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ABSTRACT

Research in computational neuroscience suggests that the human brain’s unparal-
leled data efficiency is a result of highly efficient mechanisms to extract and orga-
nize slowly changing high level features from continuous sensory inputs. In this
paper, we apply this slowness principle to a state of the art representation learning
method with the goal of performing data efficient learning of down-stream regres-
sion tasks. To this end, we propose the slow variational autoencoder (S-VAE),
an extension to the β-VAE which applies a temporal similarity constraint to the
latent representations. We empirically compare our method to the β-VAE and
the Temporal Difference VAE (TD-VAE), a state-of-the-art method for next frame
prediction in latent space with temporal abstraction. We evaluate the three meth-
ods against their data-efficiency on down-stream tasks using a synthetic 2D ball
tracking dataset and a dataset generated using the DeepMind Lab environment.
In both tasks, the proposed method outperformed the baselines both with dense
and sparse labeled data. Furthermore, the S-VAE achieved similar performance
compared to the baselines with 1/5 to 1/11 of data.

1 INTRODUCTION

Neuroscience suggests that a major difference between state of the art deep learning architectures
and the human brain is that cells in the brain do not react to single stimuli, but instead extract in-
variant features from sequences of fast changing sensory input signals (Bengio & Bergstra, 2009).
Evidence found in the hierarchical organization of simple and complex vision cells shows that time-
invariance is the principle after which the cortex extracts the underlying generative factors of these
sequences and that these factors usually change slower than the observed signal (Wiskott & Se-
jnowski, 2002; Berkes & Wiskott, 2005; Bengio & Bergstra, 2009). Computational neuroscientists
have named this paradigm the slowness principle wherein individual measurements of a signal may
vary quickly, but the underlying generative features vary slowly. For example, individual pixel val-
ues in a video change rapidly during short periods of time, but the scene itself changes slowly.
This principle has found application in Slow Feature Analysis (SFA) (Wiskott & Sejnowski, 2002),
transformation- and time-invariant object detection (Franzius et al., 2011; Zou et al., 2011), and
neural network pre-training (Bengio & Bergstra, 2009).

In this paper, we apply the slowness principle to a state-of-the-art representation learning method,
the β-Variational Autoencoder (Higgins et al., 2017), by adding a similarity loss term to the evi-
dence lower bound (ELBO) that encourages similarity between latent representations based on their
temporal proximity. We show that the slow representations that hence emerge improve the task per-
formance and data efficiency of down-stream few-shot regression tasks. We compare the proposed
method to state-of-the-art representation learning methods, the β-VAE and the Temporal Difference
Variational Autoencoder (TD-VAE) (Gregor et al., 2019). Furthermore, we investigate the structure
of the slow latent space and its influence on the task performance with respect to bias and variance
of the down-stream model. The key contributions of this paper are:

• We propose the slow variational autoencoder (S-VAE) that extends the β-VAE with a sim-
ilarity constraint in the latent space which imposes the slowness property on the latent
representations.

• We empirically show that slow representations lead to more data-efficient learning of down-
stream regression tasks for two datasets. We show that the task performance of the S-VAE
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is between 2.38% and 17.6% better depending on the dataset and requires 4 to 11 times
less data to achieve similar performance than other state of the art methods.
• We analyze the structure of the resulting latent spaces and show that slow latent spaces

reduce the bias and variance of down-stream models.

2 SLOW VARIATIONAL AUTOENCODER

The variational autoencoder (VAE) (Kingma & Welling, 2013) is a representation learning method
for dimensionality reduction using a loss on the reconstruction quality of observations decoded
from the low dimensional representations. The VAE consists of an encoder qθ parameterized by
θ that returns a lower dimensional approximate posterior with unit Gaussian prior and a decoder
pφ parameterized by φ that reconstructs the input from the latent posterior. Higgins et al. (2017)
introduced the β-VAE by adding a parameter β to adjust the weight of the KL divergence between
the prior and the posterior to allows a trade-off between disentanglement of the latent factors and
reconstruction quality. We introduce the Slow Variational Autoencoder (S-VAE) which extends
the β-VAE formulation by a regularization term based on the slowness principle. To that end we
extend the ELBO of the β-VAE with a similarity loss term (Lsim), which enforces the similarity of
latent representations for temporally close observations.

Let D = (õ1, . . . , õT ) be a long sequence of unlabeled observations õ = (o, t) that consist of an
observation (o) and the time index (t) that are used to determine the metric ∆t that determines how
far apart a pair of observations at times i, j are, where i < j. Specifically,

∆t(õi, õj) = j − i. (1)

Let qθ be the variational approximate posterior distribution obtained by an encoder network with
parameters θ and z be the latent vector such that z ∼ qθ(z|o). Considering two distinct yet sequential
observations oi,oj ∈ D | i < j, the difference of the corresponding latent representations is given
by the approximate difference distribution,

qθ(zj − zi|oj ,oi) = N (µj − µi,Σj + Σi) ≡ qθ(∆z|oj ,oi). (2)

To express the decaying similarity with growing temporal separation ∆t, we assume a prior that the
latent vector exhibits Brownian motion. Denoting by Zi, Zj two increments of the Brownian motion
at times i and j, respectively, the prior distribution p(∆z) is given by

Zj − Zi =
√

∆t ·N ∼ N (0,∆tI) ≡ p(∆z), (3)

whereN ∼ N (0, I). This prior also encodes the time, resulting in observations further apart in time
to have a prior distribution with a larger covariance.

The similarity of two observations can be computed as the Kullback-Leibler (KL) divergence be-
tween the approximate posterior and the prior distributions as

Lsim(õi, õj) = DKL(qθ(∆z|oj ,oi)||p(∆z)). (4)

∆t can be considered a scaling factor for the variance of the Brownian motion. Thus, when con-
sidering two consequent elements in the sequence, we want to constrain Lsim to be smaller than a
certain bound. We consider only pairs of consecutive elements because the bound (scaled according
to ∆t) becomes weaker as the temporal distance between elements increases.

Combining the constraint term with the β-VAE, we can write the constrained optimization problem

max
θ,φ

E(õi,õi+1)∼D[Eqθ(zi|oi)[log pφ(oi|zi)]] subject to DKL(qθ(zi|oi)||p(z)) < ε1,

DKL(qθ(∆z|oi+1,oi)||p(∆z)) < ε2
(5)

with a prior p(z) = N (0, I) and the decoder network pφ. The parameter ε1 describes the strength
of the latent bottleneck as in (Higgins et al., 2017) while ε2 describes the strength of the temporal
similarity constraint. Rewriting the above in Lagrange form we get,

F(θ, φ, β, λ,oi,oi+1) =Eqθ(z|oi)[log pφ(oi|z)]

− β(DKL(qθ(z|oi)||p(z))− ε1)

− λ(DKL(qθ(∆z|oi+1,oi)||p(∆z))− ε2)

(6)
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Since ε1, ε2 ≥ 0 we can rewrite the Lagrangian to arrive at the S-VAE loss function

F(θ, φ, β, λ,oi,oi+1) ≥ L(θ, φ, β, λ,oi,oi+1) =Eqθ(z|oi)[log pφ(oi|z)]

− βDKL(qθ(z|oi)||p(z))

− λDKL(qθ(∆z)|oi+1,oi||p(∆z)).

(7)

where β remains the same paramter as used in (Higgins et al., 2017). Our contribution, the additional
similarity loss term scaled by the parameter λ consists of the KL-divergence between the approxi-
mate difference distribution of two observations and a random walk based prior. This formulation
of the similarity loss allows us to ensure temporal consistency in both means and variances of the
encoder as opposed to for example taking the L1 norm of the means µi and µj .

3 EXPERIMENTS

In this section, we will compare the performance of the following three methods: a β-VAE, the
TD-VAE, and our method, the S-VAE. We used two datasets: a synthetic dataset consisting of a ball
bouncing within the bounds of a 2D arena and a 3D dataset generated using the DeepMind Lab
environment (Beattie et al., 2016).

3.1 SYNTHETIC DATASET

In the synthetic dataset experiment we compare the S-VAE, the TD-VAE and the β-VAE regarding
the downstream few-shot learning performance when trying to learn the ball velocity from two
consecutive frames. We generated sequences of 20 frames of a ball bouncing in a 100×100 uni-color
2D environment. For each sequence the ball is placed in a random position in the environment and
initialized with a random direction and random but limited velocity vector. Then the environment
performs 20 update steps and stores the frames and the ball’s x/y-velocity. Overall 10000 labeled
sequences consisting of 20 datapoints each were generated.

100 1000 10000
Dataset Size

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

Te
st

 L
os

s

Test loss ball experiment
beta-VAE
TD-VAE
S-VAE
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(b) Test loss vs. dataset size DeepMind Lab experi-
ment.

Figure 1: Average MSE loss with standard deviation on unseen test dataset over 12 runs with differ-
ent random seeds compared to the labeled dataset size used during the few-shot learning.

During the unsupervised representation learning step, we use the full dataset without labels to
train a S-VAE, a TD-VAE and a β-VAE model. Both S-VAE and β-VAE share the same architec-
ture, a neural network with 4 fully connected layers with 300 hidden nodes that outputs means and
logvariances of the 2D latent distributions. The β parameter of both VAE methods is 0.001 while λ
is 0.001 for the S-VAE. The TD-VAE is trained using the same architecture as the moving MNIST
experiment described in Appendix D in the paper (Gregor et al., 2019) with an 8D latent space.
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In the supervised few-shot down-stream task we use subsets of (1, 1/2, 1/4, . . . , 1/256) of the full
labeled dataset with their labels to train the down-stream task of predicting the ball velocity. The
down-stream task is trained by freezing the encoder networks trained in the previous step and feeding
the latent representations into a fully connected neural network with 4 layers of 50 hidden nodes.
The latent representations for the S-VAE and β-VAE are extracted from the latent bottleneck of
the autoencoder structure. To obtain a representation from the TD-VAE we concatenate the sampled
representation obtained from the belief states at t1 and t2. Figure 1a shows the average performances
(MSE between predicted and true labels) on the downstream task on an unseen test dataset across
12 runs. We can see that the S-VAE out-performs both competing methods for all subset sizes.

3.2 DEEPMIND LAB DATASET

In this experiment a dataset of 10000 sequences with 20 images each was generated using a random
walker exploring a DeepMind Lab environment (Beattie et al., 2016). The training procedure is the
same as for the bouncing ball experiment.

In the unsupervised representation learning step we trained a β-VAE and a S-VAE on the full
dataset without labels. The network architectures of the S-VAE and β-VAE were adapted from the
Ball experiment with 4 convolutional layers in both encoder and decoder as well as a 100D latent
space. The β parameter for both methods was 0.00001 and λ was 10.0. The representations were
extracted in the same way as for the Bouncing Ball experiment. We do not include the TD-VAE in
the DeepMind Lab experiment as we were not able to recreate the results from (Gregor et al., 2019)
with the more complex architecture and the given implementation instructions.

Table 1: Data efficiency improvement for both experiments. The table lists the amount of labeled
data needed to achieve the best performance of the β-VAE, the second best performing method.

Method Ball Exp. DeepMind Lab Exp.
β = 0.001, λ = 0.001 β = 0.00001, λ = 10.0

TD-VAE − images − images
β-VAE 5000 images 10000 images
S-VAE 446 images 2337 images

Improvement S-VAE: 91.08% less data 76.63% less data

Table 2: Best few-shot performance across subsets of the unlabeled training data in both experi-
ments.

Ball experiment DeepMind Lab Exp.
Method β = 0.001, λ = 0.001 β = 0.00001, λ = 10.0

Full dataset 1/4th 1/32 Full dataset 1/4th 1/32

TD-VAE 6.70 7.05 10.66 − − −
β-VAE 6.76 6.76 7.03 0.0125 0.014 0.0168
S-VAE 6.56 6.60 6.75 0.0103 0.012 0.0167

Improvement S-VAE: 2.1% 2.4% 4.0% 17.6% 13.83% 0.60%

The few-shot down-stream task is then learned from subsets of (1, 1/2, 1/4, . . . , 1/128) of the full
dataset. The final performance on an unseen test dataset of each method for all subset sizes is shown
in Fig. 1b. The S-VAE out-performs the β-VAE for medium and large subsets of labeled data.
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3.3 DISCUSSION

In this section, we first discuss the results obtained from the experiments on both datasets. Then, we
look at the structure of 2D slow latent spaces and how this influences the bias and variance of the
downstream task across multiple runs.

3.3.1 DATA EFFICIENCY AND PERFORMANCE

To quantify the down-stream task data efficiency and performance of the S-VAE we compare the
amount of data needed to achieve similar performance when compared to the best performing com-
peting method.

From the results summarized in Table 1 we can see that the S-VAE requires 91.08% less training
data for the bouncing ball experiment and 76.63% less in the DeepMind Lab experiment to achieve
the best performance of the β-VAE of 6.71 and 0.0125 respectively. From Table 2 we can see
that in the case of the Ball experiment, the S-VAE achieves a 2.1% better performance for the
full labeled dataset when compared to the β-VAE and about 4% for 1/32 and smaller subsets of
the full dataset. While the TD-VAE performs similarly to the other methods on the full dataset,
its performance degrades heavily for smaller portions of the labeled data. In the DeepMind Lab
experiment the improvements over the β-VAE are 17.6% and 13.83% for the full labeled dataset
and 1/4th respectively. In this experiment it is also noteworthy that for very small subsets (1/10th of
the dataset) both S-VAE and β-VAE perform similarly. This is due to the fact that the more complex
down-stream training was prone to overfitting for small subsets and thus, we focus on analyzing the
performance on larger subsets.
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(d) Variances DeepMind Lab experiment.

Figure 2: Bias variance decomposition for both experiments across all dataset sizes.
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3.3.2 BIAS-VARIANCE DECOMPOSITION

To give perspective on the performance differences in down-stream task performance we decompose
the bias and variances for each subset size across 12 runs with different random seeds, shown in
Fig. 2. In the Ball experiment, the TD-VAE displays the lowest bias given more labeled data but also
much larger variance and overall worse performance, confirming the initial observation of overfitting
for small amounts of labeled data. The S-VAE displays both lower bias and variance compared to
the β-VAE resulting in the improved performance and data efficiency observed before.

In the DeepMind Lab experiment the variance contributed more to the overall test error and was
lower for the S-VAE through all subset sizes (Fig. 2d). The results on the bias are favoring the S-
VAE for subsets with more than 1/5th of the labeled data, for smaller subsets we assume the results
are not reliable since the down-stream task training overfitted strongly.

Overall we conclude that the S-VAE displays lower bias for all considered subset sizes and lower
variance across all subset sizes leading to less overfitting and overall better down-stream task per-
formance.

3.3.3 LATENT SPACE STRUCTURE

Lastly we visualize the 2D latent space of the Ball experiment in Fig. 3 to demonstrate how the pa-
rameter λ influences its structure. Increasing the constraint on the similarity term in Eq. 7 increases
the continuity of the latent space from β-VAE (Fig. 3a) where λ = 0 to S-VAE with λ = 0.01 and
λ = 1.0 (Fig. 3b and 3c). Note that with increasing λ also the range of the latents decreases. We
conclude that the similarity loss term structures the latent space according to the slowness principle,
observations where the ball is in a similar position are also similar in latent space.

The TD-VAE has been visualized in two dimensions by applying PCA to the 8D latent space which
exhibits high discontinuity. This is likely a result of the TD-VAE being trained for a specific task
and not enforcing a Gaussian prior on the latent space. As we can see from Fig. 2b, this leads to
large variances, lower bias and ultimately to extreme overfitting for small datasets.

Taking the results of the bias variance decomposition into account, we conclude that a more contin-
uous latent space leads to lower bias and variance compared to the β-VAE, and at the same time the
discontinuous latent space of the TD-VAE displays strong overfitting especially for smaller subsets.
Ultimately this results in better data efficiency and better overall performance. These results indicate
that continuous latent spaces might be beneficial for the optimization process of down-stream tasks
which we would like to expand on in future work.

4 RELATED WORK

Unsupervised learning of invariant features from observations is an efficient way to extract higher
level features about a scene without the need for human labels. However, it is still not clear what
invariances lead to the most descriptive features and which features work best for down-stream
tasks (Saunshi et al., 2019; Locatello et al., 2019; Bengio et al., 2013).

4.1 SLOWNESS PRINCIPLE

Research form neuroscience (Berkes & Wiskott, 2005) suggests that cell structures in the visual cor-
tex emerge based on the underlying principle of extracting slowly varying features from the environ-
ment. This principle termed slowness principle follows the assumption that the underlying features
of an environment and the internal representations vary on a different time scale than the sensory
signals. More intuitively, we would like to extract invariant scene information which changes slowly
over time, e.g. a car passing by, from a video whose individual pixel values change quickly assuming
that the slowly changing factors are good higher level representations of the observations.

The most well known application of the slowness principle is the slow feature analysis method (SFA)
introduced in (Wiskott & Sejnowski, 2002). SFA is an unsupervised learning algorithm capable to
extract linearly decorrelated features by expanding and transforming the input signal such that it
can be optimized for finding the most slowly varying features from an input signal (Wiskott &
Sejnowski, 2002). Extending the SFA method to nonlinear features has shown that the learned
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(a) β-VAE (β = 0.001)
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(b) S-VAE (β = 0.001, λ = 0.01)
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(c) S-VAE (β = 0.001, λ = 1.0)
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(d) TD-VAE

Figure 3: Scatter plot visualization of 3000 samples in the 2D latent space of the Ball experiment.
X- and Y-Axis are the position of the ball in the 100 × 100 pixel large environment and the color
scale represents the value of the corresponding latent dimension.

features share many characteristics with those of complex cells in the V1 cortex (Berkes & Wiskott,
2005). Further applications of the slowness principle include object detection invariant of spatial
transformations (Franzius et al., 2011), pre-training neural networks for improved performance on
the MNIST dataset (Bengio & Bergstra, 2009) and the self organization of grid cells, structures in
the rodent brain used for navigation (Franzius et al., 2007b;a).

4.2 CONTRASTIVE LEARNING AND THE SLOWNESS PRINCIPLE

The equivalent in state of the art machine learning that could be considered related is contrastive
learning. The objective of contrastive learning is to encode observations and place them in a latent
space using a metric score that allows to express (dis-)similarity of the observations. Contrastive
learning has been successfully applied in reinforcement learning (Laskin et al., 2020) and most
recently for object classification in SimCLR (Chen et al., 2020a;b). These methods use a contrastive
loss on augmented versions of the same observation, effectively learning transformation invariant
features from images, and show that these representations benefit reinforcement learning and image
classification tasks.

When using the time as the contrastive metric, similar to the slowness principle, we speak about
time-contrastive learning. Time-contrastive learning has been applied successfully to learning view-
point-invariant representations for learning from demonstration with a robot (Sermanet et al., 2018).
Related to our work, Mobahi et al. (Mobahi et al., 2009) used the coherence in video material to train
a CNN for a variety of specific tasks. While training two CNNs in parallel with shared parameters,
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in alternating fashion a labeled pair of images was used to perform a gradient update minimizing
training loss followed by selecting two unlabeled images from a large video dataset to minimize
a time-contrastive loss based on the L1 norm of the representations at each individual layer. The
experiments showed that supervised tasks can benefit from the additional pseudo-supervisory signal
and that features invariant to pose, illumination or clutter can be learned.

Compared to the work by Mobahi et al. Mobahi et al. (2009), our method is focused on learning
task-agnostic representations that encode uncertainty and facilitate data-efficient learning of down-
stream tasks. These goals are achieved by extending the state of the art β-VAE by an additional
similarity loss term based on the Kullback-Leibler divergence.

As a comparison in this paper we use the β-VAE (Higgins et al., 2017; Kingma & Welling, 2013)
and the temporal difference variational autoencoder (TD-VAE) (Gregor et al., 2019). We chose
the TD-VAE as it learns representations that include temporal abstraction capabilities, encode an
uncertain belief state and is not based on the variational autoencoder. The TD-VAE is trained on
sequences from a video trying to predict a time step in the future from information that is encoded
in a belief code at the current step.

5 CONCLUSION

In this paper, we introduced the Slow Variational Autoencoder (S-VAE) which applies the slowness
principle to the state-of-the-art β-VAE by enforcing similarity in latent space based on temporal
similarity in an observation sequence. To this end we derived a similarity loss term constrained
by a parameter λ and added it to the ELBO of the β-VAE. We show empirically that unsupervised
pre-training using time correlated data with this new loss term leads to improved down-stream task
performance and data efficiency. Qualitative analysis of the latent space structure and the bias vari-
ance decomposition of the down-stream task shows that the similarity loss enforces the slowness
property on the latent space. This leads to more continuous latent spaces which facilitate more data
efficient learning of down-stream tasks. In future works, we would like to investigate how the struc-
ture of the latent space influences the optimization of down-stream tasks and if these improvements
are applicable to a wider variety of tasks.
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