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ABSTRACT

Domain adaptation (DA) aims to enhance the generalization ability of models
in scenarios where labeled data in the target domain is scarce. In DA research,
semi-supervised domain adaptation (SSDA) can utilize the labeled information in
the target domain more effectively compared to unsupervised domain adaptation
(UDA), thus achieving superior transfer performance and gaining widespread at-
tention. Existing SSDA methods implicitly learn feature spaces in the process
of aligning feature spaces between domains; however, the underlying mecha-
nisms remain insufficiently explored. To address this issue, this paper first the-
oretically reveals the advantages of learning a shared feature space for enhanc-
ing transferability. Based on our theoretical insights, we develop a framework to
learn a shared space, which is implemented by a gating-driven SSDA enhance-
ment mechanism. It is feasible to explicitly filters out inconsistent features across
domains compared with existing methods. Extensive experimental results demon-
strate the significant improvements of the proposed gating-driven enhancement
mechanism on state-of-the-art SSDA models. Our code is anonymously provided
in https://anonymous.4open.science/r/ICLR 8979.

1 INTRODUCTION

Nowadays, deep learning has demonstrated significant effectiveness in various real-world tasks, in-
cluding image recognition, segmentation, emotion analysis, and language translation (Akdemir &
Barışçı, 2024; Dosovitskiy, 2020; Younesi et al., 2024). However, in practical applications, data
labeling often faces challenges related to being expensive and time-consuming, resulting in large
portions of data being unlabeled or sparsely labeled (Prabhu et al., 2021). To address this, knowl-
edge from the annotated source domains can be transferred to unlabeled target domains to improve
their performance, which is known as “domain adaptation” (DA) (Ganin & Lempitsky, 2015). DA
methods can be mainly categorized into (1) unsupervised domain adaptation (UDA) (Long et al.,
2015), which lacks labeled data in the target domain, and (2) semi-supervised domain adaptation
(SSDA) (Saito et al., 2019), which has a small amount of labeled data in the target domain. Notably,
compared to UDA, SSDA can leverage the labeled data to achieve better transfer performance, thus
attracting widespread attention in recent researches (Saito et al., 2019; Ngo et al., 2024).

Table 1: Comparing existing methods of captur-
ing feature views: MultiFea for capturing multi-
perspective features, DataAug for augmenting
data to increase generalization, and SharedFea for
searching a shared feature space by alignment.

Method MultiFea DataAug SharedFea

MME (Saito et al., 2019) × × ✓
CDAC (Li et al., 2021a) × ✓ ✓

CLDA (Singh, 2021) × ✓ ✓
ECB (Ngo et al., 2024) ✓ ✓ ✓

LFL (Basak & Yin, 2024) ✓ × ✓

Existing deep SSDA primarily encompasses
the following two categories of methods:
adversarial-based and discrepancy-based meth-
ods (Farahani et al., 2021). Adversarial-based
methods take adversarial mechanisms, such
as generative adversarial networks (GANs)
(Goodfellow et al., 2014), to reflect the differ-
ent domains to similar feature space area (Li
et al., 2021a; Saito et al., 2019). Discrepancy-
based methods achieve alignment by focusing
on minimizing the distributional discrepancy
of features between two domains (Ngo et al.,
2024; Saito et al., 2018), with the discrepancy
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including metrics such as maximum mean discrepancy (Long et al., 2015) and Wasserstein distance
(Redko et al., 2017).

Clearly, these SSDA methods implicitly learn a shared space (Yousefnezhad et al., 2020; Basak
& Yin, 2024) during the adaptation process due to the inclusion of a small amount of labeled data
from the target domain, as shown in Table 1. Here, the shared space refers to a space that captures
domain-invariant features such as the shape and sketch of objects, ensuring consistent feature dis-
tributions across domains (Yousefnezhad et al., 2020). Intuitively, by learning such a shared space,
the classifier could exhibit more robust predictive performance on the features derived from both
source and target domain data. However, there are still some critical research questions regarding
the shared space that remain unanswered, such as:

• RQ1: For the models that address domain adaptation tasks, why is it essential to learn a shared
feature space? What are the benefits of learning about shared spaces in solving SSDA problems?

• RQ2: What are the major challenges in learning an effective shared feature space for existing
SSDA methods?

• RQ3: How can the above challenges be addressed to improve domain adaptation capabilities?

This paper aims to study the aforementioned questions, which reveal the mechanism of learning
shared space, and further improve the performance of existing SSDA models.

First, we theoretically analyze performance guarantees for SSDA concerning the variation of the
shared space (RQ1, w.r.t. Section 2.1 and 2.2). Unlike general shared-space studies (Basak &
Yin, 2024; Yousefnezhad et al., 2020), we provide specific theoretical guarantees demonstrating that
minimizing the number of domain-related features directly lowers the total variation distance and the
target classification error bound. If the learned features are predominantly domain-related and fail
to form a well-structured shared space, the total variation distance of feature distributions between
two domains will be negatively affected. It will ultimately lead to a significant degradation in the
model’s DA performance. This offers a strict theoretical perspective on the advantages of learning
in an effective shared space for SSDA.

Considering the benefits of shared space, we need to re-examine the existing SSDA methods and
summarize the core challenge during learning shared space (RQ2, w.r.t. Section 2.3). Existing
methods suffer from the problem that features are extracted implicitly (Basak & Yin, 2024), often
retaining domain-specific styles during the alignment process due to insufficient training or model
capacity. Accompanied by domain shifts and tasks for object recognition, it is hard for models to
determine which features are exactly extracted during training. This issue becomes increasingly
pronounced as domain discrepancy widens and the number of extracted features grows.

Based on theoretical insights and challenges of existing methods, we propose a conceptual frame-
work to further explore the potential of the shared feature space, which can explicitly filter out
domain-specific features. We introduce a gating-driven SSDA enhancement mechanism as feasible
implementation of our framework (RQ3, w.r.t. Section 3). Specifically, by directly filtering out
non-shared domain-related features through a gate network (Huang et al., 2020; Jiang et al., 2023),
features in the shared space can be extracted more explicitly. It is worth noting that this framework
is decoupled from the specific SSDA models, which means that the proposed enhancement mech-
anism can be seamlessly integrated into and further enhance the existing SSDA methods, which is
flexible and scalable.

Our contributions can be concluded as follows:

• We reveal that existing approaches aim to learn a shared space and demonstrate the benefits of
learning a shared space for SSDA by specific theoretical guarantees.

• Inspired by the theoretical insights, we propose a conceptual framework to explore the shared
space that is decoupled from specific SSDA models, which explicitly filters out non-shared fea-
tures through a gating mechanism, facilitating more effective learning in the shared space.

• Extensive experimental results show that the proposed enhancement mechanism helps the existing
SSDA models select shared features more effectively and improve their domain generalization
abilities significantly.
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2 THEORETICAL ANALYSIS FOR SHARED SPACE

First, we define the necessary notations and representations of feature space in SSDA to bring the
connection between shared space and SSDA, establishing a clear foundation for analysis. Then, we
provide the theoretical analysis for shared space, which is based on the benefits and the challenges
of learning shared space for existing SSDA models.

2.1 SHARED SPACE FOR SSDA

For source domain, we denote it by DS = {(xsi , ysi)}
Ns
si=1. In target domain DT , we denote the

labeled data set as DTl
= {(xti , yti)}

Ntl
ti=1 and unlabeled data set as DTu

= {(xtj )}
Ntu
tj=1. In SSDA,

the labeled data in target domain is very sparse, i.e., Ntl ≪ Ntu. The purpose of SSDA is that train
models on labeled dataset Dl, which includes DS and DTl

, to achieve high performance on DTu .

Source Domain

Target Domain

Domain Related Feature 
Distribution for Source

Domain Related Feature
Distribution for Target

Shared Feature 
Distribution

𝒞2

𝒞1

Figure 1: The feature distributions of different do-
mains. The left part illustrates a 2-dimension fea-
ture space comprising 2 classes. The middle-top
part of the figure represents distributions of the
domain-related and shared features of the source
domain. Middle-bottom part represents corre-
sponding distributions for the target domain.

Existing SSDA models (Saito et al., 2019; Li
et al., 2021a; Singh, 2021) can be regarded as
comprising two modules: a feature extractor
F and a classifier C. For any data x, F ex-
tracts total feature v from it, i.e., v = F(x).
Then, classifier C predicts label on features, i.e.,
ŷ = C(v). Total feature v consists of d fea-
tures, i.e., v = [v1,v2, · · · ,vd] ∈ Ωd (Ωd is
the measurable set of all possible v with total
d subspace, and vi ∈ Rz) 1. For the classifier
C, v can be regarded as a feature sample of the
feature variable V.

Specifically, the feature extractor updates and
refines features based on feedback from the
classifier’s loss, moving toward the goal of
learning a feature space that represents data
from both domains. This space consists of two components (Basak & Yin, 2024): a shared space
consists of shared features that are intrinsically relevant to the recognized objects, and a domain-
specific space contains unique features that are relevant to the styles of the domain itself. Features in
shared space are helpful to recognize object in classification for the learning model, such as sketch
and shape of the object. The rest features in the domain-specific space mainly express the peculiarity
of the picture rather than decide the boundary of the label function, such as style and background.
As the examples shown in left part of Figure 1, the feature along the horizontal axis corresponds
to domain-related feature, where the distribution between two domains exhibits significant discrep-
ancies. It makes difficult for the classifier C1 to generalize directly to the target domain, which is
trained on whole feature space of the source domain. In contrast, the feature along the vertical axis
represents shared feature, whose distribution is consistent across domains, thereby enabling the clas-
sifier C2 to perform well on both domains, which is trained on shared feature. Therefore, the essence
of the DA problem is to transfer features in the shared space while ignoring domain-related features.

Formally, for the source domain, we define the joint distribution of essential shared features in shared
space as PES and the rest domain-related features in domain-specific space as PRS . In a slight
abuse of notation, we define the distribution of shared features and the domain-related features as
PET and PRT for the target domain. With the feature number of each data being d, we set dr = αd
and de = (1− α)d, α ∈ [0, 1]. α is the impact metric of shared space, which is more effective with
it decreasing. The feature distribution of the entire source domain is produced by the combination
of every feature distribution, i.e.,

PDS
= PRS ⊗ PES = P1

rs ⊗ · · · ⊗ Pdr
rs ⊗ P1

es ⊗ · · · Pde
es . (1)

Here, Pi
rs and Pj

es represent the i-th domain-related feature distribution and the j-th shared feature
distribution in source domain, respectively. Also, they are probability density functions. Notice that

1Note that symbols without subscripts, such as x and v, represent that they may come from any domain;
otherwise we add subscripts S (T ) or s (t) for them. For each data item x, model F extracts total d features
and each feature is z-dimension.
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samples vi
s ∼ Pi

rs(V
i) and vj

s ∼ Pj
es(V

j) are the i-th domain-related and j-th shared feature of vs,
respectively. V represents the variable of the sample v. ⊗ represents the product of distributions.
Similarly, the entire target domain distribution is defined as

PDT
= PRT ⊗ PET = P1

rt ⊗ · · · ⊗ Pdr
rt ⊗ P1

et ⊗ · · · Pde
et . (2)

Based on the above perspective of measuring the entire domain distribution, it is obvious that
shared space is more dominated with decreasing α. The observation makes us ask: as an impor-
tant role in affecting the quality of the alignment, how is the discrepancy between domains impacted
by the variation of the learned shared space in theory ultimately?

2.2 BENEFITS OF LEARNING SHARED SPACE

In this part, we theoretically demonstrate that the error of SSDA is proportional to the distributional
discrepancy, which is effectively mitigated by learning a well-structured shared space. We employ
the total variation distance (TV (PDS

,PDT
)) to quantify the distributional discrepancy between two

domains, which is a common discrepancy measure (definition is shown in Appendix A).

Error bound for SSDA. We state the error bound of the target domain by binary classification
problem. Assume the hypothesis function h : Ωd → {0, 1} for the data features v, the error of h for
the source domain distribution can be defined as follows:

ϵS(h) = Ev∼PDS
|h(v)− f∗

S(v)|, (3)

here, f∗
S : Ωd → [0, 1] is the labeling function of source domain DS , where the f∗

S(v) represents
the probability of label of v being 1. Also, ϵT (h) represents the error for the target domain DT

regarding labeling function f∗
T . Following Ben-David et al. (2010), we can derive the theorem:

Theorem 1. For any hypothesis h ∈ H, where H is hypothesis space, it satisfies the following upper
bound:

ϵT (h) ≤ ϵS(h) + TV (PDS
,PDT

) + min
{
EDT

[∣∣f∗
T (v)− f∗

S(v)
∣∣],EDS

[∣∣f∗
S(v)− f∗

T (v)
∣∣]}.

(4)

Theorem 1 proves that reducing TV (PDS
,PDT

) effectively decreases the classification error ϵT (h)
on the target domain for SSDA models. Given that the distributions of shared features are not
the main contributors to domain discrepancy, we formulate the following reasonable assumption
concerning TV:
Assumption 1. The essential shared features and domain-specific features of two domains satisfy:

• TV (Pk
rs,Pk

rt) = δk, for any k ∈ {1, · · · , dr}.

• TV (Pk
es,Pk

et) = 0, for any k ∈ {1, · · · , de}, i.e., Pk
es = Pk

et.

We denote that the first dr-th feature subspace of Ωd is domain-specific space to facilitate under-
standing in the next analysis. To simplify the writing, the feature sampling value vk

s in Ωk is accord-
ing to distribution Pk

rs (Ωk is k-th feature subspace of Ωd). We can define feature sampling value
vk
t for target distribution in a similar manner.

Based on the above assumption, we discuss TV bounds of whole feature space from two cases:
features are individual (Theorem 2) and non-individual (Theorem 3).

i). Individual Features Case. With features {vk}dr

k=1 being individuals for each other, we first
present the TV bounds below.
Theorem 2. Suppose that distributions of two domains satisfy the Assumption 1. For any k ∈
{1, · · · , dr}, we assume that a measurable subset Ak ⊂ Ωk, where the samples vk

s ∼ Pk
rs and

vk
t ∼ Pk

rt satisfy P(vk
s ∈ Ak)− P(vk

t ∈ Ak) = δk and P(vk
t ∈ Ak) = µk. To simplify the writing,

we set δ = 1
dr
Σdr

k=1δk. Then, TV (PDS
,PDT

) can be bounded as:

TV (PDS
,PDT

) ≥ 1− 2 exp
−αdδ2

2
and TV (PDS

,PDT
) ≤ 1−

αd∏
k=1

µk. (5)

4
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Remark. µk is a constant for each corresponding feature distribution and the product of them is
increased with reducing α. As defined in Section 2.1, dr = αd, α ∈ [0, 1]

ii). Non-Individual Features Case. Next, we extend our theorem into non-individual situation. If
the features are not individual for each other, we can give a practical assumption that variable Vk is
dependent on frontier variables by coefficient λj :

E(Vk|Vk−1 = vk−1, · · · ,V1 = v1) = λj
Σk−1

i=1 v
i

k − 1
+ (1− λj)E(Vk). (6)

When λj decreases to 0, the features are individual. The above assumption arises from a naturally
occurring phenomenon and extends the applicability of previous theorem to non-individual case.
For example, the contrast of an image is susceptible to be influenced by features such as color and
brightness. The domain-related features can be split into K independent subsets. Each subset is
denoted as Nj , where Nj concludes nj dependent features, ΣK

j=1nj = αd. Independent subsets
mean that for any vk1 ∈ Nj1 ,v

k2 ∈ Nj2(j1 ̸= j2), vk1 is independent with vk2 .
Theorem 3. Suppose that distributions of two domains satisfy the Assumption 1 and conditions
in Theorem 2 except for independence. Let samples of features {vk}dr

i=1 are sequentially drawn
from P(V1, · · · ,Vdr ) =

∏K
j=1 P(Nj) and each sample satisfies Equation (6). Nj is the indepen-

dent subset which concludes nj dependent samples sequence {v1, · · · ,vnj} and P(Nj) is the joint

distribution of nj features in subset Nj . For δ >
ΣK

j=1λj(nj−1)

dr
, the bounds of TV (PDS

,PDT
) are:

TV (PDS
,PDT

) ≥ 1− 4 exp
−2(αdδ/2− ΣK

j=1λj(nj − 1))2

αd
, (7)

and

TV (PDS
,PDT

) ≤ 1−
K∏
j=1

P
(
{vk

t }nj ∈ {Ak}⊗nj
)
. (8)

Remark. {Ak}⊗nj denotes the product of Ak with size nj , and {vk
t }nj denotes the set of vk

t with
nj tuples, respecting to the target domain, where k is feature index in subset Nj . P({vk

t }nj ∈
{Ak}⊗nj ) is increased with reducing nj and the product of them is increased with reducing K in
practice. Thus, the upper bound is decreased with reducing α.

In conclusion, Theorems 2 & 3 demonstrate that a lower TV (PDS
,PDT

) is attributed to a smaller
number of domain-related features (i.e., reducing α), which focusing more on shared features. Spe-
cific proofs for above theorems are demonstrated in Appendix A.

2.3 CHALLENGES OF EXISTING MODELS

Along with learning the shared features, the existing SSDA models focus on the following objective
functions to train:

min L = Ll + Lu + Lalign, (9)
Ll is the based cross-entropy loss for labeled dataset Dl, and Lu is the loss for DTu , which can be
the loss of assigning pseudo label for unlabeled data or augmentation data. Lalign is considered to
align features in domain-specific space. For adversarial-based methods, Lalign can be formulated as
entropy min-max process of unlabeled data to avoid models overfitting to source domain (Saito et al.,
2019; Li et al., 2021a). For discrepancy-based, it could be the discrepancy of features respecting to
cluster-level or instance-level of domains (Singh, 2021). These SSDA models’ fundamental premise
for achieving superior transfer performance based on the above loss function is their ability to extract
a well-defined feature space during the training process.

However, most existing SSDA methods align features implicitly by optimizing objective functions
hoping the model learns to suppress domain-specific features. This is a “black box” process. Due
to factors such as the model’s expressive capacity and insufficient training, it is uncertain whether
this implicit learning strategy can effectively extract features in the shared space. That is, it
may extract a large number of features highly specific to the domain. According to our theoretical
results from Section 2.2, this will harm adaptation performance. Especially for CNN, it extracts the
features by convolution, which concludes the pixel information in local windows (Krizhevsky et al.,
2012). For the local field of vision in CNN, the domain-related and background information can be
naturally absorbed and integrated into features.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3 GATING-DRIVEN ENHANCEMENT MECHANISM

High-level idea. To address the above problems in existing models, an intuitive idea is to learn
shared feature space more explicitly during training. When the domain-related features are explic-
itly filtered out in the models, the discrepancy of feature distributions is decreased, and the perfor-
mance transfers better from the source domain to the target domain, which can be derived from the
theoretical results.

𝓕 ∁

Labeled Data

Unlabeled Data

𝑮
…
…

…
…

…
…

⊙ y

Feature Extractor𝓕 𝑮 Gate Network∁ Classifier

Feature Gate Value Filtered-out Feature

Gating-driven Mechanism

Figure 2: The framework of explicitly learning shared space
by gating-driven mechanism. It is applied in the existing
SSDA models. The gate network is placed in the position
after F to output gate value for each feature and explicitly
filter features. ⊙ means the element-wise product.

To achieve the above purpose, we
proposed a framework of learning
shared space explicitly, which is
implemented by the gating-driven
mechanism. It takes advantage of
the gate network (Huang et al., 2020;
Jiang et al., 2023) to explicitly filter
out some domain-related features and
provide practical assistance to learn
an effective, shared space. To en-
sure scalability, gate network is in-
tentionally designed as a lightweight,
channel-wise attention mechanism.
The framework is shown in Figure
2. Overall, the gate network is po-
sitioned after F , filtering the corre-
sponding features explicitly. Then,
the filtered features are fed into clas-
sifier C for further processing.

Specifically, after inputting data x
into feature extractor, the output of F is a concatenated feature vector F(x) = [v1,v2, · · · ,vd].
d is the feature number, and vi ∈ Rz is the i-th feature where z is the dimension of each feature.
For every single feature vi, we compute the gate value by gate network to represent the importance
of each feature for model classification:

gi(v
i) = σ(wi · vi), (10)

where wi ∈ R1∗z is the parameter vector (or value) of the linear layer for i-th feature and σ is the
activated function in gate network. In existing SSDA methods, the feature output of F has already
undergone a flattening operation, which is a d∗1 vector and each feature is a scalar in final, i.e., z =
1. For a feature vector v ∈ Rd (where d = 512 for ResNet34), the gate network consists of a single
linear layer with parameters w ∈ Rd (one weight per channel), followed by a Sigmoid activation.
This design adds only d parameters, ensuring the method remains computationally efficient. To
make full use of gating mechanisms, we combine the gate value gi(v

i) with the corresponding
feature vi to explicitly suppress domain-specific channels before the classifier:

ei(v
i) = gi(v

i)⊙ vi, (11)

where ⊙ means the element-wise product. Then, we aggregate total gated filtered features as gated
feature embedding layer, i.e., Eg(v) = [e1(v1), e2(v2), · · · , ed(vd)], which could select latent
important information in the features. Then, we take Eg(v) as the input of classifier C. The total
loss of gated feature embedding layer is summarized as:

min L(Eg(v)) = Ll(C(Eg(v))) + Lu(C(Eg(v))) + Lalign(Eg(vs), Eg(vt)), s.t.v = F(x),
(12)

here, vs and vt denote the features of source and target domain, respectively. The gate network op-
timizes the mechanism of filtering features according to the loss L(Eg(v)) from C, which increases
the impact of shared space.

Relation with theoretical results. From Theorems 2 & 3, as the number of domain-related features
becomes smaller (i.e., reducing α), TV (PDS

,PDT
) becomes lower and the influence of features

in shared space gradually increasing. It finally reduces the classification error bound ϵT (h) and
achieves better adaptation, as proved in Theorem 1. During training, the gate parameters wi are

6
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Table 2: Accuracy (%) of SSDA methods under both 1-shot and 3-shot settings on DomainNet.

Method R→C R→P P→C C→S S→P R→S P→R Avg.
1shot3shot1shot3shot1shot3shot1shot3shot1shot3shot1shot3shot1shot3shot1shot3shot

ENT (Grandvalet & Bengio, 2004) 65.2 71.0 65.9 69.2 65.4 71.1 54.6 60.0 59.7 62.1 52.1 61.1 75.0 78.6 62.6 67.6
DECOTA (Yang et al., 2021) 79.1 80.4 74.9 75.2 76.9 78.7 65.1 68.6 72.0 72.7 69.7 71.9 79.6 81.5 73.9 75.6

CLDA (Singh, 2021) 76.1 77.7 75.1 75.7 71.0 76.4 63.7 69.7 70.2 73.7 67.1 71.1 80.1 82.9 71.9 75.3
ProML (Huang et al., 2023) 78.5 80.2 75.4 76.5 77.8 78.9 70.2 72.0 74.1 75.4 72.4 73.5 84.0 84.8 76.1 77.4

G-ABC (Li et al., 2023) 80.7 82.1 76.8 76.7 79.3 81.6 72.0 73.7 75.0 76.3 73.2 74.3 83.4 83.9 77.5 78.2
EFTL (He et al., 2024) 79.6 81.2 74.9 77.1 78.2 81.8 69.3 72.8 71.8 74.4 69.9 71.5 83.1 84.4 75.3 77.6

IDMNE (Li et al., 2024) 79.6 80.8 76.0 76.9 79.4 80.3 71.7 72.2 75.4 75.4 73.5 73.9 82.1 82.8 76.8 77.5
LFL (Basak & Yin, 2024) 80.9 81.1 79.9 80.2 80.1 81.1 73.7 76.8 79.2 82.5 78.4 78.5 86.9 90.1 78.7 81.2
DARA(Wu et al., 2025) 76.4 78.5 73.2 73.8 76.8 78.3 69.7 70.3 72.4 72.5 68.5 70.1 81.6 82.6 74.1 75.2

MME (Saito et al., 2019) 70.0 72.2 67.7 69.7 69.0 71.7 56.3 61.8 64.8 66.8 61.0 61.9 76.1 78.5 66.4 68.9
MME-G 72.0 73.9 69.8 71.4 70.4 73.0 61.5 63.7 66.6 68.8 64.0 65.1 78.3 80.1 68.9 70.9

CDAC (Li et al., 2021a) 77.4 79.6 74.2 75.1 75.5 79.3 67.6 69.9 71.0 73.4 69.2 72.5 80.4 81.9 73.6 76.0
CDAC-G 77.9 80.2 75.7 76.2 75.7 79.3 67.4 71.0 72.0 74.1 71.2 72.7 81.3 83.3 74.5 76.7

ECB (Ngo et al., 2024) 83.8 87.4 85.4 85.6 86.4 87.3 79.7 80.6 83.4 85.6 79.5 81.7 88.7 90.3 83.8 85.5
ECB-G 85.8 87.0 85.8 86.5 86.8 87.9 80.9 81.3 85.6 86.4 80.5 82.0 90.4 90.9 85.1 86.0

Table 3: Accuracy (%) of SSDA methods under 3-shot setting on Office-Home.

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg.

ENT (Grandvalet & Bengio, 2004) 61.3 79.5 79.1 64.7 79.1 76.4 63.9 60.5 79.9 70.2 62.6 85.7 71.9
DECOTA (Yang et al., 2021) 64.0 81.8 80.5 68.0 83.2 79.0 69.9 68.0 82.1 74.0 70.4 87.7 75.7

CLDA (Singh, 2021) 63.4 81.4 81.3 70.5 80.9 80.3 72.4 63.9 82.2 76.7 66.0 87.6 75.5
ProML (Huang et al., 2023) 67.8 83.9 82.2 72.1 84.1 82.3 72.5 68.9 83.8 75.8 71.0 88.6 77.8

G-ABC (Li et al., 2023) 67.3 83.8 80.4 69.2 83.9 80.2 70.5 69.3 82.8 76.0 70.0 88.1 77.2
EFTL (He et al., 2024) 70.3 84.8 83.8 70.6 84.6 81.5 72.6 70.9 85.4 77.5 72.8 89.3 78.7

IDMNE (Li et al., 2024) 66.4 82.4 79.3 69.1 83.1 79.5 69.0 67.6 82.7 75.2 71.7 88.1 76.2
LFL (Basak & Yin, 2024) 68.8 84.7 84.2 70.6 83.7 82.4 70.5 70.9 84.3 75.7 71.1 88.5 77.9
DARA (Wu et al., 2025) 70.9 87.8 72.9 82.1 70.6 69.2 82.8 69.8 81.0 79.4 68.5 83.0 76.5

MME (Saito et al., 2019) 63.6 79.0 79.7 67.2 79.3 76.6 65.5 64.6 80.1 71.3 64.6 85.5 73.1
MME-G 64.2 79.3 79.6 67.5 79.6 78.0 67.3 64.8 81.0 72.0 66.1 86.3 73.8

CDAC (Li et al., 2021a) 65.9 80.3 80.6 67.4 81.4 80.2 67.5 67.0 81.9 72.2 67.8 85.6 74.8
CDAC-G 65.9 81.6 80.4 67.8 81.3 80.0 68.1 67.3 82.1 73.2 68.3 86.0 75.2

ECB (Ngo et al., 2024) 78.7 90.2 91.3 85.2 90.4 91.0 83.9 76.8 91.2 85.6 77.6 92.8 86.2
ECB-G 78.6 91.6 91.1 86.4 91.6 91.8 85.1 78.5 91.8 87.3 79.6 93.1 87.2

updated via backpropagation from the classification loss L. Since domain-specific features do not
correlate with class labels across domains, the classifier naturally forces the gate to assign them lower
weights (gi → 0) to minimize loss. While the mask is “soft” and learned via task loss, this structural
intervention forces the model to make a distinct decision about feature importance for every channel,
rather than relying solely on the “black box” weights of the backbone to handle domain shifts.
This transforms the “implicit” alignment of previous methods into an “explicit” selection process,
effectively increasing the dominance of shared features (reducing α) and maximizing performance
in the target domain . The results of TV (PDS

,PDT
), as shown in Table 5, also demonstrate that our

proposed mechanism learns more on shared features with lower discrepancy.

Difference with existing shared space learning. Although some works (Basak & Yin, 2024;
Yousefnezhad et al., 2020) attempt to address the challenges of learning shared spaces during DA,
they typically follow a two-step learning process: first learning specific features tailored to each
specific domain and then integrating these features across all domains. Bousmalis et al. (2016)
constructs a shared feature space by employing a shared encoder alongside two private encoders,
while Zhong et al. (2024) first learns an approximate shared space and subsequently fine-tunes it
on the target domain. In contrast, our method explicitly filters features during the learning process,
eliminating the need for further steps of adjustments. Although the mechanism seems simple, it is
a theoretically inspired and appropriate choice. This simplicity incurs minimal computational cost
(Appendix C.5), enabling efficient feature extraction and seamless integration with general SSDA
models, offering high scalability.
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4 EXPERIMENTS

4.1 SETUP

Datasets. We conducted experiments on 4 datasets, DomainNet (Peng et al., 2019), Office-Home
(Venkateswara et al., 2017), Office-31 (Saenko et al., 2010) and VisDA-17 (Peng et al., 2018).
Following the setup in Saito et al. (2019), we utilized 7 scenarios involving 4 domains in DomainNet,
containing 140,006 images with 126 classes: Clipart (C), Sketch (S), Painting (P), and Real (R).
Office-Home comprises 4 distinct fields: Art (A), Clipart (C), Product (P), and Real (R), and it
includes 15,500 images with 65 classes. Office-31 contains 4,110 images with 31 classes across 3
domains: Amazon (A), Webcam (W) and DSLR (D). VisDA-17 is also a large-scale dataset with 12
categories, which includes 152,397 source synthetic images from 3D models and 55,388 real target
images from real world. For fair comparisons, we selected 1 or 3 samples per class from target
domain to assign labels and incorporated them into training process, following Saito et al. (2019).
Also, above adaptation scenarios for each dataset are followed the standard protocols established
in Saito et al. (2019); Li et al. (2021a); Ngo et al. (2024). This ensures our results are directly
comparable to the vast majority of SSDA literatures which utilizes this exact setup.

Implementation details. The proposed gate network is adaptable to existing SSDA models. We
combined our gate network with 3 currently popular models: MME (Saito et al., 2019), CDAC (Li
et al., 2021a), and ECB (Ngo et al., 2024), which were denoted as MME-G, CDAC-G and ECB-G,
respectively. The hyperparameters in our experiments were configured based on the recommenda-
tions from their works. More implementation details are provided in Appendix C.1.

Baselines. Except for above methods, we also compare with several state-of-the-art works: ENT
(Grandvalet & Bengio, 2004), CLDA (Singh, 2021), DECOTA (Yang et al., 2021), ProML
(Huang et al., 2023), G-ABC (Li et al., 2023), LFL (Basak & Yin, 2024), DARA(Wu et al., 2025),
EFTL(He et al., 2024), IDMNE (Li et al., 2024) . We introduce them more specifically in Appendix
C.2.

4.2 COMPARED RESULTS WITH STATE-OF-THE-ARTS

Table 4: Accuracy (%) of SSDA meth-
ods under both 1-shot and 3-shot set-
tings on Visda-17.

Method 1shot 3shot

S+T 60.1 63.2
ENT (Grandvalet & Bengio, 2004) 61.8 73.7

CLDA (Singh, 2021) 73.7 79.2

MME (Saito et al., 2019) 73.1 76.5
MME-G 75.6 78.0

CDAC (Li et al., 2021a) 74.0 78.1
CDAC-G 76.4 79.8

ECB (Ngo et al., 2024) 75.9 85.0
ECB-G 83.5 87.4

Results for DomainNet. In Table 2, we show the results
of our algorithm on DomainNet, including 1-shot and 3-
shot settings. Models integrated with the gate network
demonstrate performance improvements in most scenar-
ios compared to their original versions, with an average
performance gain ranging from 0.9% to 2.5% for 1-shot
and 0.5% to 2.0% for 3-shot. Notably, ECB-G achieves
the highest average performance and consistently delivers
optimal results in the majority of cases.

Results for Office-Home. We present the results on
the Office-Home dataset under 3-shot setting in Table 3.
ECB-G achieves an average accuracy of 87.2%, surpass-
ing all other models. Additionally, MME-G and CDAC-G
outperform the original models, w.r.t. MME and CDAC,
in most scenarios.

While our proposed gating-driven mechanism improves the overall average performance signifi-
cantly, there are slight performance fluctuations in specific transfer directions like A→C and A→R.
As detailed in Section 3, our method utilizes a gate network to explicitly filter out some domain-
related features. However, in specific scenarios like A→C or A→R, certain features that are tech-
nically “domain-specific” might coincidentally aid classification when the domain gap is smaller
or possesses specific overlaps. The baselines implicitly retain these features, potentially benefiting
from these incidental cues. In contrast, our gating mechanism rigorously filters them out to enforce
a stricter shared space. While this leads to a slight drop in these specific cases, it prevents the model
from relying on spurious correlations, leading to better robustness across harder transfer tasks (e.g.,
R→P, where ECB-G improves by +1.9%).
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(a) MME (b) MME-G (c) MME (d) MME-G

Figure 3: (a)-(b):t-SNE for our gate network with compared models. In each subfigure, we select
samples from 10 classes, with each class represented by a unique color. Circles (o) indicate source
domain data, while crosses (×) represent target domain data.The inter-class margins are distinct,
and the overlap between source (o) and target (x) within clusters is tighter compared to 3(a). (c)-(d):
Attention map by Grad-CAM for the “bird” class on DomainNet.

Results for VisDA-17. We present the accuracy results on the large-scale VisDA-17 dataset under
1-shot and 3-shot setting in Table 4. Clearly, ECB-G still achieves the best performance, reaching
83.5% and 87.4% in the 1-shot and 3-shot settings, respectively—surpassing the original ECB by
7.6% and 2.4%. Moreover, the gated-network-combined variants MME-G and CDAC-G also out-
perform their original counterparts (MME and CDAC), further confirming the effectiveness of the
gating mechanism.

Results for Office-31 dataset and Office-Home under 1-shot setting are provided in Appendix C.3.

Since our gating mechanism is “decoupled from specific SSDA models”, it serves as a complemen-
tary enhancement rather than just a competitor, consistently improving strong baselines like ECB.

16 24 32 48 64
Batch size

71.0

71.5

72.0

72.5

73.0

Ac
cu

ra
cy

MME-G MME

(a) P→C

16 24 32 48 64
Batch size

78.5

79.0

79.5

80.0

80.5

Ac
cu

ra
cy

MME-G MME

(b) P→R

0.1 0.2 0.5 1 2 5
Learning rate (*10 2)

55

65

75

85

Ac
cu

ra
cy

R C
R P
P C

C S
S P

R S
P R

(c) Learning rate

1 3 5 10 20
Shot number

75

80

85

90

95

Ac
cu

ra
cy

CDAC
ECB
MME

CDAC-G
ECB-G
MME-G

(d) Shot number

Figure 4: (a)-(b): The results with different batch sizes for MME-G and MME under 3-shot setting
on DomainNet. (c): The results with different learning rates for MME-G under 3-shot on Domain-
Net. (d): The results with different numbers of shot settings on P→R of DomainNet.

4.3 ANALYSIS

Feature visualization. To demonstrate the effectiveness of the proposed mechanism more intu-
itively, we use t-SNE (Van der Maaten & Hinton, 2008) to visualize the learned features on Domain-
Net transfer task P→R under the 3-shot setting. As shown in Figure 3a and 3b, the model integrated
with the gate network produces more compact feature distributions for each category, with higher
overlap between two domains, showing its better ability to learn shared space.

Attention map visualization. To verify whether the proposed gating-driven mechanism can better
capture shared features, we utilize the Grad-CAM (Selvaraju et al., 2017) to visualize the attention
maps of MME and MME-G, as shown in Figure 3c and 3d. Based on the Grad-CAM visualizations,
it can be observed that MME-G focuses more on the “bird” object itself compared to the original
MME, significantly reducing attention to background regions.

Effectiveness of gating mechanism. To further evaluate the effectiveness of proposed gating-driven
mechanism, we also quantify the TV divergence between two domains with and w/o the gating layer
on P→R of DomainNet, as shown in Table 5. With incorporation of the gating layer, the divergence
TV (PDS

,PDT
) between two domains is significantly reduced, indicating that their feature repre-

sentations in the projected space become more aligned and closer. Thus, as analyzed in Section 3,
the results can further substantiate that our method effectively promotes the shared feature selection.
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Figure 5: The results with different activation functions for MME-G under 3-shot on DomainNet
and Office-Home.

Effectiveness of varied batch sizes. In Figure 4a and 4b, we present the performance for P→C
and P→R under different batch sizes. For the P→C task, the prediction accuracy of both algorithms
slightly decreases as the batch size increases. Meanwhile, for the P→R task, the performance gener-
ally improves with larger batch sizes. In general, across all batch sizes for both scenarios, our gating
mechanism consistently enhances the adaptation performance of the model.

Table 5: TV value of features regarding
to two domains.

Method MME CDAC ECB

w/o Gate 0.108 0.106 0.155
with Gate 0.087 0.081 0.122

Effectiveness of varied learning rates. Figure 4c shows
the performance of MME-G under different learning
rates. As the learning rate increases, the prediction ac-
curacy on the target domain initially improves, reaching
its peak near 0.01, and then gradually decreases.

Effectiveness of different numbers of shots. We eval-
uate the performance with different numbers of shot set-
tings in P→R of DomainNet. The number of selected labeled samples per class in target domain
varies from 1 to 20. As shown in Figure 4d, the adaptation performance is gradually improved with
increased numbers. Our gate network enhances model-predicted accuracy for each setting.

Effectiveness of varied activation functions. To evaluate the impact of different activation func-
tions, we tested several options for the activation layer of the gate network, including Tanh, Softmax,
ReLU, and Clip (direct clipping of gate values), as shown in Figure 5. Tanh and Clip achieve per-
formance nearly on par with Sigmoid, while the other two activation functions under-perform. The
primary reason is that Softmax introduces stronger interdependence among gate values for different
features, while ReLU lacks an upper bound for gate values, leading to less effective gating. The
performance differences among these five activation functions are similar on the DomainNet and
Office-Home.

More results. We provide more results bout t-SNE, attention maps, multiple runs, effectiveness of
activation functions and other parameters in the Supplement C.4 and C.5.

5 CONCLUSION

In this paper, we first theoretically analyze the benefits of learning shared space to SSDA. Based on
the theory, we reveal the limitations of existing methods and propose a framework to better learn
shared space for enhancing SSDA, which is implemented by gating-driven mechanism. Extensive
experiments have proved the effectiveness of the proposed mechanism on state-of-the-art SSDA
models. Beyond proposing the method, this work emphasizes the exploration of shared space,
providing insights for the SSDA community. In the future, we plan to delve deeper into domain
adaptation challenges from the perspective of shared feature space, exploring more sophisticated
and effective mechanisms to further enhance SSDA.
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A PROOF FOR THEOREMS

Definition 1. The total variation distance between probability density distributions p and q can be
defined as follows:

TV (p, q) = sup
A∈A

|Pp(A)− Pq(A)|, (13)

where A is the collection of measurable subsets under p and q. Pp(A) represents the probability
measures of subset A under p.

A.1 PROOF OF THEOREM 1

Theorem (1). For any hypothesis h ∈ H, where H is hypothesis space, it satisfies the following
upper bound:

ϵT (h) ≤ ϵS(h) + TV (PDS
,PDT

) +

min
{
EDT

[∣∣f∗
T (v)− f∗

S(v)
∣∣],EDS

[∣∣f∗
S(v)− f∗

T (v)
∣∣]}. (14)

Proof.
ϵT (h) = ϵT (h) + ϵT (h, f

∗
S)− ϵT (h, f

∗
S) + ϵS(h)− ϵS(h)

≤ ϵS(h) +
∣∣ϵT (h, f∗

T )− ϵT (h, f
∗
S)
∣∣

+
∣∣ϵT (h, f∗

S)− ϵS(h, f
∗
S)
∣∣

≤ ϵS(h) + Ev∼DT

[∣∣f∗
T (v)− f∗

S(v)
∣∣]

+

∫ ∣∣PDS
− PDT

∣∣∣∣h(v)− f∗
S(v)

∣∣dv
≤ ϵS(h) + EDT

[∣∣f∗
T (v)− f∗

S(v)
∣∣]+ TV (PDS

,PDT
)

(15)

If we take place of ϵT (h, f∗
S) by ϵS(h, f

∗
T ) in the first row of Equation (15), we will get the upper

bound of ϵS(h) + EDS

[∣∣f∗
S(v)− f∗

T (v)
∣∣]+ TV (PDS

,PDT
) for the last row.

A.2 PROOF OF THEOREM 2

Theorem (2). TV bounds for features under individual case. Suppose that distributions of two
domains satisfy the Assumption 1. For any k ∈ {1, · · · , dr}, we assume that a measurable subset
Ak ⊂ Ωk, where the samples vk

s ∼ Pk
rs and vk

t ∼ Pk
rt satisfy P(vk

s ∈ Ak)−P(vk
t ∈ Ak) = δk and

P(vk
t ∈ Ak) = µk. To simplify the writing, we set δ = 1

dr
Σdr

k=1δk. Then, TV (PDS
,PDT

) can be
bounded as:

TV (PDS
,PDT

) ≥ 1− 2 exp
−αdδ2

2
and TV (PDS

,PDT
) ≤ 1−

αd∏
k=1

µk. (16)

Proof. According to the definition of total variation distance, we can obtain that: for any k ∈
{1, · · · , dr}, P(vk

t ∈ Ak) = µk, then P(vk
s ∈ Ak) = µk + δk, where P(·) represents the probability

measures. For any sample vk, we use I(vk) = 1 to represent that sample vk belongs to set Ak,
otherwise I(vk) = 0.

According to Chernoff bound (Vadhan, 1999), we can get that:
P
((

Σdr

k=1I(v
k
s )− (µ+ δ)dr

)
< −drδ

2

)
< exp

−drδ
2

2
,

P
((

Σdr

k=1I(v
k
t )− µdr

)
>

drδ

2

)
< exp

−drδ
2

2
.

(17)

Assume that set A′, consist of dr tuples, i.e., v1, · · · ,vdr , contains at least (µ+ δ
2 )αd samples that

satisfy conditions in {v1 ∈ A1, · · · ,vdr ∈ Adr
}. In other words, any {vk}dr

k=1 ∈ A′, it satisfies
Σdr

k=1I(v
k) > (µ + δ

2 )αd. Thus, for any feature tuples {vk
s}

dr

k=1 from source domain and feature

16
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tuples {vk
t }

dr

k=1 from target domain, both with dr tuples, we can bound total variation distance
according to Chakraborty et al. (2024):

TV (PDS
,PDT

)

=TV (PRS ,PRT )

≥P({vk
s}

dr

k=1 ∈ A′)− P({vk
t }

dr

k=1 ∈ A′)

=P
(
Σdr

k=1I(v
k
s ) > (µ+

δ

2
)αdr

)
− P

(
Σdr

k=1I(v
k
t ) > (µ+

δ

2
)αdr

)
≥(1− exp

−drδ
2

2
)− exp

−drδ
2

2

=1− 2 exp
−αdδ2

2

(18)

The first row of Equation (18) is shown according to that there is no discrepancy for distributions of
shared features across domains in the Assumption 1.

For the set Ak, based on P(vk
s ∈ Ak)−P(vk

t ∈ Ak) = δk in Theorem 2 and TV (Pk
rs,Pk

rt) = δk in
Assumption 1, we can infer that Pk

rs(v
k) ≥ Pk

rt(v
k) for any vk ∈ Ak. Pk

rs and Pk
rt are probability

density functions. For any sample vk, we also use the I(vk) = 1 to represent that sampling value
vk belongs to set Ak, otherwise I(vk) = 0. Then, we have:

P
(
Σdr

k=1I(v
k
s ) = dr

)
=

dr∏
k=1

(µk + δk),

P
(
Σdr

k=1I(v
k
t ) = dr

)
=

dr∏
k=1

µk.

(19)

Now we denote the set of dr tuples, {v1, · · · ,vdr}, by A′′ and every item of tuples in A′′ satisfies
{v1 ∈ A1, · · · ,vdr ∈ Adr

}. It also means that Σdr

k=1I(v
k) = dr = αd. Ωdr is the measurable set

of all possible {vk}dr

k=1, which can be regarded as whole space of A′′, i.e, A′′ ⊂ Ωdr . Obviously, for
any tuple {vk}dr

k=1 in A′′, it satisfies PRS({vk}dr

k=1) > PRT ({vk}dr

k=1). For the set of rest tuples in
Ωdr satisfying the same condition, we define the set as B′′, where B′′ ⊂ Ωdr\A′′. It can refer that,
for any {vk}dr

k=1 which satisfies PRS

(
{vk}dr

k=1

)
> PRT

(
{vk}dr

k=1

)
, it must belong to B′′ or A′′.

Then we have:
TV (PDS

,PDT
)

=
(
P
(
{vk

s}
dr

k=1 ∈ A′′)− P({vk
t }

dr

k=1 ∈ A′′))
+
(
P
(
{vk

s}
dr

k=1 ∈ B′′)− P({vk
t }

dr

k=1 ∈ B′′))
≤P

(
{vk

s}
dr

k=1 ∈ A′′)− P({vk
t }

dr

k=1 ∈ A′′)
+ P

(
{vk

s}
dr

k=1 ∈ Ωd\A′′)
=P

(
Σdr

k=1I(v
k
s ) = dr

)
− P

(
Σdr

k=1I(v
k
t ) = dr

)
+
(
1− P

(
Σdr

k=1I(v
k
s ) = dr

))
=

dr∏
k=1

(µk + δk)−
dr∏
k=1

µk +
(
1−

dr∏
k=1

(µk + δk)
)

=1−
αd∏
k=1

µk

(20)
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A.3 PROOF OF THEOREM 3

Theorem (3). TV bounds for features under non-individual case. Suppose that distributions of
two domains satisfy the Assumption 1 and conditions in Theorem 2 except for independence. Let
samples of features {vk}dr

i=1 are sequentially drawn from P(V1, · · · ,Vdr ) =
∏K

j=1 P(Nj) and
each sample satisfies Equation (6). Nj is the independent subset which concludes nj dependent
samples sequence {v1, · · · ,vnj} and P(Nj) is the joint distribution of nj features in subset Nj .

For δ >
ΣK

j=1λj(nj−1)

dr
, the bounds of TV (PDS

,PDT
) are:

TV (PDS
,PDT

) ≥ 1− 4 exp
−2(αdδ/2− ΣK

j=1λj(nj − 1))2

αd
, (21)

and

TV (PDS
,PDT

) ≤ 1−
K∏
j=1

P({vk
t }nj ∈ {Ak}⊗nj ). (22)

Proof. For any vk ∈ Nj , it satisfies E(Vk|vk−1, · · · ,v1) = λj
Σk−1

j=1v
j

i−1 + (1− λj)E(Vk). we use
the I(vk) = 1 to represent that feature samples vk belongs to set Ak, otherwise I(vk) = 0. If

δ >
ΣK

j=1λj(nj−1)

dr
, according to Chakraborty et al. (2024), it holds that :



P
((

Σdr

k=1I(v
k
s )− dr(µ+ δ)

)
>

drδ

2

)
< 2 exp

−2(drδ/2− ΣK
j=1λj(nj − 1))2

dr
,

P
((

Σdr

k=1I(v
k
t )− drµ

)
>

drδ

2

)
< 2 exp

−2(drδ/2− ΣK
j=1λj(nj − 1))2

dr
.

(23)

Also, we can denote the set of dr tuples by A′, i.e., {v1, · · · ,vdr}, and A′ contains at least (µ+ δ
2 )αd

samples that satisfy vk ∈ Ak. Thus, for any feature set {vk
s}

dr

k=1 of source domain and feature set
{vk

t }
dr

k=1 of target domain, both with dr tuples, it holds that:

TV (PDS
,PDT

)

≥P({vk
s}

dr

k=1 ∈ A′)− P({vk
t }

dr

k=1 ∈ A′)

=P
(
Σdr

k=1I(v
k
s ) > (µ+

δ

2
)αdr

)
− P

(
Σdr

k=1I(v
k
t ) > (µ+

δ

2
)αdr

)
≥1− 4 exp

−2(αdδ/2− ΣK
j=1λj(nj − 1))2

dr

(24)

Due to the independence between subsets of Nj , we can replace the P(vk
t ∈ Ak) = µk in Theorem

2 by P({vk}nj ∈ {Ak}⊗nj ). Also, we can define A′′ and B′′ in the similar way as in the proof of

18
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Theorem 2, then the upper bound will be proved:

TV (PDS
,PDT

)

=
(
P
({

{vk
s}nj

}K

j=1
∈ A′′)− P

({
{vk

t }nj
}K

j=1
∈ A′′))

+
(
P
({

{vk
s}nj

}K

j=1
∈ B′′)− P

({
{vk

t }nj
}K

j=1
∈ B′′))

≤P
({

{vk
s}nj

}K

j=1
∈ A′′)− P

({
{vk

t }nj
}K

j=1
∈ A′′)

+ P
({

{vk
s}nj

}K

j=1
∈ Ωdr\A′′)

=1−
K∏
j=1

P({vk
t }nj ∈ {Ak}⊗nj )

(25)

B RELATED WORK

B.1 DOMAIN ADAPTATION

Domain adaptation is crucial to address the problem of distribution shift between domains (Chen
et al., 2019). Ganin & Lempitsky (2015); Long et al. (2018); Zhao et al. (2018) took advantage
of adversarial learning to reflect the features of two domains into similar distributions. Long et al.
(2015) aimed to reduce the discrepancy between domains by matching the mean embedding of do-
main distributions across multiple layers. Except for adversarial learning and reducing discrepancy
for domain alignments, techniques such as entropy and pseudo labeling, which can extract valuable
information from the target data, can also be applied to improve the model prediction for target do-
main (Pan et al., 2020; Vu et al., 2019). Li et al. (2021b) focused more on principal features and
decreased the distribution discrepancy by semantic concentration. Xiao et al. (2023) utilized the
graph spectral alignment to propagate neighborhood messages while considering more intra-domain
information.

B.2 SEMI-SUPERVISED DOMAIN ADAPTATION

With considering SSL more directly, Yang et al. (2021) separated the SSDA into two tasks, i.e.,
SSL task and UDA task, and leveraged the co-training framework to integrate the superiority of
classifiers of both tasks. The co-training strategy was also adopted in Ngo et al. (2024), which took
advantage of capturing global features of ViT (Dosovitskiy, 2020) and local features of CNN. In
SSDA, adversarial training can enhance high-confident prediction for the target domain as well (Li
et al., 2021a; Saito et al., 2019). To achieve both inter-domain and intra-domain adaptation, Huang
et al. (2023); Singh (2021) maintained consistency of features in both domains from multiple views.
Many of above methods assigned pseudo-labels to unlabeled data, while Yu & Lin (2023) focused
on reassigning labels to the source domain data by pseudo center. Some works (Basak & Yin, 2024;
Yousefnezhad et al., 2020) tried to learn shared spaces during DA, where they first learned specific
features tailored to each specific domain, and then integrated these features across all domains.

B.3 GATING MECHANISM

Due to the advantage of intensifying the important information in network layers, the gating mecha-
nism is widely used in deep learning applications, especially for recommender systems (Geng et al.,
2021; Ma et al., 2019). The hierarchical gate networks with feature-level and instance-level gate
modules (Ma et al., 2019), effectively balanced long-term and short-term interests of users. The gat-
ing mechanism was applied to fuse features in multi-task and multi-domain recommendation (Chang
et al., 2023). Also, for multi-task learning, Multi-gate Mixture-of-Experts Ma et al. (2018) utilized
different gate networks to train each task. To achieve high click-through rate prediction, Huang
et al. (2020); Jiang et al. (2023) adopted a gated structure to effectively choose feature information.
Except for recommender system, the gating mechanism is also a common technique in computer
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vision (Srivastava et al., 2015) and natural language process (Gehring et al., 2017), which is crucial
for capturing long-term dependency.

C EXPERIMENTS

C.1 IMPLEMENTATION DETAILS

The proposed gate network is adaptable to a variety of existing state-of-the-art SSDA models.
Among them, we combined our gate network with three currently popular models: MME (Saito
et al., 2019), CDAC (Li et al., 2021a), and ECB (Ngo et al., 2024). We denoted the three com-
bined methods as MME-G, CDAC-G and ECB-G, respectively. To ensure fair comparisons, we
kept the model architecture, initialization, optimizer, batch size and learning rate scheduler in our
experiments consistent with their previous works. The hyperparameters in our experiments were
configured based on the recommendations from their works. For DomainNet and Office-Home
datasets, we chose the ResNet34 (He et al., 2016) as the backbone of F . For the Office-31 dataset,
we followed the recommendation in the previous papers (Saito et al., 2019; Ngo et al., 2024) and
adopted AlexNet (Krizhevsky et al., 2012) as the backbone of F . The activation function of our gate
network was Sigmoid function. Similar to ECB, we additionally selected ViT (Dosovitskiy, 2020)
as another backbone of feature extractor for ECB-G. All experiments were implemented by PyTorch
and conducted on NVIDIA 4090 GPU.

C.2 BASELINES

In this part, we introduce the baselines more specifically, which are compared in this work:

• MME (Saito et al., 2019) leveraged adversarial process on the entropy of unlabeled data to prevent
the model from overfitting the source domain.

• CDAC (Li et al., 2021a) enhanced domain adaptation by incorporating data augmentation along-
side its corresponding adversarial adaptive clustering loss.

• ECB (Ngo et al., 2024) captured both features from ViT and CNN and adopted a co-training
strategy for them.

• ENT (Grandvalet & Bengio, 2004) is a based method that directly minimizes the entropy of the
target domain, which encourages the model to produce confident and sharp predictions.

• CLDA (Singh, 2021) applied inter-domain and instance-level contrastive alignment to reduce
inter-domain and intra-domain gaps, respectively.

• DECOTA (Yang et al., 2021) decomposed the SSDA into SSL and UDA and trained two classi-
fiers for each task with the co-training framework.

• ProML (Huang et al., 2023) employed a prototype-based multi-level framework to learn the con-
sistent features across different domains.

• G-ABC (Li et al., 2023) made use of adaptive betweenness clustering based on graphs to achieve
semantic alignment for different domains.

• EFTL (He et al., 2024) proposed an effective target labeling framework which combine active
learning and pesedo-label learning to select informative target data items.

• IDMNE (Li et al., 2024) generated new training samples by inter-domain mixup and leverage
neighborhood expansion of target domain.

• LFL (learn, forget, and learn more) (Basak & Yin, 2024) utilized the strategies of “learn”, “for-
get”, and “learn more” to obtain domain-agnostic features, which is essential for adaptive classi-
fication tasks.

• DARA (Wu et al., 2025) aligned the representations from probability-level and feature-level to
decrease the discrepancy of two domains.
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C.3 COMPARED RESULTS WITH STATE-OF-THE-ARTS

C.3.1 RESULTS FOR OFFICE-HOME

We present the results on Office-Home under the 1-shot in Table 6. Due to the original paper (Li
et al., 2023) only demonstrating results of Office-Home with 3-shot, we did not report the 1-shot
results here. As shown in Table 6, ECB-G still achieves the best mean performance for the dataset.
Although the performance in the 1-shot setting is slightly lower than in the 3-shot setting, models
with gating-driven mechanisms outperform their previous corresponding versions in most scenarios,
with the average accuracy gain ranging from 0.1% to 0.6%.

C.3.2 RESULTS FOR OFFICE-31

We demonstrate the results on Office-31 dataset in Table 7. As shown in the table, our method
consistently outperforms existing approaches even on such relatively small-scale datasets with lim-
ited image quantities and categories. The performance gain is particularly notable in the 1-shot
setting, where our method consistently enhances the performance of baseline approaches, achieving
gains of up to 2% in many cases. The comparative results reported here are directly taken from the
corresponding original papers.

Table 6: Accuracy (%) of SSDA methods under 1-shot setting on Office-Home.

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Mean

ENT (Grandvalet & Bengio, 2004) 52.9 75.0 76.7 63.2 73.6 73.2 63.0 51.9 79.9 70.4 53.6 81.9 67.9
DECOTA (Yang et al., 2021) 42.1 68.5 72.6 60.3 70.4 70.7 60.0 48.8 76.9 71.3 56.0 79.4 64.8

CLDA (Singh, 2021) 56.3 76.1 79.3 66.3 73.9 76.3 66.2 55.9 81.0 72.6 60.2 83.2 70.6
ProML (Huang et al., 2023) 64.5 79.7 81.7 69.1 80.5 79.0 69.3 61.4 81.9 73.7 67.5 86.1 74.6

EFTL (He et al., 2024) 65.7 80.5 80.8 65.6 79.6 77.5 68.7 63.3 82.6 74.3 66.6 87.2 74.4
LFL (Basak & Yin, 2024) 64.1 80.1 81.1 70.6 79.5 79.1 67.9 62.5 80.9 75.2 69.1 87.9 74.8

MME (Saito et al., 2019) 59.6 75.5 77.8 65.7 74.5 74.8 64.7 57.4 79.2 71.2 61.9 82.8 70.4
MME-G 60.7 75.7 77.7 65.4 75.0 74.5 64.5 58.2 79.3 71.0 62.9 83.7 70.7

CDAC (Li et al., 2021a) 61.2 75.9 78.5 64.5 75.1 75.3 64.6 59.3 80.0 72.7 61.9 83.1 71.0
CDAC-G 61.3 78.0 79.1 65.3 75.1 75.4 62.9 58.7 79.5 71.7 63.3 83.4 71.1

ECB (Ngo et al., 2024) 72.9 88.3 89.6 84.8 91.3 89.5 82.9 71.2 89.9 85.5 75.4 92.0 84.4
ECB-G 74.6 89.4 89.8 84.7 89.9 89.2 85.0 73.1 90.5 85.5 76.5 92.3 85.0

Table 7: Accuracy (%) of SSDA methods under both 1-shot and 3-shot settings on Office-31.

Method W→A D→A Avg.
1shot 3shot 1shot 3shot 1shot 3shot

ENT (Grandvalet & Bengio, 2004) 50.7 64.0 50.0 66.2 50.4 65.1
CLDA (Yang et al., 2021) 64.6 70.5 62.7 72.5 63.6 71.5
G-ABC (Li et al., 2023) 67.9 71.0 65.7 73.1 66.8 72.0
DARA (Wu et al., 2025) 66.1 71.8 65.7 72.0 65.9 71.9

MME (Saito et al., 2019) 57.2 67.3 55.8 67.8 56.5 67.6
MME-G 58.2 67.7 57.3 68.4 57.8 68.1

CDAC (Li et al., 2021a) 63.4 70.1 62.8 70.0 63.1 70.0
CDAC-G 65.9 70.4 64.5 70.6 65.2 70.5

ECB (Ngo et al., 2024) 77.9 85.2 76.3 84.0 77.1 84.6
ECB-G 80.7 86.7 79.0 84.5 79.9 85.6

C.4 MORE VISUALIZATION RESULTS

C.4.1 FEATURE VISUALIZATION

In Figure 6, we show the visualization of the feature space by t-SNE on P→R of DomainNet. The
figure shows the visualization for CDAC-G and ECB-G, with their original models. Obviously,
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(a) CDAC (b) CDAC-G

(c) ECB (d) ECB-G

Figure 6: t-SNE for our gate network with compared models. In each subfigure, we select samples
from 10 classes, with each class represented by a unique color. Circles (o) indicate source domain
data, while crosses (×) represent target domain data.

(a) CDAC (b) CDAC-G (c) ECB (d) ECB-G

Figure 7: Attention map visualization by Grad-CAM for the “bird” class on DomainNet.

our gating-driven mechanism produces the features distributed more compactly and achieves better
alignment.

C.4.2 ATTENTION MAP VISUALIZATION

We show the attention maps by Grad-CAM to visualize the gradient attention of CDAC-G and ECB-
G in Figure 7 for the “bird” class. Also, we provide attention map visualization for the “bus” class
in Figure 8. It is evident that incorporating the gating mechanism enables the model to focus more
effectively on the shared features that are intrinsically relevant to the recognized targets.

C.5 MORE ANALYSIS RESULTS

C.5.1 EFFECTIVENESS OF VARIED BATCH SIZES

The results of performance on the rest tasks of DomainNet under different batch sizes are shown
in Figure 9a to 9e. It is obvious that across almost all scenarios with different batch sizes, our
gating-driven mechanism could improve the adaptation performance of the original models.

C.5.2 EFFECTIVENESS OF TIME COMPLEXITY

We provide the running time complexity of our methods in Table 8, including the seconds required
for both training and inference. It is evident that our gating mechanism does not significantly in-
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(a) MME (b) CDAC (c) ECB

(d) MME-G (e) CDAC-G (f) ECB-G

Figure 8: Attention map visualization by Grad-CAM for the “bus” class on DomainNet.
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Figure 9: The results with different batch sizes for MME-G and MME under 3-shot setting on
DomainNet.

crease the time complexity. In addition, we present a specific GFLOPs comparison in the Table 9
to validate efficiency of our gating-driven mechanism, demonstrating that it does not occupy large
computation resource.

C.5.3 RESULTS OF MULTIPLE RUNS

We report the t-test results over 3 runs of our gating-driven mechanism compared with original base-
lines without gating mechanism in Table 10. It is well established that a t-test value less than or equal
to 0.05 indicates a statistically significant difference between two groups. As shown in most cases,
the incorporation of our gating-driven mechanism leads to statistically significant improvements in
average performance compared to the original SSDA methods.

C.5.4 EFFECTIVENESS OF VARIANT GATED NETWORK DESIGN

We compare several gate network designs, including CNN, Transformer, Attention, and MLP. Table
11 and 12 report their performance on DomainNet under the 3-shot and 1-shot settings, respectively.
As shown, the gate network used in our paper—based on a Sigmoid activation—achieves the best
average performance among all compared designs. Since the backbone of our feature extractor is
based on a ResNet architecture, using Attention or Transformer as the gate network leads to a per-
formance drop compared to the other designs, likely due to architectural mismatch and suboptimal
feature interaction in this setting.
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Table 8: The time complexity of during training and inference on P→R of DomainNet (seconds).

Method MME MME-G CDAC CDAC-G ECB ECB-G

Train 20102 20466 28323 28395 66486 67688
Inference 97 113 117 116 94 95

Table 9: GFlops of SSDA methods with or without gate network.

MME CDAC ECB

w/o gate 3.682266624 3.682266624 20.550929664
with gate 3.682269184 3.682269184 20.550932324

C.6 MORE APPLICATIONS ABOUT GATING-DRIVEN MECHANISM

Although our theoretical framework regarding shared spaces (Section 2) is generalizable. this paper
focuses on validating the gating mechanism for image-based SSDA. In future work, we plan to
further investigate its applicability in UDA, multi-source domain adaptation, zero-shot domain shifts
and non-visual domains, which are beyond the current focus of this paper. We believe the mechanism
is applicable to UDA. To demonstrate this, we integrated our mechanism into the ECB framework
(this SSDA method are also suitable to UDA) for a UDA setting. In Table 13, the preliminary results
show that the gating mechanism successfully improves UDA performance, further validating that
explicit feature filtering benefits adaptation even without target labels.

D THE USE OF LARGE LANGUAGE MODELS (LLMS).

In this work, large language models (LLMs) were employed solely for the purpose of refining and
improving the clarity of written expressions. No other uses of LLMs, such as retrieval, discovery, or
research ideation, were involved in the preparation of this manuscript.
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Table 10: t-test results of multiple runs for incorporating gating-driven mechanism compared with
original baselines under both 1-shot and 3-shot settings on DomainNet.

Method R→C R→P P→C C→S S→P R→S P→R
1shot 3shot 1shot 3shot 1shot 3shot 1shot 3shot 1shot 3shot 1shot 3shot 1shot 3shot

MME-G 0.0022 0.0066 0.0025 0.0102 0.0160 0.0128 0.0001 0.0013 0.0029 0.0003 0.0018 0.0007 0.0121 0.0005
CDAC-G 0.1567 0.0571 0.0041 0.0246 0.1835 0.2495 0.0350 0.1150 0.0202 0.0830 0.0058 0.0377 0.0160 0.0041
ECB-G 0.0051 0.0153 0.0098 0.0153 0.1835 0.0034 0.0462 0.0025 0.0551 0.1019 0.0890 0.0152 0.0397 0.0130

Table 11: Accuracy (%) of different gate network design on DomainNet under 3-shot.

Method R→C R→P P→C C→S S→P R→S P→R Avg
MLP 73.6 70.8 72.8 64.1 68.9 64.8 78.9 70.6

Attention 72.2 70.2 72.5 63.1 67.4 63.4 78.9 69.7
Transformer 73.4 70.9 72.7 63.1 68.5 64.6 79.2 70.3

CNN 73.7 70.8 72.9 63.9 69.2 64.7 79.8 70.7
Sigmoid 73.9 71.4 73.0 63.7 68.8 65.1 80.1 70.9

Table 12: Accuracy (%) of different gate network design on DomainNet under 1-shot

Method R→C R→P P→C C→S S→P R→S P→R Avg
MLP 71.6 69.3 70.4 62.2 66.7 63.5 77.9 68.8

Attention 70.0 68.6 69.7 60.4 65.6 61.1 77.6 67.6
Transformer 71.1 68.9 70.2 60.9 66.1 63.3 77.9 68.3

CNN 71.1 69.2 70.0 61.8 67.1 63.9 78.1 68.7
Sigmoid 72.0 69.8 70.4 61.5 66.6 64.0 78.3 68.9

Table 13: Accuracy (%) of UDA methods on Office-Home.

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg

DANN (Ganin et al., 2016) 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
MCD (Saito et al., 2018) 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1
BNM (Cui et al., 2020) 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9

MDD (Zhang et al., 2019) 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
MCC (Jin et al., 2020) 55.1 75.2 79.5 63.3 73.2 75.8 66.1 52.1 76.9 73.8 58.4 83.6 69.4
DCAN (Li et al., 2020) 54.5 75.7 81.2 67.4 74.0 76.3 67.4 52.7 80.6 74.1 59.1 83.5 70.5

DALN (Chen et al., 2022) 57.8 79.9 82.0 66.3 76.2 77.2 66.7 55.5 81.3 73.5 60.4 85.3 71.8
FixBi (Na et al., 2021) 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7

DCAN+SCDA (Li et al., 2021b) 60.7 76.4 82.8 69.8 77.5 78.4 68.9 59.0 82.7 74.9 61.8 84.5 73.1
ATDOC (Liang et al., 2021) 60.2 77.8 82.2 68.5 78.6 77.9 68.4 58.4 83.1 74.8 61.5 87.2 73.2
EIDCo (Zhang et al., 2023) 63.8 80.8 82.6 71.5 80.1 80.9 72.1 61.3 84.5 78.6 65.8 87.1 75.8

ECB (Ngo et al., 2024) 68.5 85.4 88.3 79.2 86.8 89.0 79.3 66.4 88.5 81.0 71.1 90.4 81.2
ECB-G 73.5 85.6 90.1 82.5 86.9 88.8 81.5 69.0 89.0 83.6 73.1 91.4 82.9
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