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ABSTRACT

Deep generative models (DGMs) are data-eager because learning a complex
model on limited data suffers from a large variance and easily overfits. Inspired
by the classical perspective of the bias-variance tradeoff, we propose regularized
deep generative model (Reg-DGM), which leverages a nontransferable pre-trained
model to reduce the variance of generative modeling with limited data. Formally,
Reg-DGM optimizes a weighted sum of a certain divergence and the expectation
of an energy function, where the divergence is between the data and the model dis-
tributions, and the energy function is defined by the pre-trained model w.r.t. the
model distribution. We analyze a simple yet representative Gaussian-fitting case
to demonstrate how the weighting hyperparameter trades off the bias and the vari-
ance. Theoretically, we characterize the existence and the uniqueness of the global
minimum of Reg-DGM in a non-parametric setting and prove its convergence with
neural networks trained by gradient-based methods. Empirically, with various pre-
trained feature extractors and a data-dependent energy function, Reg-DGM con-
sistently improves the generation performance of strong DGMs with limited data
and achieves competitive results to the state-of-the-art methods. Our implementa-
tion is available athhttps://github.com/ML-GSAI/Reg—ADA-APA.

1 INTRODUCTION

Deep generative models (DGMs) (Kingma & Welling, 2013} |Goodfellow et al., 2014} |Sohl-
Dickstein et al., 2015;|Van den Oord et al., 2016; [Dinh et al., 2016; [Hinton & Salakhutdinov, 2006)
employ neural networks to capture the underlying distribution of high-dimensional data and find
applications in various learning tasks (Kingma et al., 2014} Zhu et al., 2017 |[Razavi et al.| 2019;
Ramesh et al., [2021; 2022} Ho et al.l 2022)). Such models are often data-eager (Li et all 2021}
Wang et al.l 2018)) due to the presence of complex function classes. Recent work (Karras et al.|
2020a) found that the classical variants of generative adversarial networks (GANs) (Goodfellow
et al.| 2014} |[Karras et al., 2020b) produce poor samples with limited data, which is shared by other
DGMs in principle. Thus, improving the sample efficiency is a common challenge for DGMs.

The root cause of the problem is that learning a model in a complex class on limited data suffers
from a large variance and easily overfits the training data (Mobhri et al.,|2018). To relieve the prob-
lem, previous work either employed sophisticated data augmentation strategies (Zhao et al.,|2020a;
Karras et al.| 2020a; Jiang et al.,|2021), or designed new losses for the discriminator in GANs (Cui
et al., 2021} |Yang et al.| [2021)), or transferred a pre-trained DGM (Wang et al., |2018; [Noguchi &
Harada, 2019} Mo et al.| |2020). Although not pointed out in the literature to our knowledge, prior
work can be understood as reducing the variance of the estimate implicitly (Mobhri et al., [2018). In
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this perspective, we propose a complementary framework, named regularized deep generative model
(Reg-DGM), which employs a pre-trained model as regularization to achieve a better bias-variance
tradeoff when training a DGM with limited data.

In Sec. 2] we formulate the objective function of Reg-DGM as the sum of a certain divergence and a
regularization term weighted by a hyperparameter. The divergence is between the data distribution
and model distribution, and the regularization term can be understood as the negative expected log-
likelihood of an energy-based model, whose energy function is defined by a pre-trained model,
w.r.t. the model distribution. Intuitively, with an appropriate weighting hyperparameter, Reg-DGM
balances between the data distribution and the pre-trained model to achieve a better bias-variance
tradeoff with limited data, as validated by a simple yet prototypical Gaussian-fitting example.

In Sec. [3) we characterize the optimization behavior of Reg-DGM in both non-parametric and
parametric settings under mild regularity conditions. On one hand, we prove the existence and
the uniqueness of the global minimum of the regularized optimization problem with the Kull-
back-Leibler (KL) and Jensen—Shannon (JS) divergence in the non-parametric setting. On the other
hand, we prove that, parameterized by a standard neural network architecture, Reg-DGM converges
with a high probability to a global (or local) optimum trained by gradient-based methods.

In Sec. {] we specify the components in Reg-DGM. We employ strong variants of GANs (Karras
et al.,[2020bga; Jiang et al.l[2021) as the base DGM for broader interests. We consider a nontransfer-
able setting where the pre-trained model does not necessarily have to be a generative model. Indeed,
we employ several feature extractors, which are trained for non-generative tasks such as image clas-
sification, representation learning, and face recognition. Notably, such models cannot be directly
used in the fine-tuning approaches (Wang et al., [2018}; Mo et al., 2020). With a comprehensive ab-
lation study, we define our default energy function as the expected mean squared error between the
features of the generated samples and the training data. Such an energy not only fits our theoretical
analyses, but also results in consistent and significant improvements over baselines in all settings.

In Sec. E], we present experiments on several benchmarks, including the FFHQ (Karras et al.,|2019),
LSUN CAT (Yu et al., 2015)), and CIFAR-10 (Krizhevsky et al., |2009) datasets. We compare Reg-
DGM with a large family of methods, including the base DGMs (Karras et al., [2020bga; Jiang et al.}
2021)), the transfer-based approaches (Wang et al., 2018} Mo et al.| 2020), the augmentation-based
methods (Zhao et al.l |2020a) and others (Cui et al., 2021; |Yang et al.| [2021). With a classifier pre-
trained on ImageNet (Deng et al.|[2009), or an image encoder pre-trained on the CLIP dataset (Rad-
ford et al., 2021)), or a face recognizer pre-trained on VGGFace2 (Cao et al.| 2018)), Reg-DGM
consistently improves strong DGMs under commonly used performance measures with limited data
and achieves competitive results to the state-of-the-art methods. Our results demonstrate that Reg-
DGM can achieve a good bias-variance tradeoff in practice, which supports our motivation.

In Sec.[6] we present the related work. In Sec.[7] we conclude the paper and discuss limitations.

2  METHOD

The goal of generative modeling is to learn a model distribution pg (implicitly or explicitly) from
a training set S = {x;}7", of size m on a sample space X. The elements in S are assumed to be
drawn i.i.d. according to an unknown data distribution p; € Py, where Py is the set of all valid
distributions over X. A general formulation for learning generative models is minimizing a certain
statistical divergence D(+||-) between the two distributions as follows:

inD 1
i, (pallpg), (1)

where H C Py is the hypothesis class, for instance, a set of distributions defined by neural networks
in a deep generative model (DGM). Notably, the divergence in Eq. is estimated by the Monte
Carlo method over the training set S and its solution has a small bias if not zero. However, learning
a DGM with limited data is challenging because solving the problem in Eq. (I)) with a small sample
size m essentially suffers from a large variance and probably overfits (Mohri et al.| 2018)).

Inspired by the classical perspective of the bias-variance tradeoff, we propose to leverage an ex-
ternal model f pre-trained on a related and large dataset (e.g., ImageNet) as a data-dependent reg-
ularization to reduce the variance of training a DGM on limited data (e.g., CIFAR-10), which is
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Figure 1: MSE in the Gaussian-fitting example to validate Proposition (a) The effect of A given
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a fixed m and fiprg — p*, where the red circle indicates § = max { TEm(Apre—p ) 0} and the

black circle indicates 3 = min{WM, 1}. (b) The effect of the sample size m. (c) The
effect of the bias of the pre-trained model. In both (b) and (c), the hyperparameter A is optimal.

complementary to prior work (see more details in Sec. [f). In particular, given a pre-trained f, we
first introduce an energy function (LeCun et all [2006) £¢ : X — R that satisfies mild regularity
conditions (see Assumption and then define a probabilistic energy-based model (EBM) p; as
pr(x) o< exp(—Ef(x)). We can treat p as a special estimate of pq if f is pre-trained on a dataset
closely related to pgy. In this perspective, py has a potentially large bias yet a variance of zero. To
trade off the bias and variance, we simply optimize a weighted sum of the statistical divergence as
in Eq. () and the expected log-likelihood of the EBM as follows:

min ]D)(depg) - )‘Ezfvpg Ungf (37)] < min D(depg) + )‘Ew~pg [gf (aﬁ)], 2
PgEH pgEH

where A > 0 is the weighting hyperparameter balancing the two terms. The first one encourages
Dy to fit the data as in the original DGM and the second one encourages p, to produce samples
with a high likelihood evaluated by the EBM p;. Naturally, a properly selected A can hopefully
achieve a better bias-variance tradeoff. We refer to our approach as regularized deep generative
model (Reg-DGM) when H consists of distributions defined by neural networks.

In the following, we analyze a simple yet prototypical Gaussian-fitting example to demonstrate
how a regularization term defined by a pre-trained model can relieve the bias-variance dilemma in
generative modeling. Such an example is helpful to illustrate the motivation of Reg-DGM precisely
and provide valuable insights on its practical performance. In the same spirit, representative prior
work (Arjovsky et al.l 2017 [Mescheder et al) [2018) in the literature of DGMs has investigated
similar examples with several parameters and closed-form solutions.

2.1 A PROTOTYPICAL GAUSSIAN-FITTING EXAMPLE

Example 2.1 (Gaussian-fitting example). The data distribution is a (univariate) Gaussian py(x) =
N (x|u*,0?), where 02 is known and u* is the parameter to be estimated. A training sample S =
{x;}™ is drawn i.i.d. according to pq(z). The hypothesis class for py is H = {N(z|u,0?) | u €
R}. The regularization termin Eq. (2)) is E¢(x) := —log N (fiprg, 02), i.e., ps(z) = N (x| fipre, 02).
Note that we let [iprg # p* and their gap |fiprg — 1*| can be large in general.

For simplicity, we consider the classical maximum likelihood estimation (MLE) (i.e., using the
KL divergence in Eq. () as the performance measure), and its solution for Example is given
by the sample mean (Bishop & Nasrabadil 2006): fimie = = 30 @i, e ~ N (p*, Lo?).
The pre-trained model jiprg is another meaningful baseline for our approach. Clearly, it has a
bias of fiprg — p* and a zero variance. Formally, the solution of our approach based on MLE

PS 1 - - 1 - 2

IS IREG = TixHMLE T+ H_%MPRE, fireg ~ N m#* + H-AA'U’PRE’ m) . We compare all
estimators under the mean squared error (MSE)'| which is a common measure in statistics and
machine learning. Formally, the MSE of an estimator 6 w.r.t. an unknown parameter 6 is defined as:

!The expected risk coincides with the MSE in the example. See Appendix for generalization analyses.
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Figure 2: Illustration of the optimization analyses. (a) The density of the data distribution. (b) The
energy function defined by the pre-trained model. (c¢) The global minimum of the problem in Eq. (2)
with the KL divergence (KLD) and different values of A. (d) The global minimum of the problem in
Eq. @ with the JS divergence (JSD) and different values of A. See more details in Appendix

MSE[f] := E[( — §)?], which can be decomposed as the sum of the variance of the estimator and
the squared bias of the estimator (Bishop & Nasrabadi, 2006). As summarized in Proposition [2.2]
our method achieves a better bias-variance tradeoff than the baselines if A is in an appropriate range.

Proposition 2.2. Let § = %H be the normalized weight of the regularization term. In the

Gaussian-fitting example zfmax{M O} < B < min{L 1}

o24+m(fipre—p*)?’ o2+m(fipre—p*)?’

then the following inequalities holds:
MSE[[LREG] < mln{MSE[/)MLELMSE[,&pRE]} 3)

Due to space limit, the proof is deferred to Appendix We plot the MSE curves for all estima-
tors w.r.t. the value of A, m and |upre — p*| in Fig. 1| for a clearer illustration. Fig.[1|(a) directly
validates the results of Proposition Fig.|I](b) and (c) show that with the optimal A, the regular-
ization gains more w.r.t. MLE as the sample size m decreases and |uprg — p*| increases. See more
details of the plot in Appendix

Since the generalization analysis in deep learning is still largely open (Belkin, 2021} Bartlett et al.,
2021), it is difficult to generalize our Proposition [2.2]to the cases with deep models due to lack of
appropriate tools. However, the intuition behind the Gaussian example also holds in deep learning.
Namely, training a model on limited data suffers from a large variance (overfitting) and using a pre-
trained model suffers from a large bias (underfitting). Thus, Reg-DGM with a proper hyperparameter
can balance between them and potentially achieve a better performance. Further, according to Fig.
(c), Reg-DGM benefits if the EBM defined by the pre-trained model is close to the target distribution,
which inspires a data-dependent energy function presented in Sec. 4}

3 CONVERGENCE ANALYSES

3.1 ANALYSES IN THE NON-PARAMETRIC SETTING

We assume that our hypothesis class contains all valid distributions (i.e. 4 = Py), and the data
distribution p, is accessible. Although the setting is impractical, such analyses characterize the
existence and uniqueness of the global minimum in an ideal case and have been widely considered
in deep generative models (Goodfellow et al.| [2014; |Arjovsky et al., [2017). Further, it is insightful
to see how the regularization affects the solution of Reg-DGM in the ideal case.

Built upon the classical recipe of the calculus of variations and properties of the KL divergence in
the topology of weak convergence, we establish our theory on the existence and uniqueness of the
global minimum of Eq. (2) with the KL and JS divergence[’| The results are formally characterized
in Theorem [3.1] and Theorem [3.2] respectively. We refer the readers to Appendix [A.2.1] for the

’Note that max {w 0} < min {L 1} always holds.

o2 +m(fipre—p*)2 o2 +m(fipre—p*)2
3We consider two divergences that are employed in the two representative DGMs: variational auto-encoders
(VAE) (Kingma & Welling| [2013) and generative adversarial networks (GANs) (Goodfellow et al.|[2014)).
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proofs. To establish our theory, we assume that (1) X" is a nonempty compact set; (2) £ : X — R
is continuous and bounded; (3) f Py e~€+(®) dz < oo, which are common and mild.

Theorem 3.1. Under mild regularity conditions in Assumption for any \ > 0, there exists a
unique global minimum of the problem in Eq. with the KL divergence. Furthermore, the global

minimum is in the form of p; (v) = %, where o* € R.

Theorem 3.2. Under mild regularity conditions in Assumption for any \ > 0, there exists a
unique global minimum of the problem in Eq. with the JS divergence. Furthermore, the global

minimum is in the form of p; (v) = %, where o* € R.
. 7@ _

As shown in Theorem [3.1] and Theorem the global minimum is in the form of a reweighted
data distribution and the weights are negatively correlated to the energy function defined by the
pre-trained model. Qualitatively, the global minimum assigns high density for a sample x if it has
high density under the data distribution (i.e., p4(x)) and low value of the energy function (i.e.,
Er(x)). Notably, the weights in Theorem and Theorem [3.2] are different because of the different
divergences. In particular, the effect of the pre-trained model is enlarged by the exponential term in
Theorem using JS divergence (JSD). Fig. 2| (c) and (d) show that with the same value of A, the
weighting coefficients of JSD are distributed in a larger range than KL divergence (KLD). Naturally,
in both theorems, as A — 0, the denominator of p;(z) tends to a constant and p;(z) — pa(z),
which recovers the solution of pure divergence minimization in Eq. (I). Therefore, Reg-DGM is
consistent if the weighting parameter ) is a function of m, and lim,,_, A(m) — 0.

3.2 ANALYSES IN THE PARAMETRIC SETTINGS

Although it provides theoretical insights of Reg-DGM, the non-parametric setting is far from prac-
tice. In fact, in our experiments, the hypothesis class is parameterized by neural networks and the
training data is finite. In such a case, Reg-DGM can be formulated as a non-convex optimization
problem, which is solved by gradient-based methods. Therefore, we also analyze the convergence
of Reg-DGM trained by (stochastic) gradient descent in the presence of neural networks upon the
general convergence framework (Allen-Zhu et al., 2019).

In particular, as summarized in Theorem we show that Reg-DGM with a standard neural net-
work architecture converges with a high probability under mild smoothness assumptions. The as-
sumptions, result and proof are formally presented in Appendix

Theorem 3.3 (Convergence of Reg-DGM (informal)). Under standard and verifiable smoothness
assumptions, with a high probability, Reg-DGM with a sufficiently wide ReLU CNN converges to a
global optimum of Eq. ([2)) trained by GD and converges to a local minimum trained by SGD.

4 IMPLEMENTATION

In this section, we discuss the base DGM, the pre-trained model and the energy function in practice.

4.1 BASE MODEL

Although Reg-DGM applies to variational auto-encoders (VAE) (Kingma & Welling, 2013) and
many other DGMs, we focus on GANs (Goodfellow et al.,[2014)), which are most representative and
popular in the scenarios with limited data (Karras et al., 2020a; Mo et al.l [2020; |Cui et al., 2021}).
Formally, GANs optimize an estimate of the JS divergence via a minimax formulation as follows:

min max ., (o) g D(@)] + Eap, (o log(1 = D(x))], )
where G is a generator that defines py(«) and D is a discriminator that estimates the JS divergence

by discriminating samples. Both G' and D are parameterized by neural networks and Eq. () is
estimated by the Monte Carlo method over mini-batches sampled from the training set.

For a broader interest, we adopt three strong GAN variants, StyleGAN2 (Karras et al., 2020b), adap-
tive discriminator augmentation (ADA) (Karras et al.l |2020a), and adaptive pseudo augmentation
(APA) (Jiang et al.}2021) as the base DGMs. Please refer to Appendix for more details.
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4.2 PRE-TRAINED MODEL

As mentioned in Sec. @], different from the transfer-based methods (Wang et al., 2018} Mo et al.,
2020), Reg-DGM applies to a nontransferable setting where the pre-trained model does not nec-
essarily have the same architecture or the same formulation as p, or does not even have to be a
generative model, enjoying the flexibility of choosing the pre-trained models.

In our implementation, the pre-trained model is a feature extractor f : X — R?, which is trained
for other tasks (e.g., classification or contrastive representation learning) instead of generation. We
choose such models because they are easily available and achieve excellent performance in super-
vised learning. In particular, we investigate three prototypical pre-trained models: a ResNet (He
et al., [2015) trained in a supervised manner on ImageNet, a CLIP image encoder (Radford et al.,
2021) trained in a self-supervised manner on a large-scale image-text dataset, and a FaceNet (Schroff
et al.l 2015) trained on a face recognition dataset. Please refer to Appendix [B.2)for more details.

Note that such models are nontransferable in the fine-tuning manner (Hinton et al., [2006). Never-
theless, with such models and a data-dependent energy function presented later, Reg-DGM is still
competitive to the transfer-based approaches (Wang et al., 2018; Mo et al.,[2020) as shown in Tab.[T]

4.3 ENERGY FUNCTION

According to the results in Fig. E] (c) and our intuition, we should define £ such that py is as close
to pg as possible. In most of the cases, f is pre-trained on a dataset with richer semantics than
pq. Therefore, it is necessary to involve training data (sampled from pg) in the energy function to
reducing the distance between py and pg. As presented above, we specify f as a feature extractor
and it is natural to match the features of samples from p, and pg as the energy function.

Formally, the energy function is defined by the expected mean squared error between the features of
a generated sample and a training sample as follows:

E1(2) 1= Barepy | gl1(@) — S| ©

Notably, our implementation with the data-dependent energy function in Eq. (3) is a valid instance
of the general Reg-DGM framework as formulated in Eq. (2). Furthermore, the convergence results
in both the non-parametric and parametric settings (see Sec. [3) hold in this case. The expectation is
estimated by the Monte Carlo method of a single sample for efficiency by default and increasing the
number of samples will not affect the performance significantly (see results in Appendix [C.4).

We emphasize that our main contribution is not designing a specific energy function but the general
framework of Reg-DGM. Many alternative energy functions can be employed in Reg-DGM. Indeed,
we perform a systematical ablation study of the energy functions in Sec. [5.3] and find that Eq. (3)
is the best among them considering the qualitative and quantitative results together. Moreover, we
evaluate the effectiveness of Reg-DGM implemented by Eq. (5), with strong base DGMs (Karras
et al., 2020bza; Jiang et al., 2021)), different datasets, different backbones of f and different pre-
training datasets in the experiments. We observe a consistent and significant improvement over
SOTA baselines across various settings. Based on such a comprehensive empirical study, we believe
that our implementation of Reg-DGM based on Eq. (3)) would be effective in new settings.

5 EXPERIMENTS

For a fair comparison to a large family of prior work, we evaluate Reg-DGM on several widely
adopted benchmarks with limited data (Karras et al.l [2020a), including the FFHQ (Karras et al.,
2019), 100-shot Obama (Zhao et al| [2020a), LSUN CAT (Yu et all 2015) and CIFAR-10
(Krizhevsky et al.l 2009) datasets, and the data processing and metric calculating are the same as
those of ADA (Karras et al., 2020a). We present the main results and analyses in the section and
refer the readers to Appendix for details and Appendix [C]for additional results. Throughout the
section, we refer to our approach as the name of the base DGM with the prefix “Reg-". For instance,
“Reg-ADA” denotes our approach with ADA (Karras et al.| [2020a) as the base DGM.
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Table 1: Median FID | on FFHQ and LSUN CAT and mean FID | on CIFAR-10. ' and ¥ indicate the
results are taken from the references and [Karras et al.| (2020a) respectively. Otherwise, the results

are reproduced by us upon the official implementation (Karras et al.,[2020a; Jiang et al., [2021).

Method FFHQ LSUN CAT CIFAR-10
1k 5k 1k 5k 50k
Transfer (Wang et al.l, 2142 12.34
Freeze-D (Mo et al., 2020) 19.77  12.69
DA (Zhao et al.,[2020a) 25.66 10.45 42.26  16.11 8.49
InsGen' (Yang et al., 2021} 19.58
GenCo (Cui et al.; 2021 65.31  27.96 140.08 40.79  8.8340.04
DA + GenCo' (Cui et al.| 6.57 £ 0.01
ADA + bCR¥ (Zhao et al.| b)  22.61 10.58 38.82  16.80
Ric T (Tseng et al.[2021) 63.16  23.83 8.31 £ 0.05
ADA + Ry cT (Tseng etal.[2021)  21.7 2.47+£0.01
APAT (Jiang et al., 2021) 45.19  13.25
StyleGAN? (Karras et al.|[2020b) 103.66 52.71 186.55 115.16 7.164+0.12
Reg-StﬁlmmTaﬂEfp 75.99  37.77 107.02 63.10  6.56 +0.14
ADA (Karras et al., 2020a) 2226 12.64 4181 16.76  3.07 4 0.08
Reg-ADA (ours) 20.05 11.95 36.17 1591  2.9540.05
ADA + APA 2021)  19.71 884 2409 1179  2.64+0.08
Reg-ADA-APA (ours 17.88 802 21.88 11.27 2.5840.04

(a) 100-shot Obama (FID 39.53)

Figure 3: Samples from the Reg-ADA, truncated () = 0.7) as in prior work (Karras et al., 2020a).

5.1 BENCHMARK RESULTS WITH LIMITED DATA

We employ StyleGAN2 (Karras et all, [2020b), ADA (Karras et all, [2020a) and APA (Jiang et al.
2021) as the base DGMs and a ResNet-18 (He et al. 2015) classifier trained on ImageNet

et al.,[2009) as the pre-trained model by default. The associated energy function is defined in Eq. (3).

Quantitatively, we compare Reg-DGM with a large family of existing methods, including the base
DGMs, the transfer-based approaches, the augmentation-based methods and many others. Following
the direct and strong competitor (Karras et al., [2020a), we report the median Fréchet inception
distance (FID) (Heusel et al.,[2017) on FFHQ and LSUN CAT, and the mean FID on CIFAR-10 out
of 3 runs for a fair comparison in Tab. [I] For completeness, we also report the mean FID with the
standard deviation on FFHQ and LSUN CAT in Appendix [C.1}

As shown in Tab. [T} Reg-StyleGAN2, Reg-ADA and Reg-ADA-APA consistently outperform the
corresponding base DGM in five settings, demonstrating that Reg-DGM can achieve a good bias-
variance tradeoff in practice. Besides, the superior performance of Reg-ADA over ADA (and Reg-
ADA-APA over ADA-APA) shows that our contribution is orthogonal to the augmentation-based
approaches. Notably, the improvement of Reg-DGM over the base DGM is larger when the sample
size m is smaller. This is as expected because the relative gain of Reg-DGM over the base DGM
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Table 2: Median FID | and the corresponding KID x 103 | using a pre-trained CLIP or FaceNet.

CLIP FaceNet
Method FFHQ-5k LSUN CAT-5k FFHQ-5k
FID KID FID KID FID KID
StyleGAN2 (Karras et al.,[2020b) 52.71 39.52 115.16 100.57 52.71 39.52

Reg-StyleGAN2(ours) 40.98 27.56 42.04 26.21 38.80 23.38
ADA (Karras et al.|[2020a) 12.64 5.17  16.76 8.13 12.64 5.17
Reg-ADA(ours) 11.09  3.91 14.15 6.72 11.37  4.01
ADA+APA (Jiang et al.|[2021) 8.84  2.76 11.79 4.86 8.84  2.76
Reg-ADA-APA(ours) 818 226 1047 4.68 821 237

increases as m decreases given a fixed pre-trained model and the optimal X (see Fig.[I|(b)). Further,
we evaluate the base DGMs and Reg-DGMs under the kernel inception distance (KID) (Binkowski
et al.l 2018) metric in Appendix [C.4] The conclusion remains the same. As suggested by Propo-
sition the value of the weighting hyperparameter A is crucial and there is an appropriate range
of A such that Reg-DGM is better than the base DGM. We empirically validate the argument on
FFHQ-5k with StyleGAN?2 as the base model in Appendix [C.5]

We mention that the methods based on fine-tuning (Wang et al., 2018; Mo et al.l 2020) in Tab.
employ a GAN pre-trained on CelebA-HQ (Karras et al [2017), which is also a face dataset of
the same resolution as FFHQ. In comparison, our approach is built upon a classifier pertained on
ImageNet. As highlighted in (Wang et al., [2018), the density of the pre-training dataset is more
important than the diversity. Nevertheless, Reg-DGM is competitive with these strong baselines
while enjoying the flexibility of choosing the pre-trained model and dataset. Further, we directly
adopt the same pre-trained model across all datasets including CIFAR-10, where it takes additional
efforts to get a suitable pre-trained generative model to fine-tune. Based on the results, it is safe to
emphasize the complementary role of Reg-DGM to the approaches based on fine-tuning.

Qualitatively, we show the samples generated from Reg-DGM on FFHQ-5k and 100-shot Obama in
Fig.[3] It can be seen that with the regularization, our approach can produce faces of a normal shape
with limited data. We present the results from the base DGMs and more samples in other settings
in Appendix [C.2] For a comprehensive comparison on the visual quality of samples, we perform a
human evaluation by the Amazon Mechanical Turk (AMT) as in prior work (Choi et al.,[2020). Ac-
cording with the FID results, Reg-StyleGAN?2 trained on FFHQ-5k against the baseline StyleGAN?2
is chosen in 63.5% of the 3,000 image quality comparison tasks. See details in Appendix |C.4}

5.2 ABLATION OF PRE-TRAINED MODELS AND PRE-TRAINING DATASETS

For simplicity, the main results of Reg-DGM presented in Sec. are based on a ResNet-18 model
pre-trained on ImageNet. Although its architecture is significantly different from the Inception-
v3 (Szegedy et al.|[2016) used in FID and KID calculation, it is worth performing an ablation on the
pre-trained models to eliminate the potential bias caused by the pre-training dataset.

In particular, we test Reg-DGM with the image encoder of the CLIP model (Radford et al.|[2021) (an
architecture very similar to ResNet-50), which is pre-trained on large-scale noisy text-image pairs
instead of ImageNet, and with the face recognizer Inception-ResNet-v1 (Szegedy et al., [2017) of
FaceNet (Schroff et al., [2015)), which is pre-trained on the large-scale face dataset VGGFace2 (Cao
etal[2018). See details in Appendix[B.2] The median FID and corresponding KID results are shown
in Tab.[2] Without heavily tuning the hyperparameter A, Reg-DGM shows consistent improvements
over the two baselines under both FID and KID metrics, and achieves comparable results to those
presented in Table [I] The results with the CLIP model and the FaceNet model demonstrate that
Reg-DGM works well with various backbones and pre-training datasets.
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5.3 ABLATION OF ENERGY FUNCTIONS

As emphasized in Sec.[d] our main contribution is the general framework instead of a specific energy
function. Nevertheless, we still investigate two alternative regularization terms for completeness.

We first consider the famous entropy-minimization regularization (Grandvalet & Bengio, |2004),
which is data-independent. Intuitively, the regularization forces p, that produces samples with clear
semantics. We find that the entropy regularization achieves similar FID results of 50.87 on FFHQ-5k
to the baseline 52.71, showing the importance of the data dependency in the energy function. We
then investigate another data-dependent regularization term, i.e., feature matching (Salimans et al.,
2016), which matches the averaged features between the model and data distributions. We find that
feature matching can achieve FID 32.65 on FFHQ-5k greatly reducing the FID of StyleGAN2 while
it cannot improve the visual quality of the samples. Please refer to Appendix [C.4] for details of
both energy functions. Therefore, Eq. (B) is the best among them considering the qualitative and
quantitative results together and we believe it can be transferred to new settings based on our results

in Sec.[5.1land Sec.[5.21

6 RELATED WORK

Fine-tuning approaches. A milestone of deep learning is that a deep generative model fine-tuned
for classification outperforms the classical SVM on recognizing the hand-writing digits (Hinton
et al.| [2000). Since then, the idea of fine-tuning has a significant impact (Devlin et al., 2018} [He
et al.,|2020) including generative models with limited data (Wang et al.,|2018; Mo et al.,|2020; Wang
et al.,2020; Li et al.| |2020; |Ojha et al., 2021). However, an inherent restriction of fine-tuning is that
the pre-trained model and target model should partially share a common structure. Thus, it may
take additional efforts to find a suitable pre-trained model to fine-tune. In comparison, Reg-DGM
provides an alternative way to make it possible to exploit a pre-trained classifier to help generative
modeling. Notably, the latter is often thought of as much harder than the former.

Other generative adversarial networks with limited data. To relieve the overfitting problem of
the discriminator, DA (Zhao et al., 2020a), ADA (Karras et al.l [2020a) and APA (Jiang et al.,
2021)) design sophisticated data augmentation strategies. GenCo (Cui et al.l 2021)) designs a co-
training framework that introduces multiple complimentary discriminators. InsGen (Yang et al.,
2021)) improves the data efficiency of GANSs via an instance discrimination loss (Wu et al [2018).
We believe that Reg-DGM is orthogonal to these methods based on our results in Tab. [I}

Regularization in probabilistic models. Extensive regularization approaches have been developed
in traditional Bayesian inference (Zhu et al.l 2014) and probabilistic modeling (Chang et al., 2007}
Liang et al., 2009} \Ganchev et al.,|2010). Among them, posterior regularization (PR) (Ganchev et al.,
2010) encodes the human knowledge about the task as linear constraints of the latent representations
in generative models for better inference performance. Such methods have been extended to deep
generative models (Hu et al., 2018} Du et al.| [2018; [Shu et al., 2018} |Xu et al., [2019) for a similar
reason. Technically, PR-based methods regularize the latent space via handcrafted or jointly trained
constraints. In comparison, our approach regularizes the data space via a pre-trained model. Besides,
PR-based methods are suitable for structured prediction tasks instead of generative modeling with
limited data, which is the main focus of this paper.

7 CONCLUSIONS

In this paper, we propose regularized deep generative model (Reg-DGM), which leverages a pre-
trained model for regularization to reduce the variance of DGMs with limited data. Theoretically,
we analyze the convergence properties of Reg-DGM. Empirically, with various pre-trained feature
extractors and a data-dependent energy function, Reg-DGM consistently improves the generation
performance of strong DGMs and achieves competitive results to the state-of-the-art methods. An
interesting future work is to analyze the generalization behaviour of Reg-DGM in general and in-
spire new energy functions. Currently, the generalization analysis of deep learning is still largely
open (Zhang et al.| [2021} [Bartlett et al.| 2021} [Belkin, 2021), and there lacks appropriate tools to
formalize our intuition on the bias-variance tradeoff in general.
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A PROOFS

A.1 THE GAUSSIAN-FITTING EXAMPLE

We first derive the solution of Reg-DGM in the main text. In the Gaussian fitting example, the
regularized optimization problem can be written as

[iREG = arg mm —— Z log N (11, 0°) + AEpnr(u,02) [— log py ()] (6)
i=1
1 (p )’ (1 — jiwge)® | 1 2y, 1
:argmuma;T—f—)\ T+§log(2wo)+§ (7
s (p—)? (1 — fipre)?
= argmin — > e (8)

i=1

where the first equality holds by the definition and properties of Gaussian (Bishop & Nasrabadi,
2006) and the second equality holds by omitting a constant irrelevant to the optimization. It is easy
to solve the above quadratic programming problem analytically:

1 A
i i ; 9
AREG = TN ZCE ,UPRE T /\NMLE T /\NPRE €))
where fivig ~ N | u*, %) [LrEc is obtained by an affine transformation of a Gaussian random
variable and thus is also Gaussian distributed as follows:

i Ny 2y o (10)
HREG 1+)\M 1+/\/~LPRE, mA+N2Z)

A.1.1 PROOF OF PROPOSITION[2.2]

Proof. In the Gaussian-fitting example, we have

o2
fimLe ~ N (M*,> ) (11)
m
and
N 1 N AL o?
fireG ~ N (1 T T e m(l +/\)2) ~ 12)

According to the bias-variance decomposition of the MSE, we have

X o’
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and

A2 R 9 o2
m(MPRE—N )°+ m(

(14)

Let 8 = HLA € (0,1) be the normalized weight of the regularization term. Then, we can rewrite
MSE[[JJREG] as

0.2

MSEfireg] = 8% (fiere — p*)* + (1 — 5)25- (15)
To satisfy MSE[ﬂREg] < MSE[ﬂMLE], we have
0.2 2 20.2

(16)

B2 (fre — 1) + (1= B2 < - = B < -

o2 + m(fipre — p*)

The pre-trained model [ipgg is another meaningful baseline, which has a bias of fipgg — 1* and a
zero variance. Its MSE is given by

MSE[jipre] = (firre — 1) o))

To satisfy MSE|[firec] < MSE[/ipre], we have
o® — m(firre — p*)?
o? + m(fipre — p*)?

2
BQ(ﬂPRE_H*)2+(1_ﬁ)2% < (firre — p*)* = B > ) (18)

which completes the proof. O

We now computes the optimal MSE[firgg]. It is easy to see that the quadratic programming
2
TTTmGme )z With the corresponding

o2 (fpre—p*)? ___MSE[/ime]MSE]fipre]
o24+m(fipre—p*)? MSE][/imLe] +MSE[fiprg] *

problem in Eq. achieves its minimum at §* =

2

A= m The minimum value is

A.1.2 COMPARISON UNDER THE EXPECTED RISK

We also evaluate all estimators in terms of the expected risk, which is a commonly used measure
in statistical learning theory. In a density estimation task for pg, the expected risk of a hypothesis
ft, which depends on the training sample S, is R(f) := E,p, [—logp(z; it)]. We can show that
the expectation of the expected risk w.r.t. S coincides with the corresponding MSE in the Gaussian-
fitting example and directly obtain the following Corollary[A.0.1] from Proposition [2.2]

Corollary A.0.1. In the Gaussian-fitting example 2.1 if X satisfies the same condition as in Propo-
sition[2.2] then the following inequality holds:

Es[R(firec)] < min{Es[R(fimre)], Es[R(fipre)]}- (19)

Proof. In the Gaussian-fitting example, the expected risk for a hypothesis /i is

R(f1) = Esmpr By n(ur,02) [~ log N (i1, 0)] (20)
(p—p*)* 1 2 1
—Reom |27 4 7 Z
Es~pr 572 + 5 og(2mo?) + 5 (21)
1 1 o1
= EMSE[M} +3 log(2mo®) + 2 (22)
which completes the proof together with Proposition O

A.2 OPTIMIZATION ANALYSES

A.2.1 PROOF OF THEOREM [3. 1] AND THEOREM [3.2]

Our results rely on the following regularity conditions.
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Assumption A.1.

1. X is a nonempty compact set.

2. & : X — Ris continuous and bounded.

3 [y e~ €@ dy < oo

The regularity conditions in Assumption [A.T]are mild in the sense:

1. The sample space X is often a subset of a n-dimensional Euclidean space. Then, X is
compact if and only if X is bounded and closed, which holds for extensive datasets in
various types including images, videos, audios, and texts.

2. In this paper, £y is defined by compositing a neural network and a continuous real-valued
function. Then &; is continuous and bounded on X if the neural network has bounded
weights and uses continuous activation functions including ReLU (Nair & Hinton, |2010),
Tanh and Sigmoid.

3. f Py e~€1(®) dx < oo holds following the choice of the sample space and energy function,

We first prove Theorem [3.1]as follows.

Proof. Ignoring some constant irrelevant to the optimization, we rewrite the optimization problem
of our approach with the KL divergence as follows:

min /X (— In(py (2))pale) +AEf (2)py (@) da,

Pg

subject to/ pg(x)dr =1, (23)
x

Vo € X,pg(x) > 0.

For clarity, we denote the functional in problem Eq. (23) to be optimized as
J(pg) = /X (=In(py (2))pa(2)+AEf (x)py (2))dz.

According to Assumption 3.1 that X is a nonempty compact set, the feasible area characterized
by the constraints (i.e., Py) is compact in the topology of weak convergence by the Prokhorov’s
Theorem (See Corollary 6.8 in (Van Gaans| 2003)). By Theorem 3.6 in (Ajjanagadde et al.,|2017),
KL divergence is lower semi-continuous in the topology of weak convergence. According to As-
sumption 3.2 that £¢ is continuous and bounded on X, the regularization term is continuous in the
topology of weak convergence. Therefore, by the extreme value theorem, the global minimum of
J (pg) exists in the feasible area.

Note that the optimization problem Eq. (23)) is convex. To obtain a necessary condition for the global
minima, we get the Lagrangian with the equality constraint:

L(pg) = /X(— In(py(2))pa(z) + A€ (2)py(2))da + 04(/)( pg()dz —1), (24)

where o € R. Note that for simplicity, we do not include the inequality constraint, which will be
verified shortly. It is easy to check the constraint qualifications for problem Eq. (23). By the calculus
of variations, a necessary condition for a global minimum of problem Eq. (23) is

oL pa(z)
— =- + Af(x)+a=0, 25
opg py() (@) *)
which implies that
Py(@) = a+ A (z) (26)
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We define A = {a € R|p”‘7(m) > 0,Vz € X'}. According to Assumption 3.1 that £ is bounded

a+AE¢(x)
on X, we have A4 # &. We define a function ¢ : A — R as
pa(z)
¢(e) /on+)\5f(1’) * 27)

It is easy to see ¢(«) is monotonically decreasing and there is at most one o* € A such that
¢(a*) = 1, which finishes the proof together with the existence of the global minimum. O

We now prove Theorem [3.2] as follows.

Proof. The proof here shares the same spirit of Theorem Ignoring some constant irrelevant to
the optimization, we rewrite the optimization problem of our approach with the JS divergence as
follows:

o /X<— In(py (@) + pa(@))pa(e) — In(py (2) + pa(@))pg(x) + In(pg(2))py (2)+AE; (2)py () dr,

subject to/ pg(x)dr =1,
X

Vo € X, pg(x) > 0.
(28)

For clarity, we denote the functional in problem Eq. (23) to be optimized as

T(py) = /X (= 1n(py () + pa(z))pa() — n(py(z) + pa(x))pe () + In(py(2))pe(2)+  (29)
Ay (x)pg (z))dz. (30)

Similarly to the proof of Theorem the global minimum of 7 (pg) exists in the feasible area due
to Assumption [A.T] and the fact that the JS divergence is lower semi-continuous in the topology of
weak convergence.

Notably, the optimization problem Eq. (28) is convex due to the convexity of the JS diver-
gence (Billingsley, 2013). To obtain a necessary condition for the global minima, we get the La-
grangian with the equality constraint:

L(py) ::/X(*ln(pg(I)erd(I))pd(w)*ln(pg(x)erd(ﬂf))pg(w)HH(pg(x))pg(rH

NEF (2)py ())da + o /X po(0)dz — 1), (31)

where o € R. Similarly to the proof of Theorem [3.1] a necessary condition for a global minimum
of problem Eq. is

oL
.~ pg(z) +pal@)) +1In(py () + Ay (@) + @ =0, (32)
g
which implies that
pi() = _ palz) (33)

eaJr)\Sf(a:) -1 :

Similarly to the proof in Theorem , there is at most one o* € R such that [, % =1,
. -

which finishes the proof together with the existence of the global minimum.

A.2.2 CONVERGENCE WITH NEURAL NETWORKS TRAINED BY (STOCHASTIC) GRADIENT
DESCENT

We establish the convergence of Reg-DGM with over-parameterized neural networks trained by
(stochastic) gradient descent upon the general framework (Allen-Zhu et al., 2019).
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Theorem A.2. (General convergence guarantee (Allen-Zhu et al.||2019)) For an arbitrary Lipschitz-
smooth loss function L, with probability at least 1 — e=*198™) " q ReLU convolutional neural net-
work with width m and depth | trained by gradient descent with an appropriate learning rate satisfy
the following.ﬂ

* If L is non- convex and o-gradient dominant, then GD finds e-error minimizer in
O(poly(n, 1, log L, 1)) iterations as long as m > Q(poly(n, 1, 1)).

* If L is non-convex, then SGDﬁnds a point with ||V f|| < € in O(poly(m,1,log 1)) itera-
tions as long as m > Q(poly(n, 1, * ).

We assume the following standard smoothness conditions, which can be verified in practice with
bounded data and weights.

Assumption A.3. (Smoothness conditions)
1. 3b > 0 such that V0 € ©,Vx € X,p(0;x) > b.
2. 3L > 0 such thatVx € X,¥0 € ©,Y0' € O, |p(0;x) — p(¢';x)| < L||0 — 0'||.
3. 3K > 0 such that V0 € ©,Y0' € O, [ |p(6;z) — p(¢; z)|dx < K||0 — ¢']|.
4. sup,ex supyex |If(x) = fF(y)II* < B.

We consider the general density estimation setting where Ly g(6;z;) := — logpg(z;). Note that
the first two conditions in Assumption |A.3|directly imply that Lypg(; ) is %—Lipschitz. Formally,
given a set of samples S = {z;}, Reg-DGM optimizes

= ﬁ Z ﬁMLE(Q; l‘i) + /\EwNpg [Sf (x)]
i=1

If £¢ is independent from the training data x, then the overall loss function is also & 7 -Lipschitz and
Theorem“duectly applies. Otherwise, we can show that the data-dependent regulanzatlon used
in our experiments is also Lipschitz-smooth. By the hneanty of expectation, we have

. ) 1 n

OreG ::argrgrggﬁ;[ﬁMLE(G;xi)} Eoynpe [ Z||f [l ||21 (34)
=argmi li Lo (8550) + By, 1) — £ (39)
_a’rg lgél(gl n P MLE ) d Yy~po y xX; 2] -

We define Lrgg(0; x;) := %]Eywpgﬂf(y) — f(=)]
A
[Ls(052) — Lus(0'2)| =5 [Eympal £ ) = F@IB =~ Eypy 170) = )3
<3 [ o) = po Wl @)~ )Py

A
<2 Gsup 17(z) = FWIP) [ Ipolw) - por(w)ldy
yeX

<22 g g1

2, which is Lipschitz-smooth:

Therefore, Theorem applies to Reg-DGM with the data-dependent energy defined in Sec. [ of
the main text.

B EXPERIMENTAL DETAILS

Our implementation is built upon some publicly available code. Below, we include the links and
please refer to the licenses therein.

*See additional assumptions on regularity of the data in (Allen-Zhu et al.| 2019).

18



Published as a conference paper at ICLR 2023

B.1 Toy DATA

In the toy example for optimization analyses, the data follows a uniform distribution over [0, 1].
The energy function is defined as £¢(x) = 0.7z + 0.9. The optimal 3* is estimated by numerical
integration.

In the experiments for the Gaussian-fitting example, we set 02 =1, m = 150, and fpreg —p* = 0.1
by default.

B.2 GANS WITH LIMITED DATA

Datasets. In our experiments, we use FFHQ (Karras et al., [2019), which consists of 70, 000 human
face images of resolution 256 x 256, LSUN CAT (Yu et al., |2015), which consists of 200, 000
cat images of resolution 256 x 256, and CIFAR-10 (Krizhevsky et al., 2009), which consists of
50, 000 natural images of resolution 32 x 32. Specifically, we randomly split training subsets of size
1k and 5k from full FFHQ and LSUN CAT in the same way as ADA (Karras et al., [2020a). For
reproducibility, we directly use the random seed provided by the official implementation of ADAE}
In addition, we also experiment on the smaller dataset 100-shot Obama (Zhao et al., |2020a) with
only 100 face images of 256 x 256 resolution. In all experiments, we do not use x-flips to amplify
training data except for combining with APA (Jiang et al., [2021)).

Metrics. To quantitatively evaluate the experimental results, we choose the Fréchet inception dis-
tance (FID) (Heusel et al.,|2017) and the kernel inception distance (KID) (Binkowski et al., [2018)
as our metrics. We compute the FID and KID between 50, 000 generated images and all real images
instead of training subsets (Heusel et al., 2017). Following ADA (Karras et al., 2020a), we report
the medium FID and corresponding KID on FFHQ and LSUN CAT and the mean FID with standard
deviation on CIFAR-10 out of 3 runs. We record the best FID during training in each run as in
ADA (Karras et al.| [2020a).

Base DGM. In particular, the lighter-weight StyleGAN?2 is the backbone for FFHQ and LSUN CAT,
and the tuning StyleGAN?2 is the backbone for CIFAR-10 following ADA (Karras et al.l 2020a).
Compared to the official StyleGAN?2, the lighter-weight StyleGAN?2 has the same performance and
less computing cost on the FFHQ and LSUN CAT and the tuning StyleGAN?2 is more suitable for
CIFAR-10 (Karras et al.,2020a). Adaptive discriminator augmentation (ADA) (Karras et al.,[2020al)
is a representative way of data augmentation for GANs under limited data, and its combination with
adaptive pseudo augmentation (APA) (Jiang et al., 2021) is the state-of-the-art method for few-shot
imag%1 generation (Li et al.,|2022). Our implementation is based on the official code of ADAB and
APA

Pre-trained model. We choose the ResNet-18 E]trained on the ImageNet dataset as the pre-trained
model by default due to its excellent performance on ImageNet (Deng et al.l 2009) and little com-
putational overhead. We normalize both the real and fake images based on the mean and standard
deviation of training data and then feed them into the classifier. We extract the features of the last
fully connected layer in the pre-trained model, which is frozen during training of generative models.
On CIFAR-10, we interpolate ﬂ both the fake and real images to a resolution of 256 x 256 after
normalization.

Other alternative pre-trained models are the image encoder ResNet-50 of the CLIP model (Radford
et al.,2021), which is pre-trained on large-scale noisy text-image pairs instead of ImageNet, and the
face recognizer Inception-ResNet-v1 (Szegedy et al.,[2017) of FaceNet (Schroff et al.,[2015), which
is pre-trained on the large-scale face dataset VGGFace2 (Cao et al., 2018)). Notably, we replace the
last attention pooling layer in the image encoder of CLIP with the global average pooling layer, and
we directly pass the image to the face recognizer without operating the face detector in FaceNet

*https://github.com/NVlabs/stylegan2-ada-pytorch

6https ://github.com/EndlessSora/DeceiveD

"nttps://pytorch.org/vision/stable/models.html

8https ://pytorch.org/docs/stable/generated/torch.nn.functional.
interpolate.html
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Table 3: Hyperparameters in the experiments of GANs. Reg-DGM shares the same hyperparameters
as the base DGM if not specified. All models converge with the corresponding training length.

Parameter FFHQ-1k FFHQ-5k LSUN CAT-1k LSUN CAT-5k CIFAR-10
Base DGM StyleGAN2 StyleGAN2 StyleGAN2 StyleGAN2 StyleGAN2
(Karras et al.||2020b) (Karras et al.|[2020b) (Karras et al.||2020b) (Karras et al.|[2020b) (Karras et al.|[2020b)
A 4 1 4 1 1x107°
Number of GPUs 4 4 8 8 8
Training length 5M 5M 5M 5M 25M
Minibatch size 64 64 64 64 64
Base DGM ADA \ ADA ; ADA \ ADA ; ADA \
(Karras et al.||2020a) (Karras et al.|[2020a) (Karras et al.||2020a) (Karras et al.|[2020a) (Karras et al.}[2020a)}
A 0.01 0.001 0.01 0.0005 5x10°°
Number of GPUs 8 8 8 8 8
Training length 16M 16M 16M 16M 60M
Minibatch size 64 64 64 64 64
Base DGM ADA+APA ‘ 'ADA+ARA ; ADA+APA ‘ 'ADA+ARA ; ADA+APA ‘
(Jiang et al.||2021)  (Jiang et al.|[2021)  (Jiang et al.{|2021)  (Jiang et al.|[2021) (Jiang et al.||2021}
A 0.01 0.01 0.005 0.001 0.1
Number of GPUs 8 8 8 8 8
Training length 25M 25M 25M 25M 100M
Minibatch size 64 64 64 64 64

Table 4: The hyperparameter A with pre-trained CLIP and FaceNet.

Base DGM CLIP FaceNet
FFHQ-5k LSUN CAT-5k FFHQ-5k
StyleGAN2 (Karras et al.,|2020b) 50 50 4
ADA (Karras et al., 2020a) 1 2 0.05
ADA+APA (Jiang et al.,[2021) 0.5 1 0.001

to extract cropped faces. For pre-trained CLHﬂ and FaceNe we also employ their last layers as
feature extractors.

Hyperparameters. Some parameters are shown in Tab. 3] The weight parameter A controls
the strength of our regularization term. We choose the weighting hyperparameter A by perform-
ing grid search over [50, 20, 10, 5,4,2,1,0.5,0.1,0.05,0.01, 0.005, 0.001, 0.0005] for FFHQ and
LSUN CAT, and [1,0.1,0.05,0.01,0.005,0.001, 0.0005, 0.0001, 0.00005, 0.00001, 0.000005] for
CIFAR-10 according to FID following prior work (Karras et al.,[2020a). Other parameters remain
the same settings as ADA (Karras et al.,[2020a) and APA (Jiang et al.,[2021)). For pre-trained CLIP
and FaceNet, the adopted parameter \ is shown in Tab. ] In addition, we simply set A as 0.1 for
Reg-ADA trained on 100-shot Obama.

Computing amount. A single experiment can be completed on 8 NVIDIA 2080Ti GPUs. It takes 1
day 6 hours 19 minutes to run our method with ADA on FFHQ or LSUN CAT and 2 days 17 hours
10 minutes on CIFAR-10 at a time.

C ADDITIONAL RESULTS

C.1 STANDARD DEVIATION ON FFHQ AND LSUN CAT

As shown in Tab. [5] we also provide the mean FID and standard deviation on FFHQ and LSUN
CAT. Reg-DGM can reduce the mean FID significantly (compared to the measurement variance)
and achieve a similar if not smaller standard deviation.

‘nttps://github.com/openai/CLIP
Ohttps://github.com/timesler/facenet—pytorch
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Table 5: The mean FID | and standard deviation on FFHQ and LSUN CAT which is a supplement
to reported medium FID.

FFHQ LSUN CAT
1k 5k 1k 5k

StyleGAN2 (Karras et a1.|, 2020b) 102.62 +£5.67 53.37£1.92 189.57 £8.13 110.83 £6.85
Reg-StyleGAN2 (ours) 77.80+3.65 38.14+0.97 112.15+8.48 64.11 +2.51

ADA (Karras et al., 2020a) 22.10+0.50 12.72+£0.13 41.59+1.71 16.77£0.74
Reg-ADA (ours) 20.16 £0.22 11.88+0.13 36.85+1.09 15.85+0.10

Method

(c) ADA (FID 12.62) (d) Reg-ADA (FID 11.69)

Figure 4: Samples generated for FFHQ-5k, truncated (¢ = 0.7).

C.2 MORE SAMPLES OF GANS

Fig.[and Fig. [5|respectively show the samples randomly generated by models with best FID trained
on FFHQ-5k and CIFAR-10, using slight truncation as in ADA (Karras et al,2020d). Reg-DGM
produces samples of better or comparable quality to the corresponding base DGM.
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(c) ADA FID 2.96)

Figure 5: Samples generated for CIFAR-10, truncated (1 = 0.7).

C.3 LEARNING CURVES

We show the learning curves of GANs on FFHQ, LSUN CAT and CIFAR-10 in Fig. [f] Fig. [7] and
Fig. [§]respectively. Reg-DGM consistently improves both baselines in all settings and the improve-
ments increase as the number of the training data decreases. Moreover, the curves of Reg-DGM
generally have a smaller fluctuation, which is consistent with our theory that the regularization re-
duces the variance of the baselines. One exception is Fig. [§] (a), which shows that Reg-DGM is
more unstable than the baseline, which is caused by a bad random initialization. We mention that
the instability of Reg-ADA in Fig.[6|(b) is due to that of ADA.

C.4 ABLATION OF CLASSIFIER AND RESULTS UNDER MORE EVALUATION METRICS

In this section, to better understand the influence of classifiers on our method, we try to use pre-
trained classifiers with different regularization terms, layers, and backbones. We retain the same
experimental setting as in Tab.[3]

Regularization form. We first investigate the feature matching objective (Salimans et all,[2016) as
an alternative regularization term. Formally, it computes the square of the /o-norm between expected
features of real and fake samples from one layer of a feature extractor f, which can be represented
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Figure 6: Learning Curves on FFHQ.
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Figure 7: Learning Curves on LSUN CAT.

as follows:
By [£(2')] = Banp, [f ()] []5- (36)

Note that the feature matching objective cannot be rewritten as the expectation over p, and thus
cannot be understood as an energy function. As before, we adopt the last fully-connected layer
of ResNet-18, and the results of StyleGAN2 regularized by Eq. (36) are shown in Tab. [f] Feature
matching can greatly reduce FID of StyleGAN2 while it cannot improve the visual quality of the
samples, as shown in Fig.[9]

Then, we evaluate the entropy-minimization regularization (Grandvalet & Bengio, |2004) as follows:
—H(softmax(f(x))), 37

where f(x) outputs the logits for the prediction distribution. As shown in Tab. (7} the entropy regu-
larization achieves similar FID results to the baseline within a small search space of A, showing the
importance of the data dependency in the energy function.

Layers in f. To explore the different layers of a pre-trained model, we retrain GANs separately
using the first convolution layer of ResNet-18 and the last layers of four modules in ResNet-18.
As shown in Tab. [8] our method with features of diverse single layers can all improve the baseline
StyleGAN?2, and the last layer of ResNet-18 is most beneficial for our regularization strategy.

Backbone of f. We employ ResNet-50 and ResNet-101 as feature extractors to explore the effect
of different backbones on Reg-DGM. Tab. [9] shows the results on FFHQ-5k. Even using the default
A without tuning, Reg-DGM with ResNet-50 and ResNet-101 can achieve a similar FID to that of
our default setting and outperform the baseline. We believe that Reg-DGM with ResNet-50 and
ResNet-101 can get better results if we finely search the hyperparameter A.

Monte Carlo estimate of f. We evaluate Reg-StyleGAN2 with 8, 16, 32, and 64 (the default batch
size) samples to estimate the energy function in Eq. (3) of the main text, as shown in Tab.[T0] We
do not observe a significant improvement by increasing the number of samples. For instance, when
A = 1, the estimate with 64 samples achieves an FID of 38.10, which is similar to 37.77 of the
single sample estimate. Intuitively, the features of faces are likely concentrated in a small area of
the feature space of f, which is discriminative to other classes of natural images like cars, making
the variance negligible to the training process of the generative model.
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Figure 8: Learning Curves on CIFAR-10.

Figure 9: Samples generated for FFHQ-5k using feature matching (FID 32.65), truncated (¢ = 0.7).

KID metric. For a comprehensive comparison of Reg-DGM and baselines, we also evaluate the
models under KID in Tab.[T1] The conclusion remains the same as FID. Namely, Reg-DGM consis-
tently improves baselines in all settings.

Human evaluation. We compare the quality of generated images from the human perspective by
Amazon Mechanical Turk (AMT) as in prior work 2020). In particular, we randomly
generate 1, 000 pairs of images by StyleGAN2 and Reg-StyleGAN2 trained on FFHQ-5k using the
truncation trick (¢ = 0.7). For each image pair, three unique workers in AMT choose the image with
the more realistic and high-quality face image. Finally, 3,000 selection tasks are completed by 34
workers within 14 hours. As consistent with the comparison of image quality between Fig.[d](a) and
Fig. EI (b), Reg-StyleGAN?2 is chosen in 63.5% of the 3, 000 tasks, and other statistical information
is shown in Tab.[12

Results on more training sets with different size. To explore the influence of our method on
training data with different sizes, we test the Reg-StyleGAN2 with the pre-trained ResNet-18 on
different subsets of FFHQ. The results are shown in Tab.[13]and the hyperparameter \ is simply fixed
as 1 for new data settings 100, 2k, 7k, 10k, and 15k. Without heavily tuning the hyperparameter
A, Reg-StyleGAN2 shows consistent improvements over the baseline under the FID metric. There
seems to be a trend that our method improves more on smaller datasets, which agrees with our
Gaussian case illustrated by the Fig. [T](b).

C.5 SENSITIVITY ANALYSIS OF THE WEIGHTING HYPERPARAMETER

We empirically analyze the sensitivity of the weighting hyperparameter A on FFHQ-5k with Style-
GAN?2 as the base model in Tab. It can be seen that A\ affects the performance significantly.
Notably, although it is nearly impossible to get the optimal A via grid search, there is a range of A
(e.g. from 0.01 to 1 in Tab.[T4) such that Reg-DGM outperforms the base DGM, which agrees with
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Table 6: The median FID | on FFHQ and LSUN CAT with feature matching as the regularization.
A is simply set as the same values in Tab.

Method FFHQ LSUN CAT

1k 5k 1k 5k
StyleGAN2 (Karras et al., 2020b) 103.66 52.71 186.55 115.16
Reg-StyleGAN2 (ours) 59.96 32.65 66.46 47.56

Table 7: Median FID on FFHQ-5k for the entropy-minimization regularization.

A (Baseline) 1 0.1 0.01 0.001 0.0001 0.00001
FID | 52.71 145.55 92.11 56.41 53.37 50.87 95.76

our theoretical analyses. Besides, Reg-DGM is not too sensitive when the value of A is around the
optimum. For instance, the gap between the results of A = 0.1 and A\ = 1 in Tab.[T4]is much smaller
than their gain compared to the baseline. The performance of Reg-DGM deteriorates with a large A
in Tab. [T4] as expected. Proposition [2.2] shows that Reg-DGM is preferable if and only if its value
is in a proper interval. Intuitively, a very large value means that we almost ignore the training data,
which should lead to inferior performance.
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Table 8: Results with different layers on FFHQ-5k. The “—1 layer” represents the last layer (i.e.,
our default setting). Note that layers are all indexed by the function named_modules in Pytorch. A is
simply set as the same values from Tab.

Layerindex (Baseline) 1 17 33 49 65 —1 (by default)
FID | 52.71 46.39 47.65 51.61 45.24 46.01 37.77

Table 9: Results with different backbones on FFHQ-5k. A is simply set as the same values from
Tab. 3]

Backbone (Baseline) ResNet-18 ResNet-50 ResNet-101
FID | 52.71 37.77 40.95 42.63

Table 10: FID | on FFHQ-5k for different number of samples in MC.

MC 1 (by default) 8 16 32 64
A=1 37.77 40.97 40.78 37.54 38.10
A=10 53.09 53.36  58.58 52.93 48.21

Table 11: KIDx 103 | on FFHQ, LSUN-CAT, and CIFAR-10.

Method FFHQ LSUN CAT CIFAR-10
1k 5k 1k 5k 50k
StyleGAN2 (Karras et al.,2020b) 98.06 39.52 161.95 100.57 3.66 £+ 0.07
Reg-StyleGAN2 (ours) 4791 23.06 83.71 4268 2.89+0.11
ADA (Karras et al., 2020a)) 9.77 5.17 23.30 8.13 0.90 £0.12
Reg-ADA (ours) 9.38 4.30 20.52 6.54 0.83 £ 0.06

Table 12: Other statistical information about human evaluation. Number-¢ indicates the number of
image pairs that at least ¢ workers think StyleGAN2 or Reg-StyleGAN2 generates more realistic
face images.

Method Number-1 Number-2 Number-3
StyleGAN2 (Karras et al.| |2020b) 610 339 146
Reg-StyleGAN2 (ours) 854 661 390

Table 13: The FID on different subsets of FFHQ.

FFHQ
100 1k 2k 5k 7k 10k 15k

StyleGAN2 132.68 103.66 83.32 52.7Y1 37.75 34.20 23.07
Reg-StyleGAN2 11396 7599 60.83 37.77 3158 2572 20.85

Method

Table 14: Sensitivity analysis of A on FFHQ-5k with StyleGAN?2 as the base DGM.

Valuesof A A =0(base DGM) A=001 A=01 X=1 A=10 AX=100
FID | 52.71 47.49 41.51 37.77  53.09 178.53
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