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ABSTRACT

In automated machine learning, scientific discovery, and other applications of
Bayesian optimization, deciding when to stop evaluating expensive black-box
functions in a cost-aware manner is an important but underexplored practical con-
sideration. A natural performance metric for this purpose is the cost-adjusted
simple regret, which captures the trade-off between solution quality and cumu-
lative evaluation cost. While several heuristic or adaptive stopping rules have
been proposed, they lack guarantees ensuring stopping before incurring excessive
function evaluation costs. We propose a principled cost-aware stopping rule for
Bayesian optimization that adapts to varying evaluation costs without heuristic
tuning. Our rule is grounded in a theoretical connection to state-of-the-art cost-
aware acquisition functions, namely the Pandora’s Box Gittins Index (PBGI) and
log expected improvement per cost (LogEIPC). We prove a theoretical guarantee
bounding the expected cost-adjusted simple regret incurred by our stopping rule
when paired with either acquisition function. Across synthetic and empirical tasks,
including hyperparameter optimization and neural architecture size search, pairing
our stopping rule with PBGI or LogEIPC usually matches or outperforms other
acquisition-function–stopping-rule pairs in terms of cost-adjusted simple regret.

1 INTRODUCTION

Bayesian optimization is a framework designed to efficiently find approximate solutions to optimiza-
tion problems involving expensive-to-evaluate black-box functions, where derivatives are unavailable.
Such problems arise in applications like hyperparameter tuning (Snoek et al., 2012), robot control
optimization (Martinez-Cantin, 2017), and material design (Zhang et al., 2020). It works by iteratively,
(a) forming a probabilistic model of the black-box objective function based on data collected thus
far, then (b) optimizing an acquisition function, which balances exploration-exploitation tradeoffs, to
carefully choose a new point at which to observe the unknown function in the next iteration.

In this work, we consider the cost-aware setting, where one must pay a cost to collect each data point,
and study adaptive stopping rules that choose when to stop the optimization process. After stopping
at some terminal time, we measure performance in terms of simple regret, which is the difference in
value between the best solution found so far and the global optimum. Collecting a data point can
reduce simple regret, but incurs cost in order to do so.

As an example, consider using a cloud computing environment to tune the hyperparameters of a
classifier in order to optimize a performance metric on a given test set. Training and evaluating
test error takes some number of CPU or GPU hours, that may depend on the hyperparamaters used.
These come with a financial cost, billed by the cloud computing provider, which define our cost
function. The objective value is the business value of deploying the trained model under the given
hyperparameters—a given function of the model’s accuracy. From this perspective, simple regret
can be understood as the opportunity cost for deploying a suboptimal model instead of the optimal
one. Motivated by the need to balance cost-performance tradeoff in examples such as above, we aim
to design stopping rules that optimizes expected cost-adjusted simple regret, defined as the sum of
simple regret and the cumulative cost of data collection.

Several stopping rules have been proposed for Bayesian optimization. Simple heuristics—such as
fixing a maximum number of iterations or stopping when the best value remains unchanged for
a certain number of iterations—are widely used in practice, but can either stop too early or lead
to unnecessary evaluations. Other approaches include acquisition-function-based rules that stop
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when, for instance, the probability of improvement, expected improvement, or knowledge gradient
drop below a preset threshold (Lorenz et al., 2015; Nguyen et al., 2017; Frazier & Powell, 2008);
and regret-bound-based rules, which use theoretical performance guarantees to decide termination
(Makarova et al., 2022; Ishibashi et al., 2023; Wilson, 2024). Most of these target the classical setting
which does not explicitly incorporate function evaluation costs.

In this work, we study how to design cost-aware stopping rules, motivated by two primary factors.
First, state-of-the-art cost-aware acquisition functions such as the Pandora’s Box Gittins Index (PBGI)
(Xie et al., 2024) and log expected improvement per cost (LogEIPC) (Ament et al., 2023) have not
yet been studied in the adaptive stopping setting. This is important because—as our experiments
in Section 4 will show—for best performance, one should pair different acquisition functions with
different stopping rules. Second, while certain stopping rules, such as UCB–LCB (Makarova et al.,
2022), are guaranteed to achieve a low simple regret, they are not necessarily guaranteed to do so
with low evaluation costs. This is important because—as our experiments will show—UCB–LCB
will often incur high evaluation costs, resulting in a high cost-adjusted simple regret.

Our work builds upon the Bayesian-optimal Pandora’s Box decision principle underlying the PBGI
acquisition function and extends it to the adaptive stopping setting in correlated Bayesian optimization.
Furthermore, we show that an existing stopping rule proposed for the expected improvement (EI)
acquisition function in the classical (non–cost-aware) setting (Nguyen et al., 2017) is equivalent to
the PBGI stopping rule, which provides a principled extension of that rule to the cost-aware setting.
Our stopping rule can therefore naturally be paired with both PBGI and (Log)EI(PC), but it does
not automatically extend to acquisition functions based on other design principles (e.g., KG, MES),
which would require their own matched stopping rules. Our specific contributions are as follows:

1. A Novel Cost-Aware Stopping Rule. We present an adaptive stopping rule derived from
Pandora’s box theory, which also naturally extends to the EI design principle, establishing a
unified and principled framework applicable to classic and cost-aware Bayesian optimization.

2. Theoretical Guarantees. We prove in Theorem 2 that our stopping rule, when paired with the
PBGI or LogEIPC acquisition function, satisfies a theoretical upper bound on the expected
cost-adjusted simple regret, which constitutes the first theoretical guarantee of this type for
any adaptive stopping rule for Bayesian optimization.

3. Empirical Validation. We conduct a systematic empirical evaluation across multiple
acquisition-function—stopping-rule pairs in cost-aware Bayesian optimization. Our re-
sults show that pairing our proposed stopping rule with PBGI or LogEIPC usually matches
or outperforms other pairs of acquisition functions and stopping rules.

2 BAYESIAN OPTIMIZATION AND ADAPTIVE STOPPING

In black-box optimization, the goal is to find an approximate optimum of an unknown objective
function f : X → R using a limited number of function evaluations at points x1, . . . , xT ∈ X where
X is the search space and T is a given search budget, potentially chosen adaptively. The convention
measures performance in terms of expected simple regret (Garnett, 2023, Sec. 10.1), given by

R = E
[
min

1≤t≤T
f(xt)− inf

x∈X
f(x)

]
(1)

where the expectation is taken over all sources of randomness, including the sequence of points
x1, . . . , xT selected by the algorithm. Bayesian optimization approaches this problem by building
a probabilistic model of f—typically a Gaussian process (GP) (Rasmussen & Williams, 2006),
conditioned on the observed data points (xt, yt)

T
t=1, where yt = f(xt). For each iteration t =

1, . . . , T , an acquisition function αt : X → R then guides the selection of new samples by carefully
balancing the exploration-exploitation tradeoff arising from uncertainty about f .

2.1 COST-AWARE BAYESIAN OPTIMIZATION

Cost-aware Bayesian optimization (Lee et al., 2020; Astudillo et al., 2021) extends the above setup
to account for the fact that evaluation costs can vary across the search space. For instance, in the
hyperparameter tuning example of Section 1, costs can vary according to the time needed to train a
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machine learning model under a given set of hyperparameters x. Cost-aware Bayesian optimization
handles this by introducing a cost function c : X → R+, which may be known or unknown ahead.
The cost function, or observed costs, are then used to construct the acquisition function αt.

In this work, we focus primarily on the cost-per-sample formulation (Chick & Frazier, 2012; Cashore
et al., 2016; Xie et al., 2024) of cost-aware Bayesian optimization, which seeks methods with stopping
time τ , not necessarily fixed, that achieve a low expected cost-adjusted simple regret

Rc = E

[
min

1≤t≤τ
f(xt)− inf

x∈X
f(x)︸ ︷︷ ︸

simple regret

+

τ∑
t=1

c(xt)︸ ︷︷ ︸
cumulative cost

]
. (2)

One can also work with the expected budget-constrained formulation (Xie et al., 2024), which
incorporates budget constraints explicitly, and seeks algorithms which achieve a low expected simple
regret under an expected evaluation budget. Here, performance is evaluated in terms of

R = E
[
min

1≤t≤τ
f(xt)− inf

x∈X
f(x)

]
where x1, . . . , xτ satisfy E

τ∑
t=1

c(xt) ≤ B. (3)

The stopping rules we study can be applied in this setting as well: we discuss this in Section 3.1.

For both settings, we work with a few acquisition functions—chiefly, log expected improvement per
cost (LogEIPC) (Ament et al., 2023) and the Pandora’s Box Gittins Index (PBGI) (Xie et al., 2024).
Given the posterior distribution of f at iteration t, LogEIPC is defined as

αLogEIPC
t (x) := log

EIf |x1:t,y1:t(x; y
∗
1:t)

c(x)
, (4)

i.e., the logarithm of the expected improvement divided by the cost; and PBGI is defined as

αPBGI
t (x) :=

{
g where g solves EIf |x1:t,y1:t(x; g) = c(x), x /∈ {x1, . . . , xt}
f(x), x ∈ {x1, . . . , xt}

(5)

where the value g is the threshold at which the expected improvement equals the cost1, y∗1:t =
min1≤s≤t ys is the best value observed in the first t iterations, and EIψ(x; y) = E [max(y − ψ(x), 0)]
is the expected improvement at point x with respect to some random function ψ : X → R and a
baseline value y. We also consider classical cost-unaware acquisition functions—lower confidence
bound (LCB) and Thompson sampling (TS); see Garnett (2023) for details.

2.2 ADAPTIVE STOPPING RULES

To the best of our knowledge, stopping rules for Bayesian optimization typically do not incorporate
cost explicitly into the stopping criterion. We broadly categorize existing methods as follows:

Criteria based on convergence or significance of improvement. This includes empirical convergence,
namely stopping when the best value remains unchanged for a fixed number of iterations, or the
global stopping strategy (GSS) (Bakshy et al., 2018), which stops when the improvement is no longer
statistically significant relative to the inter-quartile range (i.e., the range between the 25th percentile
and the 75th percentile) of prior observations. In the multi-fidelity setting, Foumani & Bostanabad
(2025) proposed stopping when the high-fidelity surrogate’s estimated optimum has stabilized over a
window of iterations, which is related to cost-awareness but differs from our setting with explicitly
varying evaluation costs.

Acquisition-based criteria. This includes stopping rules built from acquisition functions such as
the probability of improvement (PI) (Lorenz et al., 2015), expected improvement (EI) (Locatelli,
1997; Nguyen et al., 2017; Ishibashi et al., 2023), and knowledge gradient (KG) (Frazier & Powell,
2008). These approaches typically stop when the acquisition value falls below a fixed threshold—a
predetermined constant, median of the initial acquisition values, or the cost of sampling—but typically
assume uniform costs and do not adapt to evaluation costs which can vary across the search space.

1For an evaluated point x, we set g = f(x) since the posterior at x collapses to a point mass at the observed
value f(x) and its evaluation cost can be treated as 0.
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Regret-based criteria. This includes stopping rules based on confidence bounds such as UCB-LCB
(Makarova et al., 2022) and the gap of expected minimum simple regrets (Ishibashi et al., 2023).
These stop when certain estimated regret bounds fall below a preset or data-driven threshold. The
related probabilistic regret bound (PRB) stopping rule (Wilson, 2024) stops when estimated simple
regret is below a small threshold ϵ with confidence 1− δ.

In settings beyond Bayesian optimization, Chick & Frazier (2012) have proposed a cost-aware
stopping rules for finite-domain sequential sampling problems with independent values. Although
this formulation allows for varying costs, it does not extend to general Bayesian optimization settings
which use correlated GP models.

3 A STOPPING RULE BASED ON THE PANDORA’S BOX GITTINS INDEX

In this work, we propose a new stopping rule tailored for two state-of-the-art acquisition functions
used in cost-aware Bayesian optimization: LogEIPC and PBGI, introduced in Section 2. As discussed
by Xie et al. (2024), these acquisition functions are closely connected, arising from two different
approximations of the intractable dynamic program which defines the Bayesian-optimal policy for
cost-aware Bayesian optimization. We now show that this connection can be used to obtain a
principled stopping criterion to be paired with both acquisition functions.

A stopping rule for PBGI. To derive a stopping rule for PBGI, consider first the Pandora’s Box
problem, from which it is derived. Pandora’s Box can be seen as a special case of cost-per-sample
Bayesian optimization, as introduced in Section 2, where X = {1, . . . , N} is a discrete space
and f is assumed uncorrelated. In this setting, the observed values do not affect the posterior
distribution—meaning, we have f(x′) | x1:t, y1:t = f(x′) at all unobserved points x′—and thus the
acquisition function value at point x is time-invariant and can be written simply as αPBGI(x), where
EIf (x;α

PBGI(x)) = c(x). Following Weitzman (1979), one can show using a Gittins index argument
that selecting xt to minimize αPBGI is Bayesian-optimal under minimization—the algorithm which
does so achieves the smallest expected cost-adjusted simple regret, among all adaptive algorithms.

One critical detail applied in the optimality argument of Weitzman (1979) is that the policy defined
by αPBGI is not Bayesian-optimal for any fixed deterministic T . Instead, it is optimal only when the
stopping time T is chosen according to the condition

min
x∈X\{x1,...,xt}

αPBGI(x) ≥ y∗1:t, (6)

where ≥ can be replaced by >2, and as before, y∗1:t is the best value observed so far.

In the correlated setting we study, Xie et al. (2024) extend αPBGI to define an acquisition function by
recomputing it at each time step t based on the posterior mean and variance, which defines αPBGI

t as
in Equation (5). In order to also extend the associated stopping rule, a subtle design choice arises:
should we use αPBGI

t−1 (before posterior update) or αPBGI
t (after posterior update) in Equation (6)?

While prior theoretical work (Gergatsouli & Tzamos, 2023) adopts the former choice, we instead
propose the latter, for two main reasons.

First, we argue it more faithfully reflects the intuition behind Weitzman’s original stopping rule.
In the independent setting, αPBGI(x) represents a kind of fair value for point x (Kleinberg et al.,
2016). For an evaluated point x ∈ {x1, . . . , xt}, this is simply the observed function value. For an
unevaluated point x ̸∈ {x1, . . . , xt}, the fair value reflects uncertainty in f(x) and the cost c(x). The
stopping rule Equation (6) then says to stop when the best fair value is among the already-evaluated
points—namely, when no point provides positive expected gain relative to its cost if evaluated in the
next round, conditioned on current observations. In the correlated setting, the fair value naturally
extends to αPBGI

t , because this incorporates all known information at a given time. Second, we show
in Appendix D.2 that using αPBGI

t yields tangible empirical gains in cost-adjusted regret.

Connection with LogEIPC. The above reasoning may at first seem to be fundamentally tied to
the Pandora’s Box problem and its Gittins-index-theoretic properties. We now show that it admits a

2Following Xie et al. (2024, Appendix B), optimality holds under any tie-breaking rule in the cost-per-sample
setting, but only under a carefully-chosen stochastic tie-breaking rule in the expected budget-constrained setting.
For simplicity, we use the stopping-as-early-as-possible tie-breaking rule throughout this paper.
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second interpretation in terms of log expected improvement per cost, which arises from a completely
different one-time-step approximation to the Bayesian-optimal dynamic program for cost-aware
Bayesian optimization in the general correlated setting.

To show this, we start with definitions above and apply a sequence of transformations. Recall that for
any unevaluated point x /∈ {x1, . . . , xt}, αPBGI

t (x) is defined in Equation (5) to be the solution to

EIf |x1:t,y1:t(x;α
PBGI
t (x)) = c(x) (7)

and since EIψ(x; y) is strictly increasing in y, any inequality involving αPBGI
t (x; c) can be lifted

through the EI function without changing its direction, which means

αPBGI
t (x) ≥ y∗1:t holds if and only if EIf |x1:t,y1:t (x; y

∗
1:t) ≤ c(x). (8)

This implies that the PBGI stopping rule from Equation (6) is equivalent to stopping when

EIf |x1:t,y1:t (x; y
∗
1:t) ≤ c(x) for all x ∈ X\{x1, . . . , xt}. (9)

meaning stop when no point’s expected improvement is worth its evaluation cost. Rearranging the
inequality and taking logs, we can rewrite this condition using the LogEIPC acquisition function 3 :

max
x∈X\{x1,...,xt}

αLogEIPC
t (x; y∗1:t) ≤ 0. (10)

We call the stopping rule given by the equivalent conditions (Equations (6), (9) and (10)) the
PBGI/LogEIPC stopping rule. Figure 1 gives an illustration of how the rule behaves in a simple
setting, demonstrating that it is more conservative—preferring to stop earlier—when the cost is high.

0.0 0.2 0.4 0.6 0.8 1.0

0

2

G
P 

m
od

el

0.0 0.2 0.4 0.6 0.8 1.010

0

10

Lo
gE

IP
C

 a
cq

next point Threshold (0.0)

0.0 0.2 0.4 0.6 0.8 1.0
2.5

0.0

2.5

PB
G

I a
cq

next point Threshold (current best)

(a) c(x) ≡ 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0

2

0.0 0.2 0.4 0.6 0.8 1.010

0

10

next point Threshold (0.0)

0.0 0.2 0.4 0.6 0.8 1.0
2.5

0.0

2.5

next point Threshold (current best)

(b) c(x) ≡ 0.0001

Figure 1: Illustration of the PBGI/LogEIPC stopping rule under a uniform-cost setting. When the
cost-per-sample is large (c(x) ≡ 0.1), the maximum LogEIPC acquisition value falls below the
threshold 0.0 and the minimum PBGI acquisition value exceeds the current best observed value,
indicating stopping; when the cost-per-sample is small (c(x) ≡ 0.0001), the maximum LogEIPC
acquisition value remains above the threshold 0.0 and the minimum PBGI acquisition value is smaller
than the current best observed value, indicating no stopping.

3.1 THEORETICAL GUARANTEES ON COST-ADJUSTED SIMPLE REGRET

The connection between PBGI and LogEIPC in fact goes beyond a shared stopping rule. In Lemma 1,
we prove that when paired with this stopping rule, both acquisition functions guarantee that at each
iteration before stopping, the expected improvement at the selected point is at least its evaluation cost.

3Excluding evaluated points is not theoretically required but often beneficial in practice, as numerical stability
adjustments can cause their expected improvement to remain positive.
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Lemma 1. Let X be compact, and let f : X → R be a random function with prior mean µ(·).
Consider a Bayesian optimization algorithm that begins at some initial point x1 ∈ X with cost
C = c(x1), acquires subsequent points using either the PBGI or LogEIPC acquisition function, and
terminates according to the PBGI/LogEIPC stopping rule. Let τ = mint≥1{supx∈X α

LogEIPC
t (x) <

0} be the algorithm’s stopping time, and denote the posterior expected improvement function by
αEI
t (x) = EIf |x1:t,y1:t (x; y

∗
1:t). Then, for all t < τ , αEI

t (xt+1) ≥ c(xt+1).

As a consequence of this claim, we show in Theorem 2 that the PBGI/LogEIPC stopping rule, when
paired with PBGI or LogEIPC, achieves cost-adjusted simple regret no worse than stopping immedi-
ately after the initial evaluation. Although this may sound trivial, many acquisition function–stopping
rule pairs fail to satisfy this no-worse-than-immediate property in practice (see Figures 2 and 3),
largely because most stopping rules are designed with simple regret alone in mind and do not explic-
itly account for evaluation costs. To our knowledge, this is the first formal guarantee on cost-adjusted
simple regret for Bayesian optimization, generalizing beyond simpler settings such as Pandora’s Box,
which assumes independent and discrete evaluations. All proofs in this section are in Appendix B.
Theorem 2. Consider the setting and algorithm specified in Lemma 1. Let U := µ(x1) −
E[minx∈X f(x)] <∞, then the algorithm’s expected cost-adjusted simple regret is bounded by

E

[
y∗1:τ −min

x∈X
f(x) +

τ∑
t=1

c(xt)

]
≤ E

[
y1 −min

x∈X
f(x) + c(x1)︸ ︷︷ ︸

cost-adjusted regret of immediate stopping

]
= U + C. (11)

This result yields a bound on expected cumulative cost and, under the natural assumption that practical
evaluations have a positive minimum cost, a high-probability finite-time termination guarantee.
Corollary 3. Consider the setting and algorithm specified in Lemma 1. Then the expected cumulative
cost of the algorithm is bounded by E [

∑τ
t=1 c(xt)] ≤ U + C. Further, if evaluation costs are

uniformly bounded below by a constant c0 > 0, i.e., c(x) ≥ c0,∀x ∈ X , then for any δ ∈ (0, 1), the
algorithm terminates in at most U+C

δ·c0 iterations with probability 1− δ.

3.1.1 IMPLICATION IN THE BUDGET-CONSTRAINED SETTING

We first note that in the discrete Pandora’s Box setting, under an expected budget constraint B,
minimizing αPBGI

t (x) is Bayesian-optimal: it achieves the lowest expected simple regret, among all
algorithms satisfying E [

∑τ
t=1 c(xt)] ≤ B, and the cost function used in defining αPBGI

t (x) is λc(x)
for some cost-scaling factor λ which depends on B (Xie et al., 2024, Theorem 2).

This result, at first, appear to be completely Pandora’s-Box-theoretic: it requires X to be discrete
and f to be independent. In the more general correlated setting of cost-aware Bayesian optimization,
however, Bayesian optimality of PBGI may no longer hold, and the relationship between B and the
choice of λ is not immediately clear. Theorem 2 helps bridge this gap: it provides an upper bound on
the expected cumulative cost up to the stopping time, which in turn yields the following principled
choice of λ that ensures compliance with the budget constraint.
Corollary 4. Consider the setting, algorithm, and notation specified in Lemma 1 and Theorem 2, but
with costs rescaled by a factor λ > 0: both the acquisition values and the stopping conditions are
computed using λc(·). If the cost-scaling factor is set to λ = U

B−C , then the algorithm’s expected
cumulative unscaled cost satisfies E[

∑τ
t=1 c(xt)] ≤ B.

If this choice of λ proves overly conservative—leading to underspending within the budget—it can
be paired with the PBGI-D variant of Xie et al. (2024), which starts with λ = λ0 and halves it each
time stopping is triggered. Choosing λ0 = U/(B − C) aligns the initial fixed-λ phase with the
budget in expectation, while ensuring that the adaptive decay is activated as designed. In Figure 10 in
Appendix D, we show PBGI-D with this choice of λ0 is competitive.

3.2 PRACTICAL IMPLEMENTATION CONSIDERATIONS FOR PBGI/LOGEIPC STOPPING RULE

Expressing objective and cost in common units. Evaluation costs are often measured in different
units than the objective, such as time versus accuracy. To compare them directly, we rescale costs
by a constant λ > 0, the conversion rate between cost and objective improvement. For instance, if

6
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one is willing to spend 1000 seconds to reduce test error by 0.01, then λ = 10−5. Importantly, in the
cost-per-sample setting we mainly study, λ is set by the problem provider rather than tuned by the
user, whereas the budgeted setting without a natural unit conversion is discussed in Section 3.1.1.

Unknown costs. In practice, evaluation costs are often not known in advance. They can be
modeled either (i) deterministically, using domain knowledge (e.g., proportional to model size in
hyperparameter tuning), or (ii) stochastically, via a GP over log costs. In Section 4, we present
empirical benchmark results under both modeling approaches. For the stochastic approach, we
follow Astudillo et al. (2021, Proposition 2) to model ln c(x) as a GP with posterior mean µln c and
variance σ2

ln c. To compute LogEIPC or PBGI, as well as their related stopping rules (including
prior acquisition-based ones and ours), we replace c(x) in Equations (4), (5) and (9) with E[c(x)] =
exp(µln c(x) + (σln c(x))

2/2). See Appendix D.3 for further discussion.

Preventing spurious stops. Although our stopping rule has theoretical guarantees, in practice,
it—like other adaptive stopping rules—can still suffer from spurious stops caused by two main
sources. First, early in the optimization process, the GP model parameters often fluctuate significantly
as new data points are collected, causing unstable stopping signals. To mitigate this, we enforce
a stabilization period consisting of the first several evaluations, during which we do not allow any
stopping rule to trigger. Second, imperfect optimization of the acquisition function—which is
especially common in higher-dimensional search spaces—can lead to misleading stopping signals. To
handle this, we use a debounce strategy, requiring the stopping rule to consistently indicate stopping
over several consecutive iterations before stopping optimization. See Figure 4 for an illustration.

4 EXPERIMENTS

To evaluate our proposed PBGI/LogEIPC stopping rule, we design three complementary sets of
experiments that progressively test its performance. First, we consider an idealized, low-dimensional
Bayesian regret setting in which the GP model exactly matches the true objective. This controlled
environment allows us to isolate the effect of different stopping rules without interference from
modeling or optimization errors. Then, we move to a higher-dimensional Bayesian regret setting
where each acquisition-function minimization must be approximated via a numerical optimizer.
Finally, we test in practical scenarios with potential objective model mismatch, using the LCBench
hyperparameter tuning benchmark and the NATS neural architecture size search benchmark. In each
case, we compare pairs of acquisition functions and stopping rules, which we describe next.

Acquisition functions. We consider four common acquisition functions that were discussed in
Section 2: LogEIPC, PBGI, LCB, and TS—chosen for their competitive performance, computational
efficiency, and close connections to existing stopping rules.

Baselines. We compare the proposed PBGI/LogEIPC stopping rule against several stopping rules
from prior work: UCB–LCB (Makarova et al., 2022), LogEIPC-med (Ishibashi et al., 2023), SRGap-
med (Ishibashi et al., 2023), and PRB (Wilson, 2024). We also include two simple heuristics
used in practice: Convergence and GSS. UCB–LCB stops once the gap between upper and lower
confidence bounds falls below a configurable threshold θ. LogEIPC-med stops when the log expected
improvement per cost drops beneath log(η) plus the median of its initial I values. SRGap-med
stops when the gap of the expected minimum simple regret falls below χ times the median of its
initial I values. PRB triggers once a probabilistic regret bound satisfies the regret tolerance ϵ and
confidence δ parameters. Convergence stops as soon as the best observed value remains unchanged
for w iterations. GSS stops if the recent improvement is less than ϕ × IQR over the past w trials
where IQR denotes the inter-quartile range of current observations. Finally, we include two reference
baselines: Immediate, which stops right after the initial evaluation (see Section 3.1), and Hindsight,
which, for each trial, selects the stopping time that yields the lowest cost-adjusted simple regret in
hindsight, thus providing a lower bound on achievable performance.

In our experiments, unless specified otherwise, we follow parameter values recommended in the
literature, and set θ = 0.01, η = 0.01, χ = 0.01, I = 20, ϵ = 0.1 for Bayesian regret experiments,
ϵ = 0.5% of the best test error for empirical experiments, δ = 0.05, w = 5, and ϕ = 0.01. Each
experiment is repeated with 50 random seeds to assess variability, and we report the mean with error
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bars (2 times the standard error) for each stopping rule. Each trial, in the sense of a run with a distinct
random seed, is capped at a fixed number of iterations; if a stopping rule is not triggered within this
limit, the stopping time is set to the cap. Details are provided in Appendix C.

4.1 BAYESIAN REGRET

We first evaluate our PBGI/LogEIPC stopping rule on random functions sampled from prior. Specifi-
cally, objective functions are sampled from Gaussian processes with Matérn 5/2 kernels with length
scale 0.1, defined over spaces of dimension d = 1 and d = 8. We consider a variety of evaluation cost
function types, including uniform costs, linearly increasing costs in terms of parameter magnitude,
and periodic costs that vary non-monotonically over the domain.

In the 1-dimensional experiments, we perform an exhaustive grid search over [0, 1] to isolate the effect
of stopping behavior from numerical optimization. In the 8-dimensional setting, due to instability
from higher dimensionality, we apply moving average with a window size of 20 when computing the
PBGI/LogEIPC stopping condition. See Figure 4 in Appendix C for an illustration. More details on
our experiment setup, and computational considerations are provided in Appendices C and D.

Figure 2 shows a comparison of cost-adjusted regret for acquisition function and stopping rule
pairings under different cost-scaling factors λ in the 1-dimensional setting and under different cost
regimes (uniform, linear, periodic) in 8-dimensional setting.

In the 1-dimensional setting, the Bayesian optimization problem is relatively straightforward and
all acquisition functions attain nearly identical hindsight optima, independent of cost scale or cost
type. From the plot, our PBGI/LogEIPC stopping rule pairing with LogEIPC or PBGI acquisition
function delivers competitive performance for each λ, and is particularly strong in handling high-cost
scenarios—those with large λ.

In the 8-dimensional experiments, however, clear gaps emerge: Under uniform and linear costs,
LogEIPC, PBGI, and LCB perform similarly and substantially outperform TS, while in the periodic
case, LogEIPC and PBGI outperform LCB and TS. In every cost regime, combining our stopping rule
with the LogEIPC, PBGI, or LCB acquisition function yields cost-adjusted regret nearly matching
the hindsight optimal. This shows our PBGI/LogEIPC stopping rule to be relatively robust against
challenges in acquisition function optimization. Further discussions of our experiments across all
cost types and cost-scaling factors can be found in Appendix D.

4.2 EMPIRICAL AUTOMATED MACHINE LEARNING BENCHMARKS

We then evaluate on two empirical benchmarks based on use cases from hyperparameter optimization
and neural architecture search: LCBench (Zimmer et al., 2021) and NATS-Bench (Dong et al., 2021).

LCBench provides training data of 2,000 hyperparameter configurations evaluated on 35 OpenML
Vanschoren et al. (2014) datasets. In the unknown-cost experiments, the cost is the full (200-epoch)
training time. For the known-cost setting, we observe that training time to scale approximately
linearly with the number of model parameters. Based on a linear regression fit (see Appendix C),
we adopt αp as a proxy of training time, where p is the number of model parameters and α is a
dataset-specific coefficient estimated from the regression.

NATS-Bench provides a search space of 32,768 neural architectures varying in channel sizes across
layers, evaluated on three datasets. As in LCBench, for the known-cost experiments, we approximate
the full runtime (training + validation time) at 90 epochs using αF + β, where F is the number of
floating point operations; see Appendix C for details.

We report the mean and error bars (2 times standard error) of the cost-adjusted simple regret, where
we consider the evaluation costs to be some representative cost-scaling factor λ (see Section 3.2)
multiplied with cumulative runtime. Simple regret is computed as the difference between (a) test
error of the configuration with best validation error at the stopping time and (b) the best test error
over all configurations. We present the results using proxy runtime here, and defer to Appendix D the
additional results under (i) the cost model mismatch scenario (proxy runtime used during Bayesian
optimization but actual runtime used for final performance evaluation), and (ii) the unknown-cost
scenario (actual runtime used during Bayesian optimization).
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Figure 2: Cost-adjusted simple regret across acquisition-stopping rule pairs in 1D and 8D Bayesian
regret setting. In 1D, objective functions are sampled from a GP with a Matérn-5/2 kernel and a linear
cost function scaled by λ = 0.1, 0.01, 0.001. The Immediate baseline is omitted at λ = 0.001 due to
its much higher regret (mean 0.6942, error bar [0.5314, 0.8570]). In 8D, objective functions are also
drawn from a GP with a Matérn-5/2 kernel, using three cost functions scaled by λ = 0.01.

Figure 3 presents performance of acquisition function–stopping rule pairs on LCBench and NATS-
Bench. For LCBench, we report min–max normalized cost-adjusted simple regret (see definition
in Appendix D) aggregated across 35 datasets in Figure 3 evaluated under three representative4

cost-scaling values. For NATS-Bench, we report cost-adjusted simple regret under λ = 10−5, with
additional results under two other cost-scaling factors shown in Figures 14 to 16 in Appendix D.

Per-dataset LCBench results are provided in Figures 19 to 21 in the appendix. Across these 35 tasks,
around 75% of them show our PBGI/LogEIPC stopping rule performing competitively when paired
with either PBGI or LogEIPC. The remaining outliers are mostly (aside from two exceptions) very
small datasets with <10000 instances that might lead to severe model misspecification.

Additional results under the cost model mismatch setting and the unknown-cost setting are provided
in Figures 17 and 18 in Appendix D, along with comparisons between our adaptive stopping rule
and fixed-iteration baselines. Overall, our PBGI/LogEIPC stopping rule consistently performs
strongly in terms of cost-adjusted simple regret, when paired with either PBGI or LogEIPC. We
also report, in Table 1 of Appendix D, how often each stopping rule fails to trigger within the
200-iteration cap: baselines such as SRGap-med and UCB–LCB often fail to stop early—particularly
on NATS-Bench—whereas our stopping rule reliably stops before the cap.

4These λ values are chosen to avoid degenerate cases—neither so large that the policy stops after only a few
evaluations (e.g., λ = 10−4 on NATS-Bench, see Figure 17) nor so small that evaluations are effectively free.
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Figure 3: Cost-adjusted simple regret across acquisition function–stopping rule pairs on LCBench and
NATS-Bench. The objective is to minimize validation error on classification tasks, with scaled proxy
runtime as evaluation cost, scaled by representative values of λ (10−3, 10−4, 10−5 for LCBench and
10−5 for NATS-Bench). For LCBench, results are aggregated across 35 datasets using min–max
normalization. Our PBGI/LogEIPC stopping rule, when paired with either LogEIPC or PBGI,
typically ranks among the top 3 pairs and closely approaches the hindsight optimal on LCBench and
on cifar10-valid in NATS-Bench, but slightly worse on the other two NATS datasets.

As we transition from model match to model mismatch, where the true objective function does
not align perfectly with the GP prior, we find that our stopping rule, when paired with the PBGI
acquisition function, continues to deliver performance close to the hindsight optimal, except on two
NATS datasets likely affected by severe mismatch. In contrast, pairing with the LogEIPC acquisition
function is less competitive. This degradation appears to stem from the relative advantage of PBGI
over LogEIPC in higher dimensions or misspecified settings: as shown in Figure 10 in Appendix D,
PBGI maintains stronger performance under misspecification, thus contributing to the improved
overall cost-adjusted regret. Thus, while our stopping rule is broadly robust, the choice of acquisition
function remains an important consideration when facing objective model mismatch.

5 CONCLUSION

We develop the PBGI/LogEIPC stopping rule for Bayesian optimization with varying evaluation costs.
Paired with either the PBGI or LogEIPC acquisition function, it (a) satisfies a theoretical guarantee
bounding the expected cost-adjusted simple regret (Section 3.1), and (b) shows strong empirical
performance in terms of cost-adjusted simple regret (Section 4). We believe our framework can
be extended to settings involving noisy, multi-fidelity or batched evaluations, as well as alternative
objective formulations—for instance, applying a sigmoid transformation to test error rather than a
linear one, to reflect real-world user preferences that shift sharply once error falls below a threshold.
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A LLM USAGE DISCLOSURE

We used large language models (LLMs) to assist with writing and editing this paper (e.g., im-
proving clarity and readability of drafts). LLMs were also used to help polish proofs, to facilitate
experiment scripting, and to generate plotting code. All technical content, research ideas, and final
implementations were developed, verified, and approved by the authors.

B THEORETICAL ANALYSIS AND CALCULATIONS

In the following lemma, we prove a point-wise lower bound on the expected improvement before
stopping for our recommended pairing of PBGI/LogEIPC stopping rule paired with either PBGI or
LogEIPC acquisition function.5

Lemma 1. Let X be compact, and let f : X → R be a random function with prior mean µ(·).
Consider a Bayesian optimization algorithm that begins at some initial point x1 ∈ X with cost
C = c(x1), acquires subsequent points using either the PBGI or LogEIPC acquisition function, and
terminates according to the PBGI/LogEIPC stopping rule. Let τ = mint≥1{supx∈X α

LogEIPC
t (x) <

0} be the algorithm’s stopping time, and denote the posterior expected improvement function by
αEI
t (x) = EIf |x1:t,y1:t (x; y

∗
1:t). Then, for all t < τ , αEI

t (xt+1) ≥ c(xt+1).

Proof. While stopping has not occurred, meaning t < τ , by the stopping criteria definition we have
maxx∈X α

EI
t (x)/c(x) ≥ 1. Hence, there exists at least one point with αEI

t (x)/c(x) ≥ 1. We now
argue for each algorithm.

PBGI. For each x we defined a threshold αPBGI
t (x) by EIf |x1:t,y1:t

(
x;αPBGI

t (x)
)
= c(x). Since

EIf |x1:t,y1:t is increasing in its second argument,

y∗1:t ≥ αPBGI
t (x) ⇐⇒ αEI

t (x)/c(x) ≥ 1. (12)

The existence of a point with ratio at least 1 therefore implies that the set St = {x : y∗1:t ≥ αPBGI
t (x)}

is non-empty. PBGI chooses xt+1 with the smallest threshold, and thus

αEI
t (xt+1) = EIf |x1:t,y1:t (xt+1; y

∗
1:t) ≥ EIf |x1:t,y1:t

(
xt+1;α

PBGI
t (xt+1)

)
= c(xt+1). (13)

(Log)EIPC. By definition xt+1 maximizes log(αEI
t (x)/c(x)) and αEI

t (x)/c(x), hence αEI
t (xt+1) ≥

c(xt+1).

Thus for both algorithms, we have

αEI
t (xt+1) ≥ c(xt+1), for all t < τ. (14)

We can now use Lemma 1 to prove the following theorem, where we show that our PBGI/LogEIPC
stopping rule (paired with the PBGI or LogEIPC acquisition function) also achieves cost-adjusted
simple regret no worse than a naive baseline—stopping-immediately (Immediate). Notably, this
guarantee may not hold for other acquisition–stopping rule pairings. Moreover, in the worst case, this
is the best guarantee we can hope for—for instance, the evaluation costs can be uniformly high and
no point is worth evaluating.

Theorem 2. Consider the setting and algorithm specified in Lemma 1. Let U := µ(x1) −
E[minx∈X f(x)] <∞, then the algorithm’s expected cost-adjusted simple regret is bounded by

E

[
y∗1:τ −min

x∈X
f(x) +

τ∑
t=1

c(xt)

]
≤ E

[
y1 −min

x∈X
f(x) + c(x1)︸ ︷︷ ︸

cost-adjusted regret of immediate stopping

]
= U + C. (11)

5In fact, any acquisition function (e.g., expected improvement-cost (EIC) (Hu et al., 2025)) that ensures the
one-step expected improvement is worth the evaluation cost before the stopping time τ can apply here.
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Proof. We treat the two algorithms—meaning, the two acquisition function and stopping rule pairs—
together and write Ft = σ({xi, yi}ti=1) for the filtration generated by the observations. Since we
are minimizing, the one–step improvement after iteration t is y∗1:t−1 − y∗1:t, where recall that y∗1:t =
min1≤i≤t yi. By our assumption about the random function f , E[y∗1:1] = µ(x1) and the quantity
y∗1:1 − minx∈X f(x) has finite expectation U < ∞. Denote the posterior expected improvement
function as αEI

t (x) = EIf |x1:t,y1:t (x; y
∗
1:t).

By Lemma 1, c(xt) ≤ αEI
t−1(xt) for all t ≤ τ . Set ∆t = y∗1:t−1−y∗1:t ≥ 0 for 2 ≤ t ≤ τ . Conditional

on Ft−1 and the choice of xt, we have

E[∆t | Ft−1, xt] = αEI
t−1(xt). (15)

Taking expectations and summing up from 2 to τ ,

E

[
τ∑
t=2

αEI
t−1(xt)

]
= E

[ ∞∑
t=2

1{t≤τ} α
EI
t−1(xt)

]

= E

[ ∞∑
t=2

1{t≤τ} E[∆t | Ft−1, xt]

]

= E

[ ∞∑
t=2

1{t≤τ} ∆t

]
(tower property)

= E

[
τ∑
t=2

∆t

]
= E[y∗1:1 − y∗1:τ ] . (16)

Summing (14) over t ≤ τ , taking expectations, and applying (16), we have

E

[
τ∑
t=2

c(xt)

]
≤ E

[
τ∑
t=2

αEI
t−1(xt)

]
≤ E[y∗1:1 − y∗1:τ ] . (17)

Adding the term y∗1:τ on both sides of (17) gives

E

[
y∗1:τ +

τ∑
t=2

c(xt)

]
≤ E[ y∗1:1 ].

Finally, adding c(x1) to both sides and subtracting E[minx∈X f(x)] yields

E

[
y∗1:τ −min

x∈X
f(x) +

τ∑
t=1

c(xt)

]
≤ E

[
y∗1:1 −min

x∈X
f(x) + c(x1)

]
= E

[
y1 −min

x∈X
f(x) + c(x1)

]
= µ(x1)− E

[
min
x∈X

f(x)

]
+ E[c(x1)]

= U + C,

since E[y1] = µ(x1), C = c(x1), and U = µ(x1)− E [minx∈X f(x)]. This is exactly (11).

Remark 5. The quantities U and C depend on the choice of the initial point x1. Choosing x1 to
minimize µ(x1) + c(x1) yields a tighter bound.
Remark 6. In practice, one may center the objective by replacing f(x) with f(x)− µ(x) and then
using a zero-mean GP prior. This changes only the parameterization of the posterior mean (which
can be shifted back by µ(x)) and does not affect the implementation of the acquisition functions or
stopping rules.

Corollary 3. Consider the setting and algorithm specified in Lemma 1. Then the expected cumulative
cost of the algorithm is bounded by E [

∑τ
t=1 c(xt)] ≤ U + C. Further, if evaluation costs are

uniformly bounded below by a constant c0 > 0, i.e., c(x) ≥ c0,∀x ∈ X , then for any δ ∈ (0, 1), the
algorithm terminates in at most U+C

δ·c0 iterations with probability 1− δ.
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Proof. Immediately by Theorem 2 and the fact that y∗1:τ −minx∈X f(x) > 0 pointwise, we have
that the expected cumulative cost of the algorithm

E

[
τ∑
t=1

c(xt)

]
≤ U + C. (18)

By Markov’s inequality, for any δ ∈ (0, 1),

Pr

[
τ∑
t=1

c(xt) ≤
U + C

δ

]
≥ 1− δ.

Since c(xt) ≥ c0 for all t < τ , it follows that

τ =

τ∑
t=1

1 ≤
τ∑
t=1

c(xt)

c0
=

1

c0

τ∑
t=1

c(xt).

Therefore,

Pr

[
τ ≤ U + C

δ · c0

]
≥ Pr

[
1

c0

τ∑
t=1

c(xt) ≤
U + C

δ · c0

]
= Pr

[
τ∑
t=1

c(xt) ≤
U + C

δ

]
≥ 1− δ.

Corollary 4. Consider the setting, algorithm, and notation specified in Lemma 1 and Theorem 2, but
with costs rescaled by a factor λ > 0: both the acquisition values and the stopping conditions are
computed using λc(·). If the cost-scaling factor is set to λ = U

B−C , then the algorithm’s expected
cumulative unscaled cost satisfies E[

∑τ
t=1 c(xt)] ≤ B.

Proof. Since the Bayesian optimization algorithm considers the post-scaling cost, by Theorem 2 and
the fact that y∗1:τ −minx∈X f(x) > 0 pointwise, we have

E

[
τ∑
t=1

λ · c(xt)

]
≤ E

[
y∗1:τ −min

x∈X
f(x) +

τ∑
t=1

λ · c(xt)

]
≤ µ(x1)−E

[
min
x∈X

f(x)

]
+λC = U+λC.

(19)

Since λ = U/(B − C), we have

E

[
τ∑
t=1

c(xt)

]
≤ U + λC

λ
=
U

λ
+ C = B.

Remark 7. In this paper, we focus on the setting where f is drawn from a Gaussian process, i.e.,
f ∼ GP(µ(·),K). In this case, the term U = µ(x1) − E[minx∈X f(x)] can be further bounded
above using classical results on the expected supremum/infimum of Gaussian processes; see, for
example, Lifshits (2012, Theorem 10.1).

C EXPERIMENTAL SETUP

All experiments are implemented based on BoTorch (Balandat et al., 2020). Each Bayesian op-
timization procedure is initialized with 2(d + 1) random samples, where d is the dimension of
the search domain. For Bayesian regret experiments, we follow the standard practice to generate
the initial random samples using a quasirandom Sobol sequence. For empirical experiments, we
randomly sample configuration IDs from a fixed pool of candidates—2,000 for LCBench and 32,768
for NATS-Bench. All computations are performed on CPU.

Each experiment is repeated with 50 random seeds, and we report the mean with error bars, given by
two times the standard error, for each stopping rule. We also impose a cap on the number of iterations:
100 for 1D Bayesian regret, 500 for 8D Bayesian regret, and 200 for empirical experiments. If a
stopping rule is not triggered before reaching this cap, we treat the stopping time as equal to the cap.
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Gaussian process models. For all experiments, we follow the standard practice to apply Matérn
kernels with smoothness 5/2 and length scales learned from data via maximum marginal likelihood
optimization, and standardize input variables to be in [0, 1]d. For empirical experiments, we stan-
dardize output variables to be zero-mean and unit-variance, but not for Bayesian regret experiments.
In this work, we consider the noiseless setting and set the fixed noise level to be 10−6. In the
unknown-cost experiments, we follow Astudillo et al. (2021) to model the objective and the logarithm
of the cost function using independent Gaussian processes.

Acquisition function optimization. For the 1D Bayesian regret experiments, we optimize over
10,001 grid points. For the 8D Bayesian regret experiment, we use BoTorch’s ‘gen_candidates_torch’,
a gradient-based optimizer for continuous acquisition function maximization, as it avoids reproducibil-
ity issues caused by internal randomness in the default scipy optimizer. For the empirical experiments,
since LCBench and NATS-Bench provide only 2,000 and 32,768 configurations respectively, we
optimize the acquisition function by simply applying an argmin/argmax over the acquisition values
of the unevaluated configurations, without using any gradient-based methods.

Acquisition function and stopping rule parameters. For PBGI, we follow Xie et al. (2024) to
compute the Gittins indices using 100 iterations of bisection search without any early stopping or
other performance and reliability optimizations.

For UCB/LCB-based acquisition functions and stopping rules, we follow the original GP-UCB paper
Srinivas et al. (2009) and the choice in UCB/LCB based stopping rules (Makarova et al., 2022;
Ishibashi et al., 2023) to use the schedule βt = 2 log(dt2π2/6δ), where d is the dimension. We also
adopt their choice of δ = 10−1 and a scale-down factor of 5.

For SRGap-med, which stops when the simple regret gap falls below χ times the median of its initial
T = 20 values, we set χ = 0.1 in the empirical experiments, instead of the default value χ = 0.01
recommended in the literature. This adjustment was made because SRGap-med tends to stop too late
on the LCBench datasets, likely due to the relatively small initial regret values and insignificant drop
over time.

For PRB, we follow Wilson (2024) to use the schedule Nt = max(⌈64 ∗ 1.5t−1⌉, 1000) for number
of posterior samples, risk tolerance δ = 0.05. The error bound ϵ is set to be 0.1 for Bayesian regret
experiments and 0.5% of the best test error (here, the misclassification rate) among all configurations
for the empirical experiments.

For the 8D Bayesian regret experiments, for all acquisition-value-based stopping rules, we apply
moving average over 20 iterations to mitigate the fluctuations due to the imperfect acquisition function
optimization. Figure 4 illustrates the challenges these oscillations pose when computing stopping
rule statistics and shows the improvement with moving average. For consistency, we also apply the
20-iteration averaging to the non-acquisition-value-based GSS and Convergence baselines.

Omitted baselines. We omit the KG acquisition function and stopping rule due to its high compu-
tational cost, as they are shown to be computationally intensive in the runtime experiments of Xie
et al. (2024).

Objective functions: Bayesian regret. In all Bayesian regret experiments, each objective function
f is sampled from a Gaussian process prior with a Matérn 5/2 kernel and a length scale of 0.1, using
a different seed in each of the 50 trials.

Objective functions: empirical. In the empirical experiments, the validation error (scaled out
of 100) is used as the objective function during the Bayesian optimization procedure, while the
cost-adjusted simple regret is reported based on the corresponding test error.

Cost functions: Bayesian regret. In Bayesian regret experiments, we consider three types of
evaluation costs: uniform, linear, and periodic. These costs are normalized such that Ex∈[0,1]d [c(x)]
is approximately 1 and their expressions (prior to cost scaling) are given below.

In the uniform cost setting, each evaluation incurs a constant cost of 1.
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LogEIPC acquisition values) in Bayesian regret 8D experiments for multiple acquisition functions,
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high dimensions. Right: Applying moving average (window=20) smooths these wiggles, yielding
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(Middle) Normalized linear cost increasing with the mean of x1 and x2. (Right) Periodic cost with
α = 2, β = 2, normalized by Bessel-based factor.

In the linear cost setting, the cost increases proportionally with the average coordinate value of the
input:

linear_cost(x) =
1 + 20 ·

(
1
d

∑d
i=1 xi

)
11

.

In the periodic cost setting, the evaluation cost fluctuates across the domain. Following Astudillo
et al. (2021), we define the periodic cost as

periodic_cost(x) =
exp

(
α
d

∑d
i=1 cos (2πβ(xi − x∗i ))

)
[
I0

(
α
d

)]d ,

where x∗i denotes the coordinate of the global optimum of f , and I0 is the modified Bessel function
of the first kind, which acts as a normalization constant. We set α = 2 and β = 2 to induce noticeable
variation in cost across the domain, while ensuring that costly evaluations can still be worthwhile.

A visualization of the three cost functions is provided in Figure 5.

Cost functions: empirical. In the unknown-cost experiments, we treat runtime—meaning, the
provided full model training time (200 epochs for LCBench and 90 epochs for NATS)—as evaluation
costs (prior to cost scaling).
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Figure 6: Empirical relationship between the number of model parameters and runtime for three
LCBench datasets. Each subplot shows a scatter plot of actual runtime (y-axis) against number
of model parameters (x-axis), along with a fitted linear regression line. The observed linear trend
supports using 0.001 times the number of model parameters as a proxy for runtime. For Fashion-
MNIST and adult, the fitted slopes are close to 0.001. The slope for higgs is slightly higher, possibly
due to a few outliers.

In the known-cost experiments, for LCBench, we estimate the runtime cost from the number of
model parameters p. Specifically, for the first three datasets in the six-dataset lite version, we use
0.001 times the number of model parameters as a proxy for runtime. This proxy is motivated by our
observation of an approximately linear relationship between the number of model parameters and the
actual runtime, with slope close to 0.001 (see Figure 6). For the full 35-dataset version, where the
slope varies across datasets, we instead use a regression-derived coefficient α and the proxy cost is
αp. Importantly, the number of model parameters can be computed in advance, before the Bayesian
optimization procedure, based on the network structure and classification task, as we explain in detail
below.

In a feedforward neural network like shapedmlpnet with shape ‘funnel’, the model parameters are
determined by input size (number of features), output size (e.g., number of classes), number of layers,
size of each layer. The input size and output size are given by:

• Fashion-MNIST:
– Input dimension: 784 (each image has 28×28 pixels, flattened into a vector of length

784)
– Number of Output Features (output_feat): 10 (corresponding to 10 clothing categories)

• Adult:
– Input Dimension: 14 (the dataset comprises 14 features, including both numerical and

categorical attributes)
– Number of Output Features: 1 (binary classification: income > 50K or ≤ 50K)

• Higgs:
– Input Dimension: 28 (each instance has 28 numerical features)
– Number of Output Features: 1 (binary classification: signal or background process)

The number of layers (num_layers) and size of each layer (max_unit) can be obtained from the
configuration. With these information, we can compute the total number of model parameters
(weights and biases) based on the layer-wise structure as follows:

layer_paramsi→i+1 = layeri · layeri+1 + layeri+1 (weights + biases) (20)

model_params =
L−1∑
i=0

layer_paramsi→i+1 (21)

where layer0 = input_dim, layerL = output_feat (22)

Similarly for NATS-Bench, we use α×F+β as a proxy for runtime (see Figure 7 for a visualization of
the linear relationship), where F is the number of floating point operations (FLOPs). Specifically, for
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Figure 7: Empirical relationship between the number of FLOPs and runtime for the three NATS-Bench
datasets. Each subplot shows a heatmap of actual runtime (y-axis) against number of FLOPs (x-axis),
along with a fitted linear regression line. The observed linear trend supports using α×#FLOPs + β
as a proxy for runtime.

cifar10-valid, we set α = 1, β = 400; for cifar100, we set α = 2, β = 550; and for ImageNet16-120,
we set α = 1, β = 1000.

FLOPs can also be computed in advance, as it is determined solely by the architecture’s structure
and the fixed input shape. Specifically, they are precomputed and stored for each architecture.
Since each architecture corresponds to a deterministic computational graph and all inputs (e.g.,
CIFAR-10 images) have a fixed shape, the FLOPs required for a forward pass can be calculated
analytically—without executing the model on data.

D ADDITIONAL EXPERIMENT RESULTS

In this section, we present additional experimental results to further evaluate the performance of
different acquisition-function–stopping-rule pairs across various settings. We also include alternative
visualizations to aid interpretation of the results.

D.1 RUNTIME COMPARISON

First, we compare the runtime between our PBGI/LogEIPC stopping rule with several baselines. We
measure the CPU time (in seconds) of the computation of the stopping rule, excluding the acquisition
function computation and optimization.

From results in Figure 8 we can see that our PBGI/LogEIPC stopping rule is roughly as efficient as
SRGap-med and UCB–LCB. In contrast, PRB is significantly more time-consuming, as it involves
optimizing over up to 1000 samples.

D.2 ORDER OF STOPPING AND POSTERIOR UPDATES

Following the discussions in Section 3, we always compute our proposed stopping rule with respect
to the optimal acquisition function value of the next round—namely, the one which is obtained after
posterior updates have been performed. One could alternatively consider checking the stopping
criteria before posterior updates, which is backward-looking rather than forward-looking. Figure 9
provides an empirical comparison between the two choices, showing that stopping after the posterior
update leads to stronger empirical performance.

This suggests that the theoretical guarantee for the Gittins index policy in the correlated Pandora’s
Box setting by Gergatsouli & Tzamos (2023), which is based on the before-posterior-update stopping,
could potentially be improved by adopting the after-posterior-update stopping.

D.3 ADDITIONAL EXPERIMENT RESULTS: EMPIRICAL

This subsection presents additional results for hyperparameter optimization on the LCBench datasets
and neural architecture–size search on the three NATS-Bench datasets. For LCBench, we provide
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Figure 8: Evolution of per-iteration computation time (in log scale) for different stopping stop-
ping rules when paired with six acquisition policies on the 8-dimensional Bayesian regret bench-
mark. Each subplot shows the average runtime (in seconds) over 50 iterations under one acqui-
sition function—LCB, Thompson Sampling, LogEIPC, PBGI(λ = 10−1), PBGI(λ = 10−2), and
PBGI(λ = 10−3). Curves correspond to four stopping criteria: our PBGI/LogEIPC stopping rule,
SRGap-med, UCB–LCB, and the probabilistic regret bound (PRB). Convergence and GSS can be
applied using only the best observed value and thus require no additional computation time, thus
they are omitted here. LogEIPC-med relies on the same underlying statistical computations as the
LogEIPC rule, and therefore its runtime is not measured separately. The results should that PRB
incurs significant computational overhead compared to other stopping rules.

results for the first three datasets from the six-dataset lite version of the benchmark: Fashion-MNIST,
adult, and higgs under alternative settings (fixed budget, actual runtime, and unknown cost), along
with an alternative visualization. We also include per-dataset results under the proxy-runtime setting
for the full set of 35 datasets.

Simple regret under the fixed-budget setting. To isolate the effect of the acquisition function on
cost-adjusted regret, we report the simple regret of several acquisition functions in the fixed-budget
setting. We compare LogEIPC, PBGI, LCB, and TS, and additionally include PBGI-D with our
recommended choice λ0 = U/(B − C) from Section 3.1.1, where U = 50 (reflecting the [0,100]
range of classification accuracy) and B − C = 10,000 (corresponding to a budget after initial
evaluation of 10,000 seconds, or roughly 3 hours). Cost-aware methods (LogEIPC and the PBGI
variants) outperform cost-unaware ones (UCB and TS), with PBGI at smaller λ consistently better
than LogEIPC. This mirrors the findings of Xie et al. (2024) and helps explain the strong performance
of the matched PBGI combination in our main experiments.

Number of trials where stopping fails. We count the number of trials in which a stopping rule
fails to trigger within our iteration cap of 200 and present the results in Table 1. From the table, we
observe that on datasets from the NATS benchmark, regret-based and acquisition-based stopping
rules—except for ours—often fail to stop early. On LCBench datasets, some regret-based stopping
rules such as SRGap-med and UCB–LCB also frequently exceed the cap. In contrast, our stopping
rule consistently stops early, which aligns with our theoretical result in Corollary 4.

Alternative visualization: cost-adjusted regret vs iteration. We provide an alternative visual-
ization of cost-adjusted simple regret by plotting its mean and error bars at fixed iterations, along
with the mean and error bars of the stopping iterations for each rule. This allows us to compare the
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Figure 9: Illustration of a single draw from a Matérn-5/2 Gaussian process on [0, 1] with lengthscale
0.1, optimized using PBGI acquisition function under uniform cost and cost-scaling factor λ = 0.01.
We compare two variants of PBGI stopping rules: the before-posterior-update (this-round) stopping
rule and the after-posterior-update (next-round) stopping rule. Left: The latent objective function
(solid gray) and evaluation sequences for before-posterior-update stopping (blue circles) and after-
posterior-update stopping (orange crosses). The dotted blue line and the dashed orange line mark the
best observed value under each respective rule. Right: Cost-adjusted regret for each stopping rule.
In this example, after-posterior-update stopping achieves strictly lower cost-adjusted regret despite
performing more evaluations.

0 2000 4000 6000 8000 10000
Cumulative Cost

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Si
m

pl
e 

R
eg

re
t

Fashion-MNIST

0 2000 4000 6000 8000 10000
Cumulative Cost

0.5

1.0

1.5

2.0

2.5

3.0

Si
m

pl
e 

R
eg

re
t

adult

0 2000 4000 6000 8000 10000
Cumulative Cost

0

1

2

3

4

5

Si
m

pl
e 

R
eg

re
t

higgs

LogEIPC PBGI(1e-3) PBGI(1e-4) PBGI(1e-5) LCB TS PBGI-D

Figure 10: Comparison of simple regret of five acquisition functions: LogEIPC, PBGI(λ = 10−4),
LCB, TS, and PBGI-D on LCBench datasets, using scaled proxy runtime as evaluation cost. We
can see that indeed the cost-aware LogEIPC and PBGI outperforms the cost-unaware UCB and TS.
PBGI-D with out recommended λ0 is also competitive.

performance of adaptive stopping rules not only against the hindsight-optimal adaptive stopping but
also against the hindsight-optimal fixed-iteration stopping.

As shown in the empirical setting in Figures 11 to 16, cost-adjusted regret generally decreases in the
early iterations and then increases. The turning point is exactly the hindsight-optimal fixed-iteration
stopping point, and our PBGI/LogEIPC stopping rule consistently performs close to this optimum,
particularly when paired with the PBGI acquisition function.

Cost model mismatch: proxy runtime vs actual runtime. In the known-cost setting of hyper-
parameter tuning, a practical approach is to use a proxy for runtime as the evaluation cost during
the Bayesian optimization procedure. In our case, we use the number of model parameters scaled
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Table 1: Number of trials (out of 50) where each stopping rule failed to trigger within 200 iterations,
for each dataset in the LCBench (first three) and NATS (last three) benchmarks and each acquisition
function. Results are identical across acquisition functions.

Dataset PBGI LogEIPC-med SRGap-med UCB–LCB GSS Convergence PRB

Fashion-MNIST 0 0 0 50 0 0 0
adult 5 0 7 38 0 0 6
higgs 0 0 31 50 0 0 0

Cifar10 0 32 50 50 0 0 26
Cifar100 3 17 50 50 0 0 2
ImageNet 0 23 50 50 0 0 0
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Figure 11: Comparison of cost-adjusted simple regret across acquisition function and stopping rule
pairs on the Fashion-MNIST dataset. The objective function is the validation error, and the evaluation
cost is the proxy runtime, scaled by three different cost-scaling factors λ = 10−3, 10−4, 10−5. We
can see that the PBGI/LogEIPC stopping rule consistently achieves cost-adjusted regret close to the
hindsight optimal adaptive stopping as well as the hindsight optimal fixed-iteration stopping when
paired with the PBGI acquisition function, though not always the best.

by a constant factor, which can be known in advance and has been shown to correlate well with
the actual runtime. However, for reporting performance, one may prefer to use the actual runtime
to better reflect real-world cost. To assess the impact of this cost model mismatch, we compare
the cost-adjusted simple regret obtained when evaluation costs are computed using either the proxy
runtime or the actual runtime. As shown in Figure 17, our PBGI/LogEIPC stopping rule remains
close to the hindsight optimal even when there is a mismatch, although its ranking may shift slightly
(e.g., from best to second-best on the higgs dataset).

Unknown-cost. Astudillo et al. (2021, Proposition 2) proposed modeling unknown cost c(x) via
E[1/c(x)]−1 = exp(µln c(x)− (σln c(x))

2/2). (23)
An alternative is

E[c(x)] = exp(µln c(x) + (σln c(x))
2/2). (24)
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Figure 12: Comparison of cost-adjusted simple regret across acquisition function and stopping rule
pairs on the adult dataset. The objective function is the validation error, and the evaluation cost is the
proxy runtime, scaled by three different cost-scaling factors λ = 10−3, 10−4, 10−5. We can see that
the PBGI/LogEIPC stopping rule consistently achieves the cost-adjusted regret close to hindsight
optimal adaptive stopping and hindsight optimal fixed-iteration stopping when paired with the PBGI
or TS acquisition function, particularly with PBGI.

The difference in sign before the variance term reflects how each formulation handles predictive
uncertainty: (23) encourages more exploration than (24). For PBGI under the unknown-cost setting,
it is more natural to replace c(x) in (5) with E[c(x)] using (24), as this aligns with how costs
enter the root-finding problem. For LogEIPC, both variants are possible—we refer to the (23)
version as LogEIPC-inv and the (24) version as LogEIPC-exp. However, equivalence between PBGI
and LogEIPC stopping rules and our theoretical guarantees hold only with (24) but not with (23).
Accordingly, we use (24) for both methods in our experiments to maintain consistency and preserve
this equivalence. Figure 18 shows performance of acquisition function and stopping rule pairs under
the unknown-cost setting, which are qualitatively similar to the known-cost setting.

Cost-adjusted simple regret of all LCBench datasets. Due to space constraints, for LCBench,
Figure 3 in the main text reports min–max normalized cost-adjusted simple regret, defined as

r − rmin

rmax − rmin
,

where r denotes cost-adjusted regret of a given acquisition function–stopping rule pair, and rmin and
rmax are the minimum (including the hindsight optimal) and maximum cost-adjusted regret across
all pairs. This normalization enables aggregation across datasets with different regret scales.

Here we present the unnormalized bar-plot results for each LCBench dataset (OpenML dataset size
in parentheses) under all three cost-scaling parameters in Figures 19 to 21. As discussed in the
main text, our PBGI/LogEIPC stopping rule—when paired with either PBGI or LogEIPC—achieves
competitive performance on roughly 75% of the 35 datasets. However, it performs consistently poorly
across all three λ values on the following tasks: Amazon_employee_access (32769), Australian (690),
KDDCup09_appetency (50000), cnae-9 (1080), credit-g (1000), fabert (8237), and vehicle (846).
Two additional datasets, mfeat-factors (2000) and jasmine (2984), show acceptable performance
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Figure 13: Comparison of cost-adjusted simple regret across acquisition function and stopping rule
pairs on the higgs dataset. The objective function is the validation error, and the evaluation cost
is the proxy runtime, scaled by three different cost-scaling factors λ = 10−3, 10−4, 10−5. We can
see that the PBGI/LogEIPC stopping rule consistently achieves the best cost-adjusted regret when
paired with the LogEIPC, PBGI, or TS acquisition function, particularly with PBGI. These pairs not
only approach the hindsight optimal adaptive stopping but also perform comparably to the hindsight
optimal fixed-iteration stopping.

only when λ = 10−5, and we conjecture that their relatively small dataset sizes (fewer than 10000
instances) may contribute to model misspecification and degraded performance at larger λ. The only
exceptions to this size-related pattern are Amazon_employee_access and KDDCup09_appetency,
whose poor performance cannot be explained solely by dataset size.

D.4 ADDITIONAL EXPERIMENT RESULTS: BAYESIAN REGRET

In this section, we present the complete Bayesian regret results. Figures 22 to 24 show the 1D experi-
ments, and Figures 25 to 27 show the 8D experiments. Each figure corresponds to one cost setting
(uniform, linear or periodic) and three values of the cost-scaling factor, λ = 10−1, 10−2, 10−3. In all
of the experimental results, we observe that PBGI/LogEIPC acquisition function + PBGI/LogEIPC
stopping achieves cost-adjusted regret that is not only competitive with the baselines, but is also com-
petitive regarding the best in hindsight fixed iteration stopping and often competitive even comparing
to hindsight optimal stopping. These results indicate that our automatic stopping rule can replace
manual selection of stopping times without loss in performance. Figures 22 to 27 also show that our
PBGI/LogEIPC stopping rule outperforms other baselines when the cost-scaling factor λ is large,
indicating that it’s an especially suitable stopping criteria when evaluation is expensive.
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Figure 14: Comparison of cost-adjusted simple regret across acquisition function and stopping rule
pairs on the cifar10-valid dataset. The objective function is the validation error, and the evaluation
cost is the proxy runtime, scaled by three different cost-scaling factors λ = 10−4, 10−5, 10−6. We
can see that the PBGI/LogEIPC stopping rule consistently achieves the best cost-adjusted regret when
paired with the LogEIPC, PBGI, or TS acquisition function, particularly with PBGI. These pairs not
only approach the hindsight optimal adaptive stopping but also perform comparably to the hindsight
optimal fixed-iteration stopping.
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Figure 15: Comparison of cost-adjusted simple regret across acquisition function and stopping rule
pairs on the cifar100 dataset. The objective function is the validation error, and the evaluation cost
is the proxy runtime, scaled by three different cost-scaling factors λ = 10−4, 10−5, 10−6. The
PBGI/LogEIPC stopping rule remains competitive at λ = 10−4 and 10−6, though not always the
best. At λ = 10−5, unlike in most experiments, it stops noticeably late (though still outperforming
several other rules), even when paired with its matching acquisition function. By Lemma 1, under
model match, the PBGI/LogEIPC rule with the corresponding acquisition function should never
incur negative expected cost-adjusted regret before stopping. The suboptimal behavior observed here
points to significant model mismatch on the cifar100 dataset.
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Figure 16: Comparison of cost-adjusted simple regret across acquisition function and stopping rule
pairs on the ImageNet16-120 dataset. The objective function is the validation error, and the evaluation
cost is the proxy runtime, scaled by three different cost-scaling factors λ = 10−4, 10−5, 10−6. The
PBGI/LogEIPC stopping rule remains competitive at λ = 10−4 and 10−6, though not always the
best. At λ = 10−5, unlike in most experiments, it stops noticeably late (though still outperforming
several other rules), even when paired with its matching acquisition function. By Lemma 1, under
model match, the PBGI/LogEIPC rule with the corresponding acquisition function should never
incur negative expected cost-adjusted regret before stopping. The suboptimal behavior observed here
points to significant model mismatch on the ImageNet16-120 dataset.
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Figure 17: Comparison of cost-adjusted simple regret on three LCBench datasets with λ = 10−4,
using scaled proxy runtime vs. scaled actual runtime as evaluation cost. While our PBGI/LogEIPC
stopping rule performs slightly worse under actual runtime (e.g., dropping from best to second-best
on the higgs dataset), likely due to cost model mismatch, it remains close to the hindsight optimal in
all cases.
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Figure 18: Cost-adjusted simple regret across acquisition function and stopping rule pairs under the
unknown-cost setting on LCBench with λ = 10−4. Our PBGI/LogEIPC stopping rule remains close
to the hindsight optimal when paired with the LogEIPC-exp or PBGI acquisition function, sometimes
slightly worse than heuristics such as GSS and Convergence. It is also slightly worse than Immediate
on Adult, likely due to a cost-model mismatch in the unknown-cost setting.
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Figure 19: Cost-adjusted simple regret of all 35 LCBench datasets when λ = 10−3.
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Figure 20: Cost-adjusted simple regret of all 35 LCBench datasets when λ = 10−4.
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Figure 21: Cost-adjusted simple regret of all 35 LCBench datasets when λ = 10−5.
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Figure 22: Comparison of cost-adjusted simple regret across acquisition function and stopping rule
pairs in the 1D Bayesian regret experiments, with cost-scaling factor λ = 10−1, 10−2, 10−3 and
under uniform cost. The dashed line in each subplot represent fixed iteration stopping (e.g., the y-axis
value of the line at iteration 50 represent the cost-adjusted regret when always stop at iteration 50).
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Figure 23: Comparison of cost-adjusted simple regret across acquisition function and stopping rule
pairs in the 1D Bayesian regret experiments, with cost-scaling factor λ = 10−1, 10−2, 10−3 and
under linear cost. The dashed line in each subplot represent fixed iteration stopping (e.g., the y-axis
value of the line at iteration 50 represent the cost-adjusted regret when always stop at iteration 50).
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Figure 24: Comparison of cost-adjusted simple regret across acquisition function and stopping rule
pairs in the 1D Bayesian regret experiments, with cost-scaling factor λ = 10−1, 10−2, 10−3 and
under periodic cost. The dashed line in each subplot represent fixed iteration stopping (e.g., the y-axis
value of the line at iteration 50 represent the cost-adjusted regret when always stop at iteration 50).
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Figure 25: Comparison of cost-adjusted simple regret across acquisition function and stopping rule
pairs in the 8D Bayesian regret experiments, with cost-scaling factor λ = 10−1, 10−2, 10−3 and
under uniform cost. The dashed line in each subplot represent fixed iteration stopping (e.g., the y-axis
value of the line at iteration 50 represent the cost-adjusted regret when always stop at iteration 50).
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Figure 26: Comparison of cost-adjusted simple regret across acquisition function and stopping rule
pairs in the 8D Bayesian regret experiments, with cost-scaling factor λ = 10−1, 10−2, 10−3 and
under linear cost. The dashed line in each subplot represent fixed iteration stopping (e.g., the y-axis
value of the line at iteration 50 represent the cost-adjusted regret when always stop at iteration 50).
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Figure 27: Comparison of cost-adjusted simple regret across acquisition function and stopping rule
pairs in the 8D Bayesian regret experiments, with cost-scaling factor λ = 10−1, 10−2, 10−3 and
under periodic cost. The dashed line in each subplot represent fixed iteration stopping (e.g., the y-axis
value of the line at iteration 50 represent the cost-adjusted regret when always stop at iteration 50).
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