
Generation Meets Verification: Accelerating Large Language Model
Inference with Smart Parallel Auto-Correct Decoding

Anonymous ACL submission

Abstract

This research aims to accelerate the inference001
speed of large language models (LLMs) with002
billions of parameters. We propose Smart003
Parallel Auto-Correct dEcoding (SPACE), an004
innovative approach designed for achieving005
lossless acceleration of LLMs. By integrating006
semi-autoregressive inference and speculative007
decoding capabilities, SPACE uniquely enables008
autoregressive LLMs to parallelize token gener-009
ation and verification. This is realized through010
a specialized semi-autoregressive supervised011
fine-tuning process that equips existing LLMs012
with the ability to simultaneously predict mul-013
tiple tokens. Additionally, an auto-correct de-014
coding algorithm facilitates the simultaneous015
generation and verification of token sequences016
within a single model invocation. Through017
extensive experiments on a range of LLMs,018
SPACE has demonstrated inference speedup019
ranging from 2.7x-4.0x on HumanEval-X while020
maintaining output quality.021

1 Introduction022

The majority of current large language models023

(LLMs), including prominent examples like Chat-024

GPT (Brown et al., 2020) and LLaMA (Touvron025

et al., 2023), are autoregressive (AR) in nature.026

During the inference stage, these AR models gen-027

erate tokens one by one in a sequential manner.028

This sequential approach limits parallelism, lead-029

ing to underutilization of modern parallel comput-030

ing resources such as graphics processing units031

(GPUs). Consequently, there is a noticeable in-032

crease in latency during the inference stage. This033

issue becomes more pronounced when dealing with034

advanced LLMs, typically equipped with billions035

of parameters, where speed is crucial but hindered036

by the sequential token generation mechanism.037

A straightforward method to mitigate the la-038

tency is to adapt the model to predict multiple039

future tokens in parallel. Such models are com-040

monly referred to as semi-autoregressive (SAR)041

models (Xiao et al., 2023). Nonetheless, the vast 042

majority of LLMs are inherently AR and, hence, 043

unable to perform inference in a SAR manner. In 044

addition, SAR models commonly experience a de- 045

terioration in the quality of output due to their par- 046

allel decoding nature (Xiao et al., 2023). Further- 047

more, it is worth mentioning that pretraining a SAR 048

LLM from scratch incurs significant computational 049

expenses. 050

Another effective ways to speed up AR sampling 051

is speculative decoding (Leviathan et al., 2023; 052

Chen et al., 2023; Miao et al., 2023). Speculative 053

decoding typically adheres to the ‘draft-then-verify’ 054

paradigm, wherein multiple candidate tokens are 055

initially generated by fast-to-infer smaller mod- 056

els, and are subsequently validated in parallel by 057

the larger LLM. This validation process, based on 058

rejection sampling, ensures that the final output 059

is consistent with the LLM’s distribution, thereby 060

achieving lossless speedup. Nonetheless, specula- 061

tive decoding is contingent on the availability of 062

smaller models, which are challenging to procure. 063

Further, these additional models incur extra mem- 064

ory overhead during inference. 065

Integrating SAR inference with speculative de- 066

coding presents a promising approach to accelerate 067

language model inference. By adapting a model 068

to autonomously generate and validate a sequence 069

of future tokens, we establish an efficient and self- 070

reliant process that greatly enhances the speed of 071

inference. This union yields substantial practical 072

benefits: it eliminates the requirement for smaller 073

auxiliary models, thereby simplifying the overall 074

implementation and reducing memory overhead 075

during inference. Furthermore, by shifting the em- 076

phasis away from precise prediction of multiple 077

tokens towards speculative generation followed by 078

verification, the difficulty of the SAR training phase 079

can be significantly reduced. 080

In this paper, we propose Smart Parallel Auto- 081

Correct dEcoding (SPACE), an innovative ap- 082

1

Figure 1: A visual comparison between conventional AR inference (left) and SPACE inference (right) is illustrated.
In AR inference, token generation proceeds in a sequential manner, with only one token output per decoding step.
In SPACE inference, the input token sequence is augmented with k + 1 groups of mask tokens and k candidate
tokens. The candidate tokens undergo verification, and k new candidate tokens are generated from one of the mask
groups after a single model invocation. SPACE allows for a variable number of tokens to be generated in each step,
with the quantity ranging from a minimum of 1 to a maximum of k + 1.

proach that allows LLMs to generate multiple to-083

kens speculatively while simultaneously verifying084

them. SPACE harmonizes a SAR model with a085

draft-then-verify inference algorithm to optimize086

inference speed while maintaining high model qual-087

ity. We demonstrate that a pretrained AR language088

model can be adapted to produce probable token089

sequences in parallel through semi-autoregressive090

supervised fine-tuning (SAR-SFT). This strategy091

obviates the need for supplementary smaller mod-092

els and maintains the fine-tuning process within rea-093

sonable computational demands. We also introduce094

an auto-correct decoding algorithm that enables the095

generation and validation of token candidates to096

occur concurrently within a single invocation of a097

model, thereby significantly boosting inferential ef-098

ficiency. A visual comparison between traditional099

AR inference and SPACE inference mechanism can100

be found in Figure 1. Our key contributions are101

summarized as follows:102

- We propose a semi-autoregressive supervised103

fine-tuning scheme that empowers autoregressive104

LLMs to generate multiple tokens at once, without105

requiring substantial computational overhead.106

- We pioneer an auto-correct decoding algorithm107

that facilitates the concurrent generation and vali-108

dation of token candidates within a single forward109

pass of the model, ensuring a lossless acceleration110

in inference speed.111

- Our extensive experiments, conducted across 112

various LLMs with parameters ranging from 6B to 113

70B, validate that SPACE is effective in achiev- 114

ing an inference speedup from 2.7x to 4.0x in 115

HumanEval-X while maintaining output quality. 116

2 Related Work 117

Speculative Decoding Speculative decod- 118

ing (Leviathan et al., 2023; Chen et al., 2023) 119

aims to accelerate LLM decoding by utilizing 120

a smaller draft model to anticipate the larger 121

target model’s outputs. These predictions are 122

then validated by the target model. The success 123

of speculative decoding heavily relies on the 124

precision of the draft model’s predictions. To 125

enhance accuracy, researchers have adopted 126

various strategies such as employing ensembles of 127

boosted draft models (Miao et al., 2023), staged 128

draft models (Spector and Re, 2023), retraining the 129

target model with addition of auxiliary prediction 130

heads (Stern et al., 2018), introducing advanced 131

coordination policies (Kim et al., 2023) and 132

refining the decoding algorithm (Sun et al., 2023). 133

However, speculative decoding hinges on the 134

accessibility of suitable smaller models, which 135

can be difficult to obtain and often requiring extra 136

training and careful tuning (Liu et al., 2023). 137

SPACE circumvents this challenge by fine-tuning 138

the target model to prognosticate future token 139

2

sequences in parallel, eliminating the dependency140

on extra small model.141

Recent advancements like Lookahead Decod-142

ing (Fu et al., 2023) and Self-Speculative (Zhang143

et al., 2023) suggest innovative approaches where144

a single LLM is employed for both generating and145

verifying tokens. These methods are appealing due146

to simplifying the process by not necessitating mul-147

tiple models or additional training regimes. How-148

ever, it’s noteworthy that despite these methodolo-149

gies being more streamlined, they typically achieve150

a lower speedup ratio when compared to SPACE.151

Semi-Autoregressive Decoding SAR departs152

from the conventional AR approach by decoding153

multiple tokens in parallel, thereby significantly154

enhancing inference efficiency. Particularly in ma-155

chine translation, SAR has achieved a fivefold156

speed increase while preserving 88% of the model157

quality (Wang et al., 2018). Recent research efforts158

to enhance SAR performance in machine transla-159

tion include employing alignment-focused training160

objectives (Gu and Kong, 2021), innovating model161

architectures (Huang et al., 2022), etc. However,162

to the best of our knowledge, exploration of SAR163

in conjunction with decoder-only LLMs remains164

limited. A recent study that aligns closely with our165

work is SpecDec (Xia et al., 2022), which employs166

a strategy of initially decoding a block of tokens167

quickly as a draft with a SAR model before refining168

this draft using an AR model. However, a notable169

difference is that SpecDec requires the training of170

an extra SAR model, which introduces resource171

overhead.172

3 Methods173

SPACE primarily comprises two components: the174

SAR-SFT mechanism and the auto-correct decod-175

ing algorithm. The SAR-SFT mechanism enhances176

an autoregressive LLM’s capacity for speculative177

multi-token generation in a single decoding step.178

Meanwhile, the auto-correct decoding algorithm179

allows the LLM to concurrently generate and verify180

candidate tokens. We introduce the details of these181

two components in the following subsections.182

3.1 Semi-Autoregressive Supervised183

Finetuning184

Conventionally a pretrained LLM undergoes a pro-185

cess known as supervised fine-tuning (SFT) to align186

its output with human instructions. Specifically,187

given the prompt token sequence X and the an-188

swer token sequence Y = {y1, y2, · · · , yN}, the 189

AR model is trained in SFT with loss function 190

LAR = −
N∑
t=1

logP (yt|y<t, X; θ), (1) 191

where yt is the token to be predicted at time step 192

t, y<t is the tokens predicted in previous t − 1 193

decoding steps and θ is the model parameters. 194

In the proposed SAR-SFT scheme, our objec- 195

tive is to train the model to generate k consecutive 196

tokens when presented with an input sequence con- 197

taining k mask tokens. To achieve this, we employ 198

an autoregressive loss LAR with a probability par. 199

Conversely, with a complementary probability of 200

1 − par, we randomly sample an index m from 201

{0, 1, · · · , N − k} and obtain y<m from the an- 202

swer token sequence. Subsequently, we append k 203

mask tokens “[M]” to y<m to form yk<m: 204

yk<m = {y1, y2, · · · , ym−1, [M], · · · , [M]︸ ︷︷ ︸
×k

}. (2) 205

The model is trained with the SAR loss function 206

defined as follows: 207

LSAR = −
m∑
t=1

logP (yt|y<t, X; θ) 208

−
m+k∑
t=m

logP (yt|yk<m, X; θ) (3) 209

The final loss function we used in SAR-SFT is 210

L = parLAR + (1− par)LSAR (4) 211

Intuitively, the parameters par plays a critical role 212

in striking a balance between the AR loss and the 213

SAR loss. By selecting an appropriate value for 214

par, the LLM is trained not only to adhere to in- 215

structions but also to predict multiple tokens at each 216

decoding step. 217

We note that the primary goal of SAR-SFT is 218

not to compel the LLM to predict several tokens 219

in parallel with high accuracy, as this can be an 220

exceedingly challenging task that significantly in- 221

creases training costs. Rather, our goal is to enable 222

the LLM to make an “educated guess” about the 223

upcoming few tokens, which is more attainable. 224

This strategy allows the model to improve its in- 225

ference efficiency by preparing probable token se- 226

quences beforehand, which can later be validated 227

and refined by the auto-correct decoding algorithm 228

introduced in next subsection. 229

3

Figure 2: An illustrative example of the auto-correct decoding step in SPACE. In this example, the first candidate
token “auto” is accepted, while the second candidate token “model” is rejected. In this case, the LLM generates two
new tokens “auto” and “regressive” in this decoding step and two new candidate tokens “model” and “.”.

3.2 Auto-Correct Decoding Algorithm230

Unlike previous methods (Leviathan et al., 2023;231

Chen et al., 2023; Miao et al., 2023) that rely on232

auxiliary models, our approach SPACE streamlines233

the process by using the same LLM for both gen-234

eration and subsequent verification of candidate235

tokens. To enhance inference efficiency, we have236

developed an algorithm that enables this unified237

LLM to concurrently verify tokens from the cur-238

rent step and generate new candidates for the next239

step within a single forward pass.240

Algorithm 1 outlines the auto-correct decoding241

algorithm used in SPACE and Figure 2 gives an242

illustrative example. We note that this decoding243

algorithm is applicable to both greedy and random244

sampling settings. Since greedy sampling can be245

considered a special case of random sampling, we246

introduce SPACE within the broader context of247

random sampling setting without loss of generality.248

Given a sequence of input tokens T =249

{x1, x2, · · · , xl} and a list of k candidate tokens250

Lc = {c1, c2, · · · , ck} generated from previous251

step, we first construct a sequence of input tokens252

I as follows:253

I ={x1, x2, · · · , xl,
Lk
m, c1, L

k
m, c2, · · · , ck, Lk

m},
(5)254

where Lk
m = [M], · · · , [M]︸ ︷︷ ︸

×k

represents a group of255

k mask tokens and there are k + 1 groups of them256

in I. The input token sequence is expanded by257

k · (k + 2) additional tokens, resulting in a total258

length of |I| = l+ k · (k+2). These k+1 groups259

Algorithm 1 The auto-correct decoding algorithm

Input: A sequence of input tokens T , number of
mask tokens k, large language model M

Output: A sequence of generated tokens O
1: O = T , Lc = [0]× k, Pc = [+∞]× k
2: while True do
3: l = len(O)
4: Get I, Ā, P̄ according to equation (5)-(7)
5: P = M(I, Ā, P̄) ▷ Get the output logits
6: idx = l + 1
7: Q = P [l] ▷ The logit of the l-th token
8: for i = 1 to k do
9: r ∼ U(0, 1)

10: if r ≤ Q(Lc[i])/Pc[i] then
11: O.append(Lc[i])
12: idx = idx+ k + 1
13: Q = P [l + i ∗ (k + 1)]
14: else
15: break
16: end if
17: end for
18: a ∼ Q ▷ Sample one extra token
19: O.append(a)
20: if <EOS> in O then
21: return O[:eos_index]
22: end if
23: Lc ∼ P [idx : idx+ k] ▷ New candidates
24: Pc = P [idx : idx+ k](Lc) ▷ Probability
25: end while

4

of mask tokens are designated for the generation of260

new candidate tokens. Depending on the number of261

accepted tokens, the generation results from one of262

the mask token groups will be chosen as candidate263

tokens, with further details to be presented later.264

Since LLM decoding is primarily bounded by265

memory bandwidth, we can merge the generation266

and verification in the same forward step, lever-267

aging GPU’s parallel processing power to hide268

overheads. We achieve this by designing special269

attention mask Ā ∈ {0, 1}|I|×|I| and positional270

encoding P̄ ∈ N |I| as follow:271

Āij =


1 i ≥ j, I[j] ̸= M

1 i ≥ j, i− j < k, I[i] = I[j] = M

0 otherwise
(6)272273

P̄i =

|I|∑
j=1

Aij − 1 (7)274

The attention mask is tailored such that masked275

tokens can causally attend only to other mask to-276

kens within the same group and to preceding non-277

masked tokens. Furthermore, all non-masked to-278

kens are restricted to causally attend to prior non-279

masked tokens, and are unable to attend to any280

preceding masked tokens. An illustrative example281

of the attention mask configuration is depicted in282

Figure 3 with k = 2.283

Figure 3: An illustrative example of the attention mask
used in SPACE. In this example, k = 2 and the input is
extended with 8 tokens. “LLMs are” are the input query,
“auto” and “model” are two candidate tokens that need
to be verified.

The extended input token sequence I, together 284

with attention mask Ā and positional encoding P̄ , 285

are passed through LLM. This facilitates the infer- 286

ence process, allowing the LLM to generate the 287

normalized output logits, denoted as P , as outlined 288

in line 5 of Algorithm 1. 289

The candidate tokens are verified through reject 290

sampling, which is detailed from line 6 to line 22 291

in Algorithm 1. Denote Pc as the list of semi- 292

autoregressive probability of candidate tokens ob- 293

tained from previous step. Formally Pc[i] is defined 294

as: 295

Pc[i] = P (ci|x1, · · · , xl−1, [M], · · · , [M]︸ ︷︷ ︸
×i

) (8) 296

Denote Qc as the list of autoregressive probability 297

of candidate tokens obtained from current step 1. 298

Qc[i] = P (ci|x1, · · · , xl, c1, · · · , ci−1) (9) 299

Starting from i = 1, we accept token ci with prob- 300

ability: 301

min(1,
Qc[i]

Pc[i]
) (10) 302

This can be implemented by first sample a random 303

number uniformly from [0, 1], and then accept the 304

token if this random number does not exceed the 305

ratio Qc[i]/Pc[i]. Upon acceptance of token ci, the 306

algorithm output ci and proceeds to validate the 307

subsequent token ci+1 using the same criterion; 308

conversely, if ci is rejected, the verification process 309

terminates immediately. It is important to observe 310

that during each decoding step, the number of gen- 311

erated tokens ranges from a minimum of one to a 312

maximum of k+ 1. By employing reject sampling, 313

it can be proved that the distribution of the output 314

token sequence matches that of the AR inference 315

process in the LLM. For a more comprehensive 316

explanation of this claim, readers can refer to prior 317

research (Leviathan et al., 2023; Chen et al., 2023). 318

In the case that there are i∗ accepted candidate to- 319

kens, where 0 ≤ i∗ ≤ k, the generation of new can- 320

didate tokens for the subsequent step commences 321

from the (i∗ + 1)-th mask token group, as denoted 322

in lines 23-24 of Algorithm 1. This approach en- 323

sures the generation of k candidate tokens at each 324

decoding step, as illustrated in Figure 2. 325

1By definition, Qc[i] is equivalent to Q(Lc[i]) in line 10
of Algorithm 1.

5

4 Experiments326

4.1 Experimental Settings327

Training We conduct experiments on LLMs with328

various sizes, including ChatGLM3-6B-Base (Du329

et al., 2022), LLaMA-2 (7B, 13B, 70B) (Tou-330

vron et al., 2023), Qwen-14B (Bai et al., 2023),331

InternLM-20B (Team, 2023), Falcon-40B (Al-332

mazrouei et al., 2023). To ensure reproducibil-333

ity, we finetune the models using publicly avail-334

able SFT datasets including Alpaca-GPT4 (Peng335

et al., 2023), Lima (Zhou et al., 2023), Oaast-336

SFT (LAION-AI, 2023), CodeAlpaca (Chaudhary,337

2023), and OpenPlatypus (Lee et al., 2023). The338

details of these dataset are listed in Table 3 in Ap-339

pendix A.1. There are in total 166,993 training340

samples. We add the mask token as a special token341

and initialize its embedding with normal distribu-342

tion. Unless otherwise specified, we set the number343

of mask tokens k = 5 and par = 0.5. We finetune344

the models for 2 epochs with a learning rate as 5e-5.345

The training details can be found in Appendix A.1.346

Inference In our assessment of SPACE, we em-347

ploy four distinct datasets: Chatbot Instruction348

Prompt (CIP) (Palla, 2023), MT-Bench (Zheng349

et al., 2023a), HumanEval-X (Zheng et al., 2023b)350

and XSum (Narayan et al., 2018). CIP is a con-351

versational dataset from which we utilize prompts352

to simulate realistic conversations. MT-Bench is a353

dataset comprised of multi-turn questions, encom-354

passing a wide range of topics. HumanEval-X is355

a standard benchmark for Python code generation356

and Pass@10 is used as the metric. Lastly, the357

XSum dataset, which tasks models with summary358

generation, is evaluated using ROUGE-L.359

For inference baseline, we adopt the generation360

algorithm provided by the Huggingface Transform-361

ers library (Wolf et al., 2020), executing it in an au-362

toregressive fashion. We conduct the experiments363

on a server with eight A800 (80GB) GPUs. By364

default, we set the batch size to 1 during inference.365

To evaluate the inference efficiency of SPACE, we366

employ two metrics: speedup and average accepted367

tokens. The speedup metric is defined as the ratio368

of the inference speed of the baseline method (mea-369

sured in tokens per second) to the inference speed370

achieved using SPACE. The second metric, aver-371

age accepted tokens, is computed as the ratio of372

the total number of tokens generated to the num-373

ber of inference steps performed by the LLM. The374

evalutation details can be found in Appendix A.2.375

4.2 Experimental Results 376

4.2.1 Inference Efficiency 377

The experimental results on XSum, HumanEval-X 378

and CIP under greedy sampling setting are shown 379

in Table 1. Under greedy decoding conditions, 380

we anticipate identical outputs from models apply- 381

ing SPACE and baseline autoregressive generation 382

method. However, the results exhibit occasional 383

discrepancies between the two, which can be at- 384

tributed to numerical variations during decoding 385

that cause the generation of different tokens, po- 386

tentially leading to significant divergence in the 387

resulting sequences. Despite these observed differ- 388

ences, SPACE predominantly corresponds closely 389

with baseline performance levels in both the XSum 390

and HumanEval-X benchmarks. Moreover, SPACE 391

demonstrably realizes a speedup in the range of 392

1.5 to 4.0, depending on the models and datasets. 393

The maximal acceleration, seen in LLaMA-2-70B 394

on HumanEval-X, clocks in at an impressive 4.01. 395

More experimental results of SPACE under random 396

sampling can be found in Appendix A.3. 397

From the aboved results, we have the follow- 398

ing three observations: First, as compared to the 399

autoregressive inference baseline, SPACE deliv- 400

ers lossless speedup when applied to models of 401

varying sizes, showcasing its broad applicability. 402

Specifically, the results attained by SPACE in tasks 403

such as XSum and HumanEval-X closely mirror 404

those achieved by the baseline method, as indicated 405

by the comparable performance metrics listed in 406

parentheses in Table 1. 407

Second, the magnitude of speedup experienced 408

is model-specific, indicating that the efficiency ben- 409

efits of SPACE can differ in models. This variance 410

might stem from several factors: (1) the models’ 411

vocabularies vary, with less efficient vocabularies 412

possibly leading to greater predictability and thus 413

higher speedup; and (2) models with more param- 414

eters often enjoy more substantial speedup, likely 415

owing to their superior predictive capabilities that 416

facilitate earlier anticipation of forthcoming tokens. 417

Lastly, when applying SPACE to different tasks, 418

the same model can exhibit dramatically different 419

speedup ratios. In particular, tasks that involve 420

programming, such as those in the HumanEval-X 421

benchmark, exhibit the most significant speedup, 422

achieving an average rate of 3.33 using greedy sam- 423

pling. This observation aligns with the results in 424

previous research (Chen et al., 2023), and could 425

be attributed to the inherently structured and pre- 426

6

Model XSum HumanEval-X CIP

ROUGE-L
Avg.

Tokens
Speed-

up
Pass@10

Avg.
Tokens

Speed-
up

Avg.
Tokens

Speed-
up

ChatGLM-3-6B 14.5 (14.4) 2.04 1.48 18.3 (18.3) 3.34 2.73 1.80 1.50
LLaMA-2-7B 16.0 (15.9) 2.23 1.94 18.9 (18.9) 3.54 3.18 1.85 1.71

LLaMA-2-13B 15.1 (15.1) 2.36 2.10 20.1 (20.1) 3.76 3.44 1.99 1.81
Qwen-14B 17.2 (17.2) 2.15 1.94 26.8 (26.8) 3.51 3.18 1.85 1.70

InternLM-20B 16.4 (16.3) 2.15 1.96 21.3 (21.3) 3.31 3.19 1.80 1.64
Falcon-40B 15.7 (15.7) 2.17 2.01 20.7 (20.7) 3.58 3.61 1.96 2.03

LLaMA-2-70B 16.4 (16.5) 2.54 2.35 28.0 (28.0) 4.32 4.01 2.09 1.91

Table 1: The experimental results on XSum, HumanEval-X and CIP under greedy sampling setting. We show
the average accepted tokens (Avg. Tokens) and inference speedup (Speedup) for each datasets. The number in
parentheses shows the corresponding results of the baseline method.

dictable nature of programming code.427

4.2.2 Impact of SAR-SFT on Model Quality428

While SPACE accelerates inference speed, it is429

imperative to explore whether LLMs trained with430

SAR-SFT suffer performance degradation com-431

pared to those trained with the conventional SFT432

approach. To this end, we train LLMs with SFT433

under the same datasets and training configuration434

used for SAR-SFT. Note that by setting par = 1,435

SAR-SFT effectively becomes equivalent to SFT.436

0 20 40 60 80 100

ChatGLM-3-6B

LLaMA-2-7B

LLaMA-2-13B

Qwen-14B

InternLM-20B

Falcon-40B

LLaMA-2-70B

SAR-SFT win tie SAR-SFT loss

Figure 4: Win rate comparison in MT-Bench: SAR-SFT
versus SFT judged by GPT-4. Best viewed in color.

For a comprehensive comparison, MT-Bench437

was employed with GPT-4 serving as the evaluator438

to measure the performance disparity between the439

LLMs trained with the two training schemes. The440

results are presented in Figure 4. We can observe441

that models trained with SAR-SFT scheme have442

comparable performance as compared to their SFT443

counterparts. Specifically, the majority of questions444

assessed in MT-Bench ended in a deadlock across445

all models, implying that training an LLM with446

coding

extraction

hum
anities

m
ath

reasoning

roleplay

stem
w
riting

overall

0

0.5

1

1.5

2

2.5

3

3.5

S
p
e
e
d
u
p

Figure 5: The mean and standard deviation of speedup
for all models under greedy sampling setting in MT-
Bench.

SAR-SFT does not deteriorate the model’s quality. 447

Additionally, SAR-SFT-trained models have exhib- 448

ited advantages in speed. The mean and standard 449

deviation of the speedup for all models in various 450

tasks within MT-Bench are shown in Figure 5. It 451

becomes evident that the speedup ratios vary con- 452

siderably across different tasks, with the highest 453

gains observed in tasks related to extraction, math, 454

and coding. On averaged, all the models achieved 455

a speedup ratio of 2.3 in MT-Bench dataset. More 456

details can be found in Table 4 in the appendix. 457

To further validate that SAR-SFT does not com- 458

promise the model’s effectiveness, a comprehen- 459

sive evaluation was conducted using a suite of 460

widely adopted benchmarks, including MMLU, 461

BoolQ, and others. More detailed can be found 462

in Appendix A.4. 463

4.2.3 Ablation Study 464

Our ablation study investigates the impact of vary- 465

ing the number of masked tokens, denoted as k, on 466

7

1 2 3 4 5 6 7 8

1.6

1.7

1.8

1.9

2

2.1

2.2

k

S
p
e
e
d
u
p

Figure 6: Ablation study on number of mask tokens
based on LLaMA-2-7B. The speedup are evaluated un-
der greedy sampling setting on MT-Bench dataset.

the speedup ratio of the LLaMA-2-7B model using467

the MT-Bench dataset. The results of this analysis468

are presented in Figure 6. Our findings indicate469

that a setting of k = 5 achieves an optimal balance470

for the model’s performance. During the SAR-SFT471

phase, the LLM is tasked with concurrently predict-472

ing a sequence of k subsequent tokens. Increasing473

the value of k elevates the complexity of the predic-474

tion task and introduces computational overhead475

during inference, which may inversely correlate476

with the acceleration of the decoding process. Con-477

versely, setting too low a value for k leads to an478

underutilization of the model’s capacity for parallel479

decoding, potentially resulting in a less pronounced480

improvement in decoding speed.481

4.3 Integration with TGI482

When deploying LLMs for production use, it’s com-483

mon to leverage advanced LLM serving engines de-484

signed to enhance the efficiency of text generation485

tasks. The Text Generation Inference (TGI) (Hug-486

gingFace, 2023) framework is one such example,487

widely recognized for its support of a suite of ac-488

celeration techniques. TGI typically implements489

methods like flash attention, tensor parallelism, and490

continuous batching, among others, to enhance the491

speed of LLM inference.492

We have integrated SPACE with the TGI frame-493

work. The primary objective of this integration is494

to ascertain whether SPACE can yield acceleration495

gains even when combined with other advanced496

inference-optimizing techniques presented in TGI.497

To quantitatively measure the inferring speedup498

provided by SPACE when integrated with TGI, we499

have carried out a thorough comparison, and the500

results are shown in Figure 7. The results were 501

encouraging: with SPACE, TGI achieved a speed 502

increase ranging from 1.5x to 3.4x across various 503

model sizes. Remarkably, the incorporation of 504

SPACE enabled the 13 billion-parameter LLaMA 505

model to reach inference speeds comparable to, 506

if not surpassing, those of a 7 billion-parameter 507

model without SPACE supports. We will release 508

our implementation of TGI with SPACE once the 509

paper is accepted. 510

2.4x

2.5x

3.4x

LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B
0

50

100

150

200

250

1.5x

1.7x

2.0x

LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B
0

50

100

150

TGI TGI+SPACE

T
o
k
e
n
s
/s

T
o
k
e
n
s
/s

HumanEval-X

MT-Bench

Figure 7: Token generation speed (Tokens/s) and
speedup for LLaMA-2 (7B, 13B, 70B) with TGI and
SPACE integration on HumanEval-X and MT-Bench
datasets under greedy sampling setting. Best viewed in
color.

5 Conclusion 511

In this paper, we introduce SPACE, an innova- 512

tive approach designed to accelerate the inference 513

speed of LLMs. SPACE seamlessly incorporates 514

a semi-autoregressive model with a novel draft- 515

then-verify inference algorithm. Our experiments 516

reveal that an autoregressive LLM, fine-tuned in a 517

semi-autoregressive approach, can generate likely 518

sequences of tokens in parallel. The adoption of 519

an effective auto-correct decoding algorithm facili- 520

tates the simultaneous generation and verification 521

of token sequences. Experimental results on var- 522

ious LLMs show SPACE can achieve 2.7x-4.0x 523

speedup on HumanEval-X while still preserving 524

model quality. 525

8

6 Limitations526

While SPACE has demonstrated potential in ac-527

celerating the inference of LLMs, it also brings528

about certain limitations that must be acknowl-529

edged: First, the primary advantage offered by530

SPACE is the acceleration of the inference process531

through the introduction of additional input tokens532

during decoding, which has the potential to reduce533

the number of forward passes that LLMs require.534

However, the presence of these additional tokens535

inevitably leads to increased computation overhead,536

notably in terms of FLOPs, when compared to con-537

ventional autoregressive decoding. Therefore, it538

becomes crucial to conduct an exhaustive study on539

the energy consumption of methods like SPACE, to540

fully understand and mitigate their ecological im-541

pact. The sustainability of deploying such accelera-542

tion techniques, considering long-term environmen-543

tal implications, must factor into the development544

of responsible AI technologies.545

Furthermore, it is important to recognize that546

the gain in inference speed facilitated by SPACE547

is variable across different tasks. Our empirical548

observations suggest that the speedup is inconsis-549

tent, and the limited datasets examined in this study550

could contribute to skewed outcomes. Besides, our551

evaluations for SPACE were conducted exclusively552

on English datasets; consequently, the extent to553

which SPACE can accelerate inference in other554

languages has not yet been investigated. It is plau-555

sible that there are specific datasets where SPACE556

exhibits a significantly lower degree of accelera-557

tion—a scenario not captured within the confines558

of our experimental array.559

Moreover, we do not compare SPACE with other560

inference-accelerating methods in this paper. The561

lack of a standardized benchmark combined with562

the potential variability introduced by different563

model architectures, evaluation datasets, and hard-564

ware configurations makes such comparisons chal-565

lenging. Rather than drawing indirect comparisons566

based on the speedup ratios reported from previous567

work, we aim to provide a more equitable eval-568

uation by reproducing selected existing methods569

and assessing them using an identical setup in our570

future work.571

Lastly, we leveraged MT-Bench along with a572

collection of well-established benchmarks, such573

as MMLU, PIQA, AGIEval, and others, to gauge574

model performance when trained with SAR-SFT as575

opposed to traditional SFT methodologies. Despite576

this extensive set of evaluations, it is critical to 577

emphasize that benchmarking the comprehensive 578

capabilities of LLMs remains a challenge, and the 579

datasets engaged in this research fall short of en- 580

abling a definitive judgment. To this end, we advo- 581

cate for the application of SPACE in diverse down- 582

stream tasks by the research community, which will 583

offer a more rounded understanding of its practical 584

utility and limitations. 585

References 586

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al- 587
shamsi, Alessandro Cappelli, Ruxandra Cojocaru, 588
Merouane Debbah, Etienne Goffinet, Daniel Hes- 589
low, Julien Launay, Quentin Malartic, et al. 2023. 590
Falcon-40b: an open large language model with state- 591
of-the-art performance. Findings of the Association 592
for Computational Linguistics: ACL, 2023:10755– 593
10773. 594

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, 595
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei 596
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, 597
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, 598
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, 599
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong 600
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng- 601
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, 602
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, 603
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx- 604
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang 605
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang 606
Zhu. 2023. Qwen technical report. arXiv preprint 607
arXiv:2309.16609. 608

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo 609
Giampiccolo. 2009. The fifth pascal recognizing 610
textual entailment challenge. In TAC. 611

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, 612
et al. 2020. Piqa: Reasoning about physical com- 613
monsense in natural language. In AAAI, pages 7432– 614
7439. 615

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 616
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 617
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 618
Askell, et al. 2020. Language models are few-shot 619
learners. Advances in neural information processing 620
systems, 33:1877–1901. 621

Sahil Chaudhary. 2023. Code alpaca: An 622
instruction-following llama model for code genera- 623
tion. https://github.com/sahil280114/ 624
codealpaca. 625

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, 626
Jean-Baptiste Lespiau, Laurent Sifre, and John 627
Jumper. 2023. Accelerating large language model 628
decoding with speculative sampling. arXiv preprint 629
arXiv:2302.01318. 630

9

https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca

Christopher Clark, Kenton Lee, Ming-Wei Chang,631
Tom Kwiatkowski, Michael Collins, and Kristina632
Toutanova. 2019. Boolq: Exploring the surprising633
difficulty of natural yes/no questions. In Proceedings634
of the 2019 Conference of the North American Chap-635
ter of the Association for Computational Linguistics:636
Human Language Technologies, Volume 1 (Long and637
Short Papers), pages 2924–2936.638

OpenCompass Contributors. 2023. Opencompass: A639
universal evaluation platform for foundation models.640
https://github.com/open-compass/641
opencompass.642

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,643
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. Glm:644
General language model pretraining with autoregres-645
sive blank infilling. In Proceedings of the 60th An-646
nual Meeting of the Association for Computational647
Linguistics (Volume 1: Long Papers), pages 320–335.648

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang.649
2023. Breaking the sequential dependency of llm650
inference using lookahead decoding.651

Jiatao Gu and Xiang Kong. 2021. Fully non-652
autoregressive neural machine translation: Tricks of653
the trade. In Findings of the Association for Com-654
putational Linguistics: ACL-IJCNLP 2021, pages655
120–133.656

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,657
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.658
2020. Measuring massive multitask language under-659
standing. In International Conference on Learning660
Representations.661

hiyouga. 2023. Llama factory. https://github.662
com/hiyouga/LLaMA-Factory.663

Fei Huang, Hao Zhou, Yang Liu, Hang Li, and Minlie664
Huang. 2022. Directed acyclic transformer for non-665
autoregressive machine translation. In International666
Conference on Machine Learning, pages 9410–9428.667
PMLR.668

HuggingFace. 2023. Large language model669
text generation inference. https:670
//github.com/huggingface/671
text-generation-inference.672

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Ji-673
tendra Malik, Michael W Mahoney, Amir Gholami,674
and Kurt Keutzer. 2023. Speculative decoding with675
big little decoder. In Thirty-seventh Conference on676
Neural Information Processing Systems.677

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,678
and Eduard Hovy. 2017. Race: Large-scale read-679
ing comprehension dataset from examinations. In680
Proceedings of the 2017 Conference on Empirical681
Methods in Natural Language Processing, pages 785–682
794.683

LAION-AI. 2023. Open-assistant. https://684
github.com/LAION-AI/Open-Assistant.685

Ariel N. Lee, Cole J. Hunter, and Nataniel Ruiz. 2023. 686
Platypus: Quick, cheap, and powerful refinement of 687
llms. arXiv preprint arXiv:2308.07317. 688

Yaniv Leviathan, Matan Kalman, and Yossi Matias. 689
2023. Fast inference from transformers via spec- 690
ulative decoding. In International Conference on 691
Machine Learning, pages 19274–19286. PMLR. 692

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Ion Sto- 693
ica, Zhijie Deng, Alvin Cheung, and Hao Zhang. 694
2023. Online speculative decoding. arXiv preprint 695
arXiv:2310.07177. 696

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao 697
Cheng, Zeyu Wang, Rae Ying Yee Wong, Zhuom- 698
ing Chen, Daiyaan Arfeen, Reyna Abhyankar, and 699
Zhihao Jia. 2023. Specinfer: Accelerating generative 700
llm serving with speculative inference and token tree 701
verification. arXiv preprint arXiv:2305.09781. 702

Shashi Narayan, Shay Cohen, and Maria Lapata. 2018. 703
Don’t give me the details, just the summary! topic- 704
aware convolutional neural networks for extreme 705
summarization. In 2018 Conference on Empirical 706
Methods in Natural Language Processing, pages 707
1797–1807. Association for Computational Linguis- 708
tics. 709

Alessandro Palla. 2023. chatbot instruction prompts. 710
https://huggingface.co/datasets/ 711
alespalla/chatbot_instruction_ 712
prompts. 713

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal- 714
ley, and Jianfeng Gao. 2023. Instruction tuning with 715
gpt-4. arXiv preprint arXiv:2304.03277. 716

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018. 717
Know what you don’t know: Unanswerable ques- 718
tions for squad. In Proceedings of the 56th Annual 719
Meeting of the Association for Computational Lin- 720
guistics (Volume 2: Short Papers), pages 784–789. 721

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and 722
Yuxiong He. 2020. Deepspeed: System optimiza- 723
tions enable training deep learning models with over 724
100 billion parameters. In Proceedings of the 26th 725
ACM SIGKDD International Conference on Knowl- 726
edge Discovery & Data Mining, pages 3505–3506. 727

Benjamin Frederick Spector and Christopher Re. 2023. 728
Accelerating llm inference with staged speculative 729
decoding. In Workshop on Efficient Systems for Foun- 730
dation Models@ ICML2023. 731

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. 732
2018. Blockwise parallel decoding for deep autore- 733
gressive models. Advances in Neural Information 734
Processing Systems, 31. 735

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ah- 736
mad Beirami, Himanshu Jain, Felix Yu, Michael Ri- 737
ley, and Sanjiv Kumar. 2023. Spectr: Fast speculative 738
decoding via optimal transport. In Workshop on Effi- 739
cient Systems for Foundation Models@ ICML2023. 740

10

https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://github.com/hiyouga/LLaMA-Factory
https://github.com/hiyouga/LLaMA-Factory
https://github.com/hiyouga/LLaMA-Factory
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/LAION-AI/Open-Assistant
https://github.com/LAION-AI/Open-Assistant
https://github.com/LAION-AI/Open-Assistant
https://huggingface.co/datasets/alespalla/chatbot_instruction_prompts
https://huggingface.co/datasets/alespalla/chatbot_instruction_prompts
https://huggingface.co/datasets/alespalla/chatbot_instruction_prompts
https://huggingface.co/datasets/alespalla/chatbot_instruction_prompts
https://huggingface.co/datasets/alespalla/chatbot_instruction_prompts

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and741
Jonathan Berant. 2019. Commonsenseqa: A question742
answering challenge targeting commonsense knowl-743
edge. In Proceedings of the 2019 Conference of744
the North American Chapter of the Association for745
Computational Linguistics: Human Language Tech-746
nologies, Volume 1 (Long and Short Papers), pages747
4149–4158.748

Paul Tardy. 2023. Rouge. https://github.com/749
pltrdy/rouge.750

InternLM Team. 2023. Internlm: A multilingual751
language model with progressively enhanced capa-752
bilities. https://github.com/InternLM/753
InternLM.754

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-755
bert, Amjad Almahairi, Yasmine Babaei, Nikolay756
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti757
Bhosale, et al. 2023. Llama 2: Open founda-758
tion and fine-tuned chat models. arXiv preprint759
arXiv:2307.09288.760

Chunqi Wang, Ji Zhang, and Haiqing Chen. 2018. Semi-761
autoregressive neural machine translation. In Pro-762
ceedings of the 2018 Conference on Empirical Meth-763
ods in Natural Language Processing, pages 479–488.764

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien765
Chaumond, Clement Delangue, Anthony Moi, Pier-766
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,767
Joe Davison, Sam Shleifer, Patrick von Platen, Clara768
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le769
Scao, Sylvain Gugger, Mariama Drame, Quentin770
Lhoest, and Alexander M. Rush. 2020. Transform-771
ers: State-of-the-art natural language processing. In772
Proceedings of the 2020 Conference on Empirical773
Methods in Natural Language Processing: System774
Demonstrations, pages 38–45, Online. Association775
for Computational Linguistics.776

Heming Xia, Tao Ge, Furu Wei, and Zhifang Sui. 2022.777
Lossless speedup of autoregressive translation with778
generalized aggressive decoding. arXiv preprint779
arXiv:2203.16487.780

Yisheng Xiao, Lijun Wu, Junliang Guo, Juntao Li, Min781
Zhang, Tao Qin, and Tie-yan Liu. 2023. A survey782
on non-autoregressive generation for neural machine783
translation and beyond. IEEE Transactions on Pat-784
tern Analysis and Machine Intelligence.785

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali786
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a787
machine really finish your sentence? In Proceedings788
of the 57th Annual Meeting of the Association for789
Computational Linguistics.790

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen,791
Gang Chen, and Sharad Mehrotra. 2023. Draft792
& verify: Lossless large language model accelera-793
tion via self-speculative decoding. arXiv preprint794
arXiv:2309.08168.795

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 796
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 797
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023a. 798
Judging llm-as-a-judge with mt-bench and chatbot 799
arena. arXiv preprint arXiv:2306.05685. 800

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan 801
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang, 802
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023b. 803
Codegeex: A pre-trained model for code generation 804
with multilingual evaluations on humaneval-x. 805

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, 806
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen, 807
and Nan Duan. 2023. Agieval: A human-centric 808
benchmark for evaluating foundation models. 809

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao 810
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, 811
Lili Yu, et al. 2023. Lima: Less is more for alignment. 812
arXiv preprint arXiv:2305.11206. 813

A Appendix 814

A.1 Training Details 815

We conduct all our experiments on a cluster of 4 816

servers, where each server is equipped with eight 817

A800 (80G) GPUs. We adopt distinct training 818

strategies based on the size of the models being 819

trained. For models with fewer than 14 billion pa- 820

rameters, we allocate our experiments to a single 821

server and employ the ZeRO-2 (Rasley et al., 2020) 822

optimization for distributed training. Conversely, 823

for models that exceed the 14 billion parameter 824

mark, we expand our setup to utilize all four servers 825

and implement the ZeRO-3 optimization to effec- 826

tively handle the increased computational demands. 827

We adopt LLaMA Factory (hiyouga, 2023) to fine- 828

tune the LLMs. The specific hyperparameters uti- 829

lized for the SAR-SFT are documented and can be 830

referenced in Table 2. 831

Hyperparameters Value
max source tokens 2048
max target tokens 2048

learning rate 5e-5
scheduler cosine
Adam β1 0.9
Adam β2 0.999

epoch 2
per device batch size 4

gradient clip 1.0

Table 2: Hyper-parameters and training configurations
of SAR-SFT.

Table 3 shows the statistics of SFT datasets used 832

to finetuned the models. Note that all the dataset 833

11

https://github.com/pltrdy/rouge
https://github.com/pltrdy/rouge
https://github.com/pltrdy/rouge
https://github.com/InternLM/InternLM
https://github.com/InternLM/InternLM
https://github.com/InternLM/InternLM
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
http://arxiv.org/abs/2303.17568
http://arxiv.org/abs/2303.17568
http://arxiv.org/abs/2303.17568
http://arxiv.org/abs/2304.06364
http://arxiv.org/abs/2304.06364
http://arxiv.org/abs/2304.06364

are publicly available. The fine-tuning duration for834

LLMs can vary significantly based on the size of835

the model and the computational resources avail-836

able. For the LLaMA-2-7B model, the fine-tuning837

process typically takes about 6 hours on a server838

equipped with eight A800 (80GB) GPUs. For839

the largest variant, the LLaMA-2-70B, the SAR-840

SFT requires roughly 18 hours to complete using 4841

servers, each equipped with 8 A800 (80GB) GPUs842

(totalling 32 GPUs).843

A.2 Evaluation Details844

We performed our inference experiments on a845

server equipepd with eight A800 (80GB) GPUs.846

For models with fewer than 14 billion parameters,847

inference is conducted using a single GPU. For848

larger models, those with parameters exceeding849

14B, we employ multiple GPUs and leverage tensor850

parallelism to manage the increased computational851

load effectively. During the inference process, we852

configure our setup with a batch size of one to en-853

sure precise measurement of inference latency on a854

per-instance basis.855

For generation tasks, we tailored specific prompt856

templates to guide the model’s output. When work-857

ing with the XSum dataset, we used the following858

prompt template:“Document: {TEXT}\n Based on859

the previous text, provide a brief single summary”.860

Similarly, for the HumanEval-X dataset, which is861

designed for code generation, we employed the862

prompt template as follows: “Complete the fol-863

lowing python code. Do not give any explana-864

tion or testing examples, just complete the code.\n865

{TEXT}”. For CIP and MT-Bench, we do not use866

any prompt template.867

To mesure the performance of LLMs on XSum868

and HumanEval-X, we compute the ROUGE-L and869

Pass@10, respectively. The ROUGE-L is calcu-870

lated using python package rouge (Tardy, 2023)871

and the pass@10 is computed using official evalua-872

tion script (Zheng et al., 2023b).873

The inference speedup for each task within the874

MT-Bench benchmark under greedy sampling set-875

ting across various models are shown in Table 4.876

A.3 Random Sampling877

To rigorously evaluate model performance on the878

XSum and HumanEval-X datasets with random879

sampling enabled 2, we conducted ten runs of the880

2When using random sampling, we set top-p=0.95 and
top-k=10

evaluation process to counteract the influence of 881

randomness. The mean and variance of these runs 882

are reported in Table 5. Under random sampling 883

setting, the output of SPACE and baseline are ex- 884

pected to follow the same distribution, as have 885

been proved in previous work (Chen et al., 2023; 886

Leviathan et al., 2023). The data presented in Ta- 887

ble 5 supports this statement, showing that the per- 888

formance metrics for SPACE and the baseline are 889

similar on both XSum and HumanEval-X. This con- 890

sistency across multiple evaluations confirms the 891

distributional alignment between SPACE and the 892

baseline model under the random sampling setting. 893

A.4 SAR-SFT versus SFT 894

To further demonstrate that SAR-SFT does not im- 895

pede the model’s performance, we compared the 896

performance of LLaMA-2 (with model sizes of 7B, 897

13B, and 70B parameters) trained with both SAR- 898

SFT and traditional SFT. The comparison spanned 899

a suite of widely used benchmarks, which we have 900

categorized into the following four groups: 901

• Academic. We report the average accuracy 902

of the model on the MMLU (Hendrycks 903

et al., 2020) and AGIEval (Zhong et al., 2023) 904

benchmarks. 905

• Knowledge. We evaluate the model on 906

CommonSenseQA (Talmor et al., 2019) and 907

BoolQ (Clark et al., 2019), reporting their av- 908

erage results. 909

• Reasoning. We assess the 5-shot performance 910

on PIQA (Bisk et al., 2020), RTE (Bentivogli 911

et al., 2009) and HellaSwag (Zellers et al., 912

2019), reporting their mean performance. 913

• Understanding. We report the average 914

result on RACE (Lai et al., 2017) and 915

SQuAD2.0 (Rajpurkar et al., 2018). 916

The evaluations were conducted using OpenCom- 917

pass (Contributors, 2023), an opensource plat- 918

form designed for large language model evalua- 919

tion. Comparative performance results are detailed 920

in Table 6. Upon examination of the results, we 921

note small discrepancies between the models fine- 922

tuned with the two distinct training schemes across 923

different tasks. 924

12

Dataset Language Sample
Numbers

Average
Input Tokens

Average
Output Tokens

Alpaca-GPT4-zh (Peng et al., 2023) zh 48,818 30.9 292.5
Alpaca-GPT4-en (Peng et al., 2023) en 52,002 21.6 162.6
LIMA (Zhou et al., 2023) en 1,029 74.2 639.1
Oaast-SFT (LAION-AI, 2023) multi 20,202 198.8 234.8
CodeAlpaca (Chaudhary, 2023) en 20,022 28.8 68.6
OpenPlatypus (Lee et al., 2023) en 24,926 159.6 225.3

Table 3: Statistics of SFT datasets used to finetuned the models. The average input tokens and output tokens are
calculated using LLaMA-2-7B tokenizer.

Model Code Extrac-
tion

Human-
ities Math Reason-

ing
Role-
play Stem Writ-

ing
Over-

all
ChatGLM-3-6B 2.83 3.35 1.91 2.54 1.87 1.98 2.03 2.43 2.32

LLaMA-2-7B 2.14 3.12 1.96 2.61 1.83 1.89 1.65 2.25 2.19
LLaMA-2-13B 2.89 3.66 2.20 2.99 2.29 2.03 2.27 2.68 2.53

Qwen-14B 2.88 3.76 2.18 2.85 2.04 1.86 2.05 2.55 2.43
InternLM-20B 2.50 3.28 2.05 3.55 1.89 2.00 2.02 2.05 2.36

Falcon-40B 2.02 2.90 1.72 2.22 1.69 1.53 1.69 1.76 2.17
LLaMA-2-70B 2.61 3.70 1.97 3.03 2.50 1.73 1.84 2.09 2.26

Table 4: The experimental results on MT-Bench under greedy sampling setting. We show the inference speedup for
each task in MT-Bench.

Model XSum HumanEval-X

ROUGE-L
Avg.

Tokens
Speedup Pass@10

Avg.
Tokens

Speedup

ChatGLM-3-6B
14.8± 0.2

(14.0± 0.4)
1.95± 0.01 1.47± 0.01

23.2
(22.8)

3.16± 0.04 2.09± 0.08

LLaMA-2-7B
15.1± 0.2

(15.3± 0.1)
2.14± 0.02 1.79± 0.04

18.9
(18.3)

3.56± 0.05 2.86± 0.04

LLaMA-2-13B
15.2± 0.2

(15.6± 0.2)
2.24± 0.01 1.86± 0.02

31.7
(32.3)

4.15± 0.02 3.81± 0.05

Qwen-14B
16.1± 0.3

(16.3± 0.3)
2.05± 0.01 1.91± 0.04

32.3
(31.7)

3.09± 0.04 2.86± 0.04

InternLM-20B
16.3± 0.2

(17.0± 0.2)
1.99± 0.01 1.73± 0.01

25.0
(23.7)

3.13± 0.03 2.67± 0.08

Falcon-40B
16.6± 0.2

(15.4± 0.3)
2.09± 0.04 2.08± 0.03

27.4
(28.0)

3.42± 0.03 2.88± 0.06

LLaMA-2-70B
16.1± 0.2

(16.2± 0.3)
2.40± 0.02 2.25± 0.02

36.6
(38.2)

4.15± 0.02 3.81± 0.05

Table 5: The experimental results on XSum and HumanEval-X using random sampling. We show the mean and
variance (over 10 runs) of the average accepted tokens (Avg. Tokens) and inference speedup (Speedup) for each
datasets. The number in parentheses shows the corresponding results of the baseline method.

13

Model Scheme Academic Knowledge Reasoning Understanding

LLaMA-2-7B
SAR-SFT 35.4 66.1 62.3 37.2

SFT 36.0 65.9 64.1 38.6

LLaMA-2-13B
SAR-SFT 40.9 69.4 66.7 55.2

SFT 40.5 71.4 65.2 57.4

LLaMA-2-70B
SAR-SFT 50.6 76.7 68.4 64.7

SFT 51.7 77.2 68.0 66.7

Table 6: Performance comparison of LLaMA-2 (7B, 13B, 70B) with different training schemes.

14

