Under review as a conference paper at ICLR 2021

ADAPTIVE RISK MINIMIZATION: A META-LEARNING
APPROACH FOR TACKLING GROUP SHIFT

Anonymous authors
Paper under double-blind review

ABSTRACT

A fundamental assumption of most machine learning algorithms is that the training
and test data are drawn from the same underlying distribution. However, this as-
sumption is violated in almost all practical applications: machine learning systems
are regularly tested under distribution shift, due to temporal correlations, particular
end users, or other factors. In this work, we consider the setting where the training
data are structured into groups and test time shifts correspond to changes in the
group distribution. Prior work has approached this problem by attempting to be
robust to all possible test time distributions, which may degrade average perfor-
mance. In contrast, we propose to use ideas from meta-learning to learn models
that are adaptable, such that they can adapt to shift at test time using a batch of
unlabeled test points. We acquire such models by learning to adapt to training
batches sampled according to different distributions, which simulate structural
shifts that may occur at test time. Our primary contribution is to introduce the
framework of adaptive risk minimization (ARM), a formalization of this setting
that lends itself to meta-learning. We develop meta-learning methods for solving
the ARM problem, and compared to a variety of prior methods, these methods
provide substantial gains on image classification problems in the presence of shift.

1 INTRODUCTION

The standard assumption in empirical risk minimization (ERM) is that the data distribution at test time
will match the distribution at training time. When this assumption does not hold, the performance
of standard ERM methods typically deteriorates rapidly, and this setting is commonly referred to
as distribution or dataset shift (Quifionero Candela et al., 2009} [Lazer et al., |2014). For instance,
we can imagine a handwriting classification system that, after training on a large database of past
images, is deployed to specific end users. Some new users have peculiarities in their handwriting
style, leading to shift in the input distribution. This test scenario must be carefully considered when
building machine learning systems for real world applications.

Algorithms for handling distribution shift have been studied under a number of frame-
works (Quifionero Candela et al.,[2009). Many of these frameworks aim for zero shot generalization
to shift, which requires more restrictive but realistic assumptions. For example, one popular assump-
tion is that the training data are provided in groups and that distributions at test time will represent
either new group distributions or new groups altogether. This assumption is used by, e.g., group
distributionally robust optimization (DRO) (Hu et al.| 2018} [Sagawa et al., 2020)), robust federated
learning (Mohri et al. [2019} [Li et al.| [2020), and domain generalization (Blanchard et al.l 2011}
Gulrajani & Lopez-Paz,[2020). Constructing training groups or tasks in practice is generally accom-
plished by using meta-data, which exists for most commonly used datasets. This assumption allows
for more tractable optimization and still permits a wide range of realistic distribution shifts. However,
achieving strong zero shot generalization in this setting is still a hard problem. For example, DRO
methods, which focus on achieving maximal worst case performance, can often be overly pessimistic
and learn models that do not perform well on the actual test distributions (Hu et al., 2018).

In this work, we take a different approach to combating group distribution shift by learning models
that are able to deal with shift by adapting to the test time distribution. To do so, we assume that
we can access a batch of unlabeled data points at test time — as opposed to individual isolated
inputs — which can be used to implicitly infer the test distribution. This assumption is reasonable



Under review as a conference paper at ICLR 2021

training time test time

noonnooEnn
mEpaononon

n 1] . . . adaptation 71
] aman — x) EEHE — and &
oononEnEaE inference Y

y I3, 36, 55, 9, ] ..n

7 [12, 195, 48, 12, ...]

adaptation [35]
and ¢l
inference [ !

meta-learning to adapt . unlabeled adaptation

Figure 1: A schematic of the ARM problem setting and approach, described in detail in Left: During
training, we assume access to labeled data along with group information z, which allows us to construct training
distributions that exhibit group distribution shift. For example, a training distribution may place uniform mass on
only a single user’s examples. We use these training distributions to learn a model that is adaptable to distribution
shift via a form of meta-learning. We detail the specific adaptation procedures (orange box) that we consider
in[Section 3|and [Figure 2} Right: We perform unsupervised adaptation to different test distributions, without
requiring zero shot generalization to shift as in prior methods. If the test shifts we observe are similar to those
simulated by the training distributions, e.g., we deploy the model to new end users at test time, then we expect
that we can effectively adapt to these test distributions for better performance.

in many standard supervised learning setups. For example, we do not access single handwritten
characters from an end user, but rather collections of characters such as sentences or paragraphs.
When combined with the group assumption above, we arrive at a problem setting that is similar to the
standard meta-learning setting (Vinyals et al.| 2016)). This allows us to extend well established tools
and techniques from meta-learning to address distribution shift problems. Meta-learning typically
assumes that training data are grouped into tasks and new tasks are encountered at meta-test time,
however these new tasks still include labeled examples for adaptation. As illustrated in we
instead aim to train a model that uses unlabeled data to adapt to the test distribution, thereby not
requiring the model to generalize zero shot to all test distributions as in prior approaches.

The main contribution of this paper is to introduce the framework of adaptive risk minimiza-
tion (ARM), in which models have the opportunity to adapt to the data distribution at test time
based on unlabeled data points. This contribution provides a principled approach for designing
meta-learning methods to tackle distribution shift. We introduce an algorithm and instantiate a set of
methods for solving ARM that, given a set of candidate distribution shifts, meta-learns a model that
is adaptable to these shifts. One such method is based on meta-training a model such that simply
updating batch normalization statistics (loffe & Szegedyl 2015)) provides effective adaptation at test
time, and we demonstrate that this simple approach can produce surprisingly strong results. Our
experiments demonstrate that the proposed methods, by leveraging the meta-training phase, are able
to outperform prior methods for handling distribution shift in image classification settings exhibiting
group shift, including benchmarks for federated learning (Caldas et al.l 2019) and testing image
classifier robustness (Hendrycks & Dietterichl 2019).

2 RELATED WORK

A number of prior works have studied distributional shift in various forms (Quifionero Candela et al.}
2009). In this section, we review prior work in robust optimization, meta-learning, and adaptation.

Robust optimization. DRO methods optimize machine learning systems to be robust to adversarial
data distributions, thus optimizing for worst case performance against distribution shift (Globerson &
Roweis| 2006 Ben-Tal et al., |2013; [Liu & Ziebart, 2014; |Esfahani & Kuhn, 2015} Miyato et al.||2015;
Duchi et al.,[2016; |Blanchet et al.,|[2016). Recent work has shown that these algorithms can be utilized
with deep neural networks, with additional care taken for regularization and model capacity (Sagawa
et al.,[2020). Unlike DRO methods, ARM methods do not require the model to generalize zero shot
to all test time distribution shifts, but instead trains it to adapt to these shifts.

Also of particular interest are methods for robustness or adaptation to different users (Horiguchi et al.,
2018 |Chen et al., 2018} Jiang et al., [2019; [Fallah et al.} 2020} [Lin et al.l 2020)), a setting commonly
referred to as robust or fair federated learning (McMahan et al.,[2017} Mohri et al.,[2019; L1 et al.
2020). Unlike these works, we consider the federated learning problem setting in which we do not
assume access to any labels from any test users, as we partition users into disjoint train and test sets.
We argue that this is a realistic setting for many practical machine learning systems — oftentimes, the
only available information from the end user is an unlabeled batch of data.



Under review as a conference paper at ICLR 2021

Meta-learning. Meta-learning (Schmidhuber, |1987; Bengio et al., |1992; [Thrun & Pratt, [1998}
Hochreiter et al., 2001)) has been most extensively studied in the context of few shot supervised
learning methods (Santoro et al., |2016; |Vinyals et al., [2016; Ravi & Larochellel 2017 [Finn et al.,
2017;Snell et al.l 2017), i.e., labeled adaptation. The aim of this work is to extend meta-learning
paradigms to problems requiring unlabeled adaptation, with the goal of tackling distribution shift.
We demonstrate in the next section how paradigms such as contextual meta-learning (Garnelo et al.,
2018;|Requeima et al., 2019) are readily extended using the ARM framework.

Some other meta-learning methods adapt using both labeled and unlabeled data, either in the semi
supervised learning setting (Ren et al., 2018; Zhang et al.| 2018} |Li et al.,[2019) or the transductive
learning setting (Liu et al.| 2019} |Antoniou & Storkey} |2019; Hu et al.| 2020). These works do not
focus on the same setting of distribution shift and all assume access to labeled data for adaptation.
Prior works in meta-learning for unlabeled adaptation include|Yu et al.|(2018)), which adapts a policy
to imitate human demonstrations in the context of robotic learning, and Metz et al|(2019), which
meta-learns an update rule for unsupervised representation learning, though they still require labels to
learn a predictive model. Unlike these prior works, the ARM framework facilitates the development
of meta-learning methods for quickly adapting a predictive model using unlabeled examples.

Adaptation to shift. Unlabeled adaptation has primarily been studied separately from meta-learning.
Domain adaptation is a prominent framework that assumes access to test examples at training time,
similar to transductive learning (Vapnikl |1998). Some of these methods, such as importance weighting
approaches (Shimodairal, 2000), only handle a single predefined shift and do not constitute test time
adaptation (Csurkal 2017; Wilson & Cookl 2020). Certain domain adaptation methods, however, are
applicable in the setting with training groups, such as methods for learning invariant features (Ganin
& Lempitsky, [2015} [Li et al.l 2018), and we compare to these methods in[Section 4] Several methods
for adaptation at test time have been developed specifically for dealing with label shift (Royer &
Lampert} 2015} [Lipton et al., 2018 |Sulc & Matas||[2019). Other methods adapt using statistics of the
test inputs (Li et al.,|2017) or optimize self-supervised surrogate losses (Sun et al., [2020), and these
methods have been shown to perform well across a number of image classification domains. We also

compare against these prior methods in

3 ADAPTIVE RISK MINIMIZATION

In this section, we first formally describe the ARM problem setting, which builds on the settings
used in prior work for tackling distribution shift. The novel aspect of the ARM setting is that it is
amenable to meta-learning solutions to shift, and we demonstrate this by proposing an objective for
the ARM setting that resembles typical meta-learning objectives. The problem setting and objective
together constitute the ARM problem formulation. We subsequently propose a general algorithm as
well as specific meta-learning approaches for solving the ARM problem.

3.1 THE ARM PROBLEM SETTING

A key goal in machine learning is to develop methods that can go beyond the standard ERM setting
and generalize in the face of distribution shift. Accomplishing this goal necessitates the use of
additional assumptions beyond ERM, and we wish to carefully craft these assumptions such that they
fulfill two properties: they are realistic and applicable to real world problems, and they allow for
powerful and tractable methods. In this work, we choose two assumptions that are well established
in the literature on distribution shift, in order to fulfill the first property, and we develop a novel
meta-learning framework using these assumptions, thus fulfilling the second.

The first assumption is that the training data are provided in groups, which, as discussed above,
mirrors analogous assumptions made in group DRO (Hu et al.,2018)), federated learning (McMahan
et al.,|2017), and meta-learning (Vinyals et al., 2016), among other settings. The second assumption
is that we observe batches of test points all together, rather than one point at a time. Assuming access
to multiple test points has been standard in domain adaptation (Csurka) |2017}; Wilson & Cook| [2020)),
which makes this assumption for training, as well as recent works studying test time adaptation (Li
et al.,|2017; [Sun et al.| 2020; |Wang et al., 2020). To our knowledge, these assumptions have not been
considered simultaneously in prior work. However, as we detail in this section, it is their conjunction
that allows us to develop meta-learning solutions to shift.



Under review as a conference paper at ICLR 2021

In the ARM problem setting, we assume access to a training dataset that consists of N labeled data
points (x(?), y@ 2()) sampled i.i.d. from the training distribution p. As noted, this differs from
standard supervised learning in that we additionally observe the group z(*) associated with each point,
which is a discrete value z € {1,..., S} that can represent tasks, users, or other types of meta-data.
The goal is to learn a model g(-;6) : X — ) that is parameterized by § € © and predicts the output
y € Y given the input x € X. At test time, we are given batches of K unlabeled data points, where
each batch is drawn from a distribution that may differ from both p and the other batch distributions,
and we do not observe either y or z. For example, we can imagine a test scenario that separately

considers each user’s images, as discussed in[Section

3.2 DERIVING THE ARM OBJECTIVE

We approach the goal of learning adaptable models through the lens of meta-learning. In particular,
we define an adaptation model as a function h(-,-;¢) : © x XX — ©, which is parameterized
by ¢. h takes as input the model parameters 6 and K unlabeled data points and produces updated
parameters 0’ after adapting using the K points. h can be initialized as a variety of different adaptation
procedures, and we defer this discussion to[subsection 3.3] Our goal is to meta-learn ¢ and 6 such that
h can adapt g using unlabeled training data sampled according to a particular group z. Assuming that
we will observe batches of data at test time that exhibit a similar type of shift, we can then perform
the same procedure for better test performance. This motivates the ARM objective, given by

K
mmIEpz lIpryz lKZE xk,ﬁ),yk)H , where 0’ = h(0,%1,...,XK; ).

k=1

(D

A priori, we do not know what pies (2) will be, i.e., which values of z will be seen at test time. Thus,
we draw inspiration from prior work in deep learning that demonstrates that uniformly sampling over a
quantity of interest, such as labels or groups, is a strong method for achieving robustness with respect
to that quantity (Shen et al.| 2016} Buda et al., 2018}, [Sagawa et al.| | 2020). We extend this approach to
the ARM setting by defining p(z) at training time to place uniform probability mass on each group in
the training set, in order to represent all training groups equally. Theoretically, we expect the trained
models to perform well at test time when the distribution over batches of data matches the training
distribution. Note that this is a looser condition than in ERM, as the distribution over individual data
points can vary. In practice, similar to how meta-learning for few shot classification has found that
meta-learned models can generalize to new meta-test classes (Vinyals et al., 2016} |[Finn et al., |2017),
we empirically show in[Section 4]that the trained models can generalize to new test groups.

Standard few shot meta-learning formulations must use disjoint data batches for adaptation and
meta-training to avoid label memorization (Vinyals et al.,|2016). Since labels are not used during
adaptation in ARM, we meta-train the adapted model using the same K examples that are used for
adaptation. The labels for these examples are used in the meta-training update but not the adaptation
itself. Thus, the adaptation matches the ARM setting at meta-test time, in which /h adapts the model
on the same unlabeled test points that the adapted model then predicts on.

3.3 OPTIMIZING THE ARM OBJECTIVE  Algorithm 1 Meta-Learning for ARM

[Algorithm T|presents a general meta-learning
approach for optimizing the ARM objective.

In line 5, h outputs updated parameters 6’
using an unlabeled batch of data. We assume
that f is differentiable with respect to 6 and ¢,
thus we can meta-train both 6 and ¢ for post
adaptation performance on a mini batch of
data sampled according to a particular group
z (line 6). This adaptation is performed us-
ing unlabeled data, mimicking the test time
procedure detailed in lines 7-8. In practice,
we sample mini batches of groups rather than
just one group (line 3), to provide a better
gradient signal for optimizing ¢ and 6.

// Training procedure
Require: # training steps 7', batch size K, learning rate n
1: Initialize: 0, ¢
2: fort=1,...,Tdo
3 Sample z uniformly from training groups
4:  Sample (xi,yx) ~p(-,-|z)fork=1,..., K
5 0/<—h(0,X1,.,,,XK;¢>)
6: (8,9) « (8,9) =1V (0,6) Xomy £(9(xk56'), yk)

// Test time adaptation procedure
Require: 0, ¢, test batch x1,...,Xx

7: 0 — h(9,%x1,...,XK; Q)

8: Ik + g(xk; 0" ) fork=1,.... K




Under review as a conference paper at ICLR 2021

contextual meta-learning gradient based meta-learning

_? ................. x_, . / P uveﬁ(e . d)

\ .............. % g Xz : L
'? Vi

Figure 2: Schematics of the two broad classes of approaches we consider. Left: In the contextual approach,
X1, ..., Xk are summarized into a context ¢, and we propose two methods for this summarization, either through
a separate context network or using batch normalization activations in the model itself. ¢ can then be used by the
model to infer additional information about the input distribution. Right: In the gradient based approach, an
unlabeled loss function £ is used for gradient updates to the model parameters, in order to produce parameters
that are specialized to the test inputs and can produce more accurate predictions.

Together, |[Equation I{and|Algorithm 1|specify how existing meta-learning approaches can be extended
to deal with group distribution shift. Most importantly, approaches in which the adaptation model i
can be augmented to operate on unlabeled data are readily applicable. We study two such approaches
for instantiating the model g and adaptation procedure h in which we summarize here
and provide full details for in First, we consider a contextual approach, shown in
[Figure 2] (left), in which / summarizes the inputs x1, . .., Xk into a context ¢, which is then used by
g as an additional input for predicting on each test point. In this setup, i can learn to provide useful
information about the entire batch of K unlabeled data points to g for predicting the correct outputs.
In the ARM setup, g is only ever evaluated after adaptation, i.e., with #’. We can view h as outputting
a concatenation of the model parameters and the context §' = [0, c].

This approach is inspired by recent works in contextual meta-learning with deep neural networks (Gar{
nelo et al.l 2018} [Requeima et al., [2019). In line with these works, we propose an ARM-CML
implementation of this approach which meta-learns a context network feon(-; @) : X — RP. Note
that f.on is parameterized by ¢, the parameters of h, as in this method, A has no additional parameters.
feont processes each example x;, in the mini batch separately to produce c;, € RP fork =1,..., K,

where D is a hyperparameter. The average ¢ = % Zle cy is then used as the context.

Prior works outside of meta-learning have also investigated ways of conditioning predictions on a
batch of data. One prominent technique, assuming that the model g is parameterized by a deep neural
network with batch normalization layers (loffe & Szegedyl, 2015)), is to compute the normalization
statistics for these layers using batches of test inputs, rather than the standard test time procedure of
using the running statistics computed over the course of training. Several works have demonstrated
the empirical effectiveness of this simple strategy, e.g., L1 et al.|(2017); [Kaku et al.[|(2020); Nado
et al.[(2020); Schneider et al.|(2020). One advantage of this method’s simplicity is that it is easy to
translate into the ARM setting, in order to arrive at a meta-learning version of this method which we
call ARM-BN. The key difference is that, in ARM-BN, the model is trained to adapt using batches of
training points sampled from the same group, following We can interpret this method
through the contextual approach described above: if we view the running statistics used by standard
BN as learned parameters of the model, then & replaces these parameters with statistics computed on
the batch of inputs, which then serves as the context c. In ARM-BN, the model is meta-trained to
make effective use of this adaptation procedure, thus leading to more effective adaptation at test time.

We provide complete details on ARM-BN in

As shown in (right), a distinct approach draws inspiration from gradient based meta-
learning, where the goal is to learn parameters 6 that are amenable to gradient updates on a loss
function in order to quickly adapt to a new problem (Finn et al.,[2017). In other words, h produces
0 =60—aVyL(0,x1,...,XK), where « is a hyperparameter. Note that the loss function £ used in
the gradient updates may be different from the original supervised loss function £. In particular, in the
setting of unlabeled adaptation, £ must be defined such that it operates on only the inputs x, rather than
the input output pairs that ¢ receives. Akin to|Yu et al.|(2018), we propose a learned loss (ARM-LL)
method that learns to modulate the output features of the model g. In our implementation, we assume
that ¢ produces output features o € R! that are used as logits when making predictions. With this



Under review as a conference paper at ICLR 2021

assumption, we define £ to be the composition of g and a loss network fioss(-; @) : RIYI — R, which
takes in the output features from g and produces a scalar. Note that, similar to the CML method, fjoss
is parameterized by ¢, as h has no additional parameters. The />-norm of these scalars across the
batch of test inputs is used as the loss for updating the model parameter 6. In other words,

L(0,%x1,...,xK) = ||v]l2, where v = [ fioss(9(%150); ®), - - ., fioss(9(Xk; 0); P)] .

Before adaptation, the output features o from g need not be suitable logits for prediction, as g is not
evaluated for predictive performance using the unadapted parameters 6. Instead, o may represent, for
example, general features of the input x. These features can then be used by fios in order to provide
a gradient signal that adapts g to output accurate logits.

4 EXPERIMENTS

Our experiments are designed to answer the following questions:

(1) Do methods for adaptive risk minimization learn models that can adapt to group shift?

(2) How do these methods compare to prior methods for robustness, invariance, and adaptation?
(3) Can we loosen the assumptions of accessing groups, at training time, and batches, at test time?

4.1 EVALUATION DOMAINS AND PROTOCOL

We evaluate on four image classification benchmarks, which span a range of problem settings
including federated learning and robustness, demonstrating the general applicability of the proposed

methods. Experimental details are provided in full in

Rotated MNIST. We study a modified version of MNIST where images are rotated in 10 degree
increments, from 0 to 130 degrees. We use only 108 training data points for each of the 2 smallest
groups (120 and 130 degrees), and 324 points each for rotations 90 to 110, whereas the overall
training set contains 32292 points. At test time, we generate images from the MNIST test set with a
certain rotation, and we consider each method’s worst case and average accuracy across groups.

Federated Extended MNIST (FEMNIST). The extended MNIST (EMNIST) dataset (Cohen et al.,
2017) consists of images of handwritten uppercase and lowercase letters, in addition to digits.
FEMNIST (Caldas et al.,[2019)) is a version of EMNIST that associates each handwritten character
with its user. We measure each method’s worst case and average accuracy across 35 test users, which
are held out and thus disjoint from the training users.

Corrupted image datasets. We evaluate the proposed methods and all comparisons on modified
versions of CIFAR-10-C and Tiny ImageNet-C (Hendrycks & Dietterichl, 2019), which augment
the CIFAR-10 (Krizhevsky, [2009) and Tiny ImageNet datasets, respectively, with common image
corruptions that vary in type and severity. We modify the protocol from Hendrycks & Dietterich
(2019) to fit into the ARM problem setting by using a set of 56 corruptions for the training data, and
we define each corruption to be a group. We use a disjoint set of 22 corruptions for the test data, and
we measure worst case and average accuracy across the test corruptions.

4.2 COMPARISONS AND ABLATIONS

We compare the ARM methods against several prior methods designed for robustness and adaptation.
We summarize the comparisons here and again provide additional details in

Group robustness and invariance. Sagawa et al. (2020) recently proposed a state-of-the-art method
for group robustness, and we refer to this approach as distributionally robust neural networks (DRNN).
Their work also evaluates a strong upweighting (UW) baseline that samples uniformly from each
group, and so we also evaluate this approach in our experiments. Note that, for CIFAR-10-C and
Tiny ImageNet-C, UW is equivalent to ERM, as the groups all have an equal number of data points.
Additionally, we compare to domain adversarial neural networks (DANN) (Ganin & Lempitskyl,
2015) and maximum mean discrepancy (MMD) feature learning (Li et al., 2018)), two state-of-the-art
methods for adversarial learning of invariant predictive features.

Test time adaptation. We evaluate the general approach of using test batches to compute batch nor-
malization (BN) statistics, which has been proposed in several prior works (L1 et al.;, 2017} | Kaku et al.,



Under review as a conference paper at ICLR 2021

MNIST FEMNIST CIFAR-10-C Tiny ImageNet-C
Method WwC Avg wC Avg wC Avg WwC Avg
ERM 743+17 936+04 629+19 80.1+£09 496+0.1 698+04 193£05 414+0.2
uw* 80.2+0.1 948402 61.8+09 80.1£0.3 — — — —
DRNN 79.3+11 948+0.1 581407 744+08 445+05 70.7+06 199+03 41.6+0.2
DANN 80.3+14 9514+0.1 665+04 823+04 424+02 69.14+04 205£01 41.9+0.2
MMD 82.8+2.0 956+0.3 653+16 81.6+06 432+04 704+0.3 202£00 39.9+0.5
BN 751+£02 939+01 669+08 81.1+03 625+02 794+03 23.9+02 42.8+0.2
TTT 81.1+03 9544+0.1 64.1+02 83.4+£01 666+06 75.6+08 19.7+£04 41.4+03

CML ablation 78.2+0.6 942401 6444+07 81.5+0.7 478+0.1 682+0.1 196+04 423+0.2
LL ablation 824+£03 948£02 61.9+02 793+06 61.5+02 683+05 258+04 41.7+0.1

ARM-CML 88.7+06 96.7+01 678+13 857+03 67.7+05 79.24+03 21.4+02 433+04
ARM-BN 828+04 953+01 726+03 857+01 71.1+£01 809+02 27.7+02 449+0.2
ARM-LL 87.2+£0.5 963+02 696+21 856+05 669+02 75.7+£03 27.1+£03 442+04

Table 1: Worst case (WC) and average (Avg) top 1 accuracy on rotated MNIST, FEMNIST, CIFAR-10-C, and
Tiny ImageNet-C across all methods, where means and standard errors are reported across three separate runs of
each method. ARM methods consistently achieve greater robustness, measured by WC, and Avg performance
compared to prior methods. *The UW baseline is equivalent to ERM for CIFAR-10-C and Tiny ImageNet-C.

2020; Nado et al.,|2020; Schneider et al.,2020). We also compare to test time training (TTT) (Sun
et al., 2020), which adapts the model at test time using a self-supervised rotation prediction loss.
These methods have previously achieved strong results, even without meta-learning, due to their
favorable inductive biases for tasks such as image classification (Sun et al., [2020).

Robustness and invariance methods assume access to training groups but not test batches, whereas
adaptation methods assume the opposite. Thus, at a high level, we can view the comparisons to these
two broad classes of methods as evaluating the importance of each of these assumptions. We also
conduct experiments in in which we test ARM methods under looser assumptions.

Ablations. We also include ablations of the ARM-CML and ARM-LL methods, which sample
mini-batches of unlabeled examples uniformly from all groups, rather than sampling from a single
group to induce distribution shift. These “context ablation” and “learned loss ablation” are similar to
test time adaptation methods in that they do not assume access to training groups. However, these
methods lack the inductive bias of BN and TTT, as they instead use learned context and loss networks.
These ablations validate the importance of adapting to a specific group.

4.3 QUANTITATIVE EVALUATION AND COMPARISONS

In([Table 1] we summarize the results. From these results, we highlight several key takeaways:

ARM methods consistently improve robustness and performance. Across all of our experiments,
ARM methods significantly increase both worst case and average accuracy compared to all other
methods. ARM-BN in particular achieves the best performance on most domains, demonstrating
the effectiveness of using meta-training to improve an already strong inductive bias that empirically
works well for image classification. ARM-CML and ARM-LL also generally improve upon the other
methods for almost all metrics, and we suspect that these more expressive methods could perform
better than ARM-BN for other modalities such as natural language and video (Yu et al., 2018).

Robustness methods suffer from pessimism and training difficulties. DRNN generally results
in worse average case and, surprisingly, worst case performance, which we hypothesize may be
due to optimization difficulties or overfitting to the training groups. In particular, methods such as
DRNN were originally evaluated in settings where the training and test groups were semantically the
same (Sagawa et al., 2020), whereas our FEMNIST setup tests on held out users and our CIFAR-
10-C and Tiny ImageNet-C setups test on held out corruptions. Indeed, for FEMNIST, we also test
q-FedAvg (L1 et al., |2020), a state-of-the-art method for fair federated learning. ¢-FedAvg was also
originally evaluated with the same users at training and test time, and in our setup, this method also
performs poorly, achieving 58.2 & 1.0 worst case and 80.8 £ 0.3 average accuracy.

We found that, in these experiments, DANN and MMD mostly outperform robustness methods,
though the overall performance of these methods for learning invariant features across groups is still
worse than ARM methods in general. Invariance methods have primarily been tested in settings with
an order of magnitude fewer source domains — usually 4 to 6, rather than tens or hundreds — and more



Under review as a conference paper at ICLR 2021

data per domain (Gulrajani & Lopez-Paz, [2020)), and employing techniques such as an adversarial
domain classifier may be less effective in general as the number of domains increases.

With an appropriate inductive bias, test time adaptation methods perform well. In our evalu-
ation, one of the strongest prior methods is the simple BN method. This method performs well
across all metrics, though it typically still lags behind ARM methods and ARM-BN in particular. As
discussed above, we believe that this adaptation procedure performs well as it constitutes an inductive
bias that is well suited for image classification. TTT offers additional support for this hypothesis: this
method also works well across most metrics, in line with previous results on the original versions of
the corrupted image benchmarks (Sun et al., [2020), but works notably well for rotated MNIST. This
may be because the inductive bias associated with the auxiliary task of rotating images allows the
classifier to specifically be more robust to rotation shift.

In summary, in our experiments, we observe poor performance from robustness methods, varying
performance from invariance and adaptation methods, and the strongest performance from ARM
methods. As ARM methods also make the strongest assumptions, we next present some findings on
how these assumptions may be loosened.

4.4 LOOSENING THE TRAINING GROUP AND TEST BATCH ASSUMPTION

We present an investigation of the feasibility and effectiveness of ARM methods without the training
group and test batch assumptions. Specifically, we consider unsupervised learning techniques for
discovering group structure in the training data, as well as a streaming test time evaluation setting.

Unknown groups. In the case of unknown groups, one option is to
use unsupervised learning techniques to discover group structure in
the training data. To test this option, we focus on rotated MNIST
and ARM-CML, which performs the best on this dataset, and train a
variational autoencoder (VAE) (Kingma & Welling| 2014} |[Rezende
et al.| 2014} with discrete latent variables (Jang et al., 2017} |Maddison
et al.,[2017) using the training images and labels. We define the latent
variable, which we denote as c to differentiate from the group z, to be
Categorical with 12 possible discrete values, which we purposefully
choose to be smaller than the number of rotations. The VAE is not
given any information about the ground truth z; however, we encode
the notion that c is independent of y by conditioning the decoder on
the label. We use the VAE inference network to assign groups to the
training data, and we run ARM-CML using these learned groups. In
we see that ARM-CML in this setting outperforms ERM and
is competitive with TTT, which as discussed earlier encodes a strong
inductive bias for solving this task. [Figure 3| visualizes samples from
the VAE for different values of y and c.

This result suggests that, when group information is not provided, a
viable approach is to learn groups for ARM methods. Discovering
disentangled factors of variation without supervision is, in the most

Method

ERM T43+17 93.6+04
TTT 81.1+03 954+0.1
ARM-CML 81.7+0.3 95.2+0.3

wcC Avg

Table 2: Using learned groups,
ARM-CML outperforms ERM
and matches the performance
of TTT on rotated MNIST. This
result may be improved by tech-
niques for learning more di-
verse groups for meta-training.

0\23 46
O\V2EB46 61
ONT3 46 LA

o_
ONa24s N
O/ A3 wrsdy

"W > OD I~

Figure 3: Visualizing VAE sam-
ples conditioned on different
values of y (x axis) and c (y
axis). The VAE learns to use

general sense, an impossible problem (Locatello et al.l 2019). How-
ever, when combined with meta-learning, the learned groups need not
perfectly reflect the test time distributions; rather, the groups should cover many different distributions
to allow for meta-training the model such that it can adapt to new test distributions. This advantage
was noted by Hsu et al.|(2019), who show that even simple techniques such as overcomplete clustering
can be effective for defining meta-training tasks. Incorporating techniques from this prior work is a
promising direction for building on our results.

c to represent rotations.

Streaming test points. When we cannot access a batch of test points all at once, we can augment
the proposed ARM methods to be sequential. For example, ARM-CML and ARM-BN can update
their average context and normalization statistics, respectively, after observing each new test point. In
we visualize the performance of both of these methods, using models that were meta-trained
with batch sizes of 50 but evaluated in this streaming setting. We see that both ARM-CML and
ARM-BN are able to achieve near their original worst case and average accuracy within observing 10
data points, for rotated MNIST, and 25 data points, for Tiny ImageNet-C, well before the training



Under review as a conference paper at ICLR 2021

1o Worst Case Accuracy - Rotated MNIST Average Accuracy - Rotated MNIST 455 Norst Case Accuracy - Tiny ImageNet-C Average Accuracy - Tiny ImageNet-C
) 0 e el A B i s ey o
—‘_-‘MH‘ —————————————————— 030 ==
08 il 04 o T
- 08 025
§ —— ARM-CML (Streaming) § —— ARM-CML (Streaming) 3 o —— ARMCML (Streaming) 3 —— ARM-CML (Streaming)
3 04 ARM-BN (Streaming) S ARM-BN (Streaming) 2 ARM-BN (Streaming) 2 2 ARM-BN (Streaming)
2 < o4 <L on <
—— ERM —— ERM —— ERM —— ERM
02 —— ARM-CML 02 == ARM-CML 005 —— ARM-CML o —=— ARM-CML
—— ARM-BN —— ARM-BN —— ARMBN —— ARM-BN

00
00
0 50 100 150 200 0 50 100 150 200 oz m T W0 125 B0 W 20 o » W B 0 @5 1 W5 20

# examples # examples # examples # examples
Figure 4: In the streaming setting, ARM methods reach strong performance on rotated MNIST (left) and Tiny

ImageNet-C (right), after fewer than 10 and 25 data points, respectively, despite meta-training with batch sizes
of 50 for both domains. This highlights the ability of the trained models to adapt with small test batches.

batch size of 50. We describe in detail how each ARM method can be applied to the streaming
setting in[Appendix Al Next, we qualitatively analyze why ARM-CML achieves better performance
compared to ERM in the case of FEMNIST.

4.5 QUALITATIVE ANALYSIS AND OBSERVATIONS

In we present an example of how ARM methods
can improve test accuracy by adapting to specific users.
We visualize a batch of 50 examples from a random FEM-
NIST test user, and we highlight an ambiguous example.
An ERM trained model and an ARM-CML trained model,
when only given a test batch size of 2 as shown by the
black dashed box, incorrectly classify this example as
“2”. However, when given access to the entire batch of
50 images, which contain examples of class “2”” and “a”
from th.is user, .th(? ARM-CML t.rain.ed model successfully ¢ = " FEMNIST test user. The ARM-CML
adapts its prediction to “a”, which is the correct label. In 1,041 using the entire batch, is able to suc-
general, we find that most examples of adaptation in FEM-  ¢essfully adapt to output the correct label “a”
NIST occur for similarly ambiguous examples, e.g., “I”  on the ambiguous example, shown enlarged,
versus “I”, though not all examples were interpretable. whereas other models incorrectly output “2”.

ARM-CML, — 2
ARM-CMLy, — a

Figure 5: Visualizing one batch of 50 images

5 DISCUSSION AND FUTURE WORK

We presented adaptive risk minimization (ARM), a problem formulation for learning models that
can robustly adapt in the face of group distribution shift at test time using only a batch of unlabeled
test examples. We devised an algorithm and a set of methods for optimizing the ARM objective
that meta-learns models that are adaptable to different distributions of training data. Empirically, we
observed that ARM methods consistently improve performance in terms of both average and worst
case metrics, as compared to a number of prior approaches for handling shift. Two exciting directions
for future work are to further explore the unknown groups setting, potentially drawing inspiration
from |[Hsu et al.| (2019) as discussed, and to develop more sophisticated ARM approaches.

REFERENCES

A. Antoniou and A. Storkey. Learning to learn via self-critique. In Advances in Neural Information
Processing Systems (NeurlPS), 2019.

A. Ben-Tal, D. den Hertog, A. De Waegenaere, B. Melenberg, and G. Rennen. Robust solutions of
optimization problems affected by uncertain probabilities. Management Science, 2013.

S. Bengio, Y. Bengio, J. Cloutier, and J. Gecsei. On the optimization of a synaptic learning rule. In
Optimality in Artificial and Biological Neural Networks, 1992.

G. Blanchard, G. Lee, and C. Scott. Generalizing from several related classification tasks to a new
unlabeled sample. In Advances in Neural Information Processing Systems (NIPS), 2011.

J. Blanchet, Y. Kang, and K. Murthy. Robust Wasserstein profile inference and applications to
machine learning. arXiv preprint arXiv:1610.05627, 2016.



Under review as a conference paper at ICLR 2021

M. Buda, A. Maki, and M. Mazurowski. A systematic study of the class imbalance problem in
convolutional neural networks. Neural Networks, 2018.

S. Caldas, S. Duddu, P. Wu, T. Li, J. Kone¢ny, H. McMahan, V. Smith, and A. Talwalkar. LEAF:
A benchmark for federated settings. In Workshop on Federated Learning for Data Privacy and
Confidentiality, 2019.

F. Chen, M. Luo, Z. Dong, Z. Li, and X. He. Federated meta-learning with fast convergence and
efficient communication. arXiv preprint arXiv:1802.07876, 2018.

G. Cohen, S. Afshar, J. Tapson, and A. van Schaik. EMNIST: An extension of MNIST to handwritten
letters. arXiv preprint arXiv:1702.05373, 2017.

G. Csurka. Domain adaptation for visual applications: A comprehensive survey. arXiv preprint
arXiv:1702.05374, 2017.

J. Duchi, P. Glynn, and H. Namkoong. Statistics of robust optimization: A generalized empirical
likelihood approach. arXiv preprint arXiv:1610.03425, 2016.

P. Esfahani and D. Kuhn. Data-driven distributionally robust optimization using the Wasserstein
metric: Performance guarantees and tractable reformulations. arXiv preprint arXiv:1505.05116,
2015.

A. Fallah, A. Mokhtari, and A. Ozdaglar. Personalized federated learning: A meta-learning approach.
arXiv preprint arXiv:2002.07948, 2020.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks.
In International Conference on Machine Learning (ICML), 2017.

Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation. In International
Conference on Machine Learning (ICML), 2015.

M. Garnelo, D. Rosenbaum, C. Maddison, T. Ramalho, D. Saxton, M. Shanahan, Y. Teh, D. Rezende,
and S. Eslami. Conditional neural processes. In International Conference on Machine Learning
(ICML), 2018.

A. Globerson and S. Roweis. Nightmare at test time: Robust learning by feature deletion. In
International Conference on Machine Learning (ICML), 2006.

I. Gulrajani and D. Lopez-Paz. In search of lost domain generalization. arXiv preprint
arXiv:2007.01434, 2020.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

D. Hendrycks and T. Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations. In International Conference on Learning Representations (ICLR), 2019.

S. Hochreiter, A. Younger, and P. Conwell. Learning to learn using gradient descent. In International
Conference on Artificial Neural Networks (ICANN), 2001.

S. Horiguchi, S. Amano, M. Ogawa, and K. Aizawa. Personalized classifier for food image recognition.
IEEE Transactions on Multimedia, 2018.

K. Hsu, S. Levine, and C. Finn. Unsupervised learning via meta-learning. In International Conference
on Learning Representations (ICLR), 2019.

S. Hu, P. Moreno, Y. Xiao, X. Shen, G. Obozinski, N. Lawrence, and A. Damianou. Empirical Bayes
transductive meta-learning with synthetic gradients. In International Conference on Learning
Representations (ICLR), 2020.

W. Hu, G. Niu, I. Sato, and M. Sugiyama. Does distributionally robust supervised learning give
robust classifiers? In International Conference on Machine Learning (ICML), 2018.

10



Under review as a conference paper at ICLR 2021

S. Toffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning (ICML), 2015.

E. Jang, S. Gu, and B. Poole. Categorical reparameterization with Gumbel-softmax. In International
Conference on Learning Representations (ICLR), 2017.

Y. Jiang, J. Kone¢ny, K. Rush, and S. Kannan. Improving federated learning personalization via
model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.

A. Kaku, S. Mohan, A. Parnandi, H. Schambra, and C. Fernandez-Granda. Be like water: Robustness
to extraneous variables via adaptive feature normalization. arXiv preprint arXiv:2002.04019, 2020.

D. Kingma and M. Welling. Auto-encoding variational Bayes. In International Conference on
Learning Representations (ICLR), 2014.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of
Toronto, 2009.

D. Lazer, R. Kennedy, G. King, and A. Vespignani. The parable of Google flu: Traps in big data
analysis. Science, 2014.

H. Li, S. Pan, S. Wang, and A. Kot. Domain generalization with adversarial feature learning. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

T. Li, M. Sanjabi, A. Beirami, and V. Smith. Fair resource allocation in federated learning. In
International Conference on Learning Representations (ICLR), 2020.

X. Li, Q. Sun, Y. Liu, Q. Zhou, S. Zheng, T. Chua, and B. Schiele. Learning to self-train for
semi-supervised few-shot classification. In Advances in Neural Information Processing Systems
(NeurlIPS), 2019.

Y. Li, N. Wang, J. Shi, J. Liu, and X. Hou. Revisiting batch normalization for practical domain
adaptation. In International Conference on Learning Representations Workshop (ICLRW), 2017.

S. Lin, Y. Guang, and J. Zhang. Real-time edge intelligence in the making: A collaborative learning
framework via federated meta-learning. arXiv preprint arXiv:2001.03229, 2020.

Z. Lipton, Y. Wang, and A. Smola. Detecting and correcting for label shift with black box predictors.
In International Conference on Machine Learning (ICML), 2018.

A. Liu and B. Ziebart. Robust classification under sample selection bias. In Advances in Neural
Information Processing Systems (NIPS), 2014.

Y. Liu, J. Lee, M. Park, S. Kim, E. Yang, S. Hwang, and Y. Yang. Learning to propagate labels:
Transductive propagation network for few-shot learning. In International Conference on Learning
Representations (ICLR), 2019.

F. Locatello, S. Bauer, M. Lucic, G. Ritsch, S. Gelly, B. Scholkopf, and O. Bachem. Challenging
common assumptions in the unsupervised learning of disentangled representations. In International
Conference on Machine Learning (ICML), 2019.

C. Maddison, A. Mnih, and Y. Teh. The Concrete distribution: A continuous relaxation of discrete
random variables. In International Conference on Learning Representations (ICLR), 2017.

H. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Arcas. Communication-efficient learning
of deep networks from decentralized data. In International Conference on Artificial Intelligence
and Statistics (AISTATS), 2017.

L. Metz, N. Maheswaranathan, B. Cheung, and J. Sohl-Dickstein. Meta-learning update rules for
unsupervised representation learning. In International Conference on Learning Representations

(ICLR), 2019.

T. Miyato, S. Maeda, M. Koyama, K. Nakae, and S. Ishii. Distributional smoothing with virtual
adversarial training. arXiv preprint arXiv:1507.00677, 2015.

11



Under review as a conference paper at ICLR 2021

M. Mohri, G. Sivek, and A. Suresh. Agnostic federated learning. In International Conference on
Machine Learning (ICML), 2019.

Z. Nado, S. Padhy, D. Sculley, A. D’Amour, B. Lakshminarayanan, and J. Snoek. Evaluat-
ing prediction-time batch normalization for robustness under covariate shift. arXiv preprint
arXiv:2006.10963, 2020.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

J. Quifionero Candela, M. Sugiyama, A. Schwaighofer, and N. Lawrence. Dataset Shift in Machine
Learning. The MIT Press, 2009.

S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. In International Conference
on Learning Representations (ICLR), 2017.

M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J. Tenenbaum, H. Larochelle, and R. Zemel.
Meta-learning for semi-supervised few-shot classification. In International Conference on Learning
Representations (ICLR), 2018.

J. Requeima, J. Gordon, J. Bronskill, S. Nowozin, and R. Turner. Fast and flexible multi-task
classification using conditional neural adaptive processes. In Advances in Neural Information
Processing Systems (NeurIPS), 2019.

D. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference
in deep generative models. In International Conference on Machine Learning (ICML), 2014.

A. Royer and C. Lampert. Classifier adaptation at prediction time. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2015.

S. Sagawa, P. Koh, T. Hashimoto, and P. Liang. Distributionally robust neural networks for group
shifts: On the importance of regularization for worst-case generalization. In International Confer-
ence on Learning Representations (ICLR), 2020.

A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-learning with memory-
augmented neural networks. In International Conference on Machine Learning (ICML), 2016.

J. Schmidhuber. Evolutionary principles in self-referential learning. Diploma thesis, Institut f.
Informatik, Tech. Univ. Munich, 1987.

S. Schneider, E. Rusak, L. Eck, O. Bringmann, W. Brendel, and M. Bethge. Improving robustness
against common corruptions by covariate shift adaptation. arXiv preprint arXiv:2006.16971, 2020.

L. Shen, Z. Lin, and Q. Huang. Relay backpropagation for effective learning of deep convolutional
neural networks. In European Conference on Computer Vision (ECCV), 2016.

H. Shimodaira. Improving predictive inference under covariate shift by weighting the log-likelihood
function. Journal of Statistical Planning and Inference (JSPI), 2000.

J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. In Advances in
Neural Information Processing Systems (NIPS), 2017.

M. Sulc and J. Matas. Improving CNN classifiers by estimating test-time priors. In IEEE International
Conference on Computer Vision (ICCV), 2019.

Y. Sun, X. Wang, Z. Liu, J. Miller, A. Efros, and M. Hardt. Test-time training with self-supervision
for generalization under distribution shifts. In International Conference on Machine Learning
(ICML), 2020.

S. Thrun and L. Pratt. Learning to Learn. Springer Science & Business Media, 1998.

V. Vapnik. Statistical Learning Theory. Wiley New York, 1998.

12



Under review as a conference paper at ICLR 2021

O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Matching networks for one
shot learning. In Advances in Neural Information Processing Systems (NIPS), 2016.

D. Wang, E. Shelhamer, S. Liu, B. Olshausen, and T. Darrell. Fully test-time adaptation by entropy
minimization. arXiv preprint arXiv:2006.10726, 2020.

G. Wilson and D. Cook. A survey of unsupervised deep domain adaptation. ACM Transactions on
Intelligent Systems and Technology (TIST), 2020.

T. Yu, C. Finn, A. Xie, S. Dasari, P. Abbeel, and S. Levine. One-shot imitation from observing
humans via domain-adaptive meta-learning. In Robotics: Science and Systems (RSS), 2018.

R. Zhang, T. Che, Z. Ghahramani, Y. Bengio, and Y. Song. MetaGAN: An adversarial approach to
few-shot learning. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

13



Under review as a conference paper at ICLR 2021

A DETAILED DESCRIPTIONS OF META-LEARNING APPROACHES

For ARM-CML, we introduce two neural net-
works: a context network feon(-; @) : X — RP,
as mentioned in and a predic-
tion network foea(-,-;60) @ X x RP — Y,
parameterized by 6. As discussed, feon pro-
cesses each example x;; in the mini batch sep-
arately to produce contexts c;, € RP for k =
1,..., K, which are averaged together into ¢ =

+ Zszl . In our experiments, we choose D
to be the dimensionality of x, such that we can
concatenate each x;, and c along the channel Figure 6: During inference for ARM-CML, the context
dimension to produce the input to fpreq. Thus, network produces a vector cy, for each input image xj,
fored Processes each x;, separately to produce in the batch, and the average of these vectors is used as

an estimate of the output g, but it additionally the context c is input to the prediction network. This
receives ¢ as input. In this way, fuon can pro- context may adapt the model by providing helpful infor-

vide information about the entire batch of K mation about the underlying test distribution, and this

labeled d . f dicti h adaptation can aid prediction for difficult or ambiguous
unlabeled data points to fyreq for predicting the examples. During training, we compute the loss of the

correct outputs. post adaptation predictions and backpropagate through
A schematic of this method is presented in the inference procedure to update the model.

The post adaptation model parameters

0" are [0, ¢]. Since we only ever use the model after adaptation, both during training and at test
time, we can simply define g(x;6’) = fpred(X, c; 6), leaving the model’s behavior before adapta-
tion undefined. We then also see that h is a function that takes in (,x1,...,xx) and produces

context network feont
context

prediction network fored

— forward inference
< - backpropagation

[0, % Zle Seont(Xk; ¢)] . In the streaming setting tested in [subsection 4.4 we keep track of the

average context over the previous test points ¢ and we maintain a counter ¢ of the number of test
points seen so farﬂ When we observe a new point x, we increment the counter and update the average
context as t%c + tJ%l feont(X; ¢), and then we make a prediction on x using this updated context.
Notice that, with this procedure, we do not need to store any test points after they are observed, and
this procedure results in an equivalent context to ARM-CML in the batch test setting after observing

K data points.

At a high level, ARM-BN operates in a similar fashion to ARM-CML, thus we group these methods
together into the umbrella of contextual approaches. However, most of the details are different. For
ARM-BN, there is no context network, and h has no parameters, i.e., ¢ is empty. The model g is
again specified via a prediction network fyreq, Which must have batch normalization layers. Batch
normalization typically tracks a running average of the first and second moments of the activations
in these layers, which are then used at test time. Thus, we can view these moments, along with
the weights in fj.q, as part of . ARM-BN instead defines h to swap out these moments for the
moments computed via the activations on the test batch. This method is remarkably simple, and
in deep learning libraries such as PyTorch (Paszke et al., 2019), the implementation requires the
changing of a single line of code. However, as shown in[Section 4] this method also performs very
well empirically, and it is further boosted by meta-training.

In the streaming setting, ARM-BN is also similar to ARM-CML, however it is slightly more com-
plex due to the requirement of computing second moments. Denote the context after seeing ¢
test points as ¢ = [u, o %], the mean and variance of the batch normalization layer activations
on the points so far. Upon seeing a new test point, let a denote the batch normalization layer
activations computed from this new point, with size h. We then update the new context to be

ht >a ht 2 2 > a? ht >a 2 :
[h(t+1)“ + R }L(t+1)(0' +p’) + hGTD) (h,(t+1)“ + h,(t+1)) ] . Again note that we do
not store any test points and that we arrive at the same context as the batch test setting after observing
K data points.

'An alternative to maintaining a counter ¢ is to use an exponential moving average, though we do not
experiment with this option.

14



Under review as a conference paper at ICLR 2021

Finally, for ARM-LL, we note that ¢ contains only the parameters of the loss network fi,ss, and h is
defined as

h(evxly cee vXK;¢) =0 av@”[fluss(g(xl; 9)7¢)a ce '7floss(g(XK;9);¢)]”2 .

We found that o = 0.1 worked well for our experiments. We used 1 gradient step for both meta-
training and meta-testing. Finally, though we did not evaluate ARM-LL in the streaming setting,
in principle this method can be extended to this setting by performing a single gradient step with a
smaller « after observing each test point. In an online fashion, we can continually update the model
parameters over the course of testing rather than initializing from the meta-learned parameters for
each test point.

B ADDITIONAL EXPERIMENTAL DETAILS

When reporting our results, we run each method across three seeds and report the mean and standard
error across seeds. Standard error is calculated as the sample standard deviation divided by the square
root of 3. We checkpoint models after every epoch of training, and at test time, we evaluate the
checkpoint with the best worst case validation accuracy. Training hyperparameters and details for
how we evaluate validation and test accuracy are provided for each experimental domain below. All
hyperparameter settings were selected in preliminary experiments using validation accuracy only.

We also provide details for how we constructed the training, validation, and test splits for each dataset.
These splits were designed without any consideration for the train, validation, and test accuracies
of any method. All of these design choices were made either intuitively — such as maintaining the
original data splits for MNIST — or randomly — such as which users were selected for which splits in
FEMNIST - or with a benign alternate purpose — such as choosing disjoint sets of corruptions.

B.1 ROTATED MNIST DETAILS

We construct a training set of 32292 data points by replicating 90% of the original training set —
separating out a validation set — and then applying random rotations to each image. The rotations
are not dependent on the image or label, but certain rotations are sampled much less frequently than
others. In particular, rotations of 0 through 20 degrees, inclusive, have 7560 data points each, 30
through 50 degrees have 2160 points each, 60 through 80 have 648, 90 through 110 have 324 each,
and 120 to 130 have 108 points each.

We train all models for 200 epochs with mini batch sizes of 50. We use Adam updates with learning
rate 0.0001 and weight decay 0.0001. We construct an additional level of mini batching for our
method as described in[subsection 3.3} such that the batch dimensions of the data mini batches is
6 x 50 rather than just 50, and each of the inner mini batches contain examples from the same rotation.
We refer to the outer batch dimension as the meta batch size and the inner dimension as the batch
size. All methods are still trained for the same number of epochs and see the same amount of data.
Finally, DRNN uses an additional learning rate hyperparameter for their robust loss, which we set to
0.01 across all experiments (Sagawa et al., 2020).

Due to the large number of groups in this setting, we only compute validation accuracy every 10
epochs. When computing validation accuracy, we estimate accuracy on each rotation by randomly
sampling 300 of the held out 6000 original training points and applying the specific rotation, resam-
pling for each validation evaluation. This is effectively the same procedure as the test evaluation,
which randomly samples 3000 of the 10000 test points and applies a specific rotation.

We retain the original 28 x 28 x 1 dimensionality for the MNIST images, and we divide inputs
by 256. We use convolutional neural networks for all methods with varying depths to account for
parameter fairness. For ERM, the UW baseline, and DRNN, the network has four convolution layers
with 128 filters of size 5 x 5, followed by 4 x 4 average pooling, one fully connected layer of size 200,
and a linear output layer. Rectified linear unit (ReLU) nonlinearities are used throughout, and batch
normalization (loffe & Szegedy, 2015) is used for the convolution layers. The first two convolution
layers use padding to preserve the input height and width, and the last two convolution layers use
2 x 2 max pooling. For our method and context ablation, we remove the first two convolution layers
for the prediction network, but we incorporate a context network. The context network uses two
convolution layers with 64 filters of size 5 x 5, with ReLU nonlinearities, batch normalization, and

15



Under review as a conference paper at ICLR 2021

padding, followed by a final convolution layer with padding. This last layer has number of filters, of
size b x 5, equal to 12 in the case of MNIST, 3 for CIFAR and Tiny ImageNet-C, and 1 for FEMNIST.

B.2 FEMNIST DETAILS

FEMNIST, and EMNIST in general, is a significantly more challenging dataset compared to MNIST
due to its larger label space (62 compared to 10 classes), label imbalance (almost half of the data
points are digits), and inherent ambiguities (e.g., lowercase versus uppercase “0”) (Cohen et al.| 2017).
In processing the FEMNIST datasetE] we filter out users with fewer than 100 examples, leaving 262,
50, and 35 unique users and a total of 62732, 8484, and 8439 data points in the training, validation,
and test splits, respectively. The smallest users contain 104, 119, and 140 data points, respectively.
We keep all hyperparameters the same as MNIST, except we set the meta batch size for our method
to be 2.

We additionally compare to g-FedAvg on this domain, as this method is specifically designed for
federated learning settings (Li et al., 2020). We modify the authors’ publicly available code{ﬂ to
run experiments in our setting, and we will make this fork available upon publication along with
our own code base. This method follows its own update rule and hyperparameter settings, and we
separately optimize the hyperparameters for g-FedAvg as described in|Li et al|(2020). Specifically,
we first set ¢ = 0 and sweep learning rate values between 0.0001 and 1.0, and then we sweep
g € {0.001,0.01,0.1,0.5,1,2,5,10, 15} with the optimal learning rate. With this procedure, we set
learning rate to be 0.8 and ¢ to be 0.001.

We compute validation accuracy every epoch by iterating through the data of each validation user
once, and this procedure is the same as test evaluation. Note that all methods will sometimes receive
small batch sizes as each user’s data size may not be a multiple of 50, and though this may affect
ARM methods, we demonstrate in that ARM-CML can adapt using batch sizes much
smaller than 50. The network architectures are the same as the architectures used for rotated MNIST.

B.3 CIFAR-10-C AND TINY IMAGENET-C DETAILS

For both CIFAR-10-C and Tiny ImageNet-C, we construct training, validation, and test sets with
56, 17, and 22 groups, respectively. Each group is based on type and severity of corruption. We
split groups such that corruptions in the training, validation, and test sets are disjoint. Specifically,
the training set consists of Gaussian noise, shot noise, defocus blur, glass blur, zoom blur, snow,
frost, brightness, contrast, and pixelate corruptions of all severity levels. Similarly, the validation
set consists of speckle noise, Gaussian blur, and saturate corruptions, and the test set consists of
impulse noise, motion blur, fog, and elastic transform corruptions of all severity levels. For two
corruptions, spatter and JPEG compression, we include lower severities (1-3) in the training set and
higher severities (4-5) in the validation and test sets. For the training and validation sets, each group
consists of 1000 images for CIFAR-10-C and 2000 images for Tiny ImageNet-C, giving training
sets of size 56000 and 112000, respectively. We use the full test set of 10000 images for each group,
giving a total of 220000 test images for both CIFAR-10-C and Tiny ImageNet-C.

In these experiments, we train ResNet-50 (He et al.|[2016) models with a support size of 50 and meta
batch size of 6. As described above, the context ablation and ARM-CML additionally use small
convolutional context networks, and the learned loss ablation and ARM-LL use small fully connected
loss networks. The images are normalized by the ImageNet mean and standard deviation before they
are passed through the model. For CIFAR-10-C, we train models from scratch for 100 epochs, and for
Tiny ImageNet-C we fine tune a pretrained model for 50 epochs. We use stochastic gradient descent
with learning rate 0.01, momentum 0.9, and weight decay 0.0001. We evaluate validation accuracy
after every epoch and perform model selection based on the worst case accuracy over groups. We
perform test evaluation by randomly sampling 3000 images from each group and computing worst
case and average classification accuracy across groups.

2https ://github.com/TalwalkarLab/leaf/tree/master/data/femnist,
Shttps://github.com/litian96/fair flearn

16


https://github.com/TalwalkarLab/leaf/tree/master/data/femnist
https://github.com/litian96/fair_flearn

	Introduction
	Related Work
	Adaptive Risk Minimization
	The ARM problem setting
	Deriving the ARM objective
	Optimizing the ARM objective

	Experiments
	Evaluation domains and protocol
	Comparisons and ablations
	Quantitative evaluation and comparisons
	Loosening the training group and test batch assumption
	Qualitative analysis and observations

	Discussion and Future Work
	Detailed Descriptions of Meta-Learning Approaches
	Additional Experimental Details
	Rotated MNIST details
	FEMNIST details
	CIFAR-10-C and Tiny ImageNet-C details


