
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ARC-RL: SELF-EVOLUTION CONTINUAL REIN-
FORCEMENT LEARNING VIA ACTION REPRESEN-
TATION SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual Reinforcement Learning (CRL) is a powerful tool that enables agents
to learn a sequence of tasks, accumulating knowledge learned in the past and us-
ing it for problem-solving or future task learning. However, existing CRL meth-
ods all assume that the agent’s capabilities remain static within dynamic environ-
ments, which doesn’t reflect real-world scenarios where capabilities evolve. This
paper introduces Self-Evolution Continual Reinforcement Learning (SE-CRL), a
new and realistic problem where the agent’s action space continually changes. It
presents a significant challenge for RL agents: How can policy generalization
across different action spaces be achieved? Inspired by the cortical functions
that lead to consistent human behavior, we propose an Action Representation
Continual Reinforcement Learning framework (ARC-RL) to address this chal-
lenge. Our framework builds an action representation space by self-supervised
learning on transitions, decoupling the agent’s policy from the specific action
space. For a new action space, the decoder of the action representation is ex-
panded or masked for adaptation and regularized fine-tuned to improve the sta-
bility of the policy. Furthermore, we release a benchmark based on MiniGrid
and Procgen to validate the effectiveness of methods for SE-CRL. Experimental
results demonstrate that our framework significantly outperforms popular CRL
methods by generalizing the policy across different action spaces. 1

1 INTRODUCTION

Figure 1: An example of two problems. Existing
CRL: A robot uses two fingers to grasp objects
while the objects or grasping way changes. SE-
CRL: A robot initially trained with two fingers is
upgraded to four fingers or loses a finger but must
continue grasping objects.

Continual Reinforcement Learning (CRL,
a.k.a. lifelong reinforcement learning) is an
emerging research field that aims to emulate
the human capacity for lifelong learning and
tackles the challenges of long-term, real-world
applications characterized by diversity and
non-stationarity (Rolnick et al., 2019; Kessler
et al., 2022). Specifically, CRL extends tra-
ditional Deep Reinforcement Learning (DRL)
by empowering agents with the ability to
learn from a sequence of tasks, preserving
knowledge from previous tasks, and using
this knowledge to enhance learning efficiency
and performance on future tasks. Although
CRL research requires the agent’s ability to adapt to dynamic environments (Khetarpal et al.,
2022), it typically assumes that the agent’s capabilities (action space) remain static while the
external environment changes. This assumption does not reflect realistic situations where an
agent’s capabilities may evolve. Living systems not only need to adapt to radical changes in the
environment (Emmons-Bell et al., 2019), but also need to deal with changes to their structure
and function (Blackiston et al., 2015). Similarly, continual learning agents also need to deal with
their evolving capabilities (Kudithipudi et al., 2022). For example, the action space of agents

1Code are released in Supplementary Material.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

in real-world applications may change due to software or hardware updates (Wang et al., 2019;
Ding et al., 2023) or damages (Kriegman et al., 2019; Kwiatkowski & Lipson, 2019). Therefore,
continual learning with the changes of action space is crucial for developing more sophisticated and
adaptable artificial intelligence systems.

Existing

CRL

SE-CRL

Action

P
ro

ba
bi

li
ty

Action

0

1

P
ro

ba
bi

li
ty

0

1

P
ro

ba
bi

li
ty

Action

0

1

Figure 2: Different challenges of two problems.
Existing CRL: After the environment changes,
the number of actions remains constant (num-
ber of columns), while the probability distribution
shifts significantly (trend of the red line). SE-
CRL: After the action space changes, the number
of actions changes, while the probability distribu-
tion is relatively stable.

While existing research in RL (Chandak et al.,
2020; Ding et al., 2023) has made initial explo-
rations into the challenges posed by changing
action spaces, these studies have certain limi-
tations. Specifically, they primarily focus on
continual adaptation without addressing other
critical issues in CRL, such as catastrophic for-
getting. Additionally, they only consider ex-
panding action spaces, neglecting other types
of changes in the action space. Building on
these foundational studies, we propose a new
and more general problem called Self-Evolution
Continual Reinforcement Learning (SE-CRL),
where the agent needs to continual learning
with its evolving capabilities. Figure 1 illus-
trates the difference between SE-CRL and ex-
isting CRL. While existing CRL requires ex-
ploring how to respond to dynamic environ-
mental changes, SE-CRL needs to maintain the
agent’s performance as the capabilities evolve, considering catastrophic forgetting and knowledge
transfer. SE-CRL supplements existing CRL research by considering dynamics in a broader context.
As an early step, this work focuses on discrete action spaces and assumes that the task logic remains
unchanged over time.

As shown in Figure 2, the main challenge of SE-CRL is different from existing CRL. The main
challenge of existing CRL is dealing with the significant shift of the probability distribution of the
actions after the environment changes, while the main challenge of SE-CRL is to cope with changes
in the actions’ number after the action space changes. Although a general policy can be obtained
using the union of all action spaces, the previous global optimum may become a local one that does
not fit the new action space. This process, however, underscores the crucial role of expertise, as it
requires prior knowledge about all action spaces. In summary, SE-CRL can be formally modeled as
the following problem: How to achieve policy generalization across different action spaces with the
same task logic?

Animals, including humans, consistently perform behaviors even years after learning (Georgopoulos
& Pellizzer, 1995; Emmons-Bell et al., 2019; Blackiston et al., 2015). It is due to the brain’s abil-
ity to represent actions in a latent space, allowing for the generalization across different contexts.
Precisely, the stability of latent dynamics of neural activity reflects a fundamental feature of learned
cortical function, leading to stable and consistent behavior (Gallego et al., 2020). In addition, the
research on self-supervised learning for reinforcement learning has been shown to be effective in
improving the generalization ability of the agent (Chandak et al., 2019; Liu et al., 2024; Fang &
Stachenfeld, 2024).

Inspired by these, we propose an Action Representation Continual Reinforcement Learning frame-
work (ARC-RL) to address the challenge of SE-CRL by generalizing policy across action spaces
with different sizes. ARC-RL first learns an action representation space by learning a pair of en-
coder and decoder. They are trained through self-supervised learning on transitions collected from
the agent’s exploration of the environment. The encoder maps the agent’s actions to action repre-
sentations, and the decoder maps them to action probabilities. Once trained, the encoder and the
decoder are fixed, and the agent’s policy is trained based on the action representation space. When
the action space changes, the decoder’s structure is updated to accommodate the size of the new
action space. The agent then explores the environment with the new action space and fine-tunes the
encoder and the decoder, adding regularization for the fine-tuning of the decoder to maintain stabil-
ity. In this process, the function of the decoder is similar to that of the cerebellum of humans, while
the policy corresponds to that of the primary motor cortex. The former is essential for learning new

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

mapping, but the latter is vital for consolidating the new mapping (long-term retention) (Haar et al.,
2015; Gazzaniga et al., 2019; Weightman et al., 2023).

To evaluate the performance of CRL methods in SE-CRL, we release a benchmark based on Mini-
Grid (Chevalier-Boisvert et al., 2023) and Procgen (Cobbe et al., 2020), which includes two sets of
tasks with different action spaces and three task sequence situations (Expansion, Contraction, and
their combinations) designed to test the agent’s generalization ability. Experimental results demon-
strate that ARC-RL effectively handles SE-CRL compared to popular CRL methods.

Our contributions can be summarized as follows:

• To the best of our knowledge, we are the first to formally propose the self-evolution contin-
ual reinforcement learning problem (SE-CRL), supplementing the existing CRL by focus-
ing on the agent’s evolving capabilities.

• We propose a CRL framework called ARC-RL, which builds an action representation space
and uses regularized fine-tuning to address the challenges of SE-CRL.

• We release a benchmark of SE-CRL to evaluate the performance of CRL methods. Exper-
iments show that ARC-RL is more effective compared to the others.

2 RELATED WORKS

2.1 SELF-SUPERVISED LEARNING FOR REINFORCEMENT LEARNING

Existing reinforcement learning methods often require extensive data interactions with the environ-
ment, particularly in image-based RL tasks, which suffer from low sample efficiency and general-
izability (Schrittwieser et al., 2020; Ye et al., 2020; Wang et al., 2024b). Recently, Self-Supervised
Learning (SSL) has emerged to address these issues by learning a compact and informative repre-
sentation of the environment (Li et al., 2022; Stooke et al., 2021). SSL approaches in RL encompass
auxiliary tasks, contrastive learning, and data augmentation, each contributing to improved perfor-
mance and efficiency.

Auxiliary tasks in SSL for RL involve learning additional objectives that aid in representation learn-
ing. These tasks include reconstruction loss Chandak et al. (2019); Liu et al. (2024), world model-
ing (Hafner et al., 2020), and information-theoretic techniques (Pong et al., 2020) to obtain efficient
representations. Contrastive learning has gained traction in RL for its ability to learn valuable rep-
resentations without requiring labeled data (Laskin et al., 2020a). Additionally, contrastive learning
has shown success in goal-conditioned RL tasks without needing extra data augmentation or aux-
iliary objectives (Eysenbach et al., 2022). Data augmentation strategies, as demonstrated by DrQ,
apply simple image augmentations to standard model-free RL algorithms, enhancing robustness and
efficiency (Yarats et al., 2021) RAD further explores data augmentations for both pixel-based and
state-based inputs, significantly improving data efficiency and generalization (Laskin et al., 2020b).

While SSL for RL has significantly improved sample efficiency and generalization, the open re-
search challenge of using SSL in CRL is an intriguing area that requires further exploration. Our
proposed framework uses self-supervised learning to build an action representation space that de-
couples the agent’s policy from the specific action space, enabling policy generalization.

2.2 CONTINUAL REINFORCEMENT LEARNING

Continual reinforcement learning focuses on training RL agents to learn multiple tasks sequentially
without prior knowledge, generating significant interest due to its relevance to real-world artificial
intelligence applications (Khetarpal et al., 2022).

A central issue in CRL is catastrophic forgetting, which has led to various strategies for knowledge
retention. PackNet and related pruning methods (Mallya & Lazebnik, 2018; Schwarz et al., 2021)
preserve model parameters but often require knowledge of task count. Experience replay techniques
such as CLEAR (Rolnick et al., 2019) use buffers to retain past experiences but face memory scal-
ability challenges. In addition, some methods prevent forgetting by maintaining multiple policies
or a subspace of policies (Schöpf et al., 2022; Gaya et al., 2022). Furthermore, task-agnostic CRL
research indicates that rapid adaptation can also help prevent forgetting (Caccia et al., 2023).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Another issue in CRL is transfer learning, which is crucial for efficient policy adaptation. Naive
approaches, like fine-tuning, train a single model on each new task and provide good scalability and
transferability but suffer from catastrophic forgetting. Regularization-based methods, such as EWC
(Kirkpatrick et al., 2017; Wang et al., 2024a), have been proposed to prevent this side effect, but
often reduce plasticity. Some architectural innovations have been proposed to balance the trade-off
between plasticity and stability (Rusu et al., 2016; Berseth et al., 2022). Furthermore, methods like
OWL (Kessler et al., 2022) and MAXQINIT (Abel et al., 2018) leverage policy factorization and
value function transfer, respectively, for improved learning across tasks.

Most existing methods perform well when applied to sequences of tasks with static agent capabilities
and dynamic environments, such as when environmental parameters are altered, or the objectives
within the same environment are different (Pan et al., 2024). However, their effectiveness is greatly
diminished when the agent’s capabilities evolve. Our proposed framework aims to overcome this
limitation by building an action representation space.

Additionally, LAICA (Chandak et al., 2020) and DAE (Ding et al., 2023) are particularly relevant in
this context. LAICA primarily addresses changes in the action space but focuses on expansion rather
than contraction and others, and does not account for catastrophic forgetting. DAE investigates
incremental reinforcement learning with expanding action spaces and state spaces but also lacks
consideration of more complex action space changes and the critical aspects of CRL. In contrast,
our work proposed a more general problem in the context of CRL, considering both the expansion
and contraction situations of the action space and the catastrophic forgetting problem.

3 SELF-EVALUATION CONTINUAL REINFORCEMENT LEARNING

3.1 PRELIMINARIES

The reinforcement learning process can be formulated as a Markov Decision Process (MDP)
{S,A,P,R}. A MDP represents a problem instance that an agent needs to solve over its life-
time. Here, S and A denote the state and action space, respectively, while P : S × S × A → [0, 1]
is the transition probability function, and R : S ×A → [rmin, rmax] is the reward function. At each
time step, the learning agent perceives the current state St ∈ S and selects an action At ∈ A accord-
ing to its policy π : S ×A → [0, 1]. The agent then transitions to the next state St+1 ∼ P(·|St, At)
and receives a reward Rt = R(St, At, St+1).

The state-action value function for policy π is Qπ(s, a) = Eπ

[∑H−t
j=0 γjRt+j |St = s,At = a

]
,

where γ is the discount factor of the reward, and H is the horizon. Following the Bellman equa-
tion V π(s) =

∑
a∈A π(s|a)Qπ(s, a), the state value function can be formulated as V π(s) =

Eπ

[∑H−t
j=0 γjRt+j |St = s

]
. The goal of an agent is to find an optimal policy π∗ to maximize

the expected return Eπ∗

[∑H
t=0 γ

tR(St, At, St+1)
]
, which is the value function of the initial state.

3.2 PROBLEM FORMALIZATION

In real-world scenarios, the capabilities of an agent may evolve over time. To explore this,
we introduce a new problem called Self-Evolution Continual Reinforcement Learning (SE-CRL).
This problem can be formally defined as a sequence of Markov Decision Processes (MDPs)
{(S,Ai,Pi,R)|i = 1, 2, ..., N}, where N is the total number of MDPs and Ai represents the
action space available to the agent at MDP i. Following the convention in CL, we still use “task” to
represent each MDP in the sequence. Each task in the sequence shares a common state space S and
reward function R, but differs in the action space and implicitly in the transition probability function
Pi, which is influenced by the action space Ai. To simplify the problem, we assume that the action
space is discrete and finite, and we focus on the impact of changing action spaces on the learning
process while assuming Pi remains conceptually similar across tasks.

Then, the dynamics of the action space can be characterized by differences in successive action
spaces. For each task i > 1, the action space Ai can be related to the previous action space Ai−1 in
one of the following situations (Ai ̸= Ai−1):

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Action Space -2

T
im

e

Policy

Learning StageExploration Stage

Encoder

Action

State Next
State

Decoder

Action Space -1

Action Represention Space

Action Space

Figure 3: The overview of the proposed framework. The tasks with different action spaces are
learned sequentially. Each task consists of two stages: the exploration stage (green) and the learning
stage (yellow). The former aims to build an action representation space, and the latter aims to learn
a policy based on the learned space.

1. Expansion: Ai−1 ⊂ Ai (new actions are added).
2. Contraction: Ai−1 ⊃ Ai (some actions are removed).
3. Partial Change: Ai−1 ∩ Ai ̸= ∅ and Ai−1 ̸⊆ Ai and Ai ̸⊆ Ai−1 (some actions are

removed and some actions are added).
4. Complete Change: Ai−1 ∩ Ai = ∅ (all actions are removed and new actions are added).

Previous work focuses on the first situation from the perspective of transfer reinforcement learning
(Chandak et al., 2020; Ding et al., 2023). However, the other situations are less explored in the
literature, especially in the broader context of CRL. In this work, we take a step further to address
the problem of SE-CRL by considering the first two situations and their combinations.

The policy of the RL agent on task i is denoted as πθi : S × Ai → [0, 1], where θi represents the
policy parameters. After learning on tasks {1, 2, · · · , i}, the agent’s objective is to learn a policy
that maximizes the average expected return overall tasks. This can be formally expressed as:

max
θi

1

i

i∑
j=1

Eπθi

Hj∑
t=0

γtR(St, A
j
t , St+1)

 , (1)

where Hj is the horizon of task j, and Aj
t ∈ Aj is the action at the t-th step on task j. The expected

return at each task is related to the current policy πθi and the corresponding action space Aj .

4 ACTION REPRESENTATION CONTINUAL REINFORCEMENT LEARNING

4.1 FRAMEWORK

Our goal is to design a framework for generalized policy learning that can adapt to the chang-
ing action space, enhancing agent adaptation to evolving action capabilities. Recent neuroscience
research has shown that the stability of latent dynamics of neural activity reflects a fundamental
feature of learned cortical function that leads to long-term and consistent human behavior (Gal-
lego et al., 2020). Furthermore, research on SSL for RL has demonstrated its effectiveness in im-
proving the agent’s generalization ability (Chandak et al., 2019; Liu et al., 2024; Fang & Stachen-
feld, 2024). Drawing inspiration from these findings, we propose a new framework, named Action
Representation Continual Reinforcement Learning (ARC-RL), to enables the agent to generalize
policy across different action spaces.

Figure 3 illustrates the overview of ARC-RL. By decoupling the policy of the agent from the action
space, the policy can be generalized to new action spaces efficiently. The interaction between the
agent and the environment at each task is achieved through the action representation space. Each
task in ARC-RL consists of a two-stage process: Exploration Stage) As shown in the left part of
Figure 3, the agent explores the current action space in the environment, collects the transitions

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(state-action-state pairs), and learns an encoder-decoder pair through SSL. The encoder maps the
action space to an action representation space, and the decoder maps the action representation space
to the action space. When the action space changes, the agent can adapt by modifying the decoder’s
structure, while the parameters of the encoder and the decoder are updated. Furthermore, to maintain
the stability of the policy, the regularization term is added to the fine-tuning process of the decoder.
Learning Stage) As shown in the right part of Figure 3, the agent learns a policy based on the
learned action representation space, rather than the specific action space of each task. Specifically,
the action representation space is treated as the action space, and a standard RL policy is used to
maximize the expected return. Once the action space changes, the agent merely needs to use the
updated decoder to interact with the environment. In this way, the policy can maintain stability
through the action representation space, and the agent can adapt to the new action space efficiently.

4.2 ACTION REPRESENTATION SPACE BUILDING

We use self-supervised learning to build an action representation space for the agent. The agent
explores the action space in the environment of task i before learning the policy. It collects the
transitions T i = {(s, a, s′)m|m = 1, 2, · · · ,M} without reward, where s′ is the next state of s
after taking action a and M is the number of transitions. Based on the work of auxiliary tasks
in reinforcement learning (Chandak et al., 2019; Fang & Stachenfeld, 2024), we believe that the
features of the actions can be naturally represented by their influences of state changes. Therefore,
the auxiliary task of the action representation is to predict the next state s′ given the current state s
and the action a. Specifically, for a transition (s, a, s′), the encoder fϕi parameterized by ϕi maps
an action a to an action representation e ∈ E . The decoder giδi parameterized by δi maps the action
representation e ∈ E to the action probability. The processes are formulated as:

Encoding : e = fϕi(s, s′),∀s ∈ S,∀s′ ∈ S, Decoding : a ∼ giδi(·|e),∀e ∈ E . (2)

Although we use different superscripts to represent decoders in different tasks for clarity, the struc-
ture is continually updated rather than being task-specific. Therefore, giδi needs to map action rep-
resentation e to the action probability of any action space from past and current tasks during testing.

The probability of an action a given the state s and the next state s′ can be represented as
giδi(a|fϕi(s, s′)). To measure the difference between the true action probability and the predicted
action probability, we use the cross-entropy loss as the loss function of the encoder-decoder network:

L(ϕi, δi) = −
∑

(s,a,s′)∈T

logP (a|s, s′) = −
∑

(s,a,s′)∈T

log giδi(a|fϕi(s, s′)). (3)

This loss function only depends on the environmental dynamic data which is reward-agnostic, the
agent can build the action representation space E with low computational cost.

After the SSL process, the agent can use the learned action representation space to interact with
the environment. The original policy πi : S × A → [0, 1] can be represented by another policy
π̃θi : S → E and the decoder giδi : E ×

⋃i
j=1 Aj → [0, 1]:

πi(a|s) = giδi(a|π̃θi(s)). (4)

Then the policy can be trained by a standard RL algorithm to maximize the expected return:

J(θi) = Eπ̃θi

 Hi∑
t=0

γtR(St, At, St+1)

 . (5)

4.3 REGULARIZED FINE-TUNING

In the new task i + 1, the policy needs to generalize to the new action space Ai+1. The structure
of the decoder gi+1

δi+1 needs to be expanded or masked to adapt to the new action space. If the
action space is expanded, that is Ai+1 ⊃ Ai, the network is expanded by adding new neurons. The
parameters of the old neurons are fixed and the parameters of new neurons are initialized randomly.
If the action space is contracted, that is Ai+1 ⊂ Ai, the output corresponding to the actions that
are not in the new action space is masked. This strategy has been broadly studied in the works of
architecture-based CL methods (Rusu et al., 2016; Mallya & Lazebnik, 2018; Mallya et al., 2018).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

During training on the transitions of the new task, the decoder is fine-tuned with the regularization.
We use the Elastic Weight Consolidation (EWC) to constrain the fine-tuning process, as it has been
shown to be effective in mitigating the catastrophic forgetting in CL (Kirkpatrick et al., 2017). The
encoder is also fine-tuned in the new tasks to continuously refine the action representation space E .
We do not impose constraints on the encoder because we have found that its plasticity is crucial for
learning a good representation space. The loss function of the decoder network in Equation 3 is
modified to include the EWC term:

L(ϕi+1, δi+1) = −
∑

(s,a,s′)∈T i+1

log gi+1
δi+1(a|fϕi+1(s, s′)) +

λ

2

i∑
j=1

∑
k

F j
k

(
δi+1
k − δjk

)2

, (6)

where F j
k is the k-th diagonal element of the Fisher information matrix of the parameters of the

decoder network on task j, and λ is a regularization coefficient to balance the two terms. After the
fine-tuning process, the agent can use the new decoder to interact with the environment. In order
to maintain consistency with the standard pipeline of CRL, we still update the policy in the new
action space. This process does not use any regularization, and the objective function is the same
as Equation 5. In this way, the agent can achieve better performance in the new task with little
additional computational cost. [The algorithm is provided in Appendix A.]

5 EXPERIMENTS

5.1 BENCHMARK

To evaluate the performance of CRL methods in SE-CRL, we establish a benchmark with changing
action spaces. This benchmark comprises sequences with tasks that share identical state, reward,
and transition dynamics but possess different action spaces. [Detailed descriptions of experimental
settings, network structures, hyperparameters, and the metrics are provided in Appendix B.]

Environments. The environments of these tasks are based on MiniGrid (Chevalier-Boisvert et al.,
2023) and Procgen (Cobbe et al., 2020). These environments feature image-based observations, a
discrete set of possible actions. For expeditious training and evaluation, we use Empty of MiniGrid
and Bigfish of Procgen in our experiments. Other environments are also provided in the Appendix
C.7. The agents in these environments can move in different directions. To simulate the evolving
capabilities, we introduce some additional actions and remove some existing actions. Then, we
design three tasks with different numbers of actions for both MiniGrid and Procgen, specifically
incorporating tasks with three, five, and seven actions for MiniGrid, and tasks with three, five, and
nine actions for Bigfish. When the agent switches from one task to another, the set of available
actions may either increase or decrease. The agent can only observe the action space of the current
task. Based on these tasks, we evaluate the performance of CRL methods in three situations of task
sequences: expansion (the action space is expanding), contraction (the action space is contracting),
and the combination of both.

Compared Methods. We select three types of CRL methods to compare with SE-CRL: one replay-
based method, CLEAR (Rolnick et al., 2019); two regularization-based methods, EWC (Kirk-
patrick et al., 2017) and online-EWC (Schwarz et al., 2018); and one architecture-based method,
Mask (Ben-Iwhiwhu et al., 2023). Additionally, we take the DRL methods trained with fine-tuning
(named FT) and independently (named IND) across tasks as baselines. In the implementation of
these methods, we adapt them to SE-CRL by using the largest action space of all tasks. This adap-
tation necessitates prior knowledge of all tasks, while our framework does not require it. In order
to better understand the challenge of SE-CRL, we also introduce a baseline that is always able to
access all action spaces (named ALL). This baseline does not involve CL and its final performance
can be regarded as an upper bound of other methods. The underlying RL algorithm of all methods
is IMPALA (Espeholt et al., 2018).

Metrics. To evaluate the effectiveness of ARC-RL, we use the expected return to measure the
performance of the trained agents. Following the standard practice of CL (Dı́az-Rodrı́guez et al.,
2018; Wolczyk et al., 2021; Li et al., 2024b), we use three metrics based on the agent’s perfor-
mance throughout different phases of its training process: continual return, forgetting, and for-
ward transfer (Powers et al., 2022). The continual return is the average performance achieved by
the agent on all tasks after completing all training, which is consistent with the agent’s objective in

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Equation 1. The forgetting compares the expected return achieved for the earlier task before and
after training on a new task, while the forward transfer compares the expected return achieved for
the later task before and after training on an earlier task. Furthermore, the forward transfer met-
ric measures the zero-shot generalization of the policy in SE-CRL. The averages of forgetting and
forward transfer across all tasks are reported in the results.

0 1M 2M 3M 4M 5M 6M 7M 8M 9M
0

0.2

0.4

0.6

0.8

1
ALL
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task1

Step

Ex
pe

ct
ed

 R
et

ur
n

(a) Task 1: Three actions

0 1M 2M 3M 4M 5M 6M 7M 8M 9M
0

0.2

0.4

0.6

0.8

1
ALL
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task2

Step

Ex
pe

ct
ed

 R
et

ur
n

(b) Task 2: Five actions

0 1M 2M 3M 4M 5M 6M 7M 8M 9M
0

0.2

0.4

0.6

0.8

1
ALL
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task3

Step

Ex
pe

ct
ed

 R
et

ur
n

(c) Task 3: Seven actions

Figure 4: Performance of eight methods on three MiniGrid tasks in the expansion situation.

0 1M 2M 3M 4M 5M 6M 7M 8M 9M
0

0.2

0.4

0.6

0.8

1
ALL
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task1

Step

Ex
pe

ct
ed

 R
et

ur
n

(a) Task1: Seven actions

0 1M 2M 3M 4M 5M 6M 7M 8M 9M
0

0.2

0.4

0.6

0.8

1
ALL
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task2

Step

Ex
pe

ct
ed

 R
et

ur
n

(b) Task2: Five actions

0 1M 2M 3M 4M 5M 6M 7M 8M 9M
0

0.2

0.4

0.6

0.8

1
ALL
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task3

Step

Ex
pe

ct
ed

 R
et

ur
n

(c) Task3: Three actions

Figure 5: Performance of eight methods on three MiniGrid tasks in the contraction situation.

5.2 COMPETITIVE EXPERIMENTS

To evaluate the effectiveness of our framework, we first compare it with other methods on MiniGrid
tasks. Due to the simple environments, we only use a random policy in the exploration stage of
ARC-RL. Each task is trained for 3M steps and replicated with 10 random seeds to ensure statistical
reliability. During each task’s training phase, the agent is not only trained on the current task but also
periodically evaluated on all tasks, including those it has previously encountered. This evaluation
allows us to assess both the learning progress on the current task and the retention of knowledge from
prior tasks. The results presented in the evaluation plots and the total evaluation metric reported
in the table below were computed as the mean of runs per method, with the shaded area and errors
denoting the 95% confidence interval. Each subplot in the evaluation plots depicts the expected
return of the agent evaluated on the corresponding task during training on all tasks, with the x-axis
representing the total number of training steps across all tasks. The blue-shaded rectangular area
indicates the training phase of the current task. We employ exponential moving averages to smooth
the results for better visualization. As tasks are learned independently of other tasks in IND, there is
no notion of forward transfer. Therefore, this method is omitted when forward transfer is reported.
[Further details and more experiments (combined situations, longer sequences, and hyperparameter
sensitivity analysis, etc) are provided in Appendix C]

Overall Performance. Figures 4 and 5 show the evaluated performance of eight methods on Mini-
Grid tasks with action spaces that are either expanding or contracting, respectively. The return curve
of SE-CRL (red line) is generally higher than that of other methods across all tasks, suggesting
that SE-CRL adapts more effectively to changing action spaces and achieves superior performance.
Furthermore, the smaller shaded areas around the ARC-RL’s curve also indicate greater stability
compared to other methods. It is worth noting that although CLEAR can learn better in the first
training phase, it experiences significant performance degradation on most tasks. This phenomenon
indicates that the challenge of catastrophic forgetting in SE-CRL is different from existing CRL, and
replay-based methods may not be able to effectively address it.

In the expansion situation, the overall performance of some methods slightly improves as training
progresses (more evident in Figure 15). This phenomenon suggests that an expanding action space
may facilitate policy generalization, echoing the principle of curriculum learning (Wang et al., 2022).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Continual learning metrics of eight methods and two variants of ARC-RL across three
MiniGrid tasks in situations of expansion and contraction. The average continual return of ALL
is 0.94, which is not provided in the table. Continual return and forward transfer are abbreviated as
“Return” and “Transfer”, respectively. The top five results are highlighted in green, and the depth of
the color indicates the ranking.

Methods Expansion Contraction
Return↑ Forgetting↓ Transfer↑ Return↑ Forgetting↓ Transfer↑

IND 0.81± 0.02 0.08± 0.02 – 0.67± 0.06 0.26± 0.05 –
FT 0.86± 0.03 0.03± 0.02 0.48± 0.03 0.52± 0.07 0.39± 0.06 0.39± 0.03

EWC 0.81± 0.04 −0.04± 0.01 0.43± 0.05 0.39± 0.11 0.40± 0.09 0.47± 0.03
online-EWC 0.87± 0.02 0.02± 0.01 0.40± 0.05 0.56± 0.09 0.34± 0.06 0.44± 0.03

Mask 0.72± 0.05 −0.04± 0.04 0.02± 0.03 0.70± 0.06 −0.02± 0.04 0.08± 0.03
CLEAR 0.73± 0.06 0.21± 0.06 0.58± 0.01 0.11± 0.02 0.58± 0.03 0.46± 0.02

ARC-RL 0.90± 0.01 −0.02± 0.01 0.57± 0.02 0.80± 0.03 0.04± 0.03 0.60± 0.01
ARC-RL-O 0.86± 0.03 0.00± 0.03 0.51± 0.02 0.73± 0.06 0.04± 0.03 0.60± 0.01
ARC-RL-E 0.89± 0.03 −0.03± 0.03 0.55± 0.04 0.74± 0.05 0.18± 0.04 0.51± 0.03

However, some methods experience a performance drop after training task changes (e.g., step 3M in
Figure 4b), highlighting the challenge of policy generalization across different action spaces. ARC-
RL, with minimal performance fluctuations upon action space changes, demonstrates the utility of
the action representation space for policy learning and generalization.

In the contraction situation, performance changes are more pronounced. Most methods suffer sig-
nificant performance shifts when the action space is reduced, indicating that policies trained on
larger action spaces may not transfer well to smaller ones. This phenomenon further emphasizes
the challenge of policy generalization across different action spaces. Although ARC-RL sometimes
experiences a larger performance drop compared to Mask, which focuses on mitigating catastrophic
forgetting, it generally outperforms other methods. After training on the final task with a three-
action space, ARC-RL outshines others, demonstrating the benefits of action representation space
for learning on new action spaces.

Continual Learning Performance. Table 1 presents the evaluation results in terms of CL metrics.
The continual return metric demonstrates ARC-RL’s superiority in SE-CRL, significantly outper-
forming the other methods in all situations. The forward transfer metric is particularly noteworthy,
as it measures the agent’s ability to leverage knowledge from previous tasks and indicates zero-shot
generalization to new action spaces. ARC-RL exhibits the highest forward transfer underscoring the
benefit of the action representation space for generalization. The forgetting metric of all methods is
relatively high in the contraction situation, further underscoring the policy generalizability challenge
in SE-CRL. When some actions are removed, the optimal policy may change significantly, leading
to a performance drop. Note that regularization-based methods (EWC and online-EWC) can not
mitigate catastrophic forgetting in this situation, possibly due to the large difference in networks’
parameters between different action spaces. Although ARC-RL does not achieve the best score for
the forgetting metric, its exceptional forward transfer capabilities and strong average performance
accentuate its proficiency in handling SE-CRL. The above findings highlight ARC-RL’s potential
to markedly enhance the adaptability and generalization ability of reinforcement learning agents,
positioning it as a highly viable solution for SE-CRL.

5.3 ABLATION STUDY

We conduct an ablation study on MiniGrid tasks to investigate what affects ARC-RL’s performance
in SE-CRL. We consider two variants: ARC-RL-O, which omits the regularization during fine-
tuning, and ARC-RL-E, which uses the same regularization for the encoder and decoder. The
results, presented in Table 1, reveal that ARC-RL-O exhibits better forward transfer than other
methods, demonstrating that the action representation space is helpful for a more generalized pol-
icy. The comparison between ARC-RL and ARC-RL-O in forgetting and forward transfer suggests
that regularization may improve policy stability. Nevertheless, ARC-RL’s superior continual return
demonstrates that this balance is beneficial for the stability-plasticity trade-off essential in continual
learning systems (Wang et al. 2024). Compared with ARC-RL, additional regularization in ARC-
RL-E damages the forward transfer but does not mitigate forgetting. This may indicate that the
plasticity of the encoder is essential for the learning of the action representation space.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

11M

12M

13M

14M

15M

0
2
4
6
8

10
12
14
16
18
20
22

ALL
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task 0

Step

Ex
pe

ct
ed

 R
et

ur
n

(a) Task 1: Nine actions

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

11M

12M

13M

14M

15M

0
2
4
6
8

10
12
14
16
18
20
22

ALL
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task 1

Step

Ex
pe

ct
ed

 R
et

ur
n

(b) Task 2: Five actions

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

11M

12M

13M

14M

15M

0
2
4
6
8

10
12
14
16
18
20
22

ALL
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task 2

Step

Ex
pe

ct
ed

 R
et

ur
n

(c) Task 3: Three actions

Figure 6: Performance of eight methods on three Procgen tasks in the contraction situation.

5.4 MORE CHALLENGING EXPERIMENTS

To further evaluate the effectiveness of ARC-RL, we conduct experiments on the Bigfish environ-
ment from Procgen. These tasks are more challenging than MiniGrid tasks due to their larger state
space and more complex control logic. To better extract features from images, all methods’ networks
were equipped with the IMPALA architecture (Espeholt et al., 2018). As demonstrated in previous
experiments, the contraction situation better highlights the challenges of SE-CRL. Therefore, we
focus on the contraction situation in these experiments. Each experiment is trained for 5M steps and
replicated with 5 random seeds to ensure statistical reliability. Other experimental configurations
are consistent with those used in the MiniGrid experiments.

Table 2: Continual learning metrics of seven
methods across three Bigfish tasks in the contrac-
tion situation. The average continual return of
ALL is 24.77, which is not provided in the table.
The top three results are highlighted in green, and
the depth of the color indicates the ranking.

Methods Metrics
Return↑ Forgetting↓ Transfer↑

IND 1.66± 0.96 0.18± 0.02 –
FT 3.01± 1.39 0.14± 0.08 0.23± 0.02

EWC 1.74± 1.04 0.26± 0.06 0.16± 0.06
online-EWC 1.84± 0.80 0.14± 0.03 0.18± 0.07

Mask 1.49± 0.71 −0.01± 0.01 0.06± 0.06
CLEAR 1.48± 0.44 0.23± 0.02 0.11± 0.04

ARC-RL 10.03± 1.94 0.12± 0.07 0.19± 0.05

Figure 6 and Table 2 present the performance
and metrics of seven methods across three
Bigfish tasks, respectively. The performance
gap between ALL and other methods is more
pronounced in these experiments, indicating
the challenges posed by the Bigfish environ-
ment. Consistent with the MiniGrid exper-
iments, ARC-RL outperforms other methods
across all tasks. Many methods experience sig-
nificant performance drops after training task
changes, but ARC-RL has a less volatile re-
turn curve, indicating effective policy gener-
alization across different action spaces. Our
method achieves strong results in both forget-
ting and positive transfer metrics. While some
methods excel in one of these metrics, they fail
to balance both simultaneously. The continual return, a crucial metric for CRL agents, varies signifi-
cantly among different methods in this challenging task sequence. Popular CRL methods exhibit low
returns after training on all tasks, likely due to suffering from both catastrophic forgetting and plas-
ticity loss (Abbas et al., 2023). Interestingly, FT, a naive knowledge transfer method, performs better
than other popular CRL methods, highlighting the distinct challenges posed by SE-CRL compared
to existing CRL. Additionally, we also conducted experiments in the expansion situation, as de-
tailed in Appendix C.6. Our proposed method also achieves optimal continual return in this setting,
demonstrating its robustness across different task complexities. The experimental results further in-
dicate that the agent effectively leverages the available actions to improve its policy. In summary,
our method strikes a good balance between plasticity and stability, significantly outperforming other
methods in terms of continual return.

6 CONCLUSION

In this paper, we first propose a new and practical problem to supplement CRL called Self-
Evolution Continual Reinforcement Learning (SE-CRL), in which the agent’s action space con-
tinuously changes. To tackle the challenges in this problem, we introduce a new framework called
Action Representation Continual Reinforcement Learning (ARC-RL). This framework leverages
self-supervised learning and regularized fine-tuning to build an action representation space to gen-
eralize the policy across different action spaces. We release a benchmark based on MiniGrid and
Procgen to validate the effectiveness of CRL methods in SE-CRL. Experimental results demonstrate
the superior performance of ARC-RL compared to popular CRL methods.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C. Machado. Loss of plas-
ticity in continual deep reinforcement learning. In CoLLAs, volume 232, pp. 620–636, 2023.

David Abel, Yuu Jinnai, Sophie Yue Guo, George Konidaris, and Michael Littman. Policy and value
transfer in lifelong reinforcement learning. In ICML, volume 80, pp. 20–29. PMLR, 10–15 Jul
2018.

Eseoghene Ben-Iwhiwhu, Saptarshi Nath, Praveen Kumar Pilly, Soheil Kolouri, and Andrea Soltog-
gio. Lifelong reinforcement learning with modulating masks. Transactions on Machine Learning
Research, 2023.

Glen Berseth, Zhiwei Zhang, Grace Zhang, Chelsea Finn, and Sergey Levine. CoMPS: Continual
meta policy search. In ICLR, 2022.

Douglas J Blackiston, Tal Shomrat, and Michael Levin. The stability of memories during brain
remodeling: A perspective. Communicative & Integrative Biology, 8(5):e1073424, 2015.

Massimo Caccia, Jonas Mueller, Taesup Kim, Laurent Charlin, and Rasool Fakoor. Task-agnostic
continual reinforcement learning: Gaining insights and overcoming challenges. In CoLLAs, vol-
ume 232, pp. 89–119. PMLR, 22–25 Aug 2023.

Yash Chandak, Georgios Theocharous, James Kostas, Scott Jordan, and Philip Thomas. Learning
action representations for reinforcement learning. In ICML, volume 97, pp. 941–950, 2019.

Yash Chandak, Georgios Theocharous, Chris Nota, and Philip Thomas. Lifelong learning with a
changing action set. In AAAI, volume 34, pp. 3373–3380, 2020.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and J Terry. Minigrid & miniworld: Modu-
lar & customizable reinforcement learning environments for goal-oriented tasks. In NeurIPS,
volume 36, pp. 73383–73394, 2023.

Mark M. Churchland, John P. Cunningham, Matthew T. Kaufman, Justin D. Foster, Paul Nuyu-
jukian, Stephen I. Ryu, and Krishna V. Shenoy. Neural population dynamics during reaching.
Nature, 487(7405):51–56, 2012.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to
benchmark reinforcement learning. In ICML, volume 119, pp. 2048–2056, 2020.

Natalia Dı́az-Rodrı́guez, Vincenzo Lomonaco, David Filliat, and Davide Maltoni. Don’t forget, there
is more than forgetting: New metrics for continual learning. arXiv preprint arXiv:1810.13166,
2018.

Wei Ding, Siyang Jiang, Hsi-Wen Chen, and Ming-Syan Chen. Incremental reinforcement learning
with dual-adaptive ϵ-greedy exploration. In AAAI, volume 37, pp. 7387–7395, 2023.

Anila M. D’Mello, John D.E. Gabrieli, and Derek Evan Nee. Evidence for hierarchical cognitive
control in the human cerebellum. Current Biology, 30(10):1881–1892.e3, 2020.

Maya Emmons-Bell, Fallon Durant, Angela Tung, Alexis Pietak, Kelsie Miller, Anna Kane, Christo-
pher J Martyniuk, Devon Davidian, Junji Morokuma, and Michael Levin. Regenerative adapta-
tion to electrochemical perturbation in planaria: A molecular analysis of physiological plasticity.
iScience, 22:147–165, 2019.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA:
Scalable distributed deep-RL with importance weighted actor-learner architectures. In ICML,
volume 80, pp. 1407–1416, 2018.

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learn-
ing as goal-conditioned reinforcement learning. In NeurIPS, volume 35, pp. 35603–35620. Curran
Associates, Inc., 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ching Fang and Kim Stachenfeld. Predictive auxiliary objectives in deep RL mimic learning in the
brain. In ICLR, 2024.

Naomi P Friedman and Trevor W Robbins. The role of prefrontal cortex in cognitive control and
executive function. Neuropsychopharmacology, 47(1):72–89, 2022.

Juan A. Gallego, Matthew G. Perich, Raeed H. Chowdhury, Sara A. Solla, and Lee E. Miller. Long-
term stability of cortical population dynamics underlying consistent behavior. Nature Neuro-
science, 23(2):260–270, 2020.

Jean-Baptiste Gaya, Thang Doan, Lucas Caccia, Laure Soulier, Ludovic Denoyer, and Roberta
Raileanu. Building a subspace of policies for scalable continual learning. In NeurIPS DRL
Workshop, 2022.

Michael S Gazzaniga, Richard B Ivry, and GR Mangun. Cognitive Neuroscience. The Biology of the
Mind. W.W. Norton & Company, New York, 2019. ISBN 978-7-5184-4043-6.

Apostolos P. Georgopoulos and Giuseppe Pellizzer. The mental and the neural: Psychological and
neural studies of mental rotation and memory scanning. Neuropsychologia, 33(11):1531–1547,
1995.

Shlomi Haar, Opher Donchin, and Ilan Dinstein. Dissociating visual and motor directional selectiv-
ity using visuomotor adaptation. Journal of Neuroscience, 35(17):6813–6821, 2015.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In ICLR, 2020.

Shinji Kakei, Donna S. Hoffman, and Peter L. Strick. Muscle and movement representations in the
primary motor cortex. Science, 285(5436):2136–2139, 1999.

Christos Kaplanis, Murray Shanahan, and Claudia Clopath. Policy consolidation for continual rein-
forcement learning. In ICML, volume 97, pp. 3242–3251, 2019.

Samuel Kessler, Jack Parker-Holder, Philip Ball, Stefan Zohren, and Stephen J. Roberts. Same state,
different task: Continual reinforcement learning without interference. In AAAI, volume 36, pp.
7143–7151, 2022.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual reinforce-
ment learning: A review and perspectives. Journal of Academia and Industrial Research, 75:
1401–1476, 2022.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hass-
abis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting
in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–3526, 2017.

Sam Kriegman, Stephanie Walker, Dylan Shah, Michael Levin, Rebecca Kramer-Bottiglio, and Josh
Bongard. Automated shapeshifting for function recovery in damaged robots. In RSS, 2019.

Dhireesha Kudithipudi, Mario Aguilar-Simon, Jonathan Babb, Maxim Bazhenov, Douglas Black-
iston, Josh Bongard, Andrew P. Brna, Suraj Chakravarthi Raja, Nick Cheney, Jeff Clune, Anurag
Daram, Stefano Fusi, Peter Helfer, Leslie Kay, Nicholas Ketz, Zsolt Kira, Soheil Kolouri, Jef-
frey L. Krichmar, Sam Kriegman, Michael Levin, Sandeep Madireddy, Santosh Manicka, Ali
Marjaninejad, Bruce McNaughton, Risto Miikkulainen, Zaneta Navratilova, Tej Pandit, Alice
Parker, Praveen K. Pilly, Sebastian Risi, Terrence J. Sejnowski, Andrea Soltoggio, Nicholas
Soures, Andreas S. Tolias, Darı́o Urbina-Meléndez, Francisco J. Valero-Cuevas, Gido M. van de
Ven, Joshua T. Vogelstein, Felix Wang, Ron Weiss, Angel Yanguas-Gil, Xinyun Zou, and Hava
Siegelmann. Biological underpinnings for lifelong learning machines. Nature Machine Intelli-
gence, 4(3):196–210, 2022.

Robert Kwiatkowski and Hod Lipson. Task-agnostic self-modeling machines. Science Robotics, 4
(26):eaau9354, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. CURL: Contrastive unsupervised represen-
tations for reinforcement learning. In ICML, volume 119, pp. 5639–5650. PMLR, 13–18 Jul
2020a.

Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Re-
inforcement learning with augmented data. In NeurIPS, volume 33, pp. 19884–19895. Curran
Associates, Inc., 2020b.

Xiang Li, Jinghuan Shang, Srijan Das, and Michael Ryoo. Does self-supervised learning really
improve reinforcement learning from pixels? In NeurIPS, volume 35, pp. 30865–30881. Curran
Associates, Inc., 2022.

Yanhua Li, Jiafen Liu, Longhao Yang, Chaofan Pan, Xiangkun Wang, and Xin Yang. Three-way
open intent classification with nearest centroid-based representation. Information Sciences, 681:
121251, 2024a.

Yujie Li, Xin Yang, Hao Wang, Xiangkun Wang, and Tianrui Li. Learning to prompt knowledge
transfer for open-world continual learning. In AAAI, volume 38, pp. 13700–13708, 2024b.

Jiashun Liu, Jianye HAO, Yi Ma, and Shuyin Xia. Unlock the cognitive generalization of deep
reinforcement learning via granular ball representation. In ICML, 2024.

Laurens Van Der Maaten and Geoffrey Hinton. Visualizing data using T-SNE. Journal of Machine
Learning Research, 9(86):2579–2605, 2008.

Arun Mallya and Svetlana Lazebnik. PackNet: Adding multiple tasks to a single network by iterative
pruning. In CVPR, pp. 7765–7773, 2018.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to mul-
tiple tasks by learning to mask weights. In ECCV, pp. 67–82, 2018.

Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel Menta, Andrew D. Bagdanov, and Joost
van de Weijer. Class-incremental learning: Survey and performance evaluation on image clas-
sification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5):5513–5533,
2022.

Chaofan Pan, Xin Yang, Hao Wang, Wei Wei, and Tianrui Li. Hi-core: Hierarchical knowledge
transfer for continual reinforcement learning. arXiv preprint arXiv:2401.15098, 2024.

Vitchyr Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-fit:
State-covering self-supervised reinforcement learning. In ICML, volume 119, pp. 7783–7792.
PMLR, 13–18 Jul 2020.

Sam Powers, Eliot Xing, Eric Kolve, Roozbeh Mottaghi, and Abhinav Gupta. CORA: Benchmarks,
baselines, and metrics as a platform for continual reinforcement learning agents. In CoLLAs,
volume 199, pp. 705–743, 2022.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. In NeurIPS, volume 32, 2019.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Bing Liu Sahisnu Mazumder. Lifelong and Continual Learning Dialogue Systems. Springer, 2024.
ISBN 978-3-031-48188-8.

Philemon Schöpf, Sayantan Auddy, Jakob Hollenstein, and Antonio Rodriguez-sanchez.
Hypernetwork-PPO for continual reinforcement learning. In NeurIPS DRL Workshop, 2022.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for contin-
ual learning. In ICML, volume 80, pp. 4528–4537, 2018.

Jonathan Schwarz, Siddhant M. Jayakumar, Razvan Pascanu, Peter E. Latham, and Yee Whye Teh.
Powerpropagation: A sparsity inducing weight reparameterisation. In NeurIPS, pp. 28889–28903.
Curran Associates, Inc., 2021.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In NeurIPS, volume 30, 2017.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning. In ICML, volume 139, pp. 9870–9879. PMLR, 18–24 Jul 2021.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 46(8):5362–5383, 2024a. doi: 10.1109/TPAMI.2024.3367329.

Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(9):4555–4576, 2022.

Xu Wang, Sen Wang, Xingxing Liang, Dawei Zhao, Jincai Huang, Xin Xu, Bin Dai, and Qiguang
Miao. Deep reinforcement learning: A survey. IEEE Transactions on Neural Networks and
Learning Systems, 35(4):5064–5078, 2024b. doi: 10.1109/TNNLS.2022.3207346.

Zhi Wang, Han-Xiong Li, and Chunlin Chen. Incremental reinforcement learning in continuous
spaces via policy relaxation and importance weighting. IEEE Transactions on Neural Networks
and Learning Systems, 31(6):1870–1883, 2019.

Matthew Weightman, Neeraj Lalji, Chin-Hsuan Sophie Lin, Joseph M. Galea, Ned Jenkinson, and
R. Chris Miall. Short duration event related cerebellar tdcs enhances visuomotor adaptation. Brain
Stimulation, 16(2):431–441, 2023.

Maciej Wolczyk, Michal Zajac, Razvan Pascanu, Lukasz Kucinski, and Piotr Milos. Continual
World: A robotic benchmark for continual reinforcement learning. In NeurIPS, pp. 28496–28510,
2021.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. In ICLR, 2021.

Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao Wu, Hongsheng Yu, Shaojie Yang,
Xipeng Wu, Qingwei Guo, et al. Mastering complex control in moba games with deep reinforce-
ment learning. In AAAI, volume 34, pp. 6672–6679, 2020.

William Yue, Bo Liu, and Peter Stone. t-DGR: A trajectory-based deep generative replay method
for continual learning in decision making. In NeurIPS ALOE Workshop, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A FRAMEWORK DETAILS

Algorithm 1 shows the complete process of ARC-RL. The notations used in the algorithm are con-
sistent with those in the main text. For each task, ARC-RL consists of two stages: exploration and
learning. The parameters ϕ, δ, and θ are continually updated in place as the process. After all tasks
are completed, the policy πEθ and decoder gδ of the final task are returned. Therefore, we do not
use superscript i to denote the parameters in the algorithm.

Algorithm 1 ARC-RL
Input: Tasks with different action space {Ai}Ni=1.
Initialize: θ, ϕ and δ.
for t = 1, 2, . . . ,M do

See Task with action space Ai

Exploration Stage

Use exploration policy to interact with the environment to collect transitions T i;
if t = 1 then

Update ϕ and δ with by minimizing Equation 3; //Encoder-decoder training

else
Update ϕ and δ with by minimizing Equation 6; //Regularized fine-tuning

Learning Stage
Use Equation 4 to interact with the environment;
Update θ by maximizing Equation 5; //Policy training

Return: Policy πEθ and decoder gδ .

B ENVIRONMENTAL DETAILS

(a) Start (b) Trun left (c) Turn right (d) Forward

(e) Left (f) Right (g) Forward left (h) Forward right

Figure 7: The screenshots of actions in MiniGrid. The transparent white area represents the agent’s
field of view, which is the state. (a) The agent starts from this state. (b)–(h) The agent’s state after
the corresponding action.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) (b) (c)

Figure 8: The screenshots of Bigfish. The texture and objects are procedurally generated.

B.1 ENVIRONMENTS AND TASK SEQUENCES.

MiniGrid1 The MiniGrid contains a collection of simple 2D grid-world environments with a variety
of objects, such as walls, doors, keys, and agents. These environments feature image-based partial
observations, a discrete set of possible actions, and various objects characterized by their color and
type. For expeditious training and evaluation, we only use the empty room environments of Mini-
Grid in our experiments. By default, they have a discrete 7-dimensional action space and produce
a 3-channel integer state encoding of the 7 × 7 grid directly including and in front of the agent.
Following the training setup for Atari (Schrittwieser et al., 2020), we modified the environments to
output a 7×7×9 by stacking three frames. Furthermore, we only use three basic movement actions
from the original action space of MiniGrid: turn left, turn right, and move forward. Then, we expand
the action space by adding four more actions to simulate SE-CRL: move left, move right, forward
left, forward right. The screenshots of these actions are shown in Figure 7. Finally, we design three
tasks with different action spaces: a three-action task (turn left, turn right, forward), a five-action
task (turn left, turn right, forward, left, right), and a seven-action task (turn left, turn right, forward,
left, right, forward left, forward right).

Procgen.2 The Procgen benchmark is a collection of procedurally generated environments designed
to evaluate generalization in RL algorithms. It was proposed as a replacement for the Atari games
benchmark while being computationally faster to simulate than Atari. For faster training and evalu-
ation, we chose Bigfish with the easiest level as the base environment in our experiments, in which
the agent starts as a small fish and needs to become bigger by eating other fish. Figure 8 shows the
screenshots of this environment. The input observations are RGB images of dimension 64× 64× 3,
along with 15 possible discrete actions. Similar to MiniGrid, we only use nine basic movement
actions from the original action space of Bigfish: stay, up, down, left, right, up-left, up-right, down-
left, and down-right. Then, we design three tasks with different action spaces: a three-action task
(stay, up, down), a five-action task (stay, up, down, left, right), and a nine-action task (stay, up, down,
left, right, up-left, up-right, down-left, down-right).

B.2 COMPARED METHODS.

We compare ARC-RL with six methods in SE-CRL. These methods cover three common types
of CRL: replay-based, regularization-based, and architecture-based. Note that CLEAR is task-
agnostic, while EWC and ARC-RL require explicit task boundaries. The details of the methods
are as follows:

• IND. This method represents a traditional DRL setup where an agent is trained indepen-
dently on each task. This serves as a foundational comparison point to underscore the
advantages of CL, as it lacks any mechanism for knowledge retention or transfer.

• FT. Building upon the standard DRL algorithm, this method differs from IND by using a
single agent that is sequentially fine-tuned across different tasks. As a naive CRL method,

1https://minigrid.farama.org/environments/minigrid/EmptyEnv/
2https://github.com/openai/procgen

16

https://minigrid.farama.org/environments/minigrid/EmptyEnv/
https://github.com/openai/procgen

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 3: Network structure for MiniGrid. All convolutional layers use a kernel size of 2 × 2 and a
stride of 1. Linear 2 and Linear 4 are the output heads in ARC-RL, while Linear 3 and Linear 5 are
the output heads in other methods.

Layer Input
channels/units

Output
channels/units

Backbone

Conv 1 9 32
Conv 2 32 64
Conv 3 64 128
Linear 1 2048 64

Value
output

Linear 2 64+256+1 1
Linear 3 64+7+1 1

Policy
output

Linear 4 64+256+1 256
Linear 5 64+7+1 7

Encoder

Conv 4 9 32
Conv 5 32 64
Conv 6 64 128
Linear 6 2048 64
Linear 7 64 256

Decoder Linear 8 256 7

this method provides a basic measure of an agent’s capacity to maintain knowledge of
earlier tasks while encountering new tasks (Gaya et al., 2022).

• CLEAR. A classical CRL method aiming to mitigate catastrophic forgetting by using a
replay buffer to store experiences from previous tasks (Rolnick et al., 2019). It uses off-
policy learning and behavioral cloning from replay to enhance stability, as well as on-policy
learning to preserve plasticity.

• EWC. An RL implementation of Elastic Weight Consolidation (EWC) (Kirkpatrick et al.,
2017), which is designed to mitigate catastrophic forgetting by selectively constraining the
update of weights that are important for previous tasks.

• Online-EWC. A modified version of EWC that adds an explicit forgetting mechanism to
perform well with low computational cost (Schwarz et al., 2018).

• Mask. A CRL method that adapts modulating masks to the network architecture to pre-
vent catastrophic forgetting (Ben-Iwhiwhu et al., 2023)1. The linear combination of the
previously learned masks is used to exploit knowledge when learning new tasks.

B.3 NETWORK STRUCTURES

All methods in our experiments are implemented based on IMPALA (Espeholt et al., 2018). The
network of this algorithm is consistent across all methods, except for the specific components of
each method. For MiniGrid, we use a small network as the input observation is an image with shape
9 × 7 × 7. As shown in Table 3, each network consists of a convolutional neural network (CNN)
with three convolutional layers and two fully connected layers. ReLU activation is employed in all
networks except the output layers of the policy network in ARC-RL, which uses a sigmoid activation.
Note that the number of input units for the policy and value output heads changes because the one-hot
action vector and reward scalar from the previous time step are concatenated to the output of Linear
1. For Procgen, we replace the CNN with the IMPALA architecture to improve the representation
ability of bigger images. As shown in Table 4, this architecture consists of three IMPALA blocks,
each of which contains a convolutional layer and two residual blocks. Additionally, we employ a
bigger CNN in the encoder of ARC-RL to extract features from the input image.

1We use the code at https://github.com/dlpbc/mask-lrl-procgen/tree/develop_v2

17

https://github.com/dlpbc/mask-lrl-procgen/tree/develop_v2

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 4: Network structure for Procgen. All convolutional layers in the backbone use a kernel size
of 3×3 and a stride of 1. The kernel sizes of the convolutional layers in the encoder are 8×8, 4×4,
and 3 × 3, respectively. The stride of them are 4, 2, and 1, respectively. All maxpool layers use a
kernel size of 3× 3 and a stride of 2. Linear 2 and Linear 4 are the output heads in ARC-RL, while
Linear 3 and Linear 5 are the output heads in other methods.

Layer Input
channels/units

Output
channels/units

Backbone

Conv 1 3 32
MaxPool 32 32

Residual 1 32 32
Residual 2 32 32

Conv 2 32 64
MaxPool 64 64

Residual 3 64 64
Reedisidual 4 64 64

Conv 3 64 64
MaxPool 64 64

Residual 5 64 64
Reedisidual 6 64 64

Linear 1 3136 512
Value
output

Linear 2 512+256+1 1
Linear 3 512+9+1 1

Policy
output

Linear 4 512+256+1 256
Linear 5 512+9+1 7

Encoder

Conv 4 9 32
Conv 5 32 64
Conv 6 64 64
Linear 6 1024 512
Linear 7 512 256

Decoder Linear 8 256 7

B.4 HYPERPARAMETERS

The hyperparameters for the competitive experiments are presented in Table 5 and Table 6. Most
values follow the settings in CORA (Powers et al., 2022). Note that for ARC-RL, we did not conduct
experiments to search for the best hyperparameters. Additionally, the number of exploration steps
for ARC-RL on new tasks is set to 104. This parameter is relatively small compared to the number
of training steps per task and is not been tuned. In the implementation of CLEAR, each actor only
gets sampled once during training, so we need the same number of actors as well as batch size.

B.5 METRICS

Based on the agent’s normalized expected return, we evaluated the continual learning performance
of our framework and other methods using the following metrics: continual return, forgetting, and
forward transfer. Let us consider a sequence with N tasks, where pi,j ∈ [0, 1] represents the per-
formance of task j (evaluation return) after the agent has been trained on task i. Then, the above
metrics can be defined:

• Continual return: The continual return for task i is defined as:

Ri :=
1

i

i∑
j=1

pi,j . (7)

This metric provides an overall view of the agent’s performance up to and including task
i. The final value, R ∈ [0, 1] is a single-value summary of the agent’s overall performance
after all tasks and is included in the result tables.

• Forgetting: The forgetting for task i measures the decline in performance for that task after
training has concluded. It is calculated by:

Fi :=
1

i− 1

i−1∑
j=1

(pi−1,j − pi,j) (8)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 5: Hyperparameters for the experiments on MiniGrid. λ is the regularization coefficient.

Method Hyperparameter Value

Common

Num. of actors 6
Num. of learner 2

Batch size 256
Learning rate 4× 10−4

Entropy 0.01
Rollout length 20

Optimizer RMSProp
Discount factor 0.99
Gradient clip 40

Num. of training steps per task 3× 106

Num. of evaluation episodes 10
Evaluation interval 105

CLEAR
Num. of actors 12

Batch size 12
Replay buffer size 5× 106

EWC
λ 104

Replay buffer size 106

Min. frames per task 2× 105

Online-EWC λ 175
Replay buffer size 106

P&C
λ 3000

Replay buffer size 105

Num. of progress train steps 3906

ARC-RL λ 2× 104

Action Representation size 256

Table 6: Hyperparameters for the experiments on Procgen. Other hyperparameters are the same as
those on MiniGrid.

Hyperparameter Value
Num. of actors 21
Num. of learner 2

Batch size 32
Num. of training steps per task 5× 106

Num. of evaluation episodes 10
Evaluation interval 2.5× 105

When Fi > 0, the agent has become worse at the past tasks after training on new task
i, indicating forgetting has occurred. Conversely, when Fi < 0, the agent has become
better at past tasks, indicating backward transfer has been observed. The overall forgetting
metric, F ∈ [−1, 1], is the average of Fi values for all tasks, providing insight into how
much knowledge the agent retains over time. We report F in the results tables.

• Forward transfer: The forward transfer for task i quantifies the positive impact that learn-
ing task i has on the performance of subsequent tasks. It is computed as follows:

Ti :=
1

N − i

N∑
j=i+1

(pi,j − pi−1,j) (9)

When Ti > 0, the agent has become better at later tasks after training on earlier task
i, indicating forward transfer has occurred through zero-shot learning. When Ti < 0,
the agent has become worse at later tasks, indicating negative transfer has occurred. The
overall forward transfer, T ∈ [−1, 1], is the mean of Ti values across all tasks, providing
insight into the generalization ability of the agent. We report T in the results tables.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B.6 COMPUTE RESOURCES

~56 MinIND

FT ~56 Min

EWC ~56 Min

~56 MinOnline-EWC

~58 MinARC-RL

~66 Min

~63 MinCLEAR

Real Time
150 30 45 60 75

CPU
+

GPU

Mask

(a) MiniGrid tasks

~105 MinIND

FT ~104 Min

EWC ~105 Min

~101 MinOnline-EWC

~140 MinARC-RL

~418 Min

~190 MinCLEAR

Real Time
1000 200 300 400

CPU
+

GPU

Mask

(b) Procgen tasks

Figure 9: Average runtime of seven methods on three MiniGrid tasks and three Procgen tasks.

Our code is implemented with Python 3.9.17 and Torch 2.0.1+cu118. Each method on MiniGrid
was trained using an AMD Ryzen 5 3600 CPU (6 cores) with 32GB RAM and an NVIDIA GeForce
RTX 1060 GPU. The Procgen experiments were conducted on an AMD Ryzen 9 7950X CPU (16
cores) with 48GB RAM and an NVIDIA GeForce RTX 4070Ti Super GPU. As illustrated in Figure
9a, each run, consisting of three MiniGrid tasks, takes about 1 hour to complete. However, there
is a notable difference in the runtime of the methods when applied to Procgen tasks, as shown in
Figure 9b. Specifically, the CLEAR and Mask take approximately twice and four times as long
as the baselines, respectively. This increased runtime may attributed to the additional computation
required to update the replay buffer and masks. Although the runtime of ARC-RL is longer than
that of the baselines, it remains acceptable for practical applications when compared to CLEAR
and Mask. In summary, the total runtime is influenced by four factors: the device, the domain, the
computation time of the algorithm, and the behavior of the policy. Replay-based and architecture-
based methods may experience a sharp increase in runtime due to heightened task complexity. In
contrast, our method requires only a modest amount of additional computing resources to explore
the environment, thereby achieving a balanced trade-off between efficiency and effectiveness.

C ADDITIONAL EXPERIMENTS AND RESULTS

C.1 DETAILED RESULTS ON MINIGRID

Tables 7 and 8 present the detailed results of forgetting and forward transfer across three MiniGrid
tasks in the situations of expansion and contraction. The columns represent trained tasks, while the
rows represent evaluated tasks. We denote the task with an action space of size n as “n-Actions”.
The average results across all tasks (bottom right of each subtable) are reported in the main text.
In each forgetting table, negative values are shown in green and positive values in red, with darker
shades representing larger magnitudes. Values close to zero are unshaded. In each forward transfer
table, positive values are shown in green, and negative values in red.

These results further highlight the superiority of ARC-RL. Additionally, they illustrate the difference
between various action spaces and situations. Forgetting is slight in the expansion situation but
more pronounced in the contraction situation. After training with 3-actions, the performance on
previous tasks significantly degrades. However, forward transfer remains similar across different
situations. In the expansion situation, training on 3-actions benefits evaluation performance on the
subsequent tasks. In the contraction situation, training on 7-actions similarly benefits performance
on subsequent tasks. This phenomenon may be attributed to the high similarity between tasks, where
learning on the first task aids in learning subsequent tasks.

C.2 COMBINED SITUATIONS

Figures 10 and 11, along with Table 9, show the performance of SE-CRL and other CRL methods in
combined situations of expansion and contraction across three MiniGrid tasks. We use “expansion &
contraction” to represent the situation where the size of action space expands to seven after the first

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 7: Forgetting and forward transfer in the expansion situation across three MiniGrid tasks.

(a) IND

Forgetting
3-Actions 5-Actions 7-Actions Avg ± SEM

3-Actions – 0.31± 0.05 −0.05± 0.07 0.13± 0.02
5-Actions – – −0.03± 0.02 −0.03± 0.02
7-Actions – – – –
Avg ± SEM – 0.31± 0.05 −0.04± 0.04 0.08± 0.02

(b) FT

Forgetting Forward Transfer
3-Actions 5-Actions 7-Actions Avg ± SEM 3-Actions 5-Actions 7-Actions Avg ± SEM

3-Actions – −0.03± 0.02 0.12± 0.05 0.05± 0.03 – – – –
5-Actions – – 0.01± 0.02 0.01± 0.02 0.69± 0.05 – – 0.69± 0.05
7-Actions – – – – 0.59± 0.07 0.15± 0.09 – 0.37± 0.04
Avg ± SEM – −0.03± 0.02 0.07± 0.03 0.03± 0.02 0.64± 0.04 0.15± 0.09 – 0.48± 0.03

(c) EWC

Forgetting Forward Transfer
3-Actions 5-Actions 7-Actions Avg ± SEM 3-Actions 5-Actions 7-Actions Avg ± SEM

3-Actions – −0.04± 0.02 −0.02± 0.01 −0.03± 0.01 – – – –
5-Actions – – −0.06± 0.03 −0.06± 0.03 0.55± 0.09 – – 0.55± 0.09
7-Actions – – – – 0.64± 0.06 0.09± 0.09 – 0.36± 0.04
Avg ± SEM – −0.04± 0.02 −0.04± 0.01 −0.04± 0.01 0.60± 0.07 0.09± 0.09 – 0.43± 0.05

(d) Online-EWC

Forgetting Forward Transfer
3-Actions 5-Actions 7-Actions Avg ± SEM 3-Actions 5-Actions 7-Actions Avg ± SEM

3-Actions – −0.03± 0.04 0.04± 0.03 0.01± 0.02 – – – –
5-Actions – – 0.03± 0.03 0.03± 0.03 0.50± 0.09 – – 0.50± 0.09
7-Actions – – – – 0.58± 0.09 0.12± 0.11 – 0.35± 0.05
Avg ± SEM – −0.03± 0.04 0.04± 0.02 0.02± 0.01 0.54± 0.08 0.12± 0.11 – 0.40± 0.05

(e) CLEAR

Forgetting Forward Transfer
3-Actions 5-Actions 7-Actions Avg ± SEM 3-Actions 5-Actions 7-Actions Avg ± SEM

3-Actions – 0.44± 0.09 0.03± 0.13 0.24± 0.05 – – – –
5-Actions – – 0.15± 0.07 0.15± 0.07 0.87± 0.03 – – 0.87± 0.03
7-Actions – – – – 0.87± 0.02 −0.01± 0.01 – 0.43± 0.01
Avg ± SEM – 0.44± 0.09 0.09± 0.09 0.21± 0.06 0.87± 0.02 −0.01± 0.01 – 0.58± 0.01

(f) MASK

Forgetting Forward Transfer
3-Actions 5-Actions 7-Actions Avg ± SEM 3-Actions 5-Actions 7-Actions Avg ± SEM

3-Actions – 0.01± 0.11 −0.15± 0.07 −0.07± 0.05 – – – –
5-Actions – – 0.02± 0.07 0.02± 0.07 0.03± 0.03 – – 0.03± 0.03
7-Actions – – – – −0.04± 0.05 0.08± 0.03 – 0.02± 0.03
Avg ± SEM – 0.01± 0.11 −0.06± 0.06 −0.04± 0.04 −0.00± 0.03 0.08± 0.03 – 0.02± 0.03

(g) ARC-RL

Forgetting Forward Transfer
3-Actions 5-Actions 7-Actions Avg ± SEM 3-Actions 5-Actions 7-Actions Avg ± SEM

3-Actions – −0.01± 0.02 −0.01± 0.02 −0.01± 0.01 – – – –
5-Actions – – −0.04± 0.04 −0.04± 0.04 0.88± 0.03 – – 0.88± 0.03
7-Actions – – – – 0.89± 0.04 −0.05± 0.02 – 0.42± 0.02
Avg ± SEM – −0.01± 0.02 −0.02± 0.02 −0.02± 0.01 0.88± 0.03 −0.05± 0.02 – 0.57± 0.02

0 1M 2M 3M 4M 5M 6M 7M 8M 9M
0

0.2

0.4

0.6

0.8

1
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task1

Step

Ex
pe

ct
ed

 R
et

ur
n

(a) Task 1: Three actions

0 1M 2M 3M 4M 5M 6M 7M 8M 9M
0

0.2

0.4

0.6

0.8

1
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task2

Step

Ex
pe

ct
ed

 R
et

ur
n

(b) Task 2: Seven actions

0 1M 2M 3M 4M 5M 6M 7M 8M 9M
0

0.2

0.4

0.6

0.8

1
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task3

Step

Ex
pe

ct
ed

 R
et

ur
n

(c) Task 3: Five actions

Figure 10: Performance of seven methods on three MiniGrid tasks in the expansion & contraction
situation.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 8: Forgetting and forward transfer in the contraction situation across three MiniGrid tasks.

(a) IND

Forgetting
7-Actions 5-Actions 3-Actions Avg ± SEM

7-Actions – 0.06± 0.02 0.25± 0.09 0.15± 0.04
5-Actions – – 0.48± 0.08 0.48± 0.08
3-Actions – – – –
Avg ± SEM – 0.06± 0.02 0.37± 0.08 0.26± 0.05

(b) FT

Forgetting Forward Transfer
7-Actions 5-Actions 3-Actions Avg ± SEM 7-Actions 5-Actions 3-Actions Avg ± SEM

7-Actions – 0.01± 0.01 0.60± 0.10 0.31± 0.05 – – – –
5-Actions – – 0.56± 0.10 0.56± 0.10 0.82± 0.04 – – 0.82± 0.04
3-Actions – – – – 0.42± 0.07 −0.07± 0.08 – 0.18± 0.03
Avg ± SEM – 0.01± 0.01 0.58± 0.09 0.39± 0.06 0.62± 0.05 −0.07± 0.08 – 0.39± 0.03

(c) EWC

Forgetting Forward Transfer
7-Actions 5-Actions 3-Actions Avg ± SEM 7-Actions 5-Actions 3-Actions Avg ± SEM

7-Actions – −0.01± 0.02 0.63± 0.13 0.31± 0.07 – – – –
5-Actions – – 0.59± 0.12 0.59± 0.12 0.88± 0.03 – – 0.88± 0.03
3-Actions – – – – 0.54± 0.07 −0.02± 0.06 – 0.26± 0.03
Avg ± SEM – −0.01± 0.02 0.61± 0.12 0.40± 0.09 0.71± 0.04 −0.02± 0.06 – 0.47± 0.03

(d) Online-EWC

Forgetting Forward Transfer
7-Actions 5-Actions 3-Actions Avg ± SEM 7-Actions 5-Actions 3-Actions Avg ± SEM

7-Actions – 0.06± 0.05 0.45± 0.10 0.26± 0.05 – – – –
5-Actions – – 0.51± 0.12 0.51± 0.12 0.85± 0.05 – – 0.85± 0.05
3-Actions – – – – 0.47± 0.03 −0.00± 0.06 – 0.23± 0.03
Avg ± SEM – 0.06± 0.05 0.48± 0.10 0.34± 0.06 0.66± 0.04 −0.00± 0.06 – 0.44± 0.03

(e) CLEAR

Forgetting Forward Transfer
7-Actions 5-Actions 3-Actions Avg ± SEM 7-Actions 5-Actions 3-Actions Avg ± SEM

7-Actions – 0.29± 0.14 0.66± 0.15 0.47± 0.01 – – – –
5-Actions – – 0.80± 0.07 0.80± 0.07 0.85± 0.03 – – 0.85± 0.03
3-Actions – – – – 0.64± 0.05 −0.12± 0.08 – 0.26± 0.03
Avg ± SEM – 0.29± 0.14 0.73± 0.11 0.58± 0.03 0.75± 0.03 −0.12± 0.08 – 0.46± 0.02

(f) MASK

Forgetting Forward Transfer
7-Actions 5-Actions 3-Actions Avg ± SEM 7-Actions 5-Actions 3-Actions Avg ± SEM

7-Actions – −0.08± 0.12 0.05± 0.09 −0.02± 0.06 – – – –
5-Actions – – −0.03± 0.07 −0.03± 0.07 0.04± 0.05 – – 0.04± 0.05
3-Actions – – – – 0.10± 0.05 0.12± 0.06 – 0.11± 0.03
Avg ± SEM – −0.08± 0.12 0.01± 0.07 −0.02± 0.04 0.07± 0.03 0.12± 0.06 – 0.08± 0.03

(g) ARC-RL

Forgetting Forward Transfer
7-Actions 5-Actions 3-Actions Avg ± SEM 7-Actions 5-Actions 3-Actions Avg ± SEM

7-Actions – −0.01± 0.02 −0.01± 0.01 −0.01± 0.01 – – – –
5-Actions – – 0.15± 0.08 0.15± 0.08 0.90± 0.02 – – 0.90± 0.02
3-Actions – – – – 0.91± 0.02 −0.01± 0.02 – 0.45± 0.01
Avg ± SEM – −0.01± 0.02 0.07± 0.04 0.04± 0.03 0.90± 0.01 −0.01± 0.02 – 0.60± 0.01

0 1M 2M 3M 4M 5M 6M 7M 8M 9M
0

0.2

0.4

0.6

0.8

1
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task1

Step

Ex
pe

ct
ed

 R
et

ur
n

(a) Task 1: Five actions

0 1M 2M 3M 4M 5M 6M 7M 8M 9M
0

0.2

0.4

0.6

0.8

1
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task2

Step

Ex
pe

ct
ed

 R
et

ur
n

(b) Task 2: Three actions

0 1M 2M 3M 4M 5M 6M 7M 8M 9M
0

0.2

0.4

0.6

0.8

1
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task3

Step

Ex
pe

ct
ed

 R
et

ur
n

(c) Task 3: Seven actions

Figure 11: Performance of seven methods on three MiniGrid tasks in the contraction & expansion
situation.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 9: Continual learning metrics of seven methods and two variants of ARC-RL across three
MiniGrid tasks in combined situations of expansion and contraction. Continual return and for-
ward transfer are abbreviated as “Return” and “Transfer”, respectively. The top three results are
highlighted in green, and the depth of the color indicates the ranking.

Methods Expansion & Contraction Contraction & Expansion
Return↑ Forgetting↓ Transfer↑ Return↑ Forgetting↓ Transfer↑

IND 0.78± 0.03 0.12± 0.02 – 0.79± 0.03 0.10± 0.02 –
FT 0.87± 0.03 0.04± 0.02 0.50± 0.02 0.88± 0.03 0.02± 0.01 0.39± 0.05

EWC 0.83± 0.03 0.01± 0.02 0.44± 0.04 0.40± 0.11 0.20± 0.05 0.30± 0.06
online-EWC 0.88± 0.02 −0.02± 0.02 0.45± 0.04 0.86± 0.03 0.04± 0.02 0.40± 0.05

Mask 0.68± 0.06 0.04± 0.04 0.01± 0.02 0.64± 0.05 0.03± 0.02 0.05± 0.03
CLEAR 0.51± 0.11 0.35± 0.06 0.54± 0.02 0.07± 0.02 0.39± 0.02 0.21± 0.03

ARC-RL 0.91± 0.01 −0.03± 0.01 0.55± 0.02 0.90± 0.03 0.03± 0.02 0.42± 0.03

task and contracts to five after the second task. Similarly, “contraction & expansion” represents the
situation where the size of action space contracts to three after the first task and expands to seven after
the second task. ARC-RL achieves near-best performance in terms of continual return, forgetting,
and forward transfer in both situations. These results are consistent with the previous experiments,
further demonstrating the advantages of ARC-RL in handling more complex situations.

Table 10: Continual learning metrics of seven methods in a longer sequence (five MiniGrid tasks).
The top three results are highlighted in green, and the depth of the color indicates the ranking.

Methods Metrics
Return↑ Forgetting↓ Transfer↑

IND 0.77± 0.06 0.08± 0.02 –
FT 0.76± 0.10 0.09± 0.04 0.29± 0.01

EWC 0.87± 0.02 0.00± 0.00 0.32± 0.01
online-EWC 0.74± 0.11 0.08± 0.05 0.16± 0.01

Mask 0.67± 0.07 0.05± 0.03 0.04± 0.02
CLEAR 0.14± 0.04 0.34± 0.01 0.29± 0.02
ARC-RL 0.89± 0.02 −0.01± 0.01 0.34± 0.01

C.3 SACLING TO LONGER SEQUENCE

We also evaluate the CRL methods’ performance over a longer sequence of SE-CRL. This sequence
consists of five MiniGrid tasks, where the action space is expanding and then contracting. Each task
is trained for a total of 15M environment steps, and results are reported over five runs. As shown in
Figure 12 and Table 10, most methods’ performance remains consistent with previous experiments,
except for EWC, which performs better in this longer sequence. This improvement may be due
to the repeated tasks in the sequence, benefiting EWC’s regularization. ARC-RL achieves the best
performance in terms of continual return, forgetting, and forward transfer, demonstrating its ability
to handle combined situations of action space changes over longer task sequences.

C.4 HYPERPARAMETER SENSITIVITY ABLATIONNALYSIS

Figure 13 presents a hyperparameter sensitivity analysis of the action representation size and the
regularization coefficient (λ) across three MiniGrid tasks. For comparison, the performance of FT
(baseline) is also shown. In the expansion situation, both hyperparameters have minimal impact
on the performance of ARC-RL. In the contraction situation, both hyperparameters slightly affect
results. Forward transfer is positively correlated with the action representation size, but a smaller
action representation size (128) may lead to a better continual return. A very small regularization
coefficient (1000) can cause catastrophic forgetting and decreased continual return, further indicat-
ing the importance of regularization in the contraction situation. Overall, the contraction situation is
more sensitive to hyperparameters than the expansion situation, but ARC-RL’s performance remains
relatively robust in both.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

11M

12M

13M

14M

15M

0

0.2

0.4

0.6

0.8

1
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task1

Step

Ex
pe

ct
ed

 R
et

ur
n

(a) Task 1: Seven actions

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

11M

12M

13M

14M

15M

0

0.2

0.4

0.6

0.8

1
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task2

Step

Ex
pe

ct
ed

 R
et

ur
n

(b) Task 2: Five actions

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

11M

12M

13M

14M

15M

0

0.2

0.4

0.6

0.8

1
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task3

Step

Ex
pe

ct
ed

 R
et

ur
n

(c) Task 3: Seven actions

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

11M

12M

13M

14M

15M

0

0.2

0.4

0.6

0.8

1
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task4

Step

Ex
pe

ct
ed

 R
et

ur
n

(d) Task 4: Five actions

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

11M

12M

13M

14M

15M

0

0.2

0.4

0.6

0.8

1
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task5

Step

Ex
pe

ct
ed

 R
et

ur
n

(e) Task 5: Three actions

Figure 12: Performance of seven methods in a longer sequence (five MiniGrid tasks).

Continual
Return

Forgetting Forward
Transfer

0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Va
lu

e

Baseline
128
256
512

(a) Action representation size

Continual
Return

Forgetting Forward
Transfer

0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Va
lu

e

Baseline
1000
5000
10000
20000

(b) Regularization coefficient

Continual
Return

Forgetting Forward
Transfer

0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Va
lu

e

Baseline
128
256
512

(c) Action representation size

Continual
Return

Forgetting Forward
Transfer

0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Va
lu

e

Baseline
1000
5000
10000
20000

(d) Regularization coefficient

Figure 13: Hyperparameter sensitivity analysis for ARC-RL across three MiniGrid tasks in the
situations of expansion (above) and contraction (bottom). We examine the impact of the action
representation size and the regularization coefficient (λ) in ARC-RL. Other hyperparameters are
kept consistent with the competitive experiments, except that each experiment is repeated only five
times. Error bars represent the standard error.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

C.5 VISUALIZATION

(a) Task 1 (b) Task 2 (c) Task 3 (d) Task 2 (e) Task 3

Turn
Left

Turn
Right

Forward

Left

Right

Forward
Left

Forward
Right

Figure 14: 2D t-SNE visualizations of learned action representations on MiniGrid tasks, colored by
actual actions. The number of points for each action is 1000. (a)–(c): Fine-tuning with regulariza-
tion. (d)–(e): Learning independently.

To observe how action representation space learned by ARC-RL changes with action spaces, we
adopt t-SNE (Maaten & Hinton, 2008) to visualize the learned action representations on MiniGrid
tasks in a 2D plane. Figure 14 shows that ARC-RL constructs a smooth representation space, where
points with similar influence are clustered together. For instance, the points of the action “turn left”
and “turn right” are close to each other. Although very similar actions are not well distinguished
in the figure, this reflects their substitutability. Through regularized constraints, as the action space
changes, removed actions are replaced by existing actions while maintaining their relative positions
in the previous action space. In contrast, independently learned representations are redistributed,
failing to preserve previous action relationships. This indicates that regularized fine-tuning in ARC-
RL can maintain knowledge of the previous action space, benefiting continual learning.

C.6 EXPANSION SITUATION ON BIGFISH

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

11M

12M

13M

14M

15M

0
2
4
6
8

10
12
14
16
18
20
22
24

ALL
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task 0

Step

Ex
pe

ct
ed

 R
et

ur
n

(a) Task 1: Three actions

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

11M

12M

13M

14M

15M

0
2
4
6
8

10
12
14
16
18
20
22
24

ALL
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task 1

Step

Ex
pe

ct
ed

 R
et

ur
n

(b) Task 2: Five actions

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

11M

12M

13M

14M

15M

0
2
4
6
8

10
12
14
16
18
20
22
24

ALL
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task 2

Step

Ex
pe

ct
ed

 R
et

ur
n

(c) Task 3: Nine actions

Figure 15: Performance of eight methods on three Bigfish tasks in the expansion situation.

Figure 15 and Table 11 show the performance and metrics of ARC-RL and other methods in the
expansion situation across three Bigfish tasks. ARC-RL achieves the best performance in terms
of continual return and forward transfer. In this situation, all methods perform well in terms of
mitigating forgetting, which is consistent with the results on MiniGrid tasks. Similarly, the overall
performance of CLEAR is better than other methods, but ARC-RL still outperforms it.

C.7 OTHER ENVIRONMENTS

We also conducted experiments in other environments, including MiniGrid-Obstacles and Leaper.
The former is a more challenging version of MiniGrid Empty, where the agent must navigate through
obstacles to reach the goal. The latter is another environment from Procgen where the agent must
jump over obstacles to reach the goal. The action space and task of MiniGrid-Obstacles are the same
as MiniGrid Empty. For Leaper, the agent has five actions: jump up, jump down, jump left, jump
right, and stay. Similarly, we design three tasks for Leaper with different action spaces: a two-action

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 11: Continual learning metrics of eight methods in the expansion situation on three Procgen
tasks. The average continual return of ALL is 24.77, which is not provided in the table. The top
three results are highlighted in green, and the depth of the color indicates the ranking.

Methods Metrics
Return↑ Forgetting↓ Transfer↑

IND 13.86± 2.41 −0.27± 0.08 –
FT 15.13± 0.10 −0.25± 0.04 0.00± 0.02

EWC 3.31± 1.88 −0.00± 0.11 −0.08± 0.12
online-EWC 13.43± 2.02 −0.31± 0.09 0.02± 0.05

Mask 12.18± 1.45 −0.19± 0.04 −0.02± 0.03
CLEAR 17.68± 4.79 −0.04± 0.03 0.18± 0.07

ARC-RL 18.27± 1.22 −0.05± 0.11 0.21± 0.05

task (jump up, stay), a three-action task (jump up, jump down, stay), and a five actions (jump up,
jump down, jump left, jump right, stay). The action space changes in these tasks are not as smooth
as in Bigfish tasks, making differences between compared methods not as significant. Figure 16 and
Table 12 show the performance of ARC-RL and other methods in the expansion situation on three
MiniGrid-Obstacles tasks. Each task is replicated with three random seeds. Figure 17 and Table 13
show the performance of ARC-RL and other methods on three Leaper tasks. Each task is replicated
with three random seeds. The results show that ARC-RL also achieves the best performance in terms
of continual return in both environments.

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M 11M 12M
0

0.2

0.4

0.6

0.8

1
ALL
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task1

Step

Ex
pe

ct
ed

 R
et

ur
n

(a) Task 1: Three actions

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M 11M 12M
0

0.2

0.4

0.6

0.8

1
ALL
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task2

Step

Ex
pe

ct
ed

 R
et

ur
n

(b) Task 2: Five actions

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M 11M 12M
0

0.2

0.4

0.6

0.8

1
ALL
ARC-RL
Mask
CLEAR
Online-EWC
EWC
FT
IND

Task3

Step

Ex
pe

ct
ed

 R
et

ur
n

(c) Task 3: Seven actions

Figure 16: Performance of eight methods on three MiniGrid-Obstacles tasks in the expansion situ-
ation.

Table 12: Continual learning metrics of eight methods in the expansion situation on three MiniGrid-
Obstacles tasks. The average continual return of ALL is 0.86, which is not provided in the table.
The top three results are highlighted in green, and the depth of the color indicates the ranking.

Methods Metrics
Return↑ Forgetting↓ Transfer↑

IND 0.13± 0.02 0.25± 0.06 –
FT 0.75± 0.05 0.01± 0.04 0.45± 0.02

EWC 0.68± 0.03 0.06± 0.11 0.42± 0.04
online-EWC 0.74± 0.05 −0.02± 0.10 0.38± 0.04

Mask 0.40± 0.07 −0.07± 0.10 −0.05± 0.05
CLEAR 0.68± 0.06 0.27± 0.06 0.56± 0.03

ARC-RL 0.80± 0.04 −0.06± 0.01 0.47± 0.07

D MORE DISCUSSION

E CONNECTION WITH NEUROSCIENCE

The field of neuroscience offers valuable insights into the mechanisms underlying motor control
and learning, which can inform the development of artificial intelligence systems, particularly in the
context of CRL (Kaplanis et al., 2019; Gazzaniga et al., 2019; Kudithipudi et al., 2022).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
11M
12M
13M
14M
15M
16M
17M
18M
19M
20M
21M
22M
23M
24M

0

2

4

6

8

10
ARC-RL
EWC
FT
IND

Task 0

Step

Ex
pe

ct
ed

 R
et

ur
n

(a) Task 1: Two actions

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
11M
12M
13M
14M
15M
16M
17M
18M
19M
20M
21M
22M
23M
24M

0

2

4

6

8

10
ARC-RL
EWC
FT
IND

Task 1

Step

Ex
pe

ct
ed

 R
et

ur
n

(b) Task 2: Three actions

0 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M
11M
12M
13M
14M
15M
16M
17M
18M
19M
20M
21M
22M
23M
24M

0

2

4

6

8

10
ARC-RL
EWC
FT
IND

Task 2

Step

Ex
pe

ct
ed

 R
et

ur
n

(c) Task 3: Five actions

Figure 17: Performance of four methods on three Leaper tasks in the expansion situation.

Table 13: Continual learning metrics of four methods in the expansion situation on three Leaper
tasks. The top results are highlighted in green.

Methods Metrics
Return↑ Forgetting↓ Transfer↑

IND 5.03± 0.49 −0.05± 0.05 –
FT 6.31± 0.62 −0.26± 0.01 −0.11± 0.04

EWC 4.72± 1.80 −0.10± 0.04 0.11± 0.11

ARC-RL 6.69± 0.48 −0.03± 0.08 0.42± 0.05

In the human brain, motor control is distributed across several anatomical structures that operate
hierarchically (D’Mello et al., 2020; Friedman & Robbins, 2022). At the highest levels, planning is
concerned with how an action achieves an objective, while lower levels translate goals into specific
movements. This hierarchical organization allows for flexible and adaptive behavior, as higher-level
goals can be achieved through various lower-level actions depending on the context. Similarly,
in ARC-RL, the agent’s policy can be seen as operating at a high level, focusing on achieving task
objectives, while the action representation space operates at a lower level, translating these objectives
into specific actions. By decoupling the policy from the specific action space, ARC-RL leverages
a hierarchical approach that mirrors the brain’s strategy for motor control. This allows the agent to
adapt to changes in the action space without needing to relearn the entire policy.

Neurophysiological studies have shown that the activity of neurons in the motor cortex is often cor-
related with movement direction rather than specific muscle activations (Georgopoulos & Pellizzer,
1995; Kakei et al., 1999). Neurons exhibit directional tuning, and their collective activity can be rep-
resented as a population vector that predicts movement direction. This concept of population coding
suggests that the brain represents actions in a high-dimensional space, allowing for generalization
across different contexts. In ARC-RL, the action representation space serves a similar function. By
encoding actions in a high-dimensional space, the agent can generalize its policy across different ac-
tion spaces. The encoder-decoder architecture in ARC-RL can be likened to the neural mechanisms
that map cortical activity to specific movements. When the action space changes, the update of the
ecoder and the decoder, is akin to how the brain might update its motor representations in response
to changes in the body or environment.

Recent research in motor neurophysiology has highlighted the dynamic nature of neural represen-
tations. Neurons do not have fixed roles but instead can represent different features depending on
the context and time (Churchland et al., 2012; Gallego et al., 2020). This flexibility allows the
motor system to adapt to a wide range of tasks and environments, providing maximum behavioral
flexibility. ARC-RL incorporates this idea by allowing the action representation space to be dy-
namically updated. This dynamic updating process is analogous to how the brain adjusts its neural
representations to maintain consistent behavior despite changes in the body or environment.

By drawing inspiration from neuroscience, ARC-RL achieve policy generalization and adaptability
in the face of changing action spaces. This connection between neuroscience and artificial intelli-
gence not only enhances our understanding of both fields but also provides feasible ideas for more
sophisticated and adaptable AI systems.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

E.1 EXTENDING TO OTHER SITUATIONS

Our framework can be extended to other situations as it is not specifically designed for expansion and
contraction situations. Both the partial change situation and the complete change situation can be
viewed as simultaneous occurrences of expansion and contraction. In the partial change situation,
some actions from the previous action space remain, while in the complete change situation, all
previous actions are removed.

In the complete change situation, incorporating experience replay is a straightforward improvement
of our framework. However, this approach incurs additional storage and computational costs. Thus,
the trade-off between performance and efficiency is necessary. In addition, the method of generating
pseudo samples (Shin et al., 2017; Yue et al., 2023) via representation space may be more suitable
for practical privacy-preserving scenarios, where the agent cannot access the previously collected
data.

For the partial change situation, the challenge lies in identifying the differences between action
spaces. Our framework can be improved by integrating mechanisms to detect removed and newly
added actions, similar to novelty detection and class-incremental learning in the open-world setting
(Masana et al., 2022; Sahisnu Mazumder, 2024; Li et al., 2024a). While clustering or classifying
action representations can achieve this, it imposes higher demands on the self-supervised learning
method. The action representations need to be well-separated in the representation space. Therefore,
leveraging more information beyond state changes to learn action representations could be a valuable
extension of our framework.

E.2 LIMITATIONS AND FUTURE WORK

Despite the promising advancements, we acknowledge the current limitations, primarily the scal-
ability concerns when dealing with large action spaces in complex environments. Future avenues
of research should focus on enhancing adaptability by incorporating existing exploration methods
and developing more effective action representation learning algorithms. In addition, more com-
plex changes in the action space, such as the changes of continuous action space, require further
investigation. This require more sophisticated representation learning methods to capture the action
representations. The exploration policy in ARC-RL is also not suitable for continuous action spaces,
and future work should explore more advanced exploration strategies for such scenarios. Moreover,
we plan to extend our work to a broader range of CRL, including changes in the agent’s capabilities
and the external environment. This may involve utilizing meta-learning strategies to improve gen-
eralization across a broader spectrum of capabilities evolutions and incorporating advanced transfer
learning mechanisms to seamlessly integrate knowledge from a wider range of environments and
varying agent capabilities.

28

	Introduction
	Related Works
	Self-Supervised Learning for Reinforcement Learning
	Continual Reinforcement Learning

	Self-Evaluation Continual Reinforcement Learning
	Preliminaries
	Problem Formalization

	Action Representation Continual Reinforcement Learning
	Framework
	Action Representation Space Building
	Regularized Fine-tuning

	Experiments
	Benchmark
	Competitive Experiments
	Ablation Study
	More Challenging Experiments

	Conclusion
	Framework Details
	Environmental Details
	Environments and Task Sequences.
	Compared Methods.
	Network Structures
	Hyperparameters
	Metrics
	Compute resources

	Additional Experiments and Results
	Detailed Results on MiniGrid
	Combined Situations
	Sacling to Longer Sequence
	Hyperparameter Sensitivity Ablationnalysis
	Visualization
	Expansion Situation on Bigfish
	Other Environments

	More Discussion
	Connection with Neuroscience
	Extending to Other Situations
	Limitations and Future Work

