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ABSTRACT

We consider the problem of generalization of arbitrarily overparameterized two-
layer ReLU Neural Networks with univariate input. Recent work showed that
under square loss, flat solutions (motivated by flat / stable minima and Edge of
Stability phenomenon) provably cannot overfit, but it remains unclear whether
the same phenomenon holds for logistic loss. This is a puzzling open problem
because existing work on logistic loss shows that gradient descent with increasing
step size converges to interpolating solutions (at infinity, for the margin-separable
cases). In this paper, we prove that the flatness implied generalization is more
delicate under logistic loss. On the positive side, we show that flat solutions enjoy
near-optimal generalization bounds within a region between the left-most and
right-most uncertain sets determined by each candidate solution. On the negative
side, we show that there exist arbitrarily flat yet overfitting solutions at infinity that
are (falsely) certain everywhere, thus certifying that flatness alone is insufficient
for generalization in general. We demonstrate the effects predicted by our theory
in a well-controlled simulation study.

1 INTRODUCTION

In modern deep learning, the optimization landscape is highly nonconvex and often filled with
numerous local minima and saddle points. Therefore, it is natural and important to consider the role
of the optimizer in guiding the model toward particular types of solutions among many possible
low-loss regions (Zhang et al., 2021). One important phenomenon in this context is the implicit bias of
minima stability, which refers to the tendency of optimization algorithms—particularly gradient-based
methods—to prefer solutions that are more stable under perturbations (Wu et al., 2018). These stable
solutions, often characterized by flatter curvature in the loss landscape, are less sensitive to small
changes in input or model parameters. This implicit preference arises not from the explicit objective
function, but from the dynamics of the training process itself, and has important implications for
generalization performance even in the absence of global optimality (Qiao et al., 2024).

The implicit bias of minima stability has been extensively studied in the context of squared loss,
particularly through analysis conducted in function space (Mulayoff et al., 2021; Nacson et al.,
2022). These studies have shown that gradient-based optimization algorithms tend to converge to
predictors that exhibit greater stability—often corresponding to smoother or simpler functions—even
in the absence of explicit regularization (Qiao et al., 2024). This perspective has provided valuable
insight into how model generalization arises from the training dynamics themselves. However, many
practical classification problems are trained using logistic or cross-entropy loss rather than squared
loss. Extending the analysis of implicit bias (in function space) to logistic loss is therefore both natural
and necessary, as it enables a deeper understanding of how stability and generalization emerge in
classification settings, where the geometry of the loss landscape and the behavior of the optimization
algorithm can differ significantly from regression (Chizat & Bach, 2020).

Our contributions. In this paper, we study the minima stability and generalization theory for the so-
lutions gradient descent with constant learning rate can stably converge to. More specifically,

1. We show that for 1D nonparametric logistic regression with noisy labels, the solutions that GD
can stably converge to must be regular functions with small (weighted) first-order total variation,
while the constraint is significant (i.e. the weight function is large) only between the left-most and
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Figure 1: The left panel summarizes our findings about flatness, generalization and interpolation
in logistic regression. The middle panel compares the learned function by GD with large and
small learning rates, the stable solution of large learning rate is simpler and smoother. The right
panel provides an illustration for the “uncertain region” (red part) of the function and the weight
function (the h function in equation 5 and equation 7) supported in the interior of uncertain regions.
Briefly speaking, a larger weight function poses stronger smoothness guarantee in the corresponding
region. Here we plot the asymptotic weight function in Theorem 3.5 with γ = 1.5, ζ = 0.3 and
Px = Unif([−2, 2]). The weight function in Theorem 3.1 can be derived identically by replacing f0
with fθ.

right-most “uncertain sets” where the prediction of the output function is not certain (Theorem 3.1).
Please refer to Figure 1 for an illustration of the relevant concepts. Unfortunately, we construct an
example (Theorem 3.2) showing that interpolating solutions (at infinity) can be arbitrarily flat,
thus flatness alone does not imply generalization. However, with a mild assumption (Assumption
3.4) that the optimization effectively minimizes the excess risk, we further show that such stable
solutions must be smooth in the (predefined) convex hull of “uncertain regions” of the ground-truth
function (Theorem 3.5), which excludes those pathological interpolating solutions.

2. We establish concrete generalization bounds for such solutions (stable local minima that GD
converges to). We first prove a generalization gap bound that depends on the scale of the learned
coefficients (Theorem 3.3), showing that sparse functions provably do not overfit. Moreover, under
a mild additional assumption on gradient descent finding “optimized” solutions, we refine the
analysis over the interior of the convex hull of the “uncertain regions” and achieve near optimal
rates of excess risk for estimating first-order bounded variation functions (Theorem 3.7).

3. We perform comprehensive numerical experiments to support our theoretical predictions, verify
key technical assumptions, and visualize both the structure of ReLU neural networks and the
basis functions discovered by gradient descent under varying step sizes. These findings offer
fresh insights into how gradient descent training effectively captures representations and naturally
promotes implicit sparsity under logistic regression.

Technical Novelty. We build on top of Qiao et al. (2024) to analyze the generalization ability of
trained NNs under logistic regression. However, different from the squared loss where all interpolating
solutions are sharp, the relationship between flatness and smoothness is more delicate for logistic loss.
To handle the increasing flatness when the prediction approaches infinity, we separate the data points
with “certain” and “uncertain” predictions. Moreover, we manage to derive smoothness guarantees
based on the part with “uncertain” predictions, where the guarantee becomes weaker as the extent of
uncertainty decreases. Meanwhile, based on a diminishing excess risk assumption, we take a novel
approach to approximate the “uncertain set” of the learned function by the uncertain regions of the
ground-truth, thus achieving a prediction-independent weighted TV1 bound from flatness, which
excludes those arbitrarily flat but overfitting solutions. As a result, together with a careful analysis on
the metric entropy of bounded variation class, this allows us to amplify the diminishing excess risk to
a nearly optimal rate, when restricted to the interior of the convex hull of uncertain regions.

1.1 DISCLAIMERS AND LIMITATIONS

It is worth noting that our results hold for the learned functions satisfying several conditions (e.g.
flatness, optimized), while we do not have guarantees whether GD could actually converge to such
solutions. We acknowledge that initialization and dynamics of GD are important in training, while
we focus on the global properties of the solutions instead. The (somewhat loose) connection to GD is
established via local linear stability theory (see Appendix B.1 for completeness) and via empirical

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

observations of “Edge of Stability” phenomenon (which appears for logistic loss). It is important
to note that our results on generalization do not depend on the optimization being successful, i.e.,
our generalization gap bound works for every candidate solution with low-loss-curvature. Our
findings lie in an intermediate regime between classical learning theory which disregards optimization
consideration and modern theoretical frameworks centered on optimization dynamics.

Admittedly, we focus on the univariate case and logistic loss, which may be perceived as restrictive.
We remark that the problem is sufficiently interesting and challenging even for the univariate case.
The challenges and our technical innovations needed for handling logistic loss are complementary to
understanding the multivariate inputs. The restriction to logistic loss (instead of more general family
of losses) is a deliberate choice too. Logistic loss is by far the most popular in practice, and it is well
understood in various settings, which implies more concrete connections between our results and
other theoretical work. Meanwhile, extending our results to more general loss functions is possible
and promising (e.g. in Appendix F we extend the generalization bound to Lipschitz losses).

1.2 RELATED WORK

Implicit bias of gradient descent. The implicit bias of gradient descent training of overparameterized
NN is well-studied for both squared loss (Arora et al., 2019; Mei et al., 2019; Jin & Montúfar, 2023)
and logistic loss. Under logistic regression with (linearly) separable data, linear predictors are shown
to converge to the direction of the max-margin solution for small enough learning rates (Soudry et al.,
2018). The result is extended to the maximal linearly separable subset of nonseparable data (Ji &
Telgarsky, 2019), wide two-layer neural networks (Chizat & Bach, 2020), more general loss functions
(Schliserman & Koren, 2022) and multi-class classification (Ravi et al., 2024). However, none of the
results implies generalization bounds when the labels are noisy, which is our focus.

Implicit bias of minima stability. The most relevant works are the series of papers studying the
implicit bias of minima stability (Ma & Ying, 2021; Mulayoff et al., 2021; Nacson et al., 2022; Wu &
Su, 2023; Qiao et al., 2024). Among the results above, Mulayoff et al. (2021) interprets the minima
stability from the function space, relying on the minima interpolating the data. Later, Qiao et al.
(2024) considers noisy data and derives generalization bounds without the assumption of interpolation.
However, all these works focus on the squared loss, which is inherently different from the widely
applied logistic loss. We consider the implicit bias of minima stability from the view of function
space under logistic regression, which raises substantial technical challenges.

Edge of Stability. Our problem setup is motivated by the empirical observations of the “edge of
stability” phenomenon (Cohen et al., 2020), where large learning rate training of NN finds solutions
with Hessian’s largest eigenvalue oscillating around 2/η. A growing body of research attempts to
understand such behavior of GD training (Kong & Tao, 2020; Arora et al., 2022; Ahn et al., 2022;
Wang et al., 2022; Damian et al., 2022; Zhu et al., 2022; Lyu et al., 2022; Ahn et al., 2023; Kreisler
et al., 2023; Even et al., 2023; Lu et al., 2023). Our work is complementary in that we provide
generalization bounds to the final solution GD stabilizes on no matter how GD gets there.

Logistic regression with large step size. Previous works (Wu et al., 2023; 2024; Cai et al., 2024;
Zhang et al., 2025) show that GD with large learning rate could accelerate the convergence of logistic
regression for linearly separable data. Our results are different in two aspects. First, we consider
labels generated randomly, which can be arbitrarily nonseparable. In addition, we do not study
optimization dynamics, but on the generalization ability of the final learned function.

Flat minima and generalization. Early empirical evidence (Hochreiter & Schmidhuber, 1997;
Keskar et al., 2017) supports the hypothesis that “flat solutions generalize better”. More recently Wu
& Su (2023); Qiao et al. (2024); Ding et al. (2024) established theoretical generalization bounds for
flat solutions in various settings. Among them, Ding et al. (2024) focuses on matrix sensing models
and neural networks with quadratic activations. Both Wu & Su (2023); Ding et al. (2024) require
interpolation. Moreover, they all use square loss, while we consider logistic loss, which reveals
surprising new insight on this hypothesis.

2 PROBLEM SETUP

In this section, we introduce our problem setup. Throughout the paper, [n] = {1, 2, · · · , n}. We use
standard notation O(·),Ω(·), Õ(·) to absorb constants or logarithmic terms, respectively.
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Two-layer ReLU neural network. The function class we consider is two-layer (i.e. one-hidden-layer)
univariate ReLU networks, defined as

F =

{
f : R → R

∣∣∣∣ f(x) = k∑
i=1

w
(2)
i ϕ

(
w

(1)
i x+ b

(1)
i

)
+ b(2)

}
, (1)

where the network consists of k hidden neurons and ϕ(·) denotes the ReLU activation function.

Binary classification and (Nonlinear) logistic regression. The training dataset is denoted by
D = {(xi, yi) ∈ R × {−1, 1}, i ∈ [n]}. The univariate feature xi is assumed to be supported by
[−xmax, xmax] for some constant xmax > 0, while the label yi ∈ {−1, 1}. We consider the logistic
regression problem with loss ℓ(f, (x, y)) = log(1 + e−yf(x)). Then the training loss is L(f) =
1
n

∑n
i=1 log

(
1 + e−yif(xi)

)
. We denote the parameters of f by θ := [w

(1)
1:k, b

(1)
1:k, w

(2)
1:k, b

(2)] ∈ R3k+1.
In addition, we let ℓi(θ) := ℓ(fθ, (xi, yi)) and L(θ) := 1

n

∑
i∈[n] ℓi(θ) as a short hand.

Gradient descent. Let θ0 be the initial parameter, we optimize the logistic loss above using Gradient
descent (GD). At the t-th step, we update θ as θt = θt−1 − η∇L(θt−1), where η > 0 is the learning
rate (a.k.a. step size). We leave the calculation of the gradient for logistic loss and two-layer ReLU
networks to Appendix C.

Minima stability. The stability of gradient descent (GD) is often described by the local curvature
of the training loss function, i.e., λmax(∇2L(θ)) at θ. Classical optimization theory teaches us to
use step size η < 2/ supθ λmax(∇2L(θ)) such that gradient descent steps do not diverge. However,
for overparameterized neural networks, there is no global upper bound of the smoothness. Instead,
it has been observed that gradient descent with any fixed η > 0 only discovers solutions such that
λmax(∇2L(θ)) ≈ 2/η. This phenomenon is known as the edge of stability (EoS) regime (Cohen
et al., 2020; Damian et al., 2022). Moreover, the linear stability theory (Wu et al., 2018; Mulayoff
et al., 2021) also suggests that gradient descent can only stabilize around solutions θ where the
Hessian’s largest eigenvalue is smaller than 2/η in the local neighborhood of θ.

This motivated Qiao et al. (2024) to define and analyze the following set of functions.

F(η,D) :=

{
fθ

∣∣∣∣ λmax(∇2L(θ)) ≤ 2

η

}
. (2)

Unless otherwise specified, a “stable solution” or a “flat solution” are used interchangeably in the
rest of the paper to refer to an element of F(η,D).

Data generation. We assume that the features {xi}ni=1 are i.i.d. samples from some distribution
Px supported on [−xmax, xmax]. Meanwhile, we assume that there exists a ground-truth function
f0 : [−xmax, xmax] → R such that conditional on the feature xi, the label yi is sampled independently
from the following distribution:

y =

{
1 with probability p = σ(f0(x))

−1 with probability 1− p
(3)

where σ(t) = 1
1+e−t is the sigmoid function. Therefore, the populational (testing) loss is defined as

L̄(f) := Ex∼DEy∼B(x) log
(
1 + e−yf(x)

)
, where x ∼ D is short for uniformly sampling from the

dataset (features) and B(x) is short for the distribution equation 3 throughout the paper. According to
direct calculation (details in Lemma B.3), the optimal prediction function is f⋆ = argminf L̄(f) =
f0. Our goal is to find a function fθ using the dataset D to minimize the Excess Risk:

ExcessRisk(f) = L̄(f)− L̄(f0). (4)

We consider the nonparametric logistic regression task where we do not require f0 to be represented
by a limited number of parameters. Instead, we impose certain regularity conditions. Specifically, our
focus is on estimating target functions within the class of first-order bounded variation:

f0 ∈ BV(1)(B,Cn) :=

{
f : [−xmax, xmax] → R

∣∣∣∣ max
x

|f(x)| ≤ B,

∫ xmax

−xmax

|f ′′(x)|dx ≤ Cn

}
.
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Here, f ′′ is the second-order weak derivative of f , and we introduce the shorthand TV(1)(f) :=∫ xmax

−xmax
|f ′′(x)|dx, which we refer to as the TV(1) norm of f throughout the paper. Some discussions

of the historical significance and challenges in estimating BV functions can be found in Section 1.2 of
Hu et al. (2022). The complexity of such function class is further explored in Appendix B.3.

3 MAIN RESULTS

In this section, we state the main results for stable solutions of GD (functions in F(η,D)). Section
3.1 connects the flatness of the function to the smoothness and characterizes the implicit bias of stable
solutions in the function space. Section 3.2 provides an example of an arbitrarily flat yet overfitting
solution, thus showing that flatness alone could not ensure generalization. Section 3.3 considers the
generalization ability through bounding the generalization gap by the coefficient scale. Based on the
result, Section 3.4 refines the bound in Section 3.1 and derives a total variation bound independent
of the output function. Finally, Section 3.5 derives a concrete Excess Risk bound by leveraging the
implicit bias shown in Section 3.4.

3.1 IMPLICIT BIAS OF MINIMA STABILITY IN THE FUNCTION SPACE

Theorem 3.1 provides a weighted TV(1) upper bound for the learned stable solution f = fθ.

Theorem 3.1. For a threshold γ > 0, define the “uncertain” data points with respect to fθ as Aγ ={
xi ∈ D

∣∣∣∣ |fθ(xi)| ≤ γ

}
and let nγ = |Aγ |. Define the function Γ(γ) = e−γ

(1+e−γ)2
= Ω(e−γ).

Then for any function f = fθ such that the training loss L is twice differentiable at θ and any γ > 01,

1 + 2

∫ xmax

−xmax

|f ′′(x)|hγ(x)dx ≤ n

nγΓ(γ)

(
λmax(∇2L(θ)) + 2xmaxL(f)

)
, (5)

where hγ(x) = min
{
h+
γ (x), h

−
γ (x)

}
and

h+
γ (x) = P2

(
X > x

∣∣ X ∈ Aγ

)
·
√
1 +

(
E
[
X
∣∣ X ∈ Aγ , X > x

])2·E [X − x

∣∣∣∣X ∈ Aγ , X > x

]
,

h−
γ (x) = P2

(
X < x

∣∣ X ∈ Aγ

)
·
√
1 +

(
E
[
X
∣∣ X ∈ Aγ , X < x

])2·E [x−X

∣∣∣∣X ∈ Aγ , X < x

]
,

where for both functions, X is a random sample from the dataset under the uniform distribution.
Moreover, if f = fθ is a solution in F(η,D), we can replace λmax(∇2L(θ)) in equation 5 by 2

η .

The proof of Theorem 3.1 is deferred to Appendix D. The theorem connects the flatness (measured
by the maximum eigenvalue of the Hessian matrix) in the parameter space to the smoothness of
the output function (measured by a weighted TV(1) norm) in the function space. More specifically,
the theorem claims that between the left-most and right-most “uncertain sets” where the learned
function has uncertain predictions, the learned function must be regular in the sense of first-order
total variation. In the following, we first discuss the trade-off between the parameters.

As the threshold γ increases, the “uncertain set ” Aγ will also become larger. As a result, the term
n
nγ

on the R.H.S will become smaller, while the interior of Aγ where the TV constraint is strong will
also be larger. Both effects tend to make the result more significant. However, the term 1

Γ(γ) ≈ eγ on
the R.H.S will grow exponentially, and thus balance out the aforementioned effects. Therefore, there
is a trade-off in the choice of γ. Meanwhile, since we do not have any guarantee on the scale of fθ,
the portion or even the existence of the uncertain set Aγ for a fair γ is not ensured. Therefore, the
question whether flatness could imply generalization still remains.

3.2 FLATNESS ALONE DOES NOT ENSURE GENERALIZATION

Unfortunately, we provide a negative answer to the question whether flatness could imply generaliza-
tion under logistic regression. We construct the following general example and show that for any
choice of labels, we can construct a solution that is arbitrarily flat and overconfident at infinity.

Example setup. Let xmax = 1, then the interval becomes [−1, 1]. The design {xi}ni=1 is chosen to
be n equally spaced points in [−1, 1]. For any label set {yi}ni=1 ∈ {−1, 1}n, let γmax > 0 be some

1W.l.o.g. we assume that xmax ≥ 1. If this does not hold, we can directly replace xmax in the bounds by 1.

5
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arbitrarily large constant, below we consider the two-layer ReLU NN f where f(xi)yi = γmax and
f is (almost) linear between any two neighboring design points. We will show that there exists some
function f = fθ satisfying the conditions above while λmax(∇2

θL(θ)) is small. By saying “almost
linear”, we mean that we need to perturb the knots from the design points by a small ϵ to satisfy the
twice differentiable assumption.

Theorem 3.2. For the example above, there exists a choice of θ such that fθ(xi) = yiγmax for all
i ∈ [n], L(θ) is twice differentiable w.r.t. θ and λmax

(
∇2

θL(θ)
)
≤ O

(
(n2γmax + 1)e−γmax

)
.

The proof of Theorem 3.2 is deferred to Appendix E. Since limγ→∞ γe−γ = 0, Theorem 3.2 shows
that as the learned function tends to interpolate (i.e. the training loss gets close to 0), the landscape of
the parameter is actually becoming flat. In other words, the solution that predicts ∞ for y = 1 and
−∞ for y = −1 is an arbitrarily flat global minimum with 0-training loss, while these solutions are
heavily overfitting if the labels are noisy. This is inherently different from nonparametric regression
with squared loss (Qiao et al., 2024), where all interpolating solutions must be sharp. However,
although our Theorem 3.1 could not exclude these overfitting solutions, in our experiments GD with a
constant step size does not actually converge to such interpolating solutions. To close the gap, we will
show in the following sections that under some mild assumptions, flatness could imply generalization
within certain regions of the data support.

3.3 BOUNDING THE GENERALIZATION GAP BY WEIGHT DECAY

Recall that the populational loss is defined as L̄(f) = Ex∼DEy∼B(x) log
(
1 + e−yf(x)

)
. Theorem 3.3

states that the generalization gap
∣∣L(f)− L̄(f)

∣∣ can be bounded by the ℓ2 norm of parameters.

Theorem 3.3. For any constant B > 0, with probability 1− δ, for any two-layer ReLU NN f = fθ
supported on [−xmax, xmax] such that ∥f∥∞ ≤ B, it holds that

∣∣L(f)− L̄(f)
∣∣ ≤ O


 log(1 + eB)4 ·max{∥θ∥22, 1} · xmax log

(
2max{∥θ∥2

2,1}
δ

)2
n2


1
5

 , (6)

where the randomness is over the data generation process.

Theorem 3.3, whose proof is deferred to Appendix F, claims that if the scale of θ is small, then the
generalization gap of fθ will also be small. We first point out that the usage of ∥θ∥2 is mainly for
the ease of presentation, and the ∥θ∥22 in equation 6 can be replaced by the scale of coefficients only∑

i:b
(1)
i /w

(1)
i ∈[−xmax,xmax]

∣∣∣w(1)
i w

(2)
i

∣∣∣, which upper bounds the TV(1) norm of fθ over [−xmax, xmax].
The other parts of ∥θ∥2 (i.e. the biases) only contribute to a logarithmic term. The rigorous analysis is
deferred to Appendix F.3. Therefore, under various cases (e.g. training with weight decay (Zhang &
Wang, 2022) or large learning rate) where the ∥θ∥2 or

∑
i:b

(1)
i /w

(1)
i ∈[−xmax,xmax]

∣∣∣w(1)
i w

(2)
i

∣∣∣ grows at
a rate of order o(n), Theorem 3.3 implies a diminishing generalization gap bound as n → ∞.

Meanwhile, under the case where the ∥θ∥2 or
∑

i:b
(1)
i /w

(1)
i ∈[−xmax,xmax]

∣∣∣w(1)
i w

(2)
i

∣∣∣ grows at a rate of
order o(n), if the optimization is effective such that the training loss L(fθ) is smaller than L(f0) (this
is supported by our experiments), we can further derive a diminishing excess risk bound for fθ of the
same order as equation 6. The assumptions and excess risk bounds are formalized in Appendix F.2.
Finally, Theorem 3.3 focuses on the setting with logistic loss and fixed design (features). The analysis
naturally extends to more general loss function that is Lipschitz continuous w.r.t. f (Lemma F.5) or
the statistical learning setting where the data (xi, yi) are i.i.d. samples from some joint distribution P
with populational risk defined as R(f) := E(x,y)∼Pℓ(f, (x, y)) (Corollary F.7).

3.4 TOTAL VARIATION BOUND INDEPENDENT OF THE OUTPUT FUNCTION

In this part, we will derive a (weighted) TV(1) bound independent of the output function, based on
the assumption that the excess risk is diminishing as the number of data points increases.

Assumption 3.4. We assume that the learned function f = fθ satisfies L̄(f)− L̄(f0) ≤ ϵ(n), i.e.

Ex∼DEy∼B(x) log
(
1 + e−yf(x)

)
≤ Ex∼DEy∼B(x) log

(
1 + e−yf0(x)

)
+ ϵ(n),

for some function ϵ(n) such that limn→∞ ϵ(n) = 0.

6
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The Assumption 3.4 holds by choosing ϵ(n) to be any diminishing excess risk bound. In addition,
ϵ(n) can be the bound in Appendix F.2 as a special case. Now we are ready to derive a TV(1) bound
based on ϵ(n) and showcase the asymptotic performance of fθ as n → ∞.

Theorem 3.5. For a threshold γ > 0 and probability p > 0, define the uncertain set (w.r.t.

f0) as Āγ :=

{
x ∈ [−xmax, xmax]

∣∣∣∣ |f0(x)| ≤ γ

}
and the truncated uncertain set as Āp

γ :={
x ∈ Āγ

∣∣∣∣ min
(
PX∼D(X ∈ Āγ , X > x), PX∼D(X ∈ Āγ , X < x)

)
≥ p

}
. Define Γ(γ) =

e−γ

(1+e−γ)2
= Ω(e−γ). Then for any function f = fθ such that the training loss L is twice

differentiable at θ and any γ > ζ > 0, if Assumption 3.4 holds with ϵ(n), for some function
p(n) = O

(
ϵ(n) · eγ+ζ · ζ−2

)
,

Γ(γ)·
(
PX∼D

(
X ∈ Āγ−ζ

)
− p(n)

)
·
(
1 + 2

∫ xmax

−xmax

|f ′′(x)| h̄γ,ζ(x, n)dx

)
≤ λmax(∇2L(θ))+2xmaxL(f),

(7)
where h̄γ,ζ(x, n) = min

{
h̄+
γ,ζ(x, n), h̄

−
γ,ζ(x, n)

}
and

h̄+
γ,ζ(x, n) =

(
PX∼D(X > x, X ∈ Āγ−ζ)− p(n)

PX∼D(X ∈ Āγ+ζ) + p(n)

)2

·
EX∼D

[
(X − x)1

(
X > x, X ∈ Āp(n)

γ−ζ

)]
PX∼D

[
X > x, X ∈ Āγ+ζ

]
+ p(n)

,

h̄−
γ,ζ(x, n) =

(
PX∼D(X < x, X ∈ Āγ−ζ)− p(n)

PX∼D(X ∈ Āγ+ζ) + p(n)

)2

·
EX∼D

[
(x−X)1

(
X < x, X ∈ Āp(n)

γ−ζ

)]
PX∼D

[
X < x, X ∈ Āγ+ζ

]
+ p(n)

.

Furthermore, since the features {xi}ni=1 are i.i.d. samples from Px, as n → ∞, the asymptotic total
variation guarantee can be derived by plugging in p(n) = 0 and replacing X ∼ D with X ∼ Px

in equation 7 and h̄γ,ζ(x, n). Moreover, if f = fθ is a stable solution in F(η,D), we can replace
λmax(∇2L(θ)) in equation 7 and the corresponding asymptotic guarantee by 2

η .

The complete version and proof of Theorem 3.5 is deferred to Appendix G. The first part of Theorem
3.5 is a relaxation of equation 5 in Theorem 3.1. More specifically, under the assumption (Assumption
3.4) that the excess risk of fθ is bounded, we can bound the gap of fθ and f0 (Lemma G.2). As a
result, we can approximate the uncertain set A in Theorem 3.1 by Ā or Āp, with a correction term
p(n) that is proportional to ϵ(n). Although the functions satisfying equation 7 is actually a superset
of equation 5, note that for a fixed γ > 0, Āγ only depends on f0, while Āp

γ only depends on f0 and
the feature set {xi}ni=1. This is in striking contrast to Theorem 3.1, where nγ and hγ(x) all depend
on the output function fθ, which can be arbitrary functions. Meanwhile, as n converges to infinity,
p(n) = O(ϵ(n)) will converge to 0, while the empirical distribution x ∼ D will converge to x ∼ Px.
Therefore the asymptotic smoothness guarantee only depends on f0 and the feature distribution Px.
The asymptotic smoothness guarantee can be found in Theorem G.5, while we leave the discussions
about trade-offs between parameters to Appendix G.1.

Remark 3.6. Different from the nonparametric regression setting (Qiao et al., 2024) where the
smoothness constraint holds over the whole interior of the data support, in logistic regression the
smoothness guarantee is restricted to the interior of the convex hull of “uncertain regions”. For
the boundary part of the interval with small randomness (i.e. large |f0(x)| value), the smoothness
constraint is weak since a large γ is required to incorporate such region in Āγ . Such result poses
an interesting separation of logistic regression with (nearly) separable data and non-separable data.
Previously, Wu et al. (2024) shows that GD with large step size could help with the convergence of
logistic regression with (linearly) separable data. As a complement, our results show that large step
size also helps with the generalization ability of the trained NN in the non-separable regime.

3.5 MINIMA STABILITY OF GD LEADS TO NEAR-OPTIMAL EXCESS RISK

With the weighted TV(1) bound in Theorem 3.5, we are ready to refine the excess risk bound in
Section 3.3 over the region where h̃γ,ζ(x, n) := Γ(γ)

(
PX∼D

(
X ∈ Āγ−ζ

)
− p(n)

)
h̄γ,ζ(x, n) in

Theorem 3.5 is lower bounded. Recall that the features {xi}ni=1 are i.i.d. samples from some
distribution Px supported on [−xmax, xmax].
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Theorem 3.7. For any interval I ⊂ [−xmax, xmax] such that there exists γ > ζ > 0 satisfying
that with probability at least 1 − δ

2 , h̃γ,ζ(x, n) ≥ c, ∀ x ∈ I for some constant c > 0, for any
stable solution f = fθ in F(η,D) such that the training loss L is twice differentiable at θ and
∥f∥∞ ≤ B, if f is “optimized” over I, i.e.,

∑
xi∈I ℓ(f, (xi, yi)) ≤

∑
xi∈I ℓ(f0, (xi, yi)) and

f0 ∈ BV(1)
(
B, 1

c

(
1
η + xmax(1 +B)

))
, then with probability 1− δ,

ExcessRiskI(f) = L̄I(f)− L̄I(f0) ≤ O


 (B + 1)4

(
xmax

η + x2
max(1 +B)

)
log(1/δ)2

n2
I


1
5
 ,

(8)
where L̄I(f) =

1
nI

∑
xi∈I Ey′

i∼B(xi)ℓ(f, (xi, y
′
i)), nI is the number of features xi in I and the O(·)

also absorbs the constant 1
c and 1

|I| .

The proof of Theorem 3.7 is deferred to Appendix H. Theorem 3.7 focuses on an interval I where
h̃ can be lower bounded. In this way, we ignore the extreme data points and derive an Excess
Risk upper bound (restricted to I) of order Õ(n

−2/5
I ), which matches the minimax optimal rate for

estimating BV(1) functions (Zhang et al., 2024). In addition, Theorem 3.7 does not have explicit
dependence on the width of NN k, and therefore holds for arbitrary k, even if the neural network is
heavily over-parameterized (k ≫ n). For the choice of I, similar to the analysis in Qiao et al. (2024,
App. G), I can be chosen to incorporate most of the data points in the convex hull of “uncertain
regions”.

Meanwhile, note that minima stability (Theorem 3.1 & Theorem 3.5) poses stronger smoothness
constraint in the middle of the interval, while the constraint becomes weaker towards the boundary.
Therefore, compared to Theorem 3.3, Theorem 3.7 provides a refined analysis focusing on the interior
of the convex hull of “uncertain regions” instead of the whole interval. The superiority of Theorem 3.7
over Theorem 3.3 will be significant when the learned function f has huge volatility at the boundary
while being smoother in the middle, where the TV(1) norm can be much smaller when restricted to
the interval I.

Lastly, the Excess Risk bound depends on the learning rate η as η−1/5. This arises because a larger
learning rate leads to a smaller bound on TV(1) of the learned function f . As a result, the hypothesis
space excludes many non-smooth functions, which tightens the Excess Risk bound. However, a
larger learning rate is not always beneficial. If η is too large, GD may diverge. Even in cases where
convergence is maintained, the resulting class of stable solutions may be insufficiently expressive to
approximate the ground truth function f0, particularly when

∫ xmax

−xmax
|f ′′

0 (x)|dx ≫ 1
cη + xmax(1+B)

c ,
thereby invalidating the assumption of an “optimized” solution. In our experiments, we numerically
verify this assumption across a wide range of η values, and show that by tuning η, we effectively
adapt to the unknown value of TV(1)(f0).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

In this section, we empirically justify our results by training a (mildly overparameterized) two-layer
ReLU neural network to minimize logistic loss using gradient descent with varying step sizes. The
input dataset comprises of n equally spaced fixed design points {xi}ni=1 located in [−2, 2], where
the number of data n is chosen to be 80, 160, 400 in different trials. The noisy labels yi follow the
distribution equation 3 with the ground-truth function f0(x) = (x+1)1(x ≤ 0)+(−x+1)1(x > 0).
The two-layer ReLU NN is parameterized by θ as in Section 2 with the number of neurons k = 400.
The network uses standard parameterization (scale factor of 1) and the parameters are initialized
randomly (see Figure 14 for the initial basis functions).

4.2 EXPERIMENTAL RESULTS

Figure 2 illustrates the relationship between the learned ReLU NN that GD-training stabilizes on and
the choice of step size. The main take-aways are (a) GD with large learning rate stably converges to
flatter minima which represent more regular functions (in TV(1)); (b) Training with smaller learning

8
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Figure 2: Highlight of our empirical results. The left panel illustrates the learned functions for GD
with large (0.8 or 1) and small (0.01) learning rates using different numbers of samples. The middle
panel plots the impact of varying learning rate on the complexity and performance of the learned
function. The right panel showcases the following relationships: (1) TV(1) norm vs number of data
and (2) excess risk vs number of data under several fixed choices of learning rate.

rate will lead to smaller training loss, while the learned function tends to overfit and showcase the
standard U-shape for excess risk and excess error2; (c) When we fix the learning rate η and increase
the number of data n, overfitting is relieved and the excess risk converges to 0 quickly, thus justifying
Assumption 3.4; (d) Meanwhile, the TV(1) norm of the learned function does not increase with n,
which implies the optimality of the refined version of Theorem 3.3 (in the order of n).

We leave more experimental details to Appendix A. The learned functions and learning curves
with more choices of η and n are shown in Appendix A.1, which further supports the claims in
Theorem 3.1 and 3.5. Meanwhile, Appendix A.2 provides more illustrations of the relationship
between complexity & performance & sparsity of the learned function and the learning rate, where the
results are generally consistent with the theorems. Moreover, we highlight that all results satisfy the
“optimized” assumption in Theorem 3.7. Lastly, Appendix A.3 visualizes the learned basis functions
under different learning rates. The learned representations are very different from initialization, thus
our experiments are clearly describing phenomena not covered by the “kernel” regime.

5 CONCLUSION

In this paper, we consider the well-motivated generalization ability under logistic loss from a lens of
minima stability. The key take-aways are: (1) Flatness alone could not ensure generalization due to
the existence of arbitrarily flat yet interpolating solutions; (2) Flatness + low-confidence predictions
together could render generalization, while the guarantee is tighter within the region with less
confidence (more uncertainty); (3) GD with large learning rate could converge to a sharpness of 2/η
by either making the function smoother or more confident, which could depend on the initialization
(and other factors). Therefore, an interesting direction is to study the relationship between smoothness
and confidence by incorporating training dynamics, which we leave to future work.

2Excess error for f is L̃(f) − L̃(f0), where L̃(f) := Ex∼D[1(f(x) ≥ 0)(1 − σ(f0(x))) + 1(f(x) <
0)σ(f0(x))], which measures the expected 0-1 loss if we use the sign of f as the prediction.
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A FULL EXPERIMENTAL RESULTS

A.1 STABLE MINIMA GD CONVERGES TO AND LEARNING CURVES
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Figure 3: Illustration of the solutions gradient descent with learning rate η converges to (n = 80: Part
I). As η decreases, the fitted function goes from simple to complex. Any line below the L(f0) line
satisfies the “optimized” assumption from Theorem 3.7 and Lemma F.10. Test loss denotes L̄(f).
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Figure 4: Illustrations (n = 80: Part II). As η decreases further, the fitted function starts to overfit.
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Figure 5: Illustration of the solutions GD with learning rate η converges to (n = 160: Part I).
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Figure 6: Illustration of the solutions gradient descent with learning rate η converges to (n = 160:
Part II). As η decreases, the fitted function goes from simple to complex. Compared to the case where
n = 80 in Figure 3, for the same η, the learned function approximates the ground-truth better.
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Figure 7: Illustration of the solutions (n = 160: Part III). As η decreases further, the fitted function
starts to overfit, while the overfitting is not as catastrophic as the case with fewer samples (Figure 4).

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0
Trained ReLU NN with n = 400, =1

True Function
Noisy Labels
Fitted Predictions
Fitted Function

0 200 400 600 800 1000
Iterations (in 100s)

100

101

Lo
ss

Learning Curves:  n = 400, =1
Train Loss
Test Loss
L(f0)

0 200 400 600 800 1000
Iterations (in 100s)

101

2 × 101

3 × 101

4 × 101

To
ta

l V
ar

ia
tio

n

Curve of TV1: n = 400, =1
TV1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

Trained ReLU NN with n = 400, =0.8

True Function
Noisy Labels
Fitted Predictions
Fitted Function

0 200 400 600 800 1000
Iterations (in 100s)

100

101

Lo
ss

Learning Curves:  n = 400, =0.8
Train Loss
Test Loss
L(f0)

0 200 400 600 800 1000
Iterations (in 100s)

101

2 × 101

3 × 101

4 × 101

To
ta

l V
ar

ia
tio

n

Curve of TV1: n = 400, =0.8

TV1

Figure 8: Illustrations (n = 400: Part I). For large learning rate, the learned function is close to f0.
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Figure 9: Illustration of the solutions gradient descent with learning rate η converges to (n = 400:
Part II). As η decreases, the fitted function goes from simple to complex. Compared to the cases
where n = 80 in Figure 3 or n = 160 in Figure 6, for the same η, the learned function approximates
the ground-truth much better.
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Figure 10: Illustration of the solutions gradient descent with learning rate η converges to (n = 400:
Part III). As η decreases further, the fitted function starts to overfit, while the overfitting is mild
compared to the cases with fewer samples (Figure 4 and Figure 7).

In conclusion, for datasets with different numbers of data, as η decreases, the fitted function goes
from simple to complex. Moreover, as η decreases further, the fitted function starts to overfit. Among
different cases, for the case with larger number of data, the overfitting is less catastrophic.

A.2 LOSS & COMPLEXITY OF THE LEARNED FUNCTIONS VS STEP SIZE & NUMBER OF
DATA
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Figure 11: Loss & complexity of the learned function vs number of data. For a fixed η, as n goes
larger, the 1st order total variation does not increase while the excess risk converges to 0 quickly.

In Figure 12, for datasets with different numbers of data, as η decreases, the training loss becomes
smaller. Meanwhile, tuning η gives the classical U-shape for excess risk and excess error, which is
consistent with Theorem 3.7. At the same time, as η becomes small, λmax(Hessian) approximates
2/η, thus justifying our consideration of “edge of stability” and stable solutions defined as equation 2.
Lastly, the 1st order total variation (TV(1)) of the learned function increases monotonically as n → 0,
which supports Theorem 3.1 and 3.5. Figure 13 indicates that the weighted TV1 constraint is indeed
making the learned function sparse (in the coefficient vector).
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Figure 12: The left panel plots the performance (training loss, excess risk, excess error) of the learned
functions under different learning rates. The right panel illustrates the impact of learning rate on the
flatness (λmax(Hessian)) and complexity (TV(1)) of the learned function.
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Figure 13: Sparsity of the learned coefficients in sparse L1 and Lp norm as the function of 1/η.
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A.3 REPRESENTATION LEARNING: VISUALIZATION OF LEARNED BASIS FUNCTIONS

In this part, we visualize the basis functions at initialization and after training with different step
sizes.
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Figure 14: Illustration of the learned basis functions with learning rate η. It is clear from the figures
that there are substantial representation learning, where the learned basis functions are very different
from initialization. Also, the structure of active basis functions gets simpler as the learning rate η
gets bigger.

There are several interesting insights from Figure 14. First, the learned basis functions are very
different from the initialization, so a lot of representation learning is happening, in comparison to the
“kernel” regime in which nearly no representation learning is happening. Second, as η gets smaller,
the complexity of the learned basis functions and the number of knots in the fitted function increase.
Third, even with large learning rate, the number of active basis functions is still large, which is quite
different from the representation leaning for training a two-layer ReLU NN to minimize the MSE
loss (Qiao et al., 2024, Figure 7), where large learning rate leads to very few active basis functions.
Lastly, the learned basis function displays a strong “clustering” effect in the sense that despite
overparameterization, many learned basis functions end up having the same activation threshold on
the data support.

A.4 EXAMPLE OF CONVERGENCE TO INTERPOLATING SOLUTIONS

In this part, we construct an example to show that when the number of data points n is small, GD
with large learning rate can actually converge to interpolating solutions at infinity, which supports the
negative result in Appendix E.
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Figure 15: Illustration of the output function, learning curves and the curve of smoothness &
sharpness. Interestingly, “Edge of Stability” does not happen and λmax(Hessian) decreases to 0.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
Initialization of ReLU NN

True Probability
Noisy Labels
Fitted Probabilities

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
Trained ReLU NN after 10 iterations

True Probability
Noisy Labels
Fitted Probabilities

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
Trained ReLU NN after 100 iterations

True Probability
Noisy Labels
Fitted Probabilities

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
Trained ReLU NN after 1000 iterations

True Probability
Noisy Labels
Fitted Probabilities

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
Trained ReLU NN after 10000 iterations

True Probability
Noisy Labels
Fitted Probabilities

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
Trained ReLU NN after 100000 iterations

True Probability
Noisy Labels
Fitted Probabilities

Figure 16: Illustration of the training dynamics. We plot true probability (i.e. σ(f0)) vs fitted
probability (i.e. σ(fθ)). Also, we shift the labels from {−1, 1} to {0, 1} for a better illustration. The
learned function tends to interpolate the data after a small number of iterations.

In the example, the design set {xi}ni=1 is chosen to be n equally spaced points in [−2, 2] with n = 10.
The ground-truth function f0(x) = 0 for any x ∈ [−2, 2]. The two-layer ReLU NN is mildly
over-parameterized with k = 20 while initialized randomly. During the training, we minimize the
logistic loss via GD with learning rate η = 1, and we train for 100000 iterations.

In the left panel of Figure 15, the final output function (after 100000 iterations) tends to be interpolat-
ing and heavily overfitting. As a result, the training loss converges to 0, as shown in the middle panel.
Most interestingly, as supported by the right panel of Figure 15, GD actually bypasses the “Edge of
Stability” regime. Instead of oscillating around 2/η = 2, the largest eigenvalue of the Hessian matrix
tends to converge to 0, although in a non-monotonic way. The performance is consistent with our
Theorem 3.2, which claims that interpolating solutions can be arbitrarily flat. Together with Figure
16, the training dynamics also corroborate the implication of Theorem 3.2: the more confident the
correct prediction is, the flatter the landscape.

The case with large n. When n becomes large, GD with a constant learning rate will probably
converge to some finite function if initialized randomly, as shown in Figure 2. However, flat yet
interpolating solutions still exist. Moreover, as shown in Figure 17, when the ReLU NN is initialized
to be correct and confident, GD with constant learning rate will further push the predictions to be
more confident, although very slowly. The main observations are: (1) the prediction for the part with
consecutive 1’s or -1’s as labels will become more confident at a faster rate compared to the part with
joint 1 and -1; (2) as we initialize the NN to be more confident, the scale of the predictions will grow
at a slower speed.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

4

2

0

2

4

Initialization of the ReLU NN

True Function
Noisy Labels
Initial Predictions
Initial Function

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

10

5

0

5

10

Trained ReLU NN with 1000000 iterations
True Function
Noisy Labels
Fitted Predictions
Fitted Function

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
10.0

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0
Initialization of the ReLU NN

True Function
Noisy Labels
Initial Predictions
Initial Function

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
15

10

5

0

5

10

15
Trained ReLU NN with 1000000 iterations

True Function
Noisy Labels
Fitted Predictions
Fitted Function

Figure 17: Illustration of the confidently initialized NN and the trained NN after 1000000 iterations.
For both rows, n is chosen to be 80 while k is slightly larger than n. The learning rate η is tuned
to be as large as possible such that GD does not diverge. The first row initializes the NN such that
fθ(xi)yi ≈ 5 for all i ∈ [n], and trains via GD with η = 0.005. The second row initializes the NN
such that fθ(xi)yi ≈ 10 for all i ∈ [n], and trains via GD with η = 0.5.

B TECHNICAL LEMMAS

B.1 CONNECTION BETWEEN STABILITY AND FLATNESS

For a twice differentiable minimum θ⋆, direct application of Taylor’s expansion implies

L(θ) ≈ L(θ⋆) + (θ − θ⋆)T∇L(θ⋆) + 1

2
(θ − θ⋆)T∇2L(θ⋆)(θ − θ⋆), (9)

where ∇2L is the Hessian matrix. Note that ∇L(θ⋆) = 0. Therefore, as θt converges to θ⋆, we
can approximate the formula for GD as θt+1 ≈ θt − η

(
∇2L(θ⋆)(θt − θ⋆)

)
. Motivated by the

approximation, Wu et al. (2018) first brought up the notion of linear stability.

Definition B.1 (Linear stability). With the update rule θt+1 = θt − η
(
∇2L(θ⋆)(θt − θ⋆)

)
, a twice

differentiable local minimum θ⋆ of L is said to be ϵ linearly stable if for any θ0 in the ϵ-ball Bϵ(θ
⋆),

it holds that lim supt→∞ ∥θt − θ⋆∥ ≤ ϵ.

We remark that since the update of GD does not have any randomness, we remove the expectation
before ∥θt − θ⋆∥ (which appears in the definition in Wu et al. (2018); Mulayoff et al. (2021)). The
definition of “linear stability” ensures that the optimization could stabilize around the local minimum
θ⋆ once it gets close enough to θ⋆. The following lemma connects linear stability to the flatness of
the local minima by showing that the set of stable minima is equivalent to the set of flat local minima
whose largest eigenvalue of Hessian matrix is bounded by 2/η.

Lemma B.2. Consider the update rule in Definition B.1, for any ϵ > 0, a local minimum θ⋆ is an ϵ
linearly stable minimum of L if and only if λmax(∇2L(θ⋆)) ≤ 2

η .

Proof of Lemma B.2. It holds that

θt+1 − θ⋆ = θt − θ⋆ − η∇2L(θ⋆)(θt − θ⋆)

=
(
I − η∇2L(θ⋆)

)
(θt − θ⋆),

(10)
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where the first equation is from the update rule in Definition B.1. As a result,

θt − θ⋆ =
(
I − η∇2L(θ⋆)

)t
(θ0 − θ⋆). (11)

On one hand, if λmax(∇2L(θ⋆)) ≤ 2
η , it holds that

∥θt − θ⋆∥ ≤
∥∥I − η∇2L(θ⋆)

∥∥t
2
· ∥θ0 − θ⋆∥ ≤ ∥θ0 − θ⋆∥, (12)

where the second inequality is because all the eigenvalues of I − η∇2L(θ⋆) is bounded between
[−1, 1]. Therefore, θ⋆ is ϵ linearly stable for any ϵ.

On the other hand, if θ⋆ is ϵ linearly stable, we choose θ0 such that θ0−θ⋆

∥θ0−θ⋆∥ is the top eigenvector of
∇2L(θ⋆) and ∥θ0 − θ⋆∥ = ϵ. Then we have

∥θt − θ⋆∥ =
∣∣1− ηλmax

(
∇2L(θ⋆)

)∣∣t · ϵ, (13)

which implies that lim supt→∞
∣∣1− ηλmax

(
∇2L(θ⋆)

)∣∣t ≤ 1, and therefore λmax(∇2L(θ⋆)) ≤ 2
η ,

which finishes the proof.

B.2 PROPERTIES OF LOGISTIC LOSS

Recall that the distribution B(x) is our data generation assumption equation 3. The first property is
that the optimal prediction function f⋆ is the ground-truth function f0.

Lemma B.3. For any feature x in the dataset, the optimal prediction function f⋆ satisfies that
f⋆(x) = argminf Ey∼B(x) log

(
1 + e−yf

)
= f0(x).

Proof of Lemma B.3. Let p = σ(f0(x)) =
ef0(x)

1+ef0(x) , f⋆(x) should be

f⋆(x) =argminf p · log
(
1 + e−f

)
+ (1− p) · log

(
1 + ef

)
= log

(
p

1− p

)
= f0(x),

(14)

where the second equation is derived by taking derivative of the loss.

Remark B.4. For the fixed design (feature) setting, f⋆ must be the same as f0 for the features x
from the dataset, while f⋆ can take any values for other features.

Meanwhile, the log function has the following property.

Lemma B.5. For x > 0, the following inequality holds:

x

1 + x
≤ log(1 + x) ≤ x. (15)

Proof of Lemma B.5. The inequality directly results from the fact (log(1 + t))′ = 1
1+t .

B.3 METRIC ENTROPY OF THE BV FUNCTION CLASS

Recall that we assume the target function belongs to the first order bounded variation class

f0 ∈ BV(1)(B,Cn) :=

{
f : [−xmax, xmax] → R

∣∣∣∣ max
x

|f(x)| ≤ B,

∫ xmax

−xmax

|f ′′(x)|dx ≤ Cn

}
.

(16)

In this part, we characterize the complexity of such function class via the notion of metric entropy.
We first state the definition of metric entropy (Wainwright, 2019) below.

Definition B.6. For a set T with a corresponding metric ρ(·, ·), let N(ϵ,T, ρ) denote the ϵ-covering
number of T under metric ρ. Then the metric entropy of T with respect to ρ is logN(ϵ,T, ρ).
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For examples of metric entropy, we refer the readers to Chapter 5 of Wainwright (2019). Next we
bound the metric entropy of BV(1)(1, 1), which is helpful for bounding the metric entropy of BV(1)
function class with other (larger) parameters. Regarding the metric, we consider the ℓ∞ metric
defined as ρ∞(f, g) = supx∈Ω |f(x)− g(x)| over the domain Ω. As a short hand, we denote ρ∞ by
∥ · ∥∞.

Lemma B.7. [Lemma C.4 of Qiao et al. (2024)] Assume the set T1 ={
f : [−1, 1] → R

∣∣∣∣ ∫ 1

−1
|f ′′(x)|dx ≤ 1, |f(x)| ≤ 1

}
and the metric is the ℓ∞ distance ∥ · ∥∞, then

there exists a universal constant C1 > 0 such that for any ϵ > 0, the metric entropy of (T1, ∥ · ∥∞)
satisfies

logN(ϵ,T1, ∥ · ∥∞) ≤ C1ϵ
− 1

2 . (17)

Remark B.8. The idea behind the proof is that the set T1 is a bounded subset of the Besov space
B2

1,∞, and the metric entropy of such bounded subset is summarized in Corollary 2 of Nickl &
Pötscher (2007). A rigorous proof of Lemma B.7 is stated in Qiao et al. (2024). We refer interested
readers to Edmunds & Triebel (1996) for a detailed introduction of Besov space, DeVore & Lorentz
(1993) for the connection between bounded total variation class and Besov space, and Nickl &
Pötscher (2007) for more discussions about the metric entropy of Besov space.

C CALCULATION OF GRADIENT AND HESSIAN MATRIX

In this section, we calculate the gradient and Hessian matrix of L(θ) with respect to θ. Recall that
L(θ) = 1

n

∑n
i=1 log

(
1 + e−yifθ(xi)

)
. Then the gradient of L(θ) is calculated as follows:

∇θL(θ) =
1

n

n∑
i=1

−yie
−yif(xi)

1 + e−yif(xi)
∇θf(xi), (18)

where f = fθ for the ease of presentation. Moreover, we further calculate the Hessian matrix:

∇2
θL(θ) =

1

n

n∑
i=1

−yie
−yif(xi)

1 + e−yif(xi)
∇2

θf(xi) +
1

n

n∑
i=1

y2i e
−yif(xi)(

1 + e−yif(xi)
)2∇θf(xi)∇θf(xi)

T

=
1

n

n∑
i=1

−yie
−yif(xi)

1 + e−yif(xi)
∇2

θf(xi) +
1

n

n∑
i=1

e−yif(xi)(
1 + e−yif(xi)

)2∇θf(xi)∇θf(xi)
T ,

(19)

where the second equation holds because y2i = 1.

Then what remains is to calculate ∇θfθ(x) and ∇2
θfθ(x). Recall that fθ(x) =∑k

i=1 w
(2)
i ϕ

(
w

(1)
i x+ b

(1)
i

)
+ b(2) where ϕ(x) = max{x, 0}. Also, we denote θ =

(w
(1)
1 , · · · , w(1)

k , b
(1)
1 , · · · , b(1)k , w

(2)
1 , · · · , w(2)

k , b(2))T .

C.1 CALCULATION OF ∇θfθ(x)

Resulting from direct calculation, for a given x ∈ [−xmax, xmax] we have
∇

w
(1)
i

fθ(x) = xw
(2)
i 1

(
w

(1)
i x+ b

(1)
i > 0

)
, ∀ i ∈ [k]

∇
b
(1)
i
fθ(x) = w

(2)
i 1

(
w

(1)
i x+ b

(1)
i > 0

)
, ∀ i ∈ [k]

∇
w

(2)
i

fθ(x) = ϕ
(
w

(1)
i x+ b

(1)
i

)
=
(
w

(1)
i x+ b

(1)
i

)
1
(
w

(1)
i x+ b

(1)
i > 0

)
, ∀ i ∈ [k]

∇b(2)fθ(x) = 1

(20)

C.2 CALCULATION OF ∇2
θfθ(x)

In this part, we calculate ∇2
θfθ(x) for a given x ∈ [−xmax, xmax]. Below we calculate

∂2fθ(x)
∂θi∂θj

.
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First of all, if θi = b(2) or θj = b(2), ∂2fθ(x)
∂θi∂θj

= 0. Then it remains to calculate ∂2fθ(x)
∂θi∂θ′

j
where

i, j ∈ [k] and θ, θ′ ∈ {w(1), b(1), w(2)}. It is obvious that if i ̸= j, ∂2fθ(x)
∂θi∂θ′

j
= 0. Therefore, we only

calculate the case when j = i. Let δ denote the Dirac function, it holds that:



∂2fθ(x)

∂w
(1)
i ∂w

(1)
i

= w
(2)
i x2δ

(
w

(1)
i x+ b

(1)
i

)
, ∀ i ∈ [k]

∂2fθ(x)

∂w
(1)
i ∂b

(1)
i

= ∂2fθ(x)

∂b
(1)
i ∂w

(1)
i

= xw
(2)
i δ

(
w

(1)
i x+ b

(1)
i

)
, ∀ i ∈ [k]

∂2fθ(x)

∂b
(1)
i ∂b

(1)
i

= w
(2)
i δ

(
w

(1)
i x+ b

(1)
i

)
, ∀ i ∈ [k]

∂2fθ(x)

∂w
(2)
i ∂w

(2)
i

= 0, ∀ i ∈ [k]

∂2fθ(x)

∂w
(1)
i ∂w

(2)
i

= ∂2fθ(x)

∂w
(2)
i ∂w

(1)
i

= x1
(
w

(1)
i x+ b

(1)
i > 0

)
, ∀ i ∈ [k]

∂2fθ(x)

∂b
(1)
i ∂w

(2)
i

= ∂2fθ(x)

∂w
(2)
i ∂b

(1)
i

= 1
(
w

(1)
i x+ b

(1)
i > 0

)
, ∀ i ∈ [k]

(21)

Due to the existence of the Dirac function, the Hessian matrix is not well-defined in general. However,
we only consider the function fθ that is twice differentiable with respect to θ (i.e. the knots of f do
not coincide with x), which implies that all the Dirac functions take the value 0. In this case,

∂2fθ(x)

∂w
(1)
i ∂w

(1)
i

= 0, ∀ i ∈ [k]

∂2fθ(x)

∂w
(1)
i ∂b

(1)
i

= ∂2fθ(x)

∂b
(1)
i ∂w

(1)
i

= 0, ∀ i ∈ [k]

∂2fθ(x)

∂b
(1)
i ∂b

(1)
i

= 0, ∀ i ∈ [k]

(22)

C.3 UPPER BOUNDING THE OPERATOR NORM

In this part, we upper bound the operator norm of the Hessian matrix calculated above. The following
lemma provides an upper bound for

∣∣vT∇2fθ(x)v
∣∣ under the constraint that ∥v∥2 = 1.

Lemma C.1. Assume that fθ(x) is twice differentiable with respect to θ and x ∈ [−xmax, xmax], for
any v such that ∥v∥2 = 1, it holds that∣∣vT∇2fθ(x)v

∣∣ ≤ 2max{xmax, 1}. (23)

Proof of Lemma C.1. Assume v = (α1, · · · , αk, β1, · · · , βk, γ1, · · · , γk, ι)T ∈ R3k+1 such that∑k
i=1(α

2
i + β2

i + γ2
i ) + ι2 = 1. Note that the Hessian matrix ∇2

θfθ(x) follows the structure:

∇2
θfθ(x) =

Aw(1)w(1) Aw(1)b(1) Aw(1)w(2) Aw(1)b(2)

Ab(1)w(1) Ab(1)b(1) Ab(1)w(2) Ab(1)b(2)

Aw(2)w(1) Aw(2)b(1) Aw(2)w(2) Aw(2)b(2)

Ab(2)w(1) Ab(2)b(1) Ab(2)w(2) Ab(2)b(2)

 (24)

where Aw(1)w(1) , Aw(1)b(1) , Ab(1)w(1) , Ab(1)b(1) , Aw(2)w(2) ∈ Rk×k, Aw(1)b(2) , Ab(1)b(2) , Aw(2)b(2) ∈
Rk×1, Ab(2)w(1) , Ab(2)b(1) , Ab(2)w(2) ∈ R1×k and Ab(2)b(2) ∈ R are all zero matrices. Meanwhile,
Aw(1)w(2) , Ab(1)w(2) , Aw(2)w(1) , Aw(2)b(1) ∈ Rk×k are all diagonal matrices whose non-zero elements
are between [−max{xmax, 1},max{xmax, 1}]. Therefore, it holds that:

∣∣vT∇2fθ(x)v
∣∣ ≤ 2max{xmax, 1}

k∑
i=1

(|αiγi|+ |βiγi|)

≤ 2max{xmax, 1}


√√√√ k∑

i=1

α2
i ·

k∑
i=1

γ2
i +

√√√√ k∑
i=1

β2
i ·

k∑
i=1

γ2
i


≤ 2max{xmax, 1},

(25)

where the second inequality holds because of Cauchy-Schwarz inequality. The last inequality results
from x(1− x) ≤ 1

4 .
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C.4 DERIVATIVES OF POPULATION-LEVEL LOSS

Previously, we show that the minimizer of the population-level loss is the ground-truth function. In
this part, we calculate the first and second order derivatives of the population-level loss. Recall that
for a fixed feature x, the label y is sampled from the following distribution:

y =

{
1 with probability p = σ(f0(x))

−1 with probability 1− p
(26)

Therefore, for a fixed feature x (with p = σ(f0(x)) =
ef0(x)

1+ef0(x) ) and the prediction value f at x, the
population-level loss at x is defined as

l̄x(f) := p log(1 + e−f ) + (1− p) log(1 + ef ). (27)

Then the first order derivative of l̄x(f) with respect to f can be calculated as below.

l̄′x(f) =p · −1

ef + 1
+ (1− p) · ef

1 + ef

=
ef − ef0(x)

(1 + ef )(1 + ef0(x))

=
1

1 + ef0(x)
− 1

1 + ef
,

(28)

where the second equation holds because p = σ(f0(x)) =
ef0(x)

1+ef0(x) . Meanwhile, we have

l̄′′x(f) =
ef

(1 + ef )2
> 0. (29)

We highlight that the second order derivative is always positive and independent of f0(x). As |f |
becomes smaller, the value of l̄′′x(f) will become larger.

Finally, due to direct calculation, the relation between l̄x and L̄ is

L̄(f) = Ex∼DEy∼B(x) log
(
1 + e−yf(x)

)
= Ex∼D l̄x(f(x)). (30)

D PROOF OF THEOREM 3.1
In this section, we prove the implicit bias of minima stability. We begin with a decomposition of the
Hessian matrix.

D.1 DECOMPOSITION OF THE HESSIAN MATRIX

Suppose the logistic loss L(θ) = L(fθ) is twice differentiable at θ, it holds that

λmax

(
∇2

θL(θ)
)
≥ vT∇2

θL(θ)v

=λmax

(
1

n

n∑
i=1

e−yif(xi)(
1 + e−yif(xi)

)2∇θf(xi)∇θf(xi)
T

)
︸ ︷︷ ︸

(i)

+
1

n

n∑
i=1

−yie
−yif(xi)

1 + e−yif(xi)
vT∇2

θf(xi)v︸ ︷︷ ︸
(ii)

, (31)

where v is the unit eigenvector of the largest eigenvalue of 1
n

∑n
i=1

e−yif(xi)

(1+e−yif(xi))
2∇θf(xi)∇θf(xi)

T .

Then it remains to handle the terms (i) and (ii).

D.2 UPPER BOUNDING THE TERM (II)
We upper bound the absolute value of (ii) by the empirical loss. It holds that

|(ii)| ≤ 1

n

n∑
i=1

e−yif(xi)

1 + e−yif(xi)

∣∣vT∇2
θf(xi)v

∣∣
≤2max{xmax, 1} ·

1

n

n∑
i=1

log
(
1 + e−yif(xi)

)
=2max{xmax, 1} · L(f),

(32)
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where the second inequality results from the uniform upper bound of
∣∣vT∇2

θf(x)v
∣∣ (Lemma C.1)

and Lemma B.5. As the optimization converges and the empirical loss L(f) becomes small, the term
|(ii)| will also be small.

D.3 HANDLING THE TERM (I)

Let Φ = [∇θfθ(x1), · · · ,∇θfθ(xn)] ∈ R(3k+1)×n and D = Diag

{
e−yif(xi)

(1+e−yif(xi))
2

}n

i=1

∈ Rn×n, a

diagonal matrix whose i-th diagonal element is e−yif(xi)

(1+e−yif(xi))
2 . Then we have (i) = λmax

(
1
nΦDΦT

)
,

and we want to connect it to
∫ xmax

−xmax
|f ′′(x)| dx. Lemma 4 in Mulayoff et al. (2021) states that

λmax

(
1
nΦΦ

T
)
≥ 1 + 2

∫ xmax

−xmax
|f ′′(x)| g(x)dx for some weight function g. However, in our case,

the diagonal components of D can be arbitrarily close to 0, and therefore λmax

(
1
nΦDΦT

)
can be

much smaller than λmax

(
1
nΦΦ

T
)
, raising some technical challenges.

Note that the value of e−yif(xi)

(1+e−yif(xi))
2 being large is equivalent to the value of |f(xi)| being small.

Therefore, we only consider the data points (i.e. the corresponding diagonal components in D) where
|fθ(x)| is small (i.e. the prediction is not very certain). For the other components in D, we simply
lower bound them by 0. More specifically, we choose a threshold γ > 0 which is a small constant,
and define the “uncertain set” Aγ as:

Aγ =

{
xi ∈ D

∣∣∣∣ |fθ(xi)| ≤ γ

}
=

{
xi ∈ D

∣∣∣∣ e−yif(xi)(
1 + e−yif(xi)

)2 ≥ e−γ

(1 + e−γ)
2 := Γ(γ)

}
.

(33)

According to direct calculation, we have

λmax

(
1

n
ΦDΦT

)
= max

v∈S3k

1

n
vTΦDΦT v =

1

n
max
v∈S3k

∥∥∥∥(ΦD 1
2

)T
v

∥∥∥∥2
2

=
1

n
max

u∈Sn−1

∥∥∥ΦD 1
2u
∥∥∥2
2
.

(34)
We can choose u = [u1, · · · , un]

T ∈ Rn to be (for some constant α > 0):

uj =

{
αD

− 1
2

j,j , xj ∈ Aγ ,

0, otherwise,
(35)

such that ∥u∥2 = 1. Defining nγ = |Aγ | (the number of uncertain data points), it is clear that

α ≥
√

Γ(γ)
nγ

.

Let Ij,i = 1
(
w

(1)
i xj + b

(1)
i > 0

)
, according to a similar analysis as Mulayoff et al. (2021), we

have

λmax

(
1

n
ΦDΦT

)
=

1

n
max

u∈Sn−1

∥∥∥ΦD 1
2u
∥∥∥2
2

≥nγΓ(γ)

n
+

α2

n
·

k∑
i=1


 ∑

xj∈Aγ

xjIj,iw
(2)
i

2

+

 ∑
xj∈Aγ

Ij,iw
(2)
i

2

+

 ∑
xj∈Aγ

ϕ
(
w

(1)
i xj + b

(1)
i

)2


≥nγΓ(γ)

n
+

2Γ(γ)

n · nγ
·

k∑
i=1

∣∣∣w(2)
i

∣∣∣
√√√√√ ∑

xj∈Aγ

xjIj,i

2

+

 ∑
xj∈Aγ

Ij,i

2

·

∣∣∣∣∣∣
∑

xj∈Aγ

ϕ
(
w

(1)
i xj + b

(1)
i

)∣∣∣∣∣∣ ,
(36)

where the first inequality holds from the choice of u equation 35. The second inequality holds because

of the fact α ≥
√

Γ(γ)
nγ

and AM-GM inequality.

Remark D.1. The case in Mulayoff et al. (2021) (and also Qiao et al. (2024)) can be considered
as a special case of the analysis above. Plugging in Dj,j = 1, Γ(γ) = 1, Aγ = {xi, i ∈ [n]} and
nγ = n, our analysis will recover the analysis in Mulayoff et al. (2021).
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For i ∈ [k], define Ci =
{
xj ∈ Aγ

∣∣ Ij,i = 1
}

, the data points in Aγ such that the i-th neuron is
active. Let ni =

∑
xj∈Aγ

Ij,i = |Ci| for i ∈ [k]. According to a reformulation, we have

2Γ(γ)

n · nγ
·

k∑
i=1

∣∣∣w(2)
i

∣∣∣
√√√√√ ∑

xj∈Aγ

xjIj,i

2

+

 ∑
xj∈Aγ

Ij,i

2

·

∣∣∣∣∣∣
∑

xj∈Aγ

ϕ
(
w

(1)
i xj + b

(1)
i

)∣∣∣∣∣∣
=2Γ(γ) · nγ

n
·

k∑
i=1

∣∣∣w(2)
i

∣∣∣ · P2
(
X ∈ Ci

∣∣ X ∈ Aγ

)
·
√
1 +

(
E
[
X
∣∣ X ∈ Ci

])2 · E [w(1)
i X + b

(1)
i

∣∣∣∣ X ∈ Ci
]
,

(37)

where X is a random sample from the dataset under the uniform distribution. We define the threshold
of the i-th neuron as: for i ∈ [k],

τi =

− b
(1)
i

w
(1)
i

, w
(1)
i ̸= 0,

0, w
(1)
i = 0.

(38)

Then it holds that

2Γ(γ) · nγ

n
·

k∑
i=1

∣∣∣w(2)
i

∣∣∣ · P2
(
X ∈ Ci

∣∣ X ∈ Aγ

)
·
√
1 +

(
E
[
X
∣∣ X ∈ Ci

])2 · E [w(1)
i X + b

(1)
i

∣∣∣∣ X ∈ Ci
]

≥2Γ(γ) · nγ

n
·

k∑
i=1

∣∣∣w(2)
i w

(1)
i

∣∣∣ · P2
(
X ∈ Ci

∣∣ X ∈ Aγ

)
·
√
1 +

(
E
[
X
∣∣ X ∈ Ci

])2 · ∣∣∣∣E [X − τi

∣∣∣∣ X ∈ Ci
]∣∣∣∣ ,

(39)

where the inequality is because for some neurons, w(1)
i may be 0, while E

[
w

(1)
i X + b

(1)
i

∣∣∣∣ X ∈ Ci
]

can still be positive. Note that when w
(1)
i ̸= 0, Ci can be either {X > τi, X ∈ Aγ} or {X <

τi, X ∈ Aγ}, and we choose the minimum among these two to lower bound the R.H.S of equation 39.
More specifically, we define the following two functions with respect to the two choices of Ci:

h+
γ (x) = P2

(
X > x

∣∣ X ∈ Aγ

)
·
√

1 +
(
E
[
X
∣∣ X ∈ Aγ , X > x

])2·E [X − x

∣∣∣∣X ∈ Aγ , X > x

]
,

(40)

h−
γ (x) = P2

(
X < x

∣∣ X ∈ Aγ

)
·
√
1 +

(
E
[
X
∣∣ X ∈ Aγ , X < x

])2·E [x−X

∣∣∣∣X ∈ Aγ , X < x

]
,

(41)
where for both functions, X is a random sample from the dataset under the uniform distribution.
Moreover, let hγ(x) = min

{
h+
γ (x), h

−
γ (x)

}
, we have

P2
(
X ∈ Ci

∣∣ X ∈ Aγ

)
·
√
1 +

(
E
[
X
∣∣ X ∈ Ci

])2 · ∣∣∣∣E [X − τi

∣∣∣∣ X ∈ Ci
]∣∣∣∣ ≥ hγ(τi). (42)

Plugging this into equation 39, it holds that

2Γ(γ) · nγ

n
·

k∑
i=1

∣∣∣w(2)
i

∣∣∣ · P2
(
X ∈ Ci

∣∣ X ∈ Aγ

)
·
√
1 +

(
E
[
X
∣∣ X ∈ Ci

])2 · E [w(1)
i X + b

(1)
i

∣∣∣∣ X ∈ Ci
]

≥2Γ(γ) · nγ

n
·

k∑
i=1

∣∣∣w(1)
i w

(2)
i

∣∣∣ · hγ(τi) ≥ 2Γ(γ) · nγ

n
·
∫ xmax

−xmax

|f ′′(x)|hγ(x)dx,

(43)

where the last inequality holds since the sum of absolute values is not smaller than the absolute value
of the sum. As a result, we can lower bound (i) as:

(i) = λmax

(
1

n
ΦDΦT

)
≥ nγΓ(γ)

n
+ 2Γ(γ) · nγ

n
·
∫ xmax

−xmax

|f ′′(x)|hγ(x)dx. (44)
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D.4 PUTTING EVERYTHING TOGETHER

Combining equation 31, equation 32 and equation 44, we have for any choice of γ > 0,

nγΓ(γ)

n

(
1 + 2

∫ xmax

−xmax

|f ′′(x)|hγ(x)dx

)
≤ λmax

(
∇2

θL(θ)
)
+ 2max{xmax, 1} · L(f). (45)

Or equivalently,

1 + 2

∫ xmax

−xmax

|f ′′(x)|hγ(x)dx ≤ n

nγΓ(γ)

(
λmax

(
∇2

θL(θ)
)
+ 2max{xmax, 1} · L(f)

)
, (46)

which finishes the proof of the first part.

If f = fθ is a stable solution of GD with learning rate η, according to the definition of F(η,D)
equation 2, we can replace the λmax(∇2L(θ)) by 2

η .

D.5 SOME DISCUSSIONS ABOUT THE PARAMETERS

For reference, the notations are listed below.

1. Aγ =

{
xi ∈ D

∣∣∣∣ |fθ(xi)| ≤ γ

}
, nγ = |Aγ |.

2. Γ(γ) = e−γ

(1+e−γ)2
.

3. η is the learning rate of GD, L(f) is the empirical logistic loss.

4. hγ(x) = min
{
h+
γ (x), h

−
γ (x)

}
, defined in equation 40 and equation 41.

Some discussions. For the result to be meaningful, it is required that hγ(x) is nondegenerate and the
R.H.S of equation 46 is not very large. Therefore, the result will be meaningful under the following
conditions:

1. γ > 0 is a constant that is not very large, such that Γ(γ) is not very small.

2. For the chosen γ, the function fθ and the dataset satisfy that nγ

n is not very small, i.e. for at
least a constant portion of the dataset, the prediction of fθ is not very certain.

3. A constant portion of the data points in Aγ is close to the boundary of [−xmax, xmax]. In
this way, for x in the interior of Aγ , the value of hγ(x) can be lower bounded.

Trade-off between the parameters. First, as the threshold γ increases, the “uncertain set ” Aγ will
also become larger. As a result, the term n

nγ
on the R.H.S will become smaller, while the interior of

Aγ where the TV constraint is strong will also be larger. Both effects tend to make the result more
significant. However, the term 1

Γ(γ) ≈ eγ on the R.H.S will grow exponentially, and thus balance out
the aforementioned effects. Therefore, there is a trade-off in the choice of γ. Meanwhile, since we do
not have any guarantee on the scale of fθ, the portion or even the existence of the uncertain set Aγ

for a fair γ is not ensured.

E EXISTENCE OF ARBITRARILY FLAT YET INTERPOLATING SOLUTIONS

Theorem 3.1 only provides smoothness guarantee between the left-most and right-most “uncertain
sets” determined by the output function fθ, while the existence of such uncertain set is not guaranteed.
In this part, we construct an example to show that there exist arbitrarily flat yet interpolating solutions.
For “interpolation” here, we mean that the logistic loss is arbitrarily small, and it is clear that the
training loss cannot be exactly 0.

Example. Let xmax = 1, then the interval becomes [−1, 1]. The design {xi}ni=1 is chosen to be
n equally spaced points in [−1, 1]. For any label set {yi}ni=1 ∈ {−1, 1}n, let γmax > 0 be some
arbitrarily large constant, below we consider the two-layer ReLU NN f where f(xi)yi = γmax and
f is (almost) linear between any two neighboring design points. We will show that there exists some
function f = fθ satisfying the conditions above while λmax(∇2

θL(θ)) is small. By saying “almost
linear”, we mean that we need to perturb the knots from the design points by a small ϵ to satisfy the
twice differentiable assumption.
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Theorem E.1. [Restate Theorem 3.2] For the example above, there exists choice of θ such that
fθ(xi) = yiγmax for all i ∈ [n], L(θ) is twice differentiable w.r.t. θ and λmax

(
∇2

θL(θ)
)
≤

O
(
(n2γmax + 1)e−γmax

)
.

Proof of Theorem E.1. Recall that if f = fθ is twice differentiable with respect to θ (i.e. the knots of
f do not coincide with design points), we have

∇2
θL(θ) =

1

n

n∑
i=1

−yie
−yif(xi)

1 + e−yif(xi)
∇2

θf(xi) +
1

n

n∑
i=1

e−yif(xi)(
1 + e−yif(xi)

)2∇θf(xi)∇θf(xi)
T , (47)

which further implies that

λmax

(
∇2

θL(θ)
)
≤ λmax

(
1

n

n∑
i=1

−yie
−yif(xi)

1 + e−yif(xi)
∇2

θf(xi)

)
+ λmax

(
1

n

n∑
i=1

e−yif(xi)(
1 + e−yif(xi)

)2∇θf(xi)∇θf(xi)
T

)

≤2e−γmax + λmax

(
1

n

n∑
i=1

e−yif(xi)(
1 + e−yif(xi)

)2∇θf(xi)∇θf(xi)
T

)
≤2e−γmax + e−γmax ·max

i
λmax

(
∇θf(xi)∇θf(xi)

T
)

=2e−γmax + e−γmax ·max
i

∥∇θf(xi)∥22 ,
(48)

where the first and last inequalities hold because all the matrices here are symmetric. The second
inequality results from Lemma C.1 and our choice xmax = 1.

Let f = fθ be a two-layer ReLU NN with n active neurons such that fθ interpolates
{(xi, yiγmax)}ni=1 while the knots are arbitrarily close to {xi}ni=1. For inactive neurons (indexed by
j), we simply let w(1)

j = w
(2)
j = b

(1)
j = 0, then the gradient w.r.t. such inactive neuron is 0. For

active neurons (indexed by i), we manually choose w(2)
i =

√
nγmax or −√

nγmax, which implies that
|w(1)

i | ≤ O(
√
nγmax) (the activation threshold is inside [−1, 1]). Then according to the calculation

of ∇θfθ(x) in Appendix C.1, we have for any data point xj ,
∣∣∣∇w

(1)
i

fθ(xj)
∣∣∣ = ∣∣∣xjw

(2)
i 1

(
w

(1)
i xj + b

(1)
i > 0

)∣∣∣ ≤ √
nγmax∣∣∣∇b

(1)
i
fθ(xj)

∣∣∣ = ∣∣∣w(2)
i 1

(
w

(1)
i xj + b

(1)
i > 0

)∣∣∣ ≤ √
nγmax∣∣∣∇w

(2)
i

fθ(xj)
∣∣∣ = ∣∣∣ϕ(w(1)

i xj + b
(1)
i

)∣∣∣ ≤ 2|w(1)
i | ≤ O(

√
nγmax).

(49)

In this way, we have maxi ∥∇θf(xi)∥22 ≤ 1 + 3n ·O(nγmax) = O(n2γmax + 1). Plugging this into
equation 48, we finally have

λmax

(
∇2

θL(θ)
)
≤ O

(
(n2γmax + 1)e−γmax

)
, (50)

which finishes the proof.

Remark E.2. Since limγ→∞ γe−γ = 0, Theorem 3.2 shows that as the learned function tends
to interpolate (i.e. the training loss gets close to 0), the landscape is actually becoming flat. In
other words, the solution that predicts ∞ for y = 1 and −∞ for y = −1 is an arbitrarily flat
global minimum with 0-training loss. This is an interesting separation between logistic loss and
nonparametric regression with squared loss, where all interpolating solutions are sharp. Unfortunately,
our Theorem 3.1 and the constraint equation 5 could not exclude such “interpolating” solutions in
logistic regression. This is because we consider the Below Edge of Stability regime which only
requires an upper bound of the sharpness.

Remark E.3. In our experiments (Figure 2), even for very small learning rates (e.g. η = 0.01), the
learned function does not actually converge to infinity. We remark that this is because with finite
learning rate, the optimization enters the “edge of stability” regime before it could get to the flat
global minima at infinity (see Figure 12). Therefore, the learned function would stabilize around some
finite function instead of converging to infinity. Motivated by such phenomenon, in the following
sections (Theorem 3.5), we assume that the optimization effectively minimizes the excess risk. In
this way, we show the closeness of fθ and f0, thus excluding the “interpolating solutions”.
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Remark E.4. We point out that such flat interpolating solutions do not lead to any contradictions
with our Theorem 3.1. In the example above, although λmax(∇2L(θ)) + 2xmaxL(f) scales as
n2γmaxe

−γmax , the threshold γ must be at least γmax for a nondegenerate Aγ and hγ . Therefore,
the e−γmax is canceled out by Γ(γ) and the R.H.S of equation 5 scales as n2γmax. In comparison,
if ignoring the constant weight function hγ , the L.H.S of equation 5 can be the same order n2γmax

if the ground-truth function is random enough. Therefore, the example shows the tightness of our
Theorem 3.1 and the necessity of the logarithmic dependence on γ in Γ(γ).

F PROOF FOR RESULTS IN SECTION 3.3
F.1 BOUNDING THE GENERALIZATION GAP BY THE SCALE OF PARAMETERS

We begin with the following lemma, which shows that given the ℓ2 norm of the parameter, both the
TV(1) norm and the value at x = 0 of the function can be upper bounded.

Lemma F.1. For f(x) = fθ(x) =
∑k

i=1 w
(2)
i ϕ

(
w

(1)
i x+ b

(1)
i

)
+ b(2) and θ =[

w
(1)
1:k, b

(1)
1:k, w

(2)
1:k, b

(2)
]
, we have ∫ xmax

−xmax

|f ′′(x)| dx ≤ ∥θ∥22
2

. (51)

Meanwhile, we have the following upper bounds on |f(0)|, |f ′(0)|:

|f(0)| ≤ ∥θ∥22
2

+ ∥θ∥2, |f ′(0)| ≤ ∥θ∥22
2

. (52)

Furthermore, if ∥θ∥2 ≥ 1, we have |f(0)| ≤ 2∥θ∥22.

Proof of Lemma F.1. For the first part, due to the same analysis as equation 43, it holds that∫ xmax

−xmax

|f ′′(x)| dx ≤
k∑

i=1

∣∣∣w(1)
i w

(2)
i

∣∣∣ ≤
√√√√( k∑

i=1

(
w

(1)
i

)2)
·

(
k∑

i=1

(
w

(2)
i

)2)
≤ ∥θ∥22

2
, (53)

where the second inequality holds because of Cauchy-Schwarz inequality. The last inequality results
from the fact that x(a− x) ≤ a2

4 .

For the second conclusion, we have

|f(0)| =

∣∣∣∣∣
k∑

i=1

w
(2)
i ϕ

(
b
(1)
i

)
+ b(2)

∣∣∣∣∣ ≤
k∑

i=1

∣∣∣w(2)
i b

(1)
i

∣∣∣+ ∣∣∣b(2)∣∣∣ ≤ ∥θ∥22
2

+ ∥θ∥2, (54)

|f ′(0)| ≤
k∑

i=1

∣∣∣w(2)
i w

(1)
i

∣∣∣ ≤ ∥θ∥22
2

, (55)

where the last step in both inequalities result from the same analysis as equation 53. The proof is
complete.

Define the set T =

{
f : [−xmax, xmax] → R

∣∣∣∣ |f(0)| ≤ 4C2, |f ′(0)| ≤ C2,
∫ xmax

−xmax
|f ′′(x)|dx ≤ C2

}
,

where C2 > 0 is any constant. Then according to Lemma F.1, the function f = fθ belongs to T with
C2 =

∥θ∥2
2

2 (if ∥θ∥2 ≥ 1). Therefore, we would like to analyze the complexity of T. We first bound
the metric entropy of the following subset of T as an intermediate result.

Lemma F.2. Assume the set T2 =

{
f : [−xmax, xmax] → R

∣∣∣∣ f(0) = f ′(0) = 0,
∫ xmax

−xmax
|f ′′(x)|dx ≤ C2

}
for some constant C2 > 0, and the metric is ℓ∞ distance ∥ · ∥∞, then there exists a universal constant
C1 > 0 such that for any ϵ > 0, the metric entropy of (T2, ∥ · ∥∞) satisfies

logN(ϵ,T2, ∥ · ∥∞) ≤ C1

√
C2xmax

ϵ
, (56)

where C1 can be chosen as the same C1 in Lemma B.7.
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Proof of Lemma F.2. Let the set T1 =

{
f : [−1, 1] → R

∣∣∣∣ ∫ 1

−1
|f ′′(x)|dx ≤ 1, |f(x)| ≤ 1

}
(as in

Lemma B.7). For a fixed ϵ > 0, according to Lemma B.7, there exists a ϵ
C2xmax

-covering set of T1

with respect to ∥ · ∥∞, denoted as {hi(x)}i∈[N ], whose cardinality N satisfies

logN ≤ C1

√
C2xmax

ϵ
. (57)

We define gi(x) = C2xmaxhi(
x

xmax
) for all i ∈ [N ]. Then gi’s are all defined on [−xmax, xmax].

Obviously, we have {gi(x)}i∈[N ] also has cardinality N .

For any f(x) ∈ T2, we define g(x) = 1
C2xmax

f(x · xmax) which is defined on [−1, 1]. We now show
that g(x) ∈ T1. First of all, for any x ∈ [−xmax, xmax], we have |f ′(x)| ≤

∫ xmax

−xmax
|f ′′(x)|dx ≤ C2.

Therefore, for any x ∈ [−xmax, xmax], |f(x)| ≤ C2xmax, which implies that |g(x)| ≤ 1 for any
x ∈ [−1, 1]. Meanwhile, it holds that∫ 1

−1

|g′′(x)|dx =

∫ 1

−1

1

C2xmax
· x2

max|f ′′(x · xmax)|dx

≤ 1

C2

∫ xmax

−xmax

|f ′′(x)|dx ≤ 1.

(58)

Combining the two results, we have g ∈ T1. Therefore, there exists some hi such that ∥g − hi∥∞ ≤
ϵ

C2xmax
. Since f(x) = C2xmaxg(

x
xmax

), ∥gi − f∥∞ = C2xmax∥hi − g∥∞ ≤ ϵ.

In conclusion, {gi}i∈[N ] is an ϵ-covering of T2 with respect to ∥ · ∥∞. Moreover, the cardinality of
{gi}i∈[N ] is N , which finishes the proof.

With Lemma F.2, we are ready to bound the metric entropy of T.

Lemma F.3. Assume the metric is ℓ∞ distance ∥ · ∥∞, then the metric entropy of (T, ∥ · ∥∞) satisfies

logN(ϵ,T, ∥ · ∥∞) ≤ O

(√
C2xmax

ϵ

)
, (59)

where the regime is C2 ≥ 1, xmax ≥ 1, ϵ ≤ 1.

Proof of Lemma F.3. For any function f ∈ T, it can be written as below:

f(x) = f(0) + f ′(0)x+ g(x), (60)

where g(x) = f(x)− f(0)− f ′(0)x satisfies that g(0) = g′(0) = 0 and g′′(x) = f ′′(x). Therefore,
to cover T to ϵ accuracy, it suffices to cover the three parts to ϵ

3 accuracy with respect to ∥ · ∥∞,
respectively.

For f(0), since |f(0)| ≤ 4C2, the covering number is bounded by

N1 ≤ 8C2

ϵ/3
=

24C2

ϵ
. (61)

For f ′(0)x, since |f ′(0)| ≤ C2, the covering number is bounded by

N2 ≤ 6C2xmax

ϵ
. (62)

Finally, for g(x), since g(x) ∈ T2 with constant C2, the covering number is bounded according to
Lemma F.2 above:

logN3 ≤ C1

√
3C2xmax

ϵ
. (63)

Combining the three parts, the metric entropy is bounded by

logN(ϵ,T, ∥ · ∥∞) ≤ logN1 + logN2 + logN3 ≤ O

(√
C2xmax

ϵ

)
, (64)

where the last inequality holds since we assume C2xmax

ϵ ≥ 1.
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W.l.o.g, we also assume that the learned function f = fθ satisfies that ∥fθ∥∞ ≤ B for some constant
B > 0. Therefore, the function set to consider is T̃ = T ∩

{
f : [−xmax, xmax] → R

∣∣ ∥f∥∞ ≤ B
}

.
Now we prove a generalization gap upper bound over the function set T̃. We consider a general class
of loss functions, which includes logistic loss as a special case. Note that we still consider the fixed
design setting where {xi}ni=1 are fixed and xi ∈ [−xmax, xmax]. Each yi is sampled independently
from some distribution conditional on xi. Then the empirical loss L(f) = 1

n

∑n
i=1 ℓ(f, (xi, yi)),

while the populational loss L̄(f) = 1
n

∑n
i=1 Ey′

i|xi
ℓ(f, (xi, y

′
i)). The following lemma shows that if

the loss function is Lipschitz continuous (w.r.t f ) and bounded, then we can derive a high-probability
upper bound of

∣∣L(f)− L̄(f)
∣∣.

Lemma F.4. Assume T̃ =

{
f : [−xmax, xmax] → R

∣∣∣∣ |f(0)| ≤ 4C2, |f ′(0)| ≤ C2,
∫ xmax

−xmax
|f ′′(x)|dx ≤ C2

}
∩
{
f : [−xmax, xmax] → R

∣∣ ∥f∥∞ ≤ B
}

, where B > 0, C2 ≥ 1. If for constant L1 > 0 and

monotonically increasing function L2(·) > 0,
∣∣∣ℓ(f, (x, y))− ℓ(f̃ , (x, y))

∣∣∣ ≤ L1

∣∣∣f(x)− f̃(x)
∣∣∣ and

|ℓ(f, (x, y))| ≤ L2(|f(x)|) hold for any possible data point (x, y) and any possible function pairs
(f, f̃), then with probability 1− δ, for any f ∈ T̃,∣∣L(f)− L̄(f)

∣∣ ≤ O

([
L1L2(B)4C2xmax log(1/δ)

2

n2

] 1
5

)
. (65)

Proof of Lemma F.4. Since T̃ is a subset of T, the metric entropy of T̃ is smaller than the metric
entropy of T. Therefore, for a fixed ϵ > 0, according to Lemma F.3, there exists an ϵ-covering set of
T̃ (with respect to ∥ · ∥∞) whose cardinality N satisfies that

logN ≤ O

(√
C2xmax

ϵ

)
. (66)

For a fixed function f̄ in the covering set, according to our assumption on ℓ, for any possible (x, y),∣∣ℓ(f̄ , (x, y))∣∣ ≤ L2(|f̄(x)|) ≤ L2(B).

Meanwhile, note that the features yi’s are sampled independently from the data distribution. Accord-
ing to Hoeffding’s inequality, with probability 1− δ, it holds that∣∣L(f̄)− L̄(f̄)

∣∣ ≤ L2(B) ·
√

2 log(2/δ)

n
. (67)

Together with a union bound over the covering set, we have with probability 1− δ, for all f̄ in the
covering set, ∣∣L(f̄)− L̄(f̄)

∣∣ ≤ L2(B) ·
√

2 log(2N/δ)

n

≤O

(
L2(B) · (C2xmax)

1
4 log(1/δ)

1
2

n
1
2 ϵ

1
4

)
.

(68)

Under such high probability event, for any f ∈ T̃, let f̄ be a function in the covering set such that
∥f − f̄∥∞ ≤ ϵ. Then it holds that∣∣L(f)− L̄(f)

∣∣
≤
∣∣L(f̄)− L̄(f̄)

∣∣+O(L1ϵ)

≤O(L1ϵ) +O

(
L2(B) · (C2xmax)

1
4 log(1/δ)

1
2

n
1
2 ϵ

1
4

)

≤O

([
L1L2(B)4C2xmax log(1/δ)

2

n2

] 1
5

)
,

(69)

where the first inequality holds because
∣∣∣ℓ(f, (x, y))− ℓ(f̃ , (x, y))

∣∣∣ ≤ L1

∣∣∣f(x)− f̃(x)
∣∣∣. The last

inequality results from selecting the ϵ that minimizes the objective.
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With the result above, we are ready to prove a generalization gap bound based on ∥θ∥2.

Lemma F.5. If for constant L1 > 0 and monotonically increasing function L2(·) > 0,∣∣∣ℓ(f, (x, y))− ℓ(f̃ , (x, y))
∣∣∣ ≤ L1

∣∣∣f(x)− f̃(x)
∣∣∣ and |ℓ(f, (x, y))| ≤ L2(|f(x)|) hold for any pos-

sible data point (x, y) and any possible function pairs (f, f̃), then with probability 1 − δ, for any
f = fθ such that ∥f∥∞ ≤ B, it holds that

∣∣L(f)− L̄(f)
∣∣ ≤ O


L1L2(B)4 ·max{∥θ∥22, 1} · xmax log

(
2max{∥θ∥2

2,1}
δ

)2
n2


1
5

 . (70)

Proof of Lemma F.5. According to Lemma F.4, we have for any i ∈ Z+, with probability 1− δ
2i ,

∣∣L(f)− L̄(f)
∣∣ ≤ O

([
L1L2(B)42i−1xmax log(2

i/δ)2

n2

] 1
5

)
(71)

holds for all f ∈
{
f : [−xmax, xmax] → R

∣∣∣∣ |f(0)| ≤ 4 · 2i−1, |f ′(0)| ≤ 2i−1,
∫ xmax

−xmax
|f ′′(x)|dx ≤ 2i−1, ∥f∥∞ ≤ B

}
.

The total failure probability for the events above is
∑∞

i=1
δ
2i = δ. Therefore, we consider the high

probability event where equation 71 holds for all i ∈ Z+, which happens with probability at least
1− δ.

For f = fθ such that ∥f∥∞ ≤ B, if ∥θ∥2 ≤
√
2, according to Lemma F.1, it holds that

f ∈
{
f : [−xmax, xmax] → R

∣∣∣∣ |f(0)| ≤ 4, |f ′(0)| ≤ 1,

∫ xmax

−xmax

|f ′′(x)|dx ≤ 1, ∥f∥∞ ≤ B

}
.

According to the high probability event above (i = 1), we further have:

∣∣L(f)− L̄(f)
∣∣ ≤ O

([
L1L2(B)4xmax log(2/δ)

2

n2

] 1
5

)
. (72)

If ∥θ∥2 ≥
√
2, let i⋆ be the smallest integer such that 2i

⋆−1 ≥ ∥θ∥2
2

2 . Lemma F.1 implies that

f ∈
{
f : [−xmax, xmax] → R

∣∣∣∣ |f(0)| ≤ 4 · 2i
⋆−1, |f ′(0)| ≤ 2i

⋆−1,

∫ xmax

−xmax

|f ′′(x)|dx ≤ 2i
⋆−1, ∥f∥∞ ≤ B

}
.

According to the high probability event above (i = i⋆), we further have:

∣∣L(f)− L̄(f)
∣∣ ≤ O

[L1L2(B)42i
⋆−1xmax log(2

i⋆/δ)2

n2

] 1
5

 ≤ O

([
L1L2(B)4∥θ∥22xmax log(2∥θ∥22/δ)2

n2

] 1
5

)
,

(73)
where the last inequality holds since 2i

⋆−2 ≤ ∥θ∥2
2

2 .

Combining the two cases above, we have with probability 1−δ, for any f = fθ such that ∥f∥∞ ≤ B,
it holds that

∣∣L(f)− L̄(f)
∣∣ ≤ O


L1L2(B)4 ·max{∥θ∥22, 1} · xmax log

(
2max{∥θ∥2

2,1}
δ

)2
n2


1
5

 , (74)

which finishes the proof.

The case of logistic loss. The results above consider general loss functions, while the corollary below
plugs in the constant L1 and the function L2(·) under the special case of logistic loss.
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Corollary F.6 (Restate Theorem 3.3). If the loss is logistic loss ℓ(f, (x, y)) = log(1 + e−yf(x)) and
data points (x, y) ∈ [−xmax, xmax]×{−1, 1}, then with probability 1− δ, for any f = fθ such that
∥f∥∞ ≤ B, it holds that

∣∣L(f)− L̄(f)
∣∣ ≤ O


 log(1 + eB)4 ·max{∥θ∥22, 1} · xmax log

(
2max{∥θ∥2

2,1}
δ

)2
n2


1
5

 . (75)

Proof of Corollary F.6. It is easy to check that∣∣∣ℓ(f, (x, y))− ℓ(f̃ , (x, y))
∣∣∣ ≤ ∣∣∣y (f(x)− f̃(x)

)∣∣∣ = ∣∣∣f(x)− f̃(x)
∣∣∣ ,

|ℓ(f, (x, y))| ≤ log
(
1 + e|f(x)|

)
.

Therefore, plugging L1 = 1, L2(t) = log(1 + et) into Lemma F.5 finishes the proof.

Extension to the statistical learning setting. In the analysis above, we consider the fixed de-
sign ({xi}ni=1) setting for technical reasons. The results are readily applicable to the statisti-
cal learning setting where the data points (not only the features) are i.i.d. samples. Recall
that the empirical loss is L(f) = 1

n

∑n
i=1 ℓ(f, (xi, yi)). Now we assume the data (xi, yi) are

i.i.d. samples from some joint distribution P defined on [−xmax, xmax] × R. Define the risk
R(f) := E(x,y)∼Pℓ(f, (x, y)). Then with identical proof as Lemma F.5, we have the following high
probability bound on |L(f)−R(f)|.
Corollary F.7. If for constant L1 > 0 and monotonically increasing function L2(·) > 0,∣∣∣ℓ(f, (x, y))− ℓ(f̃ , (x, y))

∣∣∣ ≤ L1

∣∣∣f(x)− f̃(x)
∣∣∣ and |ℓ(f, (x, y))| ≤ L2(|f(x)|) hold for any pos-

sible data point (x, y) and any possible function pairs (f, f̃), then with probability 1 − δ, for any
f = fθ such that ∥f∥∞ ≤ B, it holds that

|L(f)−R(f)| ≤ O


L1L2(B)4 ·max{∥θ∥22, 1} · xmax log

(
2max{∥θ∥2

2,1}
δ

)2
n2


1
5

 . (76)

F.2 A CRUDE EXCESS RISK BOUND

In this part, we would like to derive an upper bound for the excess risk ExcessRisk(f) = L̄(f)−L̄(f0),
where the loss ℓ is the logistic loss. To derive a diminishing upper bound, we make two assumptions.
First, we assume that f = fθ is “optimized”.

Assumption F.8. The learned function f = fθ is “optimized” such that
L(f) ≤ L(f0). (77)

Meanwhile, we assume that the ℓ2 norm of θ grows sub-linearly w.r.t n.

Assumption F.9. The learned function f = fθ satisfies ∥θ∥2 ≤ t(n), where t(n) > 1 and

lim
n→∞

t(n) log(t(n))

n
= 0. (78)

Note that Assumption F.9 holds whenever there exists some α > 0, t(n) = O(n1−α). Based on the
two assumptions, we derive the following diminishing ER bound.

Lemma F.10. Let the loss be logistic loss ℓ(f, (x, y)) = log(1 + e−yf(x)) and data points (x, y) ∈
[−xmax, xmax]× {−1, 1}. For f = fθ, assume that Assumption F.8 and Assumption F.9 hold, while
max{∥f∥∞, ∥f0∥∞} ≤ B for some constant B > 0. Then with probability 1− δ,

L̄(f)− L̄(f0) ≤ O

(1 +B)
4
5x1/5

max

 t(n) · log
(

t(n)
δ

)
n


2
5

+ (1 +B) ·
√

log(1/δ)

n

 . (79)

The R.H.S will converge to 0 if n converges to ∞.
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Proof of Lemma F.10. For the function f0, note that |ℓ(f0, (x, y))| ≤ log(1+eB) ≤ B+1. Therefore,
according to Hoeffding’s inequality, with probability at least 1− δ

2 ,∣∣L(f0)− L̄(f0)
∣∣ ≤ (B + 1) ·

√
2 log(4/δ)

n
. (80)

Meanwhile, due to Corollary F.6, with probability 1− δ
2 ,

∣∣L(f)− L̄(f)
∣∣ ≤O


 log(1 + eB)4 ·max{∥θ∥22, 1} · xmax log

(
4max{∥θ∥2

2,1}
δ

)2
n2


1
5



≤O


 (1 +B)4 · t(n)2xmax · log

(
t(n)
δ

)2
n2


1
5



=O

(1 +B)
4
5x1/5

max

 t(n) · log
(

t(n)
δ

)
n


2
5
 ,

(81)

where the second inequality holds due to Assumption F.9.

Combining the results with Assumption F.8, under the two high probability events above,

L̄(f)− L̄(f0) ≤
∣∣L̄(f)− L(f)

∣∣+ L(f)− L(f0) +
∣∣L(f0)− L̄(f0)

∣∣
≤O

(1 +B)
4
5x1/5

max

 t(n) · log
(

t(n)
δ

)
n


2
5
+ 0 + (B + 1) ·

√
2 log(4/δ)

n

=O

(1 +B)
4
5x1/5

max

 t(n) · log
(

t(n)
δ

)
n


2
5

+ (1 +B) ·
√

log(1/δ)

n

 ,

(82)

where the event holds with probability at least 1− δ.

Finally, according to Assumption F.9, limn→∞
t(n) log(t(n))

n = 0. Therefore, the R.H.S converges to
0 if n converges to ∞. The proof is complete.

F.3 A REFINED ANALYSIS AND TIGHTER RESULT

We remark that using ∥θ∥2 in Theorem 3.3 is mainly for the ease of presentation. According to the
same proof as Lemma F.1, we have∫ xmax

−xmax

|f ′′(x)| dx ≤
∑

i:b
(1)
i /w

(1)
i ∈[−xmax,xmax]

∣∣∣w(1)
i w

(2)
i

∣∣∣ , (83)

where the i-th term takes the value 0 if w(1)
i = 0. Then according to the same analysis in Lemma F.3,

the metric entropy of the possible function set can be tighten to

logN(ϵ) ≤ O


√√√√xmax

∑
i:b

(1)
i /w

(1)
i ∈[−xmax,xmax]

∣∣∣w(1)
i w

(2)
i

∣∣∣
ϵ

+O

(
log

(
xmax∥θ∥22

ϵ

))
. (84)

Plugging the metric entropy bound above to Lemma F.4 and applying the “doubling trick” to∑
i:b

(1)
i /w

(1)
i ∈[−xmax,xmax]

∣∣∣w(1)
i w

(2)
i

∣∣∣ and ∥θ∥2 simultaneously in Lemma F.5, we directly have the
following result.
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Lemma F.11 (Refined version of Lemma F.5). If for constant L1 > 0 and monotonically in-
creasing function L2(·) > 0,

∣∣∣ℓ(f, (x, y))− ℓ(f̃ , (x, y))
∣∣∣ ≤ L1

∣∣∣f(x)− f̃(x)
∣∣∣ and |ℓ(f, (x, y))| ≤

L2(|f(x)|) hold for any possible data point (x, y) and any possible function pairs (f, f̃), then with
probability 1− δ, for any f = fθ such that ∥f∥∞ ≤ B, it holds that

∣∣L(f)− L̄(f)
∣∣ ≤ Õ


L1L2(B)4 ·max

{∑
i:b

(1)
i /w

(1)
i ∈[−xmax,xmax]

∣∣∣w(1)
i w

(2)
i

∣∣∣ , 1} · xmax

n2


1
5
 ,

(85)
where the Õ(·) absorbs log(n), log(xmax) and log(∥θ∥2).
Therefore, as a direct corollary, we get a refined version of Corollary F.6 when applied to the special
case of logistic loss.

Corollary F.12 (Refined version of Corollary F.6). If the loss is logistic loss ℓ(f, (x, y)) = log(1 +
e−yf(x)) and data points (x, y) ∈ [−xmax, xmax] × {−1, 1}, then with probability 1 − δ, for any
f = fθ such that ∥f∥∞ ≤ B, it holds that

∣∣L(f)− L̄(f)
∣∣ ≤ Õ


 log(1 + eB)4 ·max

{∑
i:b

(1)
i /w

(1)
i ∈[−xmax,xmax]

∣∣∣w(1)
i w

(2)
i

∣∣∣ , 1} · xmax

n2


1
5
 ,

(86)
where the Õ(·) absorbs log(n), log(xmax) and log(∥θ∥2).

G PROOF OF THEOREM 3.5
Recall that in Theorem 3.1, we have for any γ > 0, the learned function f = fθ satisfies

1 + 2

∫ xmax

−xmax

|f ′′(x)|hγ(x)dx ≤ n

nγΓ(γ)

(
λmax(∇2L(θ)) + 2xmaxL(f)

)
, (87)

where both the L.H.S (hγ) and the R.H.S (nγ) depend on the output function fθ. Therefore, the
result is not stable since the output function fθ can be arbitrary functions. Below, we will derive a
(weighted) TV bound independent of the output function, based on the assumption that the excess
risk is diminishing as the number of data points increases.

Assumption G.1 (Restate Assumption 3.4). We assume that the learned function f = fθ satisfies
L̄(f)− L̄(f0) ≤ ϵ(n), i.e.

Ex∼DEy∼B(x) log
(
1 + e−yf(x)

)
≤ Ex∼DEy∼B(x) log

(
1 + e−yf0(x)

)
+ ϵ(n),

for some function ϵ(n) such that limn→∞ ϵ(n) = 0.

First of all, similar to the “uncertain set” Aγ , we define the uncertain set Āγ with respect to f0. The
set Āγ contains the region where the prediction of f0 is not very certain.

Uncertain set of f0. For any γ > 0, we define the uncertain set Āγ ={
x ∈ [−xmax, xmax]

∣∣∣∣ |f0(x)| ≤ γ

}
, which includes the data points whose labels have more ran-

domness. Below we will show that if ϵ(n) is small, then fθ and f0 will be close to each other. As a
result, the two “uncertain sets” Aγ and Āγ will also be similar.

Closeness of two functions. In the following lemma, we prove that if we set ζ > 0 to be a
relatively small constant compared to γ (the threshold of the uncertain set Ā), then the following
two probabilities Px∼D (|f0(x)| ≤ γ − ζ, |fθ(x)| > γ) and Px∼D (|f0(x)| > γ + ζ, |fθ(x)| ≤ γ)
are bounded, where x ∼ D means that x is a uniform sample from the dataset {xi}ni=1.

Lemma G.2. Assume that Assumption 3.4 holds for ϵ(n), then for any γ > ζ > 0,

Px∼D (|f0(x)| ≤ γ − ζ, |fθ(x)| > γ)+Px∼D (|f0(x)| > γ + ζ, |fθ(x)| ≤ γ) ≤ O
(
ϵ(n) · eγ+ζ · ζ−2

)
.

(88)
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Proof of Lemma G.2. Recall that l̄x(f) := p log(1 + e−f ) + (1 − p) log(1 + ef ), where p =

σ(f0(x)) =
ef0(x)

1+ef0(x) . Then under the case where |f0(x)| ≤ γ − ζ, |fθ(x)| > γ holds, it holds that∣∣ℓ̄x(fθ(x))− ℓ̄x(f0(x))
∣∣ ≥ ∣∣ℓ̄x(γ)− ℓ̄x(γ − ζ)

∣∣
≥
∣∣∣∣ℓ̄′x(γ − ζ

2

)∣∣∣∣ · ζ2
≥
∣∣∣∣ℓ̄′′x (γ − ζ

2

)∣∣∣∣ · (ζ

2

)2

≥ eγ

(1 + eγ)2
·
(
ζ

2

)2

,

(89)

where the first inequality holds because the L.H.S takes the minimal value when f0(x) = γ −
ζ, fθ(x) = γ. Note that after the first inequality, the ℓ̄x satisfies f0(x) = γ − ζ. Then the second to
the last inequalities result from the monotonicity of ℓ̄′x and ℓ̄′′x. Detailed calculations of ℓ̄′x and ℓ̄′′x can
be found in Appendix C.4.

Similarly, if |f0(x)| > γ + ζ, |fθ(x)| ≤ γ holds, we have∣∣ℓ̄x(fθ(x))− ℓ̄x(f0(x))
∣∣ ≥ ∣∣ℓ̄x(γ + ζ)− ℓ̄x(γ)

∣∣
≥
∣∣∣∣ℓ̄′x(γ +

ζ

2

)∣∣∣∣ · ζ2
≥
∣∣ℓ̄′′x(γ + ζ)

∣∣ · (ζ

2

)2

=
eγ+ζ

(1 + eγ+ζ)2
·
(
ζ

2

)2

,

(90)

where the first inequality holds because the L.H.S takes the minimal value when f0(x) = γ +
ζ, fθ(x) = γ. Note that after the first inequality, the ℓ̄x satisfies f0(x) = γ + ζ. Then the second to
the last inequalities result from the monotonicity of ℓ̄′x and ℓ̄′′x.

Combining with Assumption 3.4, we have that

ϵ(n) ≥ Ex∼D
∣∣ℓ̄x(fθ(x))− ℓ̄x(f0(x))

∣∣
≥ (Px∼D (|f0(x)| ≤ γ − ζ, |fθ(x)| > γ) + Px∼D (|f0(x)| > γ + ζ, |fθ(x)| ≤ γ)) · eγ+ζ

(1 + eγ+ζ)2
·
(
ζ

2

)2

.

(91)

Reformulating the inequality, we have

Px∼D (|f0(x)| ≤ γ − ζ, |fθ(x)| > γ)+Px∼D (|f0(x)| > γ + ζ, |fθ(x)| ≤ γ) ≤ O
(
ϵ(n) · eγ+ζ · ζ−2

)
,

(92)
which finishes the proof.

To transfer equation 5 to an inequality independent of fθ, what remains is to upper bound the R.H.S
and lower bound the L.H.S. In another word, we need to lower bound the weight function hγ(x)
and the cardinality nγ . We will first derive a result for any finite n that depends only on f0 and the
feature set. When considering the asymptotic performance (i.e. n → ∞), we assume that the features
{xi}ni=1 are i.i.d. samples from some underlying distribution Px supported on [−xmax, xmax]. We
begin with the lower bound of nγ .

Lower bound of nγ/n. Recall that nγ is the cardinality of Aγ in Theorem 3.1. Below we incorporate
Lemma G.2 to replace the term with the number of data points in Ā.

Lemma G.3. For any fixed constants γ > ζ > 0, if Assumption 3.4 holds with ϵ(n), then

nγ

n
=

|Aγ |
n

≥ PX∼D
(
X ∈ Āγ−ζ

)
−O

(
ϵ(n) · eγ+ζ · ζ−2

)
. (93)
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Furthermore, when n converges to infinity, the R.H.S will converge in probability:

PX∼D
(
X ∈ Āγ−ζ

)
−O

(
ϵ(n) · eγ+ζ · ζ−2

) p→ Px∼Px

(
x ∈ Āγ−ζ

)
. (94)

Proof of Lemma G.3. If Assumption 3.4 holds with ϵ(n), it holds that

nγ

n
=

|Aγ |
n

=
number of features in Aγ

n

≥number of features in Aγ ∩ Āγ−ζ

n

=
number of features in Āγ−ζ

n
−

number of features in Āγ−ζ ∩ A∁
γ

n

=

∣∣Āγ−ζ ∩ D
∣∣

n
− Px∼D (|f0(x)| ≤ γ − ζ, |fθ(x)| > γ)

≥
∣∣Āγ−ζ ∩ D

∣∣
n

−O
(
ϵ(n) · eγ+ζ · ζ−2

)
=PX∼D

(
X ∈ Āγ−ζ

)
−O

(
ϵ(n) · eγ+ζ · ζ−2

)
,

(95)

where the last inequality holds because of Lemma G.2.

According to Assumption 3.4, limn→∞ ϵ(n) = 0. Therefore, limn→∞ O
(
ϵ(n) · eγ+ζ · ζ−2

)
=

0. Meanwhile, note that
∣∣Āγ−ζ ∩ D

∣∣ follows the Binomial distribution
Binomial

(
n,Px∼Px

(
x ∈ Āγ−ζ

))
, which implies that

∣∣Āγ−ζ ∩ D
∣∣ /n will converge (in probability)

to Px∼Px

(
x ∈ Āγ−ζ

)
as n → ∞. Combining the results, the proof for the last conclusion is

complete.

Lower bound of hγ(x). Recall that hγ(x) = min
{
h+
γ (x), h

−
γ (x)

}
and

h+
γ (x) = P2

(
X > x

∣∣ X ∈ Aγ

)
·
√

1 +
(
E
[
X
∣∣ X ∈ Aγ , X > x

])2·E [X − x

∣∣∣∣X ∈ Aγ , X > x

]
,

h−
γ (x) = P2

(
X < x

∣∣ X ∈ Aγ

)
·
√
1 +

(
E
[
X
∣∣ X ∈ Aγ , X < x

])2·E [x−X

∣∣∣∣X ∈ Aγ , X < x

]
,

where for both functions, X is a random sample from the dataset under the uniform distribution.
Similar to the analysis above, we derive a lower bound for hγ(x) which only depends on f0.

Lemma G.4. For any fixed constants γ > ζ > 0, if Assumption 3.4 holds with ϵ(n), then we have

hγ(x) = min
{
h+
γ (x), h

−
γ (x)

}
≥ min

{
h̄+
γ,ζ(x, n), h̄

−
γ,ζ(x, n)

}
= h̄γ,ζ(x, n), where

h̄+
γ,ζ(x, n) =

(
PX∼D(X > x, X ∈ Āγ−ζ)− p(n)

PX∼D(X ∈ Āγ+ζ) + p(n)

)2

·
EX∼D

[
(X − x)1

(
X > x, X ∈ Āp(n)

γ−ζ

)]
PX∼D

[
X > x, X ∈ Āγ+ζ

]
+ p(n)

,

h̄−
γ,ζ(x, n) =

(
PX∼D(X < x, X ∈ Āγ−ζ)− p(n)

PX∼D(X ∈ Āγ+ζ) + p(n)

)2

·
EX∼D

[
(x−X)1

(
X < x, X ∈ Āp(n)

γ−ζ

)]
PX∼D

[
X < x, X ∈ Āγ+ζ

]
+ p(n)

.

For the two functions above, p(n) is the O
(
ϵ(n) · eγ+ζ · ζ−2

)
term in Lemma G.2, while

Āp
γ :=

{
x ∈ Āγ

∣∣∣∣ min
(
PX∼D(X ∈ Āγ , X > x), PX∼D(X ∈ Āγ , X < x)

)
≥ p

}
.

Furthermore, when n converges to infinity, h̄γ,ζ(x, n) will converge (in probability) to h̄γ,ζ(x) =

min
{
h̄+
γ,ζ(x), h̄

−
γ,ζ(x)

}
where

h̄+
γ,ζ(x) =

(
PX∼Px

(X > x, X ∈ Āγ−ζ)

PX∼Px
(X ∈ Āγ+ζ)

)2

·
EX∼Px

[
(X − x)1

(
X > x, X ∈ Āγ−ζ

)]
PX∼Px

[
X > x, X ∈ Āγ+ζ

] ,

h̄−
γ,ζ(x) =

(
PX∼Px

(X < x, X ∈ Āγ−ζ)

PX∼Px(X ∈ Āγ+ζ)

)2

·
EX∼Px

[
(x−X)1

(
X < x, X ∈ Āγ−ζ

)]
PX∼Px

[
X < x, X ∈ Āγ+ζ

] .
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Proof of Lemma G.4. We first provide a lower bound for the function h+
γ (x) via lower bounding the

three parts separately. For the term PX∼D(X > x | X ∈ Aγ), we connect the probability to the
probability w.r.t f0. Denote the R.H.S in Lemma G.2: O

(
ϵ(n) · eγ+ζ · ζ−2

)
by p(n), it holds that

PX∼D(X > x
∣∣ X ∈ Aγ) =

PX∼D(X > x, X ∈ Aγ)

PX∼D(X ∈ Aγ)

≥
PX∼D(X > x, X ∈ Āγ−ζ)− PX∼D(X > x, X ∈ Āγ−ζ , X ∈ A∁

γ)

PX∼D(X ∈ Āγ+ζ) + PX∼D(X ∈ Aγ , X ∈ Ā∁
γ+ζ)

≥
PX∼D(X > x, X ∈ Āγ−ζ)−O

(
ϵ(n) · eγ+ζ · ζ−2

)
PX∼D(X ∈ Āγ+ζ) +O (ϵ(n) · eγ+ζ · ζ−2)

=
PX∼D(X > x, X ∈ Āγ−ζ)− p(n)

PX∼D(X ∈ Āγ+ζ) + p(n)
,

(96)

where the last inequality results from applying Lemma G.2 to both the numerator and denominator.

Meanwhile, it is straightforward that
√
1 +

(
E
[
X
∣∣ X ∈ Aγ , X > x

])2 ≥ 1.

To handle the last term EX∼D

[
X − x

∣∣∣∣ X > x, X ∈ Aγ

]
, we have the following:

EX∼D

[
X − x

∣∣∣∣ X > x, X ∈ Aγ

]
=
EX∼D [(X − x)1 (X > x, X ∈ Aγ)]

PX∼D [X > x, X ∈ Aγ ]

≥EX∼D [(X − x)1 (X > x, X ∈ Aγ)]

PX∼D
[
X > x, X ∈ Āγ+ζ

]
+ p(n)

,

(97)

where the inequality holds because of Lemma G.2 and our definition of p(n). To deal with the
numerator above, we define the truncated version of the uncertain set with respect to f0, where the
truncation here means removing a constant portion of features close to the boundary of the interval.
For a constant p > 0, we define the truncated uncertain set Āp

γ as:

Āp
γ :=

{
x ∈ Āγ

∣∣∣∣ min
(
PX∼D(X ∈ Āγ , X > x), PX∼D(X ∈ Āγ , X < x)

)
≥ p

}
. (98)

With the definition above, we directly have

EX∼D

[
X − x

∣∣∣∣ X > x, X ∈ Aγ

]
≥

EX∼D

[
(X − x)1

(
X > x, X ∈ Āp(n)

γ−ζ

)]
PX∼D

[
X > x, X ∈ Āγ+ζ

]
+ p(n)

, (99)

where the inequality holds because of the fact that Px∼D (|f0(x)| ≤ γ − ζ, |fθ(x)| > γ) ≤ p(n)
(Lemma G.2).

Combining the three inequalities for the three parts, we have

h+
γ (x) ≥

(
PX∼D(X > x, X ∈ Āγ−ζ)− p(n)

PX∼D(X ∈ Āγ+ζ) + p(n)

)2

·
EX∼D

[
(X − x)1

(
X > x, X ∈ Āp(n)

γ−ζ

)]
PX∼D

[
X > x, X ∈ Āγ+ζ

]
+ p(n)

= h̄+
γ,ζ(x, n).

(100)

In addition, according to Assumption 3.4, limn→∞ p(n) = 0. Therefore, as n converges to infinity,
the R.H.S will converge (in probability) to

h̄+
γ,ζ(x, n)

p→
(
PX∼Px

(X > x, X ∈ Āγ−ζ)

PX∼Px(X ∈ Āγ+ζ)

)2

·
EX∼Px

[
(X − x)1

(
X > x, X ∈ Āγ−ζ

)]
PX∼Px

[
X > x, X ∈ Āγ+ζ

] = h̄+
γ,ζ(x).

(101)

Similarly, we can also prove that

PX∼D(X < x
∣∣ X ∈ Aγ) ≥

PX∼D(X < x, X ∈ Āγ−ζ)− p(n)

PX∼D(X ∈ Āγ+ζ) + p(n)
. (102)
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√
1 +

(
E
[
X
∣∣ X ∈ Aγ , X < x

])2 ≥ 1. (103)

EX∼D

[
x−X

∣∣∣∣ X < x, X ∈ Aγ

]
≥

EX∼D

[
(x−X)1

(
X < x, X ∈ Āp(n)

γ−ζ

)]
PX∼D

[
X < x, X ∈ Āγ+ζ

]
+ p(n)

. (104)

Therefore, combining the three inequalities above, we have

h−
γ (x) ≥

(
PX∼D(X < x, X ∈ Āγ−ζ)− p(n)

PX∼D(X ∈ Āγ+ζ) + p(n)

)2

·
EX∼D

[
(x−X)1

(
X < x, X ∈ Āp(n)

γ−ζ

)]
PX∼D

[
X < x, X ∈ Āγ+ζ

]
+ p(n)

= h̄−
γ,ζ(x, n).

(105)

In addition, as n converges to infinity, the R.H.S will converge (in probability) to

h̄−
γ,ζ(x, n)

p→
(
PX∼Px

(X < x, X ∈ Āγ−ζ)

PX∼Px
(X ∈ Āγ+ζ)

)2

·
EX∼Px

[
(x−X)1

(
X < x, X ∈ Āγ−ζ

)]
PX∼Px

[
X < x, X ∈ Āγ+ζ

] = h̄−
γ,ζ(x).

(106)

Finally, we have

hγ(x) = min
{
h+
γ (x), h

−
γ (x)

}
≥ min

{
h̄+
γ,ζ(x, n), h̄

−
γ,ζ(x, n)

}
= h̄γ,ζ(x, n). (107)

Meanwhile, limn→∞ h̄γ,ζ(x, n) = min
{
h̄+
γ,ζ(x), h̄

−
γ,ζ(x)

}
= h̄γ,ζ(x). The proof is complete.

Putting everything together. Now we are ready to plug Lemma G.3 and Lemma G.4 into Theorem
3.1, which leads to a (weighted) TV bound that only depends on the ground-truth function f0.

Theorem G.5 (Complete version of Theorem 3.5). For a threshold γ > 0
and probability p > 0, define the uncertain set and the truncated uncer-

tain set (w.r.t. f0) as Āγ :=

{
x ∈ [−xmax, xmax]

∣∣∣∣ |f0(x)| ≤ γ

}
and Āp

γ :={
x ∈ Āγ

∣∣∣∣ min
(
PX∼D(X ∈ Āγ , X > x), PX∼D(X ∈ Āγ , X < x)

)
≥ p

}
. Define

Γ(γ) = e−γ

(1+e−γ)2
= Ω(e−γ). Then for any function f = fθ such that the training loss L

is twice differentiable at θ and any γ > ζ > 0, if Assumption 3.4 holds with ϵ(n), for some function
p(n) = O

(
ϵ(n) · eγ+ζ · ζ−2

)
,

Γ(γ)·
(
PX∼D

(
X ∈ Āγ−ζ

)
− p(n)

)
·
(
1 + 2

∫ xmax

−xmax

|f ′′(x)| h̄γ,ζ(x, n)dx

)
≤ λmax(∇2L(θ))+2xmaxL(f),

(108)
where h̄γ,ζ(x, n) = min

{
h̄+
γ,ζ(x, n), h̄

−
γ,ζ(x, n)

}
and

h̄+
γ,ζ(x, n) =

(
PX∼D(X > x, X ∈ Āγ−ζ)− p(n)

PX∼D(X ∈ Āγ+ζ) + p(n)

)2

·
EX∼D

[
(X − x)1

(
X > x, X ∈ Āp(n)

γ−ζ

)]
PX∼D

[
X > x, X ∈ Āγ+ζ

]
+ p(n)

,

h̄−
γ,ζ(x, n) =

(
PX∼D(X < x, X ∈ Āγ−ζ)− p(n)

PX∼D(X ∈ Āγ+ζ) + p(n)

)2

·
EX∼D

[
(x−X)1

(
X < x, X ∈ Āp(n)

γ−ζ

)]
PX∼D

[
X < x, X ∈ Āγ+ζ

]
+ p(n)

.

Furthermore, assume that the features {xi}ni=1 are i.i.d. samples from some distribution Px, then as
n → ∞, the asymptotic total variation guarantee will be

Γ(γ) ·PX∼Px

(
X ∈ Āγ−ζ

)
·
(
1 + 2

∫ xmax

−xmax

|f ′′(x)| h̄γ,ζ(x)dx

)
≤ λmax(∇2L(θ)) + 2xmaxL(f),

(109)
where h̄γ,ζ(x) = min

{
h̄+
γ,ζ(x), h̄

−
γ,ζ(x)

}
and

h̄+
γ,ζ(x) =

(
PX∼Px

(X > x, X ∈ Āγ−ζ)

PX∼Px(X ∈ Āγ+ζ)

)2

·
EX∼Px

[
(X − x)1

(
X > x, X ∈ Āγ−ζ

)]
PX∼Px

[
X > x, X ∈ Āγ+ζ

] ,
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h̄−
γ,ζ(x) =

(
PX∼Px

(X < x, X ∈ Āγ−ζ)

PX∼Px(X ∈ Āγ+ζ)

)2

·
EX∼Px

[
(x−X)1

(
X < x, X ∈ Āγ−ζ

)]
PX∼Px

[
X < x, X ∈ Āγ+ζ

] .

Moreover, if f = fθ is a stable solution in F(η,D), we can replace λmax(∇2L(θ)) in equation 108
and equation 109 by 2

η .

Proof of Theorem G.5. Directly plugging Lemma G.3 and Lemma G.4 into Theorem 3.1, the proof
is complete.

G.1 SOME DISCUSSIONS

Trade-off between parameters. In addition to the same tradeoff in the choice of γ as in Theorem
3.1, there is also tradeoff in the choice of ζ. Note that the parameter ζ < γ accounts for the
discrepancy of the two uncertain sets Āγ+ζ and Āγ−ζ . As the choice of ζ becomes smaller, both
Āγ+ζ and Āγ−ζ will converge to Āγ . As a result, PX∼Px

(
X ∈ Āγ−ζ

)
will increase and converge to

PX∼Px

(
X ∈ Āγ

)
, while both the support and the value of the asymptotic weight function (h̄γ,ζ(x)

in Theorem G.5) will become larger. In other words, a smaller ζ will lead to a better asymptotic
guarantee. However, this is not necessarily the case for finite n. Note that p(n) scales as ζ−2, and
small ζ could lead to larger p(n), and thus do harm to the finite-n TV bound equation 7. Moreover,
although the asymptotic result for smaller ζ is better, the convergence rate could be worse due to
the p(n) term. In conclusion, it is important to select a ζ that balances the asymptotic result and the
convergence speed to the asymptotic result.

H PROOF OF THEOREM 3.7
We prove the theorem based on the high probability event that h̃γ,ζ(x, n) ≥ c for any x ∈ I. In this
way, it holds that

Γ(γ) ·
(
PX∼D

(
X ∈ Āγ−ζ

)
− p(n)

)
·
(
1 + 2

∫ xmax

−xmax

|f ′′(x)| h̄γ,ζ(x, n)dx

)
≥2

∫ xmax

−xmax

|f ′′(x)| h̃γ,ζ(x, n)dx ≥ 2c

∫
I
|f ′′(x)| dx.

(110)

Meanwhile, since f = fθ is a stable solution in F(η,D), λmax(∇2L(θ)) ≤ 2
η . Note that ∥f∥∞ ≤ B,

which implies that 2xmaxL(f) ≤ 2xmax(1 +B).

Combining the results with Theorem 3.5, we have∫
I
|f ′′(x)| dx ≤ 1

c

(
1

η
+ xmax(1 +B)

)
. (111)

Define the set T3 as T3 :=

{
f : I → R

∣∣∣∣ ∫I |f ′′(x)| dx ≤ 1
c

(
1
η + xmax(1 +B)

)
, ∥f∥∞ ≤ B

}
.

Then we have both fθ, f0 ∈ T3. Below we analyze the metric entropy of T3.

Lemma H.1. Assume the metric is ℓ∞ distance ∥·∥∞, then the metric entropy of (T3, ∥·∥∞) satisfies

logN(ϵ,T3, ∥ · ∥∞) ≤ O

√ xmax

η + x2
max(1 +B)

ϵ

 , (112)

where the O(·) also absorbs the constant c and 1
|I| .

Proof of Lemma H.1. Assume the interval I is I = [xleft, xright] and x̃ = (xleft + xright)/2 is the
middle point of I. Then for any f ∈ T3, it is obvious that f(x̃) ≤ B ≤ xmax(1 +B).

Meanwhile, if |f ′(x̃)| ≥ 1
c

(
1
η + xmax(1 +B)

)
, then f is monotonic over the interval I and

|f ′(x)| ≥ |f ′(x̃)| − 1
c

(
1
η + xmax(1 +B)

)
for any x ∈ I. As a result,

2B ≥ |f(xright)− f(xleft)| ≥ |I| ·
(
|f ′(x̃)| − 1

c

(
1

η
+ xmax(1 +B)

))
. (113)

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Solving the inequality above, we have

|f ′(x̃)| ≤ 2B

|I|
+

1

c

(
1

η
+ xmax(1 +B)

)
. (114)

Let C3 = 2B
|I|+

1
c

(
1
η + xmax(1 +B)

)
and T4 =

{
f : I → R

∣∣∣∣ |f(x̃)| ≤ C3, |f ′(x̃)| ≤ C3,
∫
I |f ′′(x)|dx ≤ C3

}
.

Then according to the analysis above, we have f ∈ T4. As a result, T3 ⊂ T4, which further implies
that logN(ϵ,T3, ∥ · ∥∞) ≤ logN(ϵ,T4, ∥ · ∥∞).

Define T5 =

{
f : [x̃− xmax, x̃+ xmax] → R

∣∣∣∣ |f(x̃)| ≤ C3, |f ′(x̃)| ≤ C3,
∫ x̃+xmax

x̃−xmax
|f ′′(x)|dx ≤ C3

}
.

Note that for any f ∈ T4, the linear extension of f to [x̃−xmax, x̃+xmax] belongs to T5. Therefore,
we have logN(ϵ,T4, ∥·∥∞) ≤ logN(ϵ,T5, ∥·∥∞). At the same time, the metric entropy of T5 is the

same as the set
{
f : [−xmax, xmax] → R

∣∣∣∣ |f(0)| ≤ C3, |f ′(0)| ≤ C3,
∫ xmax

−xmax
|f ′′(x)|dx ≤ C3

}
,

which is a subset of the set T (in Lemma F.3) with C2 = C3. According to Lemma F.3, it holds that

logN(ϵ,T5, ∥ · ∥∞) ≤ logN(ϵ,T, ∥ · ∥∞) ≤ O

(√
C3xmax

ϵ

)
.

Combining the results above, we finally have

logN(ϵ,T3, ∥ · ∥∞) ≤ logN(ϵ,T4, ∥ · ∥∞) ≤ logN(ϵ,T5, ∥ · ∥∞)

≤ logN(ϵ,T, ∥ · ∥∞) ≤ O

(√
C3xmax

ϵ

)
= O

√ xmax

η + x2
max(1 +B)

ϵ

 ,
(115)

where the last O(·) also absorbs the constant c and 1
|I| .

With the metric entropy upper bound of T3 above, we are ready to provide a high probability bound
for the generalization gap over the data points in I. For a fixed dataset {(xi, yi)}ni=1 and a fixed
interval I , define the empirical loss on I as LI(f) =

1
nI

∑
xi∈I ℓ(f, (xi, yi)), where ℓ is the logistic

loss and nI =
∑n

i=1 1(xi ∈ I) is the number of features in I. Meanwhile, the populational loss is
L̄I(f) =

1
nI

∑
xi∈I Ey′

i|xi
ℓ(f, (xi, y

′
i)), where ·|x is the conditional distribution of the label given

x. Below we derive a high probability bound for
∣∣LI(f)− L̄I(f)

∣∣ over the function set T3.

Lemma H.2. Recall that T3 :=

{
f : I → R

∣∣∣∣ ∫I |f ′′(x)| dx ≤ 1
c

(
1
η + xmax(1 +B)

)
, ∥f∥∞ ≤ B

}
.

If the loss ℓ is logistic loss, then with probability 1− δ
2 , for any f ∈ T3,

∣∣LI(f)− L̄I(f)
∣∣ ≤ O


 (B + 1)4

(
xmax

η + x2
max(1 +B)

)
log(1/δ)2

n2
I


1
5
 , (116)

where the O(·) also absorbs the constant c and 1
|I| .

Proof of Lemma H.2. For a fixed ϵ > 0, according to Lemma H.1, there exists an ϵ-covering set of
T3 (with respect to ∥ · ∥∞) whose cardinality N satisfies that

logN ≤ O

√ xmax

η + x2
max(1 +B)

ϵ

 . (117)

For a fixed function f̄ in the covering set, since the loss is logistic loss, for any possible (x, y),∣∣ℓ(f̄ , (x, y))∣∣ ≤ log
(
1 + e|f̄(x)|

)
≤ B + 1.

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Meanwhile, note that the features yi’s are sampled independently from the data distribution. Accord-
ing to Hoeffding’s inequality, with probability 1− δ, it holds that

∣∣LI(f̄)− L̄I(f̄)
∣∣ ≤ (B + 1) ·

√
2 log(2/δ)

nI
. (118)

Together with a union bound over the covering set, we have with probability 1− δ
2 , for all f̄ in the

covering set,

∣∣LI(f̄)− L̄I(f̄)
∣∣ ≤ (B + 1) ·

√
2 log(4N/δ)

nI

≤O

(B + 1) ·

(
xmax

η + x2
max(1 +B)

) 1
4

log(1/δ)
1
2

n
1
2

I ϵ
1
4

 .

(119)

Under such high probability event, for any f ∈ T3, let f̄ be a function in the covering set such that
∥f − f̄∥∞ ≤ ϵ. Then it holds that∣∣LI(f)− L̄I(f)

∣∣
≤
∣∣LI(f̄)− L̄I(f̄)

∣∣+O(ϵ)

≤O(ϵ) +O

(B + 1) ·

(
xmax

η + x2
max(1 +B)

) 1
4

log(1/δ)
1
2

n
1
2

I ϵ
1
4



≤O


 (B + 1)4

(
xmax

η + x2
max(1 +B)

)
log(1/δ)2

n2
I


1
5
 ,

(120)

where the first inequality holds because
∣∣∣ℓ(f, (x, y))− ℓ(f̃ , (x, y))

∣∣∣ ≤ ∣∣∣f(x)− f̃(x)
∣∣∣. The last

inequality results from selecting the ϵ that minimizes the objective.

Finally, under the assumption that f = fθ is “optimized” over the interval I , we can upper bound the
excess risk over I.

Lemma H.3. Under the high probability event in Lemma H.2, if LI(f) ≤ LI(f0), then the excess
risk over I is bounded by

ExcessRiskI(f) = L̄I(f)− L̄I(f0) ≤ O


 (B + 1)4

(
xmax

η + x2
max(1 +B)

)
log(1/δ)2

n2
I


1
5
 ,

(121)
where nI is the number of features in I and the O(·) also absorbs the constant c and 1

|I| .

Proof of Lemma H.3. According to direct calculation, we have

L̄I(f)− L̄I(f0) ≤
∣∣L̄I(f)− LI(f)

∣∣+ LI(f)− LI(f0) +
∣∣LI(f0)− L̄I(f0)

∣∣
≤
∣∣L̄I(f)− LI(f)

∣∣+ 0 +
∣∣LI(f0)− L̄I(f0)

∣∣
≤O


 (B + 1)4

(
xmax

η + x2
max(1 +B)

)
log(1/δ)2

n2
I


1
5
 ,

(122)

where the last inequality holds due to Lemma H.2 and the fact that f, f0 ∈ T3.

Note that the failure probability is at most δ ( δ2 for h̃γ,ζ(x, n) ≥ c and δ
2 for Lemma H.2), combining

Lemma H.2 and Lemma H.3, the proof of Theorem 3.7 is complete.
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