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Abstract

As NLP models become increasingly integrated001
into real-world applications, it becomes clear002
that there is a need to address the fact that003
models often rely on and generate conflicting004
information. Conflicts could reflect the com-005
plexity of situations, changes that need to be006
explained and dealt with, difficulties in data007
annotation, and mistakes in generated outputs.008
In all cases, disregarding the conflicts in data009
could result in undesired behaviors of models010
and undermine NLP models’ reliability and011
trustworthiness. This survey categorizes these012
conflicts into three key areas: (1) natural texts013
on the web, where factual inconsistencies, sub-014
jective biases, and multiple perspectives intro-015
duce contradictions; (2) human-annotated data,016
where annotator disagreements, mistakes, and017
societal biases impact model training; and (3)018
model interactions, where hallucinations and019
knowledge conflicts emerge during deployment.020
While prior work has addressed some of these021
conflicts in isolation, we unify them under the022
broader concept of conflicting information, an-023
alyze their implications, and discuss mitigation024
strategies. We highlight key challenges and025
future directions for developing conflict-aware026
NLP systems that can reason over and reconcile027
conflicting information more effectively.028

1 Introduction029

The rapid advancement of natural language process-030

ing (NLP), particularly with the rise of large lan-031

guage models (LLMs), has led to their widespread032

adoption in daily tasks, information retrieval, and033

decision-making processes. However, the increas-034

ing complexity of these models reveals various035

types of conflicts at multiple stages, including train-036

ing, annotation, and model interaction, affecting037

the reliability and trustworthiness of downstream038

applications. For example, training models on data039

containing factual contradictions, annotation dis-040

agreements, or prompts that contradict a model’s041

Figure 1: Examples of the three different ares of con-
flicts discussed in this work. The first example describes
a case where two different entities of the same name
are found naturally on the web, the second example
elaborates the annotation disagreement in a sentiment
analysis task, and the third showcases a knowledge con-
flict between the context and memory of LLMs during
model interactions.

parametric knowledge can introduce inconsisten- 042

cies with unpredictable consequences (Pavlick and 043

Kwiatkowski, 2019; Sap et al., 2019). 044

Existing work on conflicts in NLP tends to fo- 045

cus on specific issues, such as annotation disagree- 046

ments (Uma et al., 2021), hallucinations and factu- 047

ality (Zhang et al., 2023; Wang et al., 2023), and 048

knowledge conflicts (Xu et al., 2024; Feng et al., 049

2024), without synthesizing these problems into a 050

broader perspective. In this survey, we conceptu- 051

alize these diverse challenges under the umbrella 052

of conflicting information and analyze their ori- 053

gins, implications, and mitigation strategies. We 054

first examine conflicts inherent in training data, 055

including natural texts from the web and human- 056

annotated datasets. We then explore conflicts 057

arising during interactions with models in the 058

LLM era, discussing their impact on downstream 059

tasks and highlighting key challenges and future 060
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Conflicts in NLP

Model Interactions
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Sap et al. (2022), Faisal et al. (2022),

Thorn Jakobsen et al. (2022)
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Conflicts in Opinions

Framing Bias
Card et al. (2015), Liu et al. (2019),
Fan et al. (2019), Lei et al. (2022)
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Chen et al. (2019), Liu et al. (2021a),
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Liu et al. (2024), Pham et al. (2024)
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Min et al. (2020), Zhang and Choi (2021),

Dhingra et al. (2022), Cole et al. (2023)

Figure 2: Taxonomy of conflicts in texts.

directions for conflict-aware AI systems.061

The abundance of online data is accompa-062

nied by inherent conflicts, stemming from diverse063

sources, interpretations, and biases. These con-064

flicts manifest as factual conflicts, such as seman-065

tic ambiguities (Pavlick and Tetreault, 2016; Min066

et al., 2020) and factual inconsistencies (Pham067

et al., 2024; Liu et al., 2024), or as conflicts in opin-068

ions related to political ideologies (Entman, 1993;069

Recasens and et al., 2013) and perspectives (Chen070

et al., 2019; Liu et al., 2021a). Factual conflicts are071

particularly prevalent in open-domain question an-072

swering (QA) and retrieval-augmented generation073

(RAG) systems (Chen et al., 2017), where aggre-074

gating knowledge from multiple sources introduces075

inconsistencies (Liu et al., 2024). These challenges076

highlight the need for conflict-aware retrieval and077

reasoning mechanisms to improve model reliability078

(Xie et al., 2024). Unlike factual conflicts, opin-079

ionated disagreements reflect the variability in hu-080

man interpretation, beliefs, and ideological stances081

(Chen et al., 2019; Fan et al., 2019). The presence082

of conflicting viewpoints complicates tasks such as083

summarization, sentiment analysis, and dialogue084

generation, where maintaining coherence and neu-085

trality is crucial (Liu et al., 2021a; Lee et al., 2022). 086

Furthermore, the uneven distribution and biases 087

of web data also affects models to behave from 088

a Western perspective (Ramaswamy et al., 2023; 089

Mihalcea et al., 2024). 090

Another significant conflict arises in human- 091

annotated data. For instance, annotation dis- 092

agreements persists in both subjective and seem- 093

ingly objective NLP tasks (Mostafazadeh Davani 094

et al., 2022). Disagreements are widespread in sen- 095

timent analysis (Wan et al., 2023), hate speech de- 096

tection (Sap et al., 2022), and even natural language 097

inference (NLI) (Pavlick and Kwiatkowski, 2019). 098

Models trained on aggregated (e.g. majority- 099

vote) labels struggle with ambiguous or high- 100

disagreement examples, often treating them as hard- 101

to-learn or mislabeled (Anand et al., 2023). Pavlick 102

and Kwiatkowski (2019) also find that standard 103

NLI models’ uncertainty does not reflect the true 104

ambiguity present in human opinions, leading to 105

overconfidence in contentious cases. In addition, 106

annotation biases—such as those related to race, 107

gender, and geography—skew model predictions 108

and reinforce societal biases (Buolamwini and Ge- 109

bru, 2018; Sap et al., 2022; Pei and Jurgens, 2023). 110
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These issues highlight the need for fair and repre-111

sentative annotations that capture the complexity112

of human disagreement.113

Conflicts also emerge during interactions with114

models, manifesting as knowledge conflicts be-115

tween model memories and contexts, and halluci-116

nations in generated outputs. Knowledge conflicts117

arise when a model’s internal memory contradicts118

external contextual evidence, as shown by Longpre119

et al. (2021), who found that models often overly120

depend on memorized knowledge, leading to hal-121

lucinations. Neeman et al. (2023) proposed sepa-122

rating parametric and contextual knowledge to im-123

prove interpretability, while Xie et al. (2024) exam-124

ined LLMs’ confirmation bias, showing how mod-125

els inconsistently handle contradictory evidence.126

Additionally, hallucinations—ranging from factual127

inconsistencies (Lin et al., 2022; Ouyang and et al.,128

2022) to contextual hallucinations (Maynez et al.,129

2020; Kryscinski et al., 2020)—further undermine130

model reliability. Various mitigation strategies131

have been proposed, including retrieval augmen-132

tation (Lewis et al., 2020; Shuster et al., 2021),133

hallucination detection (Manakul et al., 2023), and134

knowledge graph-based verification (Guan et al.,135

2024).136

By systematically categorizing and analyzing137

these conflicts, this survey provides a unified per-138

spective on their origins, implications, and mitiga-139

tion strategies. Addressing these issues is essential140

for building robust and trustworthy AI systems that141

operate effectively across diverse domains and user142

groups. Our findings contribute to the development143

of conflict-aware frameworks for data collection,144

model training, and model usage, ultimately en-145

hancing the fairness and reliability of NLP.146

2 Conflicts in Natural Texts on the Web147

Conflicts in natural texts on the web manifest in di-148

verse ways, reflecting the inherent complexity and149

subjectivity of human language. They can broadly150

be categorized into factual conflicts, which revolve151

around factual discrepancies caused by various rea-152

sons, and conflicts in opinions, which pertain to153

divergent perspectives or biases.154

2.1 Factual Conflicts155

2.1.1 Origins156

Ambiguity Ambiguity is a root cause of factual157

conflict. When a query or piece of data lacks clar-158

ity about entities or context, a model can produce159

conflicting answers. A clear demonstration of how 160

ambiguity induces conflicts is context dependence. 161

For example, an ambiguous question of "which 162

COVID-19 vaccine was the first to be authorized by 163

our government?" can have conflicting answers de- 164

pending on different geographical contexts (Zhang 165

and Choi, 2021). 166

Min et al. (2020) was the first work to study 167

the effects of ambiguity in open domain question 168

answering. They introduced AmbigQA, a dataset 169

highlighting that over half of the open-domain, nat- 170

ural questions are ambiguous, with diverse sources 171

of ambiguity such as event and entity references. 172

Zhang and Choi (2021) proposed the SituatedQA 173

task, showing that a significant fraction of open- 174

domain questions are valid only under particular 175

temporal or geographic contexts. Many other work 176

specifically focus on the temporal aspect of ambi- 177

guity, benchmarking and evaluating models’ aware- 178

ness and adaptation to time-sensitive questions 179

(Chen et al., 2021b; Liska et al., 2022; Kasai et al., 180

2023). 181

Contradictory Evidence Conflicts in NLP sys- 182

tems arise when information on the web presents 183

conflicting evidence towards a factual question. 184

This issue is particularly prevalent in open-domain 185

question answering settings, where models must 186

navigate inconsistencies across diverse informa- 187

tion sources. Liu et al. (2024) find that 25% of 188

unambiguous factual questions queried on Google 189

retrieve conflicting evidence from multiple sources. 190

For instance, a Google search for "When was 191

Kendrick Lamar’s first album released?" yields con- 192

flicting evidence, illustrating the challenge of inte- 193

grating contradictory information in retrieval-based 194

QA systems (Liu et al., 2024). 195

Researchers have proposed different datasets 196

to systematically study how NLP models handle 197

such conflicts. Li et al. (2024b) introduce Con- 198

traDoc, a human-annotated dataset of long doc- 199

uments with internal contradictions; Pham et al. 200

(2024) propose WhoQA, a benchmark dataset that 201

constructs conflicts by formulating questions about 202

a shared property among entities with the same 203

name (e.g. "Who is George Washington?"); and Liu 204

et al. (2024) construct QACC, a human-annotated 205

dataset of conflicting results retrieved by Google. 206

Beyond empirical datasets, several studies have 207

proposed synthetic approaches to simulate con- 208

flicts through entity substitution (Chen et al., 2022a; 209

Hong et al., 2024), machine-generated conflicting 210
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evidence (Pan et al., 2023; Wan et al., 2024; Hong211

et al., 2024), and pre-defined rule-based templates212

(Kazemi et al., 2023).213

2.1.2 Implications and Mitigation214

Zhang and Choi (2021) show that pre-trained lan-215

guage models perform competitively at identifying216

whether a question is context dependent, match-217

ing human agreements, but lag behind human-218

level performance by a significant margin when an-219

swering questions dependent on temporal contexts.220

Cole et al. (2023) demonstrate that large language221

models benefit from a “disambiguate-then-answer”222

pipeline, showing improved reliability by detecting223

ambiguity before attempting an answer. Dhingra224

et al. (2022) propose time-aware language models225

that condition on timestamps to mitigate confusion226

arising from outdated facts or evolving knowledge.227

Studies have shown that retrieval performance228

heavily impacts which sources models rely on229

(Chen et al., 2022a), knowledge conflicts within230

contexts significantly degrade LLMs’ performance231

in RAG settings (Pham et al., 2024; Liu et al.,232

2024; Li et al., 2024b), and QA models are vul-233

nerable to even small amounts of evidence con-234

tamination brought by misinformation (Pan et al.,235

2023). In addition, large language models (LLMs)236

exhibit a strong confirmation bias, favoring ex-237

ternal evidence that aligns with their parametric238

memory, even when conflicting evidence is present239

(Xie et al., 2024). To mitigate these issues, Hong240

et al. (2024) proposed fine-tuning a discriminator241

or prompting GPT-3.5 to elicit its discriminative242

capability and show that these approaches signif-243

icantly enhance model robustness. On the other244

hand, Liu et al. (2024) proposed fine-tuning LLMs245

with human-written explanations to teach models246

to reason through conflicting evidence.247

2.2 Conflicts in Opinions248

2.2.1 Origins249

Perspectives Individuals and communities often250

hold diverse perspectives on the same issue. Such251

diversity is evident in online discussions and de-252

bates, where the multiplicity of viewpoints can lead253

to conflicting opinions. For instance, on controver-254

sial topics such as "Animals should have lawful255

rights," people express varying stances (Chen et al.,256

2019), posing challenges for downstream tasks like257

summarization where consolidating viewpoints and258

presenting unbiased information are crucial (Liu259

et al., 2021a; Lee et al., 2022).260

Chen et al. (2019) address this challenge by pre- 261

senting a range of perspectives on a given claim. 262

The authors introduce the task of substantiated per- 263

spective discovery, where a system identifies di- 264

verse, evidence-supported perspectives that take a 265

stance on a claim, and curated a dataset, PERSPEC- 266

TRUM, for the task, using online debate platforms 267

and search engines. Wan et al. (2024) introduce 268

ConflictingQA, a dataset comprising controversial 269

questions paired with real-world evidence docu- 270

ments presenting divergent facts, argumentation 271

styles, and conclusions. Plepi et al. (2024) study 272

perspective-taking in contentious online conversa- 273

tions (e.g. social media dilemmas). The authors 274

create a new corpus of 95k conflict scenarios aug- 275

mented with each user’s self-disclosed background 276

information. Liu et al. (2021a) propose MultiOpEd, 277

an open-domain corpus focusing on automatic per- 278

spective discovery. MultiOpEd comprises 1,397 279

controversial topics, each accompanied by two edi- 280

torials expressing opposing viewpoints, and each 281

editorial includes a one-sentence perspective sum- 282

marizing its core argument and a brief abstract high- 283

lighting supporting details. 284

Framing Bias A specific example of how differ- 285

ing opinions are conveyed and expanded is fram- 286

ing bias, a mechanism in which news media shape 287

interpretations by emphasizing certain aspects of 288

information over others (Entman, 1993). In a po- 289

larized media environment, partisan media outlets 290

deliberately frame news stories in a way to advance 291

certain political ideologies (Jamieson et al., 2007; 292

Levendusky, 2013; Liu et al., 2019). 293

Various studies have examined different facets 294

of such media bias. Card et al. (2015) introduce the 295

Media Frames Corpus (MFC) to facilitate the com- 296

putational study of media framing in news articles. 297

The MFC comprises several thousand news articles 298

covering three policy issues, each annotated ac- 299

cording to 15 general-purpose framing dimensions. 300

Liu et al. (2019) introduce Gun Violence Frame 301

Corpus (GVFC), a dataset of news headlines with 302

frames curated and annotated by journalism and 303

communication experts. Fan et al. (2019) focus on 304

informational bias, where factual content is sub- 305

tly framed by content selection and organization 306

within articles. They introduce BASIL, a dataset 307

comprising 300 news articles annotated with 1,727 308

bias spans, revealing that informational bias occurs 309

more frequently than lexical bias. Lei et al. (2022) 310

identify ideological bias at the sentence level by 311
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analyzing news discourse structure, showing that312

bias-indicative sentences may appear neutral in iso-313

lation.314

2.2.2 Implications and Mitigation315

Analysis of PERSPECTRUM reveals significant316

natural language understanding challenges, as hu-317

man performance substantially outperforms ma-318

chine baselines at identifying diverse, evidence-319

supported perspectives (Chen et al., 2019). Fur-320

thermore, when selecting real-world evidence for321

controversial questions, LLMs predominantly pri-322

oritize the relevance of the evidence to the query, of-323

ten disregarding stylistic attributes such as the pres-324

ence of scientific references or a neutral tone (Wan325

et al., 2024). In addition, the distribution and biases326

of web data also affects models to behave from a327

Western perspective (Ramaswamy et al., 2023; Mi-328

halcea et al., 2024). Studies have shown that LLMs’329

outputs skew toward the values of Western English-330

speaking countries (Tao et al., 2024; Naous et al.,331

2024), and misalignment is more pronounced for332

underrepresented personas and on culturally sensi-333

tive topics such as social values (Al Kuwatly et al.,334

2020). Furthermore, LLMs often provide inconsis-335

tent answers to the same question when prompted336

in different languages (Li et al., 2024a; AlKhamissi337

et al., 2024), revealing conflicting cultural perspec-338

tives within a single model.339

Several studies have proposed methods to ad-340

dress conflicts in perspectives. Liu et al. (2021a)341

show that incorporating auxiliary tasks enhances342

the quality of perspective summarization. Chen343

et al. (2022b) propose a novel document retrieval344

paradigm that focuses aggregating and displaying345

responses from web documents based on vary-346

ing viewpoints, and reveal that users prefer see-347

ing search results in different clusters of perspec-348

tives instead of in a list ranked by relevance. Jiang349

et al. (2023) tackle opinion summarization for user350

reviews by generating summaries from different351

perspectives. Their framework selects subsets of352

reviews based on sentiment polarity and informa-353

tional contrast, and produces balanced pros, cons,354

and verdict summaries. Plepi et al. (2024) demon-355

strate that a tailored generation model which condi-356

tions on a user’s personal context produces more ap-357

propriate and empathetic responses than large gen-358

eral models, effectively capturing different view-359

points in the conflict.360

To mitigate framing bias and ideology conflicts,361

Milbauer et al. (2021) propose a method to un-362

cover complex ideological and worldview differ- 363

ences across online communities beyond a single 364

left-vs-right axis. Their study identifies multiple 365

axes of polarization and nuanced ideological dis- 366

tinctions, offering a more multifaceted analysis of 367

online opinion differences. Liu et al. (2022) in- 368

troduce a pre-training approach for ideology clas- 369

sification that learns ideological bias by directly 370

comparing news articles about the same event re- 371

ported by outlets with different leanings. Chen 372

et al. (2023) tackle political ideology classifica- 373

tion under limited and biased data by disentangling 374

content from style, enabling accurate ideology de- 375

tection with minimal training data. Lee et al. (2022) 376

present a model that leverages news titles and em- 377

ploys hierarchical multi-task learning to neutralize 378

biased content from title to article, while Liu et al. 379

(2023) induce a neutral event graph that captures 380

events with minimal framing bias by synthesizing 381

across different ideologies. 382

3 Conflicts in Human-Annotated Texts 383

3.1 Origins 384

Annotation Disagreement The subjective nature 385

of human judgments bring noise and disagreements 386

to their annotated data (Kahneman, 2021). Such an- 387

notation disagreements in NLP arise from multiple 388

sources, including linguistic ambiguity, annotator 389

backgrounds, task design, and dataset curation prac- 390

tices. Uma et al. (2021) provide a comprehensive 391

survey of disagreement across NLP and computer 392

vision tasks, highlighting subjective ambiguity and 393

annotator diversity as key factors of disagreements. 394

Sandri et al. (2023) categorize disagreements in 395

offensive language detection, showing that some 396

stem from inherent ambiguity while others result 397

from annotation errors or lack of context. Their 398

findings imply that not all disagreements are equal 399

– some signal hard-to-classify content, whereas oth- 400

ers indicate correctable annotation issues. Jiang 401

and de Marneffe (2022) similarly classify NLI dis- 402

agreements into three broad categories—linguistic 403

uncertainty, annotator bias, and task design issues. 404

They show that both linguistic uncertainty and an- 405

notator bias contribute substantially to label vari- 406

ability, and a significant portion of “disagreement 407

noise” in NLI is systematic and predictable (e.g. 408

stemming from specific ambiguity types or annota- 409

tor profiles). 410

Task design also significantly influences annota- 411

tion disagreements. Dsouza and Kovatchev (2025) 412
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find that labels disagreement in Reinforcement413

Learning from Human Feedback (RLHF) largely414

depend on annotator selection and task formula-415

tion, while Yung and Demberg (2025) show that416

free-choice annotation methods, where annotators417

select any suitable connective, yield less diversity418

(often converging on common labels) than forced-419

choice approaches, where annotators choose from420

predefined options, in discourse relation labeling.421

On the other hand, demographic and ideologi-422

cal factors also shape disagreement. Pavlick and423

Kwiatkowski (2019) suggest that many NLI dis-424

agreements are not errors but reflect genuine am-425

biguities in language and individual variations in426

background knowledge. Sap et al. (2022) demon-427

strate that annotators’ personal beliefs and identi-428

ties affect their perception of toxicity, and Wan et al.429

(2023) find that demographic data significantly en-430

hances the prediction of annotation disagreements.431

Ethical and Societal Biases Ethical and soci-432

etal biases are also present in human-annotated433

texts. Biases introduced during annotation, whether434

related to race, gender, or geography, can sig-435

nificantly skew model predictions and decision-436

making processes (Buolamwini and Gebru, 2018).437

For instance, studies have shown that popular NLP438

datasets have a severe Western-centric skew (Faisal439

et al., 2022). This Western dominance in train-440

ing/evaluation data means models optimized on441

these benchmarks assume a Western context by de-442

fault. A model might perform well on answering443

questions about New York or London (since those444

appear often in the data), but fail on questions about445

Nairobi or Manila simply due to lack of exposure446

(Faisal et al., 2022).447

Sap et al. (2022) show that annotators’ ideolog-448

ical and racial attitudes affect their judgments of449

toxicity, with conservative annotators less likely450

to flag anti-Black slurs as toxic but more likely to451

misclassify African American English (AAE) as452

offensive. Similarly, Thorn Jakobsen et al. (2022)453

examine how annotation guidelines interact with454

annotator demographics, finding that different task455

formulations can either exacerbate or mitigate bi-456

ases. They show that even well-designed guidelines457

can elicit systematically different responses from458

distinct demographic groups, underscoring the im-459

portance of inclusive task framing to reduce dis-460

parities in annotations. Pei and Jurgens (2023), on461

the other hand, introduce POPQUORN, a dataset462

explicitly designed to measure the impact of annota-463

tor demographics across multiple NLP tasks. Their 464

large-scale analysis confirms that annotator back- 465

ground, such as age, gender, race, and education, 466

accounts for substantial variance in annotations. 467

3.1.1 Implications and Mitigation 468

Early research has highlighted the impact of anno- 469

tator disagreements on data quality and model per- 470

formance (Artstein and Poesio, 2008; Pustejovsky 471

and Stubbs, 2012; Plank et al., 2014). Pavlick and 472

Kwiatkowski (2019) find that standard NLI mod- 473

els’ uncertainty did not reflect the true uncertainty 474

found in human opinions. This mismatch suggests 475

that when disagreements are ignored, models be- 476

come overconfident on contentious cases. In addi- 477

tion, Anand et al. (2023) observe that a classifier 478

provided only with single “gold” labels tends to 479

be less confident and less accurate on examples 480

where annotators widely disagreed on. Such mod- 481

els may treat these instances as “hard to learn” or 482

mislabeled. Furthermore, Sap et al. (2019) reveal 483

how annotator biases can lead to racist outcomes 484

in hate speech classifiers. They uncover a spurious 485

correlation: tweets written in African American 486

English (AAE) are often rated as more toxic by an- 487

notators, even when they are not hate speech. Mod- 488

els trained on such data inherit this bias, falsely 489

flagging content by Black authors as offensive at 490

disproportionately high rates. 491

In terms of data collection, previous work has 492

explored the strategy of acquiring multiple labels 493

for each data item from various annotators to en- 494

hance data quality. They develop a probabilistic 495

model to assess the true label of an item by con- 496

sidering the varying expertise of annotators and 497

the possibility of label noise (Sheng et al., 2008). 498

Mostafazadeh Davani et al. (2022) examine strate- 499

gies to train NLP models without discarding annota- 500

tor disagreements. They propose a multi-annotator 501

modeling approach: a multi-task neural network 502

that learns to predict each individual annotator’s 503

label as a separate output while sharing a common 504

representation. Similarly, different studies have 505

shown that models which incorporate annotator 506

disagreement as "soft" labels (i.e. full label dis- 507

tribution) for training outperform those trained on 508

aggregated single labels (Uma et al., 2021; Forna- 509

ciari et al., 2021) 510
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4 Conflicts during Model Interactions511

4.1 Knowledge Conflicts512

4.1.1 Origins513

Context vs. Memory A common type of knowl-514

edge conflict arises when a model’s prompt (con-515

textual knowledge) contradicts what the model has516

learned and stored in its parameters (parametric517

knowledge) (Longpre et al., 2021; Chen et al.,518

2022a). One prevalent cause of such conflicts is519

the presence of updated information (Chen et al.,520

2021a; Lazaridou et al., 2021; Luu et al., 2022),521

where newly available knowledge contradicts mod-522

els’ previously learned knowledge.523

Recent studies have developed many evaluation524

frameworks and datasets to assess LLMs’ behav-525

iors in this scenario through different methods, in-526

cluding entity substitution (Longpre et al., 2021;527

Chen et al., 2022a; Wang et al., 2024), adversarial528

perturbation (Chen et al., 2022a; Xie et al., 2024),529

misinformation injection (Pan et al., 2023), and530

machine generation (Qian et al., 2023; Ying et al.,531

2024; Tan et al., 2024).532

Within and Across Models Different models533

may exhibit conflicts in their knowledge bases. Co-534

hen et al. (2023) investigate how different LLMs535

can be used to fact-check each other to reveal in-536

consistencies that imply factually incorrect claims.537

On the other hand, Zhu et al. (2024) address the538

issue of inconsistencies between the visual and539

language components in Large Vision-Language540

Models (LVLMs). These conflicts arise due to the541

separate training processes and distinct datasets542

used for each modality, leading to discrepancies in543

the knowledge they capture. Even the same model544

may have internal knowledge conflicts. Zhao et al.545

(2024) identify intra-model contradictions by para-546

phrasing the same query multiple times and find547

answer divergence across different LLMs.548

4.1.2 Implications and Mitigation549

Interestingly, different studies of knowledge con-550

flicts present seemingly contradictory findings.551

Some studies claim that models often excessively552

rely on parametric memory when observing con-553

flicts with contextual knowledge (Longpre et al.,554

2021); Some other studies posit that LLMs tend555

to ground their answers in retrieved documents in556

this scenario (Chen et al., 2022a; Qian et al., 2023;557

Tan et al., 2024); or even both – LLMs are highly558

receptive to context when it is the only evidence559

presented in a coherent way, but also demonstrate 560

a strong confirmation bias toward parametric mem- 561

ory when both supportive and contradictory evi- 562

dence to their parametric memory are present (Xie 563

et al., 2024). 564

Various approaches have been proposed to miti- 565

gate the consequences of such knowledge conflicts. 566

Longpre et al. (2021) propose a simple method 567

that augments the training set with training exam- 568

ples modified by corpus substitution to mitigate 569

memorization, Chen et al. (2022a) present a cali- 570

brator that abstains from predicting on instances 571

with conflicting evidence, and Wang et al. (2024) 572

propose a new instruction-based approach that aug- 573

ment LLMs to first identify knowledge conflicts, 574

then pinpoint conflicting information segments, 575

and lastly provide distinct answers in conflicting 576

scenarios. 577

4.2 Hallucination 578

4.2.1 Origins 579

Factual Hallucinations Factual hallucinations 580

occur when a model’s output conflicts with real- 581

world facts. TruthfulQA (Lin et al., 2022) intro- 582

duces an adversarial question-answering bench- 583

mark, revealing that even the best model at that 584

time (GPT-3) was truthful on only 58% of ques- 585

tions, compared to 94% for humans. Pagnoni et al. 586

(2021) construct the FRANK dataset, which an- 587

notates factual errors in summarization, identify- 588

ing strengths and weaknesses of various metrics. 589

Similarly, Honovich et al. (2021) extend QAGS 590

to knowledge-grounded dialogue using question 591

generation and entailment modeling to assess fac- 592

tual consistency. To further evaluate LLMs’ factual 593

knowledge and reasoning, Hu et al. (2023) intro- 594

duce Pinocchio, a benchmark comprising 20,713 595

multiple-choice questions across various domains, 596

timelines, and languages, and assess models on 597

fact composition, temporal reasoning, and adversar- 598

ial robustness, revealing that LLMs often struggle 599

with factual consistency and are prone to spurious 600

correlations. Mallen et al. (2023) also find that 601

language models struggle with less popular factual 602

knowledge, and that retrieval augmentation helps 603

significantly in these cases. 604

Contextual Hallucinations Contextual halluci- 605

nations occur when generated text contradicts the 606

given input context, such as in summarization, 607

translation, and generation tasks. Maynez et al. 608

(2020) find that summarization models frequently 609
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generate content unfaithful to input documents,610

with 64% of summaries containing unsupported611

information. In machine translation, Raunak et al.612

(2021) analyze hallucinations caused by source per-613

turbations and training noise, and find that slight614

modifications to input data could trigger off-topic615

translations. Similarly, Dale et al. (2023) introduce616

HalOmi, a multilingual benchmark for hallucina-617

tion and omission detection in machine translation,618

showing that prior hallucination detectors often619

fail across different language pairs. In generation620

tasks, Liu et al. (2021b) propose a novel token-621

level, reference-free hallucination detection task622

and dataset (HADES) for free-form text generation,623

and Niu et al. (2024) introduce RAGTruth, a com-624

prehensive corpus designed for analyzing word-625

level hallucinations across various domains and626

tasks within standard Retrieval-Augmented Gener-627

ation (RAG) frameworks.628

4.2.2 Implications and Mitigation629

Mitigating hallucinations in language models has630

been approached through various strategies, includ-631

ing knowledge disentanglement (Neeman et al.,632

2023), retrieval augmentation (Lewis et al., 2020;633

Shuster et al., 2021), knowledge graphs (Guan634

et al., 2024), and improved verification methods635

(Kryscinski et al., 2020; Wang et al., 2020; Laban636

et al., 2022; Manakul et al., 2023). DisentQA en-637

hances robustness by training models to separate638

internal memory from external context, improv-639

ing accuracy in conflicting knowledge scenarios640

(Neeman et al., 2023). Retrieval-Augmented Gen-641

eration (RAG) mitigates factual inconsistencies by642

integrating external sources like Wikipedia (Lewis643

et al., 2020) or incorporating a neural search mod-644

ule into chatbot responses (Shuster et al., 2021).645

In addition, Guan et al. (2024) demonstrate how646

retrofitting LLM outputs using structured knowl-647

edge graphs can correct factual inconsistencies, par-648

ticularly in complex reasoning tasks. For hallucina-649

tion detection methods, FactCC and QAGS intro-650

duce automated methods using synthetic data and651

question-answer validation to assess factual consis-652

tency (Kryscinski et al., 2020; Wang et al., 2020).653

SummaC refines entailment-based scoring (Laban654

et al., 2022), and SelfCheckGPT detects halluci-655

nations by sampling multiple model outputs and656

checking for agreement without external references657

(Manakul et al., 2023).658

5 Open Challenges 659

Building Conflict-Aware AI Systems Conflicts 660

in training data and retrieved contexts can lead to 661

unexpected consequences in NLP models, affect- 662

ing their reliability and trustworthiness (Pan et al., 663

2023; Liu et al., 2024). Studies show that knowl- 664

edge conflicts within retrieved contexts severely 665

degrade LLM performance in retrieval-augmented 666

generation (RAG) (Chen et al., 2022a; Pham et al., 667

2024; Liu et al., 2024; Li et al., 2024b), and QA 668

models are highly susceptible to misinformation, 669

where even minimal evidence contamination can 670

lead to incorrect predictions (Pan et al., 2023). 671

Also, LLMs exhibit confirmation bias, where mod- 672

els prefer external evidence that aligns with their 673

parametric knowledge, even when conflicting in- 674

formation is present (Xie et al., 2024). This bias 675

can cause models to reinforce incorrect or outdated 676

information instead of updating their knowledge 677

based on newly retrieved sources. We highlight 678

the need of developing conflict-aware NLP sys- 679

tems that (1) assess and resolve contradictions in 680

retrieved contexts, (2) mitigate confirmation bias 681

by designing models that reason over conflicting 682

evidence, and (3) integrate fact-checking mecha- 683

nisms that evaluate source credibility and detect 684

misinformation before generating responses. 685

Towards Robust and Fair NLP Models Beyond 686

technical challenges in handling knowledge con- 687

flicts, systemic biases in training data and anno- 688

tation processes impact the fairness of NLP mod- 689

els. The distribution of web data skews LLM out- 690

puts toward Western perspectives, disproportion- 691

ately reflecting Western English-speaking values 692

(Ramaswamy et al., 2023; Mihalcea et al., 2024; 693

Tao et al., 2024; Naous et al., 2024). Further- 694

more, LLMs provide inconsistent answers across 695

languages, revealing contradictions in how they 696

encode cultural perspectives (Li et al., 2024a; 697

AlKhamissi et al., 2024). Biases also emerge from 698

annotation processes, where demographic and ide- 699

ological factors influence how data is labeled (Sap 700

et al., 2019). Future directions to create robust 701

and fair NLP models include (1) building demo- 702

graphically diverse and geographically representa- 703

tive training datasets, (2) enhancing consistency of 704

models by aligning cross-lingual knowledge rep- 705

resentations, and (3) improving annotation frame- 706

works to account for demographic and ideological 707

biases among annotators. 708
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Limitations709

Conflicting information is present both in the data710

that models rely on and in their generated outputs.711

While we strive to account for all potential con-712

flict scenarios, some cases may inevitably be over-713

looked. Additionally, due to space constraints, we714

do not provide an exhaustive discussion of the lit-715

erature on each specific type of conflict. Instead,716

we adopt a broader perspective, examining various717

types of conflicts to identify connections, patterns,718

and common challenges.719
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