sarah E Bergen and Tracey L Petryshen. Genome-wide association studies of schizophrenia: does
bigger lead to better results? Current opinion in psychiatry, 25(2):76–82, 2012.

Avrim Blum, Nika Haghtalab, Ariel D Procaccia, and Mingda Qiao. Collaborative pac learning.
Advances in Neural Information Processing Systems, 30, 2017.

Avrim Blum, Nika Haghtalab, Richard Lanas Phillips, and Han Shao. One for one, or all for all:
Equilibria and optimality of collaboration in federated learning. In International Conference on
Machine Learning, pp. 1005–1014. PMLR, 2021.

Tilman Börgers. An introduction to the theory of mechanism design. Oxford University Press, USA,
2015.

Yae Jee Cho, Divyansh Jhunjhunwala, Tian Li, Virginia Smith, and Gauri Joshi. To federate or not to
federate: Incentivizing client participation in federated learning. arXiv preprint arXiv:2205.14840,
2022.

Mingshu Cong, Han Yu, Xi Weng, Jiabao Qu, Yang Liu, and Siu Ming Yiu. A vcg-based fair incentive
mechanism for federated learning. arXiv preprint arXiv:2008.06680, 2020.

Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online prediction
using mini-batches. Journal of Machine Learning Research, 13(1), 2012.

Yahya H Ezzeldin, Shen Yan, Chaoyang He, Emilio Ferrara, and Salman Avestimehr. Fairfed:
Enabling group fairness in federated learning. arXiv preprint arXiv:2110.00857, 2021.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
In International Conference on Machine Learning, pp. 2242–2251. PMLR, 2019.

Rui Hu and Yanmin Gong. Trading data for learning: Incentive mechanism for on-device federated
learning. In GLOBECOM 2020-2020 IEEE Global Communications Conference, pp. 1–6. IEEE,
2020.

Ruiquan Huang, Weiqiang Wu, Jing Yang, and Cong Shen. Federated linear contextual bandits.
Advances in neural information processing systems, 34:27057–27068, 2021.

Frank Huber, Andreas Herrmann, and Robert E Morgan. Gaining competitive advantage through
customer value oriented management. Journal of consumer marketing, 18(1):41–53, 2001.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances
and open problems in federated learning. corr. arXiv preprint arXiv:1912.04977, 2019.

Jiawen Kang, Zehui Xiong, Dusit Niyato, Shengli Xie, and Junshan Zhang. Incentive mechanism for
reliable federated learning: A joint optimization approach to combining reputation and contract
theory. IEEE Internet of Things Journal, 6(6):10700–10714, 2019.

Sai Praneeth Karimireddy, Wenshuo Guo, and Michael I Jordan. Mechanisms that incentivize data
sharing in federated learning. arXiv preprint arXiv:2207.04557, 2022.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Citeseer, 2009.

Wenqi Li, Fausto Milletarì, Daguang Xu, Nicola Rieke, Jonny Hancox, Wentao Zhu, Maximilian
Baust, Yan Cheng, Sébastien Ourselin, M Jorge Cardoso, et al. Privacy-preserving federated brain
tumour segmentation. In International workshop on machine learning in medical imaging, pp.
133–141. Springer, 2019.

10

https://developer.apple.com/videos/play/wwdc2019/708
https://developer.apple.com/videos/play/wwdc2019/708

Under review as a conference paper at ICLR 2024

Yang Liu and Jiaheng Wei. Incentives for federated learning: a hypothesis elicitation approach. arXiv
preprint arXiv:2007.10596, 2020.

Brendan McMahan and Daniel Ramage. Federated learning: Collaborative machine learning with-
out centralized training data, Apr 2017. URL https://ai.googleblog.com/2017/04/
federated-[]learning-[]collaborative.html.

H Brendan McMahan, Eider Moore, Daniel Ramage, S Hampson, and B Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data (2016). arXiv preprint
arXiv:1602.05629, 2016a.

H Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas. Federated learning
of deep networks using model averaging. arXiv preprint arXiv:1602.05629, 2016b.

Roger B Myerson. Optimal auction design. Mathematics of operations research, 6(1):58–73, 1981.

Anh Nguyen, Tuong Do, Minh Tran, Binh X Nguyen, Chien Duong, Tu Phan, Erman Tjiputra, and
Quang D Tran. Deep federated learning for autonomous driving. In 2022 IEEE Intelligent Vehicles
Symposium (IV), pp. 1824–1830. IEEE, 2022.

Kumar Kshitij Patel, Lingxiao Wang, Aadirupa Saha, and Nathan Srebro. Federated online and bandit
convex optimization. In International Conference on Machine Learning, 2023.

Matthias Paulik, Matt Seigel, Henry Mason, Dominic Telaar, Joris Kluivers, Rogier van Dalen,
Chi Wai Lau, Luke Carlson, Filip Granqvist, Chris Vandevelde, et al. Federated evaluation and tun-
ing for on-device personalization: System design & applications. arXiv preprint arXiv:2102.08503,
2021.

Kimberly Powell. Nvidia clara federated learning to deliver ai to hospitals while protecting patient
data. Nvidia Blog, 2019.

Adam Richardson, Aris Filos-Ratsikas, and Boi Faltings. Budget-bounded incentives for federated
learning. In Federated Learning, pp. 176–188. Springer, 2020.

Holger R Roth, Ken Chang, Praveer Singh, Nir Neumark, Wenqi Li, Vikash Gupta, Sharut Gupta,
Liangqiong Qu, Alvin Ihsani, Bernardo C Bizzo, et al. Federated learning for breast density
classification: A real-world implementation. In Domain Adaptation and Representation Transfer,
and Distributed and Collaborative Learning: Second MICCAI Workshop, DART 2020, and First
MICCAI Workshop, DCL 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4–8,
2020, Proceedings 2, pp. 181–191. Springer, 2020.

Zhuan Shi, Lan Zhang, Zhenyu Yao, Lingjuan Lyu, Cen Chen, Li Wang, Junhao Wang, and Xiang-
Yang Li. Fedfaim: A model performance-based fair incentive mechanism for federated learning.
IEEE Transactions on Big Data, 2022.

Gary Shiffman, Juan Zarate, Nikhil Deshpande, Raghuram Yeluri, and
Parviz Peiravi. Federated learning through revolutionary technology " con-
silient, Feb 2021. URL https://consilient.com/white-[]paper/
federated-[]learning-[]through-[]revolutionary-[]technology/.

Rachael Hwee Ling Sim, Yehong Zhang, Mun Choon Chan, and Bryan Kian Hsiang Low. Collab-
orative machine learning with incentive-aware model rewards. In International Conference on
Machine Learning, pp. 8927–8936. PMLR, 2020.

Ming Tang and Vincent WS Wong. An incentive mechanism for cross-silo federated learning: A public
goods perspective. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications, pp.
1–10. IEEE, 2021.

Mengmeng Tian, Yuxin Chen, Yuan Liu, Zehui Xiong, Cyril Leung, and Chunyan Miao. A contract
theory based incentive mechanism for federated learning. arXiv e-prints, pp. arXiv–2108, 2021.

Blake E Woodworth, Kumar Kshitij Patel, and Nati Srebro. Minibatch vs local sgd for heterogeneous
distributed learning. Advances in Neural Information Processing Systems, 33:6281–6292, 2020.

11

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://consilient.com/white-paper/federated-learning-through-revolutionary-technology/
https://consilient.com/white-paper/federated-learning-through-revolutionary-technology/

Under review as a conference paper at ICLR 2024

Xinyi Xu and Lingjuan Lyu. A reputation mechanism is all you need: Collaborative fairness and
adversarial robustness in federated learning. arXiv preprint arXiv:2011.10464, 2020.

Xinyi Xu, Lingjuan Lyu, Xingjun Ma, Chenglin Miao, Chuan Sheng Foo, and Bryan Kian Hsiang
Low. Gradient driven rewards to guarantee fairness in collaborative machine learning. Advances in
Neural Information Processing Systems, 34:16104–16117, 2021.

Rongfei Zeng, Shixun Zhang, Jiaqi Wang, and Xiaowen Chu. Fmore: An incentive scheme of multi-
dimensional auction for federated learning in mec. In 2020 IEEE 40th International Conference
on Distributed Computing Systems (ICDCS), pp. 278–288. IEEE, 2020.

Yufeng Zhan, Peng Li, Zhihao Qu, Deze Zeng, and Song Guo. A learning-based incentive mechanism
for federated learning. IEEE Internet of Things Journal, 7(7):6360–6368, 2020.

Jingwen Zhang, Yuezhou Wu, and Rong Pan. Incentive mechanism for horizontal federated learning
based on reputation and reverse auction. In Proceedings of the Web Conference 2021, pp. 947–956,
2021.

Ning Zhang, Qian Ma, and Xu Chen. Enabling long-term cooperation in cross-silo federated learning:
A repeated game perspective. IEEE Transactions on Mobile Computing, 2022.

Shuyuan Zheng, Yang Cao, Masatoshi Yoshikawa, Huizhong Li, and Qiang Yan. Fl-market: Trading
private models in federated learning. arXiv e-prints, pp. arXiv–2106, 2021.

12

Under review as a conference paper at ICLR 2024

A MISSING DETAILS FROM SECTION 2

Algorithm 2: ICFO algorithms

1 Parameters: Intialization w0, step size η1:R, aggregation rules {hr(·)}Rr=1,M0 = [M]
2 for r = 1, . . . , R do
3 The server sends out wr−1 to agents inMr−1

4 For each agent, m ∈Mr−1, m can decides to drop out or to stay. LetMr ⊆Mr−1 denote
the set of agents who want to stay

5 For each m ∈Mr, agent m sends Om(wr−1) back to the server
6 The server aggregates the model by wr = wr−1 − ηr · hr ({Om(wr−1)}m∈Mr

)

7 return ŵ = wR

Algorithm 3: FEDAVG w/o any defections
1 Input: step size η
2 Initialize wm

0 = w0 = 0 on all agents m ∈ [M]
3 for r ∈ {1, . . . , R} do
4 for m ∈ [M] in parallel do
5 Set wm

r,1 = wr−1

6 for k ∈ {1, . . . ,K} do
7 Sample zmr,k ∼ Dm

8 Compute stochastic gradient at wm
r,k, gmr,k ← ∇f(wm

r,k; z
m
r,k)

9 Update wm
r,k+1 ← wm

r,k −
η

Km
r
gmr,k

10 Communicate to server: wm
r ← wm

r,Km
r +1 = wr−1 − η

Km
r

∑
k∈[Km

r] g
m
r,k

11 Communicate to agents: wr ← 1
M

∑
m∈[M] ·wm

r

12 Output: Return wR

B MORE RELATED WORK

Designing incentive mechanisms for federated learning has recently received much attention, but it
remains hard to solve. The main difficulty lies in an “information asymmetry" (Kang et al., 2019).
The server does not know the available computation resources and the data sizes on the devices for
training. Furthermore, it doesn’t know the local data quality of a device and can’t estimate it using
common metrics such as data Shapley (Ghorbani & Zou, 2019) as it doesn’t have access to raw data.
As a result, the server may incur a high cost when providing incentives to the devices to encourage
truthfulness or avoid defections. Or worse, it might not even be able to incentivize desired behavior.

In this section, we survey some recent advances in solving this problem. We divide the survey into
four parts,

1. In section B.1, we survey papers that tackle the problem of agent selection based on several
factors, but primarily the value of the data the agent can provide. This is an important step
because for cross-device FL to work, the agents defining problem (2) should (i) represent the
meta distribution P well, (ii) have enough data samples/computational power to converge to
a solution for (2).

2. In section B.2, we survey the papers that assume the pool of agents is fixed, but the agents
are self-serving and want to contribute the least amount of data possible. This is because
data collection and privacy costs are involved with sharing data. The works in this category
also tackle the "free-rider" problem (Karimireddy et al., 2022) so a handful of devices don’t
collect most of the data at equilibrium.

3. In section B.3, we survey papers relevant to a simpler problem called cross-silo FL (Kairouz
et al., 2019) where P is supported on a finite set of machines, and as a result, we can directly
consider problem (2). Defection is not a problem in this setting, and we are more interested
in incentivizing the machines to contribute higher-quality model updates.

13

Under review as a conference paper at ICLR 2024

4. Finally, in section B.4, we survey the very limited work in the general problem we are
interested in solving, i.e., avoiding defections in cross-device FL.

There is another orthogonal line of research on fairness in FL (see Ezzeldin et al. (2021) and the
references within, for example).

B.1 DATA VALUATION AND AGENT SELECTION

There are two main series of works that are most relevant. The first one studied the design of incentive
mechanisms under a principal-agent model using contract theory.

Kang et al. (2019) proposed a contract theory-based incentive mechanism for federated learning
in mobile networks. They considered the principal-agent model that there are M types of agents,
where the agent’s local data quality defines the type. The server does not know the type of each
device and only has a prior distribution over all agent types. It aims to design an incentive-compatible
mechanism that incentivizes every agent to behave truthfully while maximizing the server’s expected
reward. Tian et al. (2021) extended this model by considering the agent’s willingness to participate
as part of the type. As a result, they proposed a two-dimensional contract model for the incentive
mechanism design. Cong et al. (2020) considered a similar model where the data quality and cost
define the agent’s type. The server decides payment and data acceptance rates based on the reported
agent type. The authors proposed implementing the payment and data acceptance rate functions with
neural networks and showed they satisfy proper properties such as incentive compatibility. Another
related work is by Zeng et al. (2020), who proposed a multi-dimension auction mechanism with
multiple winners for agent selection. The authors presented a first-price auction mechanism and
analyzed the server’s equilibrium state.

Besides applying contract theory to incentivize agents’ truthful behavior, there has also been another
series of work that focuses on designing reputation-based agent selection schemes to select high-
quality agents. Specifically, Kang et al. (2019) proposed a model that works as follows: the server
computes the reputation of every agent and selects agents for the federated learning based on the
reputation scores, and the reputation of every agent is updated by a management system after finishing
an FL task, where a consortium blockchain implements the reputation management system. Zhang
et al. (2021) extended the reputation-based agent selection scheme with a reverse auction mechanism
to select agents by combining their bids and comprehensive reputations. Xu & Lyu (2020) proposed
a different reputation mechanism that computes the reputation of every agent based on the correlation
between their report and the average report. Each agent will be rewarded according to their reputation,
and those with low reputations will be removed.

Finally, it is also worth mentioning two other related works. Richardson et al. (2020) designed another
data valuation method. They collect an independent validation data set and value data through an
influence function, defined as the loss decreases over the validation data set when the data is left out.
And Hu & Gong (2020) cast the problem as a Stackelberg game and choose a subset of agents, which
they claim are most likely to provide high-quality data. They provide extensive experiments to test
their idea.

B.2 INCENTIVIZING AGENT PARTICIPATION AND DATA-COLLECTION

Usually, the utility of participating agents is a function of model accuracy, computation/sample
collection cost, and additional constant cost, e.g., communication cost and payment to the server.
In a simple case where the model accuracy is a function of the total number of input samples,
Karimireddy et al. (2022); Zhang et al. (2022) show that when the server gives the same global model
to every agent like federated averaging (McMahan et al., 2016a) does, a Nash Equilibrium exists for
individual sample contributions. But, at this Nash Equilibrium, agents with high sampling costs will
be “free-riders" and will not contribute any data, while agents with low sampling costs will contribute
most of the total data.

To alleviate this situation, Karimireddy et al. (2022) propose a mechanism to incentivize agents to
contribute more by customizing the final model’s accuracy for every agent, which means sending
different models to different agents. They show that their mechanism is “data-maximizing" in the
face of rational agents. Sim et al. (2020) study a similar setting as Karimireddy et al. (2022) and aim
to provide model-based rewards. Specifically, the authors use information gain as a metric for data

14

Under review as a conference paper at ICLR 2024

valuation and show their reward scheme satisfies some desirable properties. Zhang et al. (2022) also
study an infinitely repeated game, where the utility is the discounted cumulative utility, and propose a
cooperative strategy to achieve the minimum number of free riders.

Zhan et al. (2020) formulate the problem as a Stackelberg game, where the server decides the payment
amount first, and agents decide the amount of data they are willing to contribute. The server’s utility
is the model accuracy minus the payment, while the agents’ utility is the payment (proportional to
the contributing data size) minus the computation cost. In this setting, the agents do not care about
accuracy, which differs from our case.

In a bit of orthogonal work, Cho et al. (2022) propose changing objective (2) itself to maximize
the number of agents that benefit from collaboration. They provide some preliminary theoretical
guarantees for a simple mean estimation problem. While in our setting, we assume the server can
get the model from agents. Liu & Wei (2020) study the problem of eliciting truthful reports of the
learned model from the agents by designing proper scoring rules. Specifically, the authors consider
two settings where the server has a ground truth verification data set or only has access to features.
The authors demonstrate the connections between this question and proper scoring rule and peer
predictions (i.e., information elicitation without verification) and test the performance with real-world
data sets.

B.3 MAXIMIZING DATA QUALITY IN CROSS-SILO FL

Kairouz et al. (2019) demarcate between two prominent federated learning paradigms: cross-silo
and cross-device. We have already discussed an example of cross-device Fl: training on mobile
devices. Cross-silo FL captures the traditional training in data centers or between big organizations
with similar interests. One example is a collaboration between medical institutions to improve their
models without leaking sensitive patient information Bergen & Petryshen (2012). In cross-silo FL,
usually, the agents initiate the FL process and pay the central server for global aggregation. As a
result, defection is not an issue in cross-silo FL because, ultimately, the goal is to develop better
individual models. Unfortunately, there can still be “free-riding" behavior in the cross-silo setting
(Zhang et al., 2022; Richardson et al., 2020) as the devices have incentives to contribute less to
maximize their own benefit. Therefore, maximizing the data quality is one of the main problems in
cross-silo FL.

Xu et al. (2021) propose a heuristic Shapley score based on the gradient information from each agent.
The score is calculated after communication by comparing the alignment of an agent’s gradient with
the aggregate gradient. Then the agents with a high score are provided an un-tarnished version of the
aggregated gradient, while the agents with a lower score only get a noisy version of the gradient. This
incentivizes devices to provide higher-quality gradient updates to get a final model close to the model
of the server. There are, unfortunately, no guarantees showing this won’t hurt the optimization of
objective (2), or it at least provably maximizes data quality in any sense. A similar idea has also been
used in Shi et al. (2022). Zheng et al. (2021) also propose an auction mechanism modeled using a
neural network that decides the appropriate perturbation rule for agents’ gradients and an aggregation
rule that helps recover a good final guarantee despite this perturbation. Richardson et al. (2020)
take a different approach, and instead of perturbing the model updates, they make budget-bound
monetary payments to devices. Their metric is like the leave-one-out metric in data valuation but for
model updates. Finally, Tang & Wong (2021) formulate a social welfare maximization problem for
cross-silo FL and propose an incentive mechanism with preliminary theoretical guarantees.

B.4 TOWARDS AVOIDING DEFECTIONS IN CROSS-DEVICE FL

There doesn’t exist any theoretical work for our proposed problem, i.e., avoiding agent defection
while optimizing problem (2) using an iterative algorithm with several communication rounds. There
are, however, some empirical insights in other works.

The most relevant work is about MW-FED algorithm (Blum et al., 2021), an algorithm that fits into
the intermittent communication model and explicitly slows down the progress of devices closer to
their target accuracies. Specifically, the algorithm asks the devices to report their target accuracies at
the beginning of training. Then after each communication round, the devices report their validation
accuracy on the current model. The server then uses a multiplicative weight update rule to devise a

15

Under review as a conference paper at ICLR 2024

sample load for each device for that communication round. Intuitively, devices closer to their target
accuracies get a lighter sample load and vice-versa. Practically this ensures that the devices are all
satisfied at roughly the same point, thus avoiding any incentives to defect. While MW-FED hasn’t
been analyzed in the context of federated learning, it is well-known that it has an optimal sample
complexity for optimizing distributed learning problems where the goal is to come up with a single
best model for all agents, much like problem (2).

C MISSING EXAMPLES AND PROOFS FROM SECTION 4

C.1 PROOF OF THEOREM 1

Proof of Theorem 1. We will show that algorithm 1 with a small enough step-size sequence,

1. is legal, i.e., at time t, if we are in case 1, we have ∥ΠP (∇FND(wt−1))∥2 ̸= 0; if we are in
case 2, we have ∥∇F (wt−1)∥2 ̸= 0.

2. will not cause any agent to defect, and

3. will terminate and output a model ŵ which is approximately optimal.

For the first property, we have the following lemma.

Lemma 1. Under the same conditions of Theorem 1. Suppose the algorithm is in case 1 or case 2 at
any time step t. If we are in case 1, we have ∥ΠP (∇FND(wt−1))∥2 ̸= 0; if we are in case 2, we
have ∥∇F (wt−1)∥2 ̸= 0.

Now to see the second property, note that defections can only happen if (i) the algorithm runs into
case 1 or 2, (ii) it makes the corresponding update, and (iii) the agent chooses to defect after seeing
the updated model.

Lemma 2 (No agent will defect in case 1 and case 2). Under the same conditions as in Theorem 1.
Suppose the algorithm is in case 1 or case 2 at any time step t, and no agent has defected up to time
step t. If η ≤

√
ϵ/(2H), no defection will occur once the update is made.

The reason that no agent defects in case 1 is that we create our update direction in case 1 so that for
all agents in D, the update is orthogonal to their current gradient, and thus they don’t reduce their
objective value. And for all agents in ND, they do make progress, but we control the step size so that
they don’t make “too much progress". Thus no agent defects in case 1. Similarly, in case 2 we avoid
defections by ensuring the step size is small enough.

Finally, we show that the algorithm will terminate and the returned model returned is good.

Lemma 3 (The algorithm will terminate). Under the same conditions of Theorem 1, Algorithm 1
terminates.

To prove that the algorithm terminates, we first show that the algorithm makes non-zero progress
on the average objective every time it is in case 1 and case 2 (which is shown in lemma 7), which
implies that the average loss will converge. Then we prove that the average loss can only converge to
zero, and thus, we will certainly get into case 3.

Lemma 4 (The returned model is good). Under the same conditions as in Theorem 1. Suppose
Algorithm 1 terminates in case 3 at time step t, and no agent has defected up to time step t. If
η ≤ min

{√
2ϵ/H, ϵ/L

}
, then the algorithm will output ŵ that satisfies F (ŵ) ≤ 4ϵ.

Thus combining the three properties, we can conclude that the algorithm outputs a good model and
avoids defections. This finishes the proof.

16

Under review as a conference paper at ICLR 2024

C.2 PROOF OF LEMMA 1

First, consider case 2. Suppose that ∥∇F (wt−1)∥2 = 0. If there exists n ∈ [M] s.t. Fn(wt−1) >
Fn(w

∗) = 0, then we have

F (w⋆) ≥ F (wt−1),

=
1

M

∑
m∈[M]

Fm(wt−1),

≥ 1

M

∑
m ̸=n

Fm(w⋆) +
Fn(wt−1)

M
,

>
1

M

∑
m ̸=n

Fm(w⋆) +
Fn(w

⋆)

M
,

= F (w⋆),

which is a contradiction. Hence we have Fn(wt−1) = 0 for all n ∈ [M], which contradicts with the
condition that D is empty due to line 4 of Algorithm 1.

Next, consider case 1. We first introduce the following lemma.
Lemma 5. Suppose Assumption 4 holds. For all A ⊂ [M] and B = [M] \ A, if FA(·) :=∑

m∈A Fm(·), then for all w ∈ W , such that∇FA(w) ̸= 0,∇FA(w) /∈ Span{∇Fm(w) : m ∈ B}.

By combining Assumption 4 and lemma 5, we know that ∥ΠP (∇FND(wt−1))∥2 = 0 implies that
∥∇FND(wt−1)∥2 = 0. This implies that FND(wt−1) = FND(w⋆) = 0 for w⋆ ∈ W⋆, which
contradicts with the definition of ND (see line 5 of Algorithm 1).

C.3 PROOF OF LEMMA 2

Proof. We begin with introducing the following lemma.

Lemma 6 (Predicting defections with single first-order oracle call). Under the same conditions of
Theorem 1, at any time step t assuming η ≤

√
2/H ,

• if agent m ∈ D then Fm(wt−1 − η∇F̃m(wt−1)) ≤ 3ϵ, and

• if agent m ∈ ND then Fm(wt−1 − η∇F̃m(wt−1)) > 2ϵ,

where∇F̃m(wt−1) =
∇Fm(wt−1)

∥∇Fm(wt−1)∥2
is the normalized gradient.

Now we are ready to prove lemma 2. First, assume we are in case 1 at time t. Let’s first show that we
don’t make any agent m ∈ D defect,

Fm(wt) ≥ Fm(wt−1) + ⟨∇Fm(wt−1), gt⟩ ,
= Fm(wt−1),

> ϵ,

as gt ⊥ ∇Fm(wt−1) for all m ∈ D by design and no agent defected up to time t. For any
non-defecting agent m ∈ ND we have,

Fm(wt−1 + ηtgt)− Fm(wt−1 − ηt∇F̃m(wt−1))

≥(convexity)
〈
∇Fm(wt−1 − ηt∇F̃m(wt−1)), ηt(gt +∇F̃m(wt−1))

〉
,

=
〈
∇Fm(wt−1 − ηt∇F̃m(wt−1))−∇Fm(wt−1) +∇Fm(wt−1), ηt(gt +∇F̃m(wt−1))

〉
,

≥(C.S. inequality)
〈
∇Fm(wt−1), ηt(gt +∇F̃m(wt−1))

〉
−
∥∥∥∇Fm(wt−1)−∇Fm(wt−1 − ηt∇F̃m(wt−1))

∥∥∥
2
·
∥∥∥ηt(gt +∇F̃m(wt−1))

∥∥∥
2
,

17

Under review as a conference paper at ICLR 2024

≥(Ass. 1)
〈
∇Fm(wt−1), ηt(gt +∇F̃m(wt−1))

〉
− η2tH

∥∥∥∇F̃m(wt−1)
∥∥∥
2
·
∥∥∥gt +∇F̃m(wt−1)

∥∥∥
2
,

≥(normalized gradients)
〈
∇Fm(wt−1), ηt(gt +∇F̃m(wt−1))

〉
− 2η2tH,

= ηt ∥∇Fm(wt−1)∥2
(
1 +

〈
∇F̃m(wt−1), gt

〉)
− 2η2tH,

≥ −2η2tH,

Re-arranging this gives the following,

Fm(wt−1 + ηtgt) ≥ Fm(wt−1 − ηt∇F̃m(wt−1))− 2η2tH

>(lemma 6) 2ϵ− 2η2tH,

≥ ϵ,

where we assume that ηt ≤
√

ϵ
2H .

Now assume instead we are in case 2 at time t. For agent m ∈ [M] we have,

Fm(wt−1 + ηtgt)− Fm(wt−1 − ηt∇F̃m(wt−1))

≥(convexity)
〈
∇Fm(wt−1 − ηt∇F̃m(wt−1)), ηt(gt +∇F̃m(wt−1))

〉
,

=
〈
∇Fm(wt−1 − ηt∇F̃m(wt−1))−∇Fm(wt−1) +∇Fm(wt−1), ηt(gt +∇F̃m(wt−1))

〉
,

≥(C.S. inequality)
〈
∇Fm(wt−1), ηt(gt +∇F̃m(wt−1))

〉
−
∥∥∥∇Fm(wt−1)−∇Fm(wt−1 − ηt∇F̃m(wt−1))

∥∥∥
2
·
∥∥∥ηt(gt +∇F̃m(wt−1))

∥∥∥
2
,

≥(Ass. 1)
〈
∇Fm(wt−1), ηt(gt +∇F̃m(wt−1))

〉
− η2tH

∥∥∥∇F̃m(wt−1)
∥∥∥
2
·
∥∥∥gt +∇F̃m(wt−1)

∥∥∥
2
,

≥
〈
∇Fm(wt−1), ηt(gt +∇F̃m(wt−1))

〉
− 2η2tH,

= ηt ∥∇Fm(wt−1)∥2
(
1 +

〈
∇F̃m(wt−1), gt

〉)
− 2η2tH,

≥ −2η2tH.

Choosing ηt ≤
√

ϵ
2H ensures that,

Fm(wt) >
(lemma 6) 2ϵ− ϵ = ϵ,

and thus agent m doesn’t defect.

C.4 PROOF OF LEMMA 3

We first introduce the following lemma.
Lemma 7 (Progress in case 1 and 2). Under the same conditions as in Theorem 1. Suppose
the algorithm is in case 1 or 2 at any time step t, and no agent has defected up to time step t.
If η ≤ 1/(MH), then F (wt) < F (wt−1) − ηt

2 min(∥∇F (wt−1)∥22 , 1) in case 2 and F (wt) <

F (wt−1)− ηt

2M min(∥∇FND(wt−1)∥22 , 1) in case 1.

By Lemma 7, we show that the algorithm makes non-zero progress on the average loss every time it
is in case 1 and case 2. This implies that Algorithm 1 will converge. Now we only need to prove that
the average loss will converge to 0. In this case, if the algorithm never terminates, then there must be
a time step t such that Fm(wt) < 2ϵ for all m ∈ [M]. We get into case 3 and then terminate.

We can prove this by contradiction. Suppose that the average loss will converge to F (w∗) + v = v
for some v > 0. That is to say, for any subsequence, F (wt) converges to v. Then we list all possible
subsequences as follows.

1. For a subsequence where the algorithm is in case 2, we will make at least progress scaled
with ∥∇F (wt−1)∥22. It implies that ∥∇F (wt−1)∥2 would converge to zero for t in this
subsequence. Thus applying convexity of F we get that

F (wt−1) ≤ F (w∗) +∇F (wt−1)
⊤(wt−1 − w⋆)→ F (w⋆) = 0.

18

Under review as a conference paper at ICLR 2024

This is a contradiction.
2. For any subset S of [M], for the subsequence where the algorithm is in case 1 and the

predicted non-defecting set is ND = S, we will make at least progress scaled with
∥ΠP (∇FND(wt−1)) ∥22. It implies that ∥ΠP (∇FND(wt−1)) ∥22 would converge to zero
for t in this subsequence. There are two possible cases:

• Let ∥∇FND(wt−1)∥22 also converge to zero for this sub-sequence. In this case again
applying convexity of FND we get that,

FND(wt−1) ≤ FND(w⋆) +∇FND(wt−1)
⊤(wt−1 − w⋆)→ F (w⋆) = 0

converges to zero. This is again a contradiction.
• Let ∥∇FND(wt−1)∥22 not converge to zero for this subsequence. Then this would

violate assumption 4, as everywhere outside the setW⋆, ∇FND(wt−1) must have a
non-zero component in P .

Therefore, the algorithm can not converge to a point with a function value F (w∗) + v = v. We are
done with the proof.

C.5 PROOF OF LEMMA 4

Proof. Let’s say that Algorithm 1 terminates in Case 3 at time t then we have for all m ∈ D = [M],

3ϵ ≥(Lemma 6) Fm(wt−1 − ηt∇F̃m(wt−1)),

≥(Convexity) Fm(wt−1) +
〈
∇Fm(wt−1),−ηt∇F̃m(wt−1)

〉
,

= Fm(wt−1) +

〈
∇Fm(wt−1),−ηt

∇Fm(wt−1)

∥∇Fm(wt−1)∥2

〉
,

= Fm(wt−1)− ηt ∥∇Fm(wt−1)∥2 ,
≥(Ass.2) Fm(wt−1)− ηtL.

Assuming ηt ≤ ϵ
L we get that for all m ∈ [M],

Fm(wt−1) ≤ 3ϵ+ ϵ,

= 4ϵ,

which proves the claim.

C.6 PROOF OF LEMMA 5

Proof. Consider some point w ∈ W \W⋆ and let the non-zero gradients on the agents be linearly
independent at that point. If possible, let the above property be violated, then we have at least one
A ⊆ [M] such that ∇FA(w) ∈ Span{∇Fm(w) : m ∈ B} and ∇FA ̸= 0. In particular there are
coefficients {γn ∈ R}n∈B (not all zero) such that,∑

m∈A

∇Fm(w) =
∑
n∈B

γn∇Fn(w),

⇔
∑
m∈A

∇Fm(w) +
∑
n∈B

(−γn)∇Fn(w) = 0,

This implies that the gradients are linearly dependent (note that not all gradients can be zero as then
w would be inW⋆), which is a contradiction.

C.7 PROOF OF LEMMA 6

Proof. Let’s say we are at time step t. Assume m ∈ D and note that the smoothness of function Fm

implies that,

Fm(wt−1 − ηt∇F̃m(wt−1)) ≤ Fm(wt−1) +
〈
∇Fm(wt−1),−ηt∇F̃m(wt−1)

〉
+

H

2

∥∥∥ηt∇F̃m(wt−1)
∥∥∥2
2
,

19

Under review as a conference paper at ICLR 2024

= Fm(wt−1)− ηt ∥∇Fm(wt−1)∥2 +
Hη2t
2

,

≤(m∈D) 2ϵ+
Hη2t
2

,

≤ 3ϵ,

where we used that ηt ≤
√

2
H . Now assume m ∈ ND and note using convexity of Fm that,

Fm(wt−1 − ηt∇F̃m(wt−1)) ≥ Fm(wt−1) +
〈
∇Fm(wt−1),−ηt∇F̃m(wt−1)

〉
,

= Fm(wt−1)− ηt ∥∇Fm(wt−1)∥2 ,
>(m∈ND) 2ϵ.

This proves the lemma.

C.8 PROOF OF LEMMA 7

Proof. We first assume we make an update in case 1. First, using the smoothness assumption and
then using the fact that gt is orthogonal to the gradients of all the agents in D, we get

F (wt) = F (wt−1 + ηgt),

≤(ass. 1) F (wt−1) + η

〈∑
m∈D∇Fm(wt−1) +∇FND(wt−1)

M
, gt

〉
+

Hη2

2
∥gt∥22 ,

≤ F (wt−1)−
η

M
⟨∇FND(wt−1), gt⟩+

Hη2

2
∥gt∥22 ,

Now we will consider two cases. In the first case, assume ∥∇FND(wt−1)∥2 < 1. Then we get that,

F (wt) ≤ F (wt−1)−
η

M
⟨∇FND(wt−1),∇FND(wt−1)⟩+

Hη2

2
∥∇FND(wt−1)∥22 ,

≤ F (wt−1)−
η

M
∥∇FND(wt−1)∥22 +

Hη2

2
∥∇FND(wt−1)∥22 ,

≤ F (wt−1)−
ηt
2M
∥∇FND(wt−1)∥22 , (3)

where we assume ηt ≤ 1
MH . Since in case 1, ∥∇FND(wt−1)∥2 ̸= 0, we will probably make progress

on the average objective. In the second case, assume ∥∇FND(wt−1)∥2 ≥ 1. Then we will get that,

F (wt) ≤ F (wt−1)−
ηt
M
∥∇FND(wt−1)∥2 +

Hη2t
2

,

≤ F (wt−1)−
ηt
M

+
Hη2t
2

,

≤ F (wt−1)−
ηt
2M

,

where we assume ηt ≤ 1
MH . This finishes the proof.

Next, we assume we make an update in case 2. Note that using smoothness,

F (wt) = F (wt−1 + ηtgt),

≤ F (wt−1) + ηt ⟨∇F (wt−1), gt⟩+
Hη2t
2
∥gt∥22 .

Let’s first assume ∥∇F (wt−1)∥2 ≥ 1. Using the definition of gt we get,

F (wt) ≤ F (wt−1)− ηt

〈
∇F (wt−1),

∇F (wt−1)

∥∇F (wt−1)∥2

〉
+

Hη2t
2
∥gt∥22 ,

= F (wt−1)− ηt ∥∇F (wt−1)∥2 +
Hη2t
2

,

20

Under review as a conference paper at ICLR 2024

≤ F (wt−1)− ηt +
Hη2t
2

,

≤ F (wt−1)−
ηt
2
,

where we assume ηt ≤ 1
H . Now let’s consider the case when ∥∇F (wt−1)∥2 < 1.

F (wt) ≤ F (wt−1)− ηt ⟨∇F (wt−1),∇F (wt−1)⟩+
Hη2t
2
∥∇F (wt−1)∥22 ,

= F (wt−1)− ηt ∥∇F (wt−1)∥22 +
Hη2t
2
∥∇F (wt−1)∥22 ,

≤ F (wt−1)−
ηt
2
∥∇F (wt−1)∥22 , (4)

where we assume ηt ≤ 1
H . Note that ∥∇F (wt−1)∥2 ̸= 0 in this case, which means the algorithm

makes non-zero progress on the average objective.

0.0 0.2 0.4 0.6 0.8

20

40

60

80

Av
er

ag
e

Ac
cu

ra
cy

q = 0.0

0.0 0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

Av
er

ag
e

Ac
cu

ra
cy

q = 0.1

0.0 0.2 0.4 0.6 0.8 1.0

20

40

60

80

Av
er

ag
e

Ac
cu

ra
cy

q = 0.3

0.0 0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

60

70

80

Av
er

ag
e

Ac
cu

ra
cy

q = 0.5

0.0 0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

60

70

Av
er

ag
e

Ac
cu

ra
cy

q = 0.7

0.0 0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

60

Av
er

ag
e

Ac
cu

ra
cy

q = 0.9

K=1
K=5
K=10
K=25
K=50
K=100

Figure 8: Fine-tuning the step-size η for different data heterogeneity q (across different plots) and the
number of local update steps K (different curves in each plot). The required precision ϵ = 0 during
the fine-tuning phase.

D MORE DETAILS ON THE EXPERIMENTS

Generating data with heterogeneity q. Denote the dataset D = {D1, · · · ,Dn} where n is the
number of devices. To create a dataset with heterogeneity q ∈ [0, 1] for every device, we first
pre-process the dataset of every device such that |D1| = · · · = |Dn|. Then for every device i, we let
that device keep (1− q) · Di samples from their own dataset and generate a union dataset D̂ with
the remaining samples from all devices, i.e. D̂ = q · D1 ∪ · · · ∪ q · Dn. We use q · Di to denote a
random split of q portion from the dataset Di. Finally, the data with heterogeneity q for every device
i is generated by

D̂i = (1− q) · Di ∪
1

n
· D̂

21

Under review as a conference paper at ICLR 2024

Additional experimental results. We present our fine-tuning process for finding the step size
for different settings in Figure 8. In Figures 9 —11, we also present additional findings with more
variations in data heterogeneity q and the number of local update steps K besides the results we
presented in Figure 3 of the main paper.

0.0 0.5 1.0 1.5 2.0

30

40

50

60

70

80

90

Av
er

ag
e

Ac
cu

ra
cy

q = 0.0

0.0 0.5 1.0 1.5 2.0

30

40

50

60

70

80

90

100

Av
er

ag
e

Ac
cu

ra
cy

q = 0.1

0.0 0.5 1.0 1.5 2.0

20

40

60

80

Av
er

ag
e

Ac
cu

ra
cy

q = 0.3

0.0 0.5 1.0 1.5 2.0
10

20

30

40

50

60

70

80

Av
er

ag
e

Ac
cu

ra
cy

q = 0.5

0.0 0.5 1.0 1.5 2.0
10

20

30

40

50

60

70

Av
er

ag
e

Ac
cu

ra
cy

q = 0.7

0.0 0.5 1.0 1.5 2.0
10

20

30

40

50

60

Av
er

ag
e

Ac
cu

ra
cy

q = 0.9
K=1
K=5
K=10
K=25
K=50
K=100

Figure 9: Additional findings on the effect of defection on average accuracy

0.0 0.5 1.0 1.5 2.0
25

30

35

40

45

50

Po
pu

la
tio

n
Ac

cu
ra

cy

q = 0.0

0.0 0.5 1.0 1.5 2.0

30

35

40

45

50

Po
pu

la
tio

n
Ac

cu
ra

cy

q = 0.1

0.0 0.5 1.0 1.5 2.0
10

20

30

40

50

Po
pu

la
tio

n
Ac

cu
ra

cy

q = 0.3

0.0 0.5 1.0 1.5 2.0
10

20

30

40

50

Po
pu

la
tio

n
Ac

cu
ra

cy

q = 0.5

0.0 0.5 1.0 1.5 2.0
10

20

30

40

50

Po
pu

la
tio

n
Ac

cu
ra

cy

q = 0.7

0.0 0.5 1.0 1.5 2.0
10
15
20
25
30
35
40
45
50

Po
pu

la
tio

n
Ac

cu
ra

cy

q = 0.9
K=1
K=5
K=10
K=25
K=50
K=100

Figure 10: Additional findings on the effect of defection on population accuracy

22

Under review as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0
20

30

40

50

60

70

80

90

100

De
vi

ce
 A

cc
ur

ac
y

q = 0.0

0.0 0.5 1.0 1.5 2.0
30

40

50

60

70

80

90

100

De
vi

ce
 A

cc
ur

ac
y

q = 0.1

0.0 0.5 1.0 1.5 2.0
20

30

40

50

60

70

80

90

100

De
vi

ce
 A

cc
ur

ac
y

q = 0.3

0.0 0.5 1.0 1.5 2.0

20

40

60

80

100

De
vi

ce
 A

cc
ur

ac
y

q = 0.5

0.0 0.5 1.0 1.5 2.0

20

40

60

80

100

De
vi

ce
 A

cc
ur

ac
y

q = 0.7

0.0 0.5 1.0 1.5 2.0
0

20

40

60

80

100

De
vi

ce
 A

cc
ur

ac
y

q = 0.9

Max
Mean
Min

Figure 11: Additional findings on the effect of defection on the min, mean, and max device accuracies

E OPEN QUESTIONS AND FUTURE WORK

In this paper, we studied the impact of agents’ defections in federated learning and proposed an
algorithm to avoid defections. As aforementioned in the section of Discussion, one open problem is
how to extend our Algorithm 1 when only stochastic oracles are accessible. There are some other
interesting future directions in the following.

Convergence rate. We only provide asymptotic convergence guarantee for Algorithm 1. The
non-asymptotic guarantee is an interesting open question. The main difficulty lies in that there are
several phases and we analyze each phase separately. The standard technique for analyzing first-order
methods cannot be applied in this case. Furthermore, even in the asymptotic setting, we believe we
can improve our precision guarantee from 4ϵ to (1 + δ)ϵ for arbitrarily small δ.

Approximately realizable setting. In this work, we focus on the realizable setting, where there
exists w∗ ∈ W such that Fm(w∗) = 0 for all m ∈ [M]. However, the next natural question to ask is:
can we get similar results when w∗ is only approximately optimal for all agents?

Non-convex optimization. We focus on the convex optimization setting. However, a natural follow-
up question is how to avoid defections in non-convex federated optimization. While we perform
experiments in the non-convex setting, our theory doesn’t capture this setting.

Other rational behaviors. We restrict to the setting where the server cannot save the intermediate
models and wants the final model to be as good as possible. It is also interesting to consider settings
where the server can save multiple intermediate models and use the best one when a new agent from
the population arrives.

23

	Introduction
	Related work

	Problem Setup
	When do defections hurt?
	Disincentivizing defections through a different aggregation method
	Discussion
	Missing details from section 2
	More related work
	Data valuation and agent selection
	Incentivizing agent participation and data-collection
	Maximizing data quality in cross-silo FL
	Towards avoiding defections in cross-device FL

	Missing examples and proofs from section 4
	Proof of theorem 1
	Proof of lemma 1
	Proof of Lemma 2
	Proof of lemma 3
	Proof of Lemma 4
	Proof of lemma 5
	Proof of lemma 6
	Proof of Lemma 7

	More details on the experiments
	Open questions and future work

