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Abstract

Transformer-based Large Language Models
(LLMs) have exhibited remarkable success in
extensive tasks primarily attributed to the self-
attention mechanism, which requires a token to
consider all preceding tokens as its context to com-
pute attention. However, when the context length
L becomes very large (e.g., 128K), the amount
of potentially redundant information in the con-
text tends to increase. The redundant context not
only hampers the modeling representation perfor-
mance but also incurs unnecessary computational
and storage overhead. In this paper, we propose a
plug-and-play Core Context Aware (CCA) Atten-
tion for efficient long-context modeling, compris-
ing two complementary modules: 1) Globality-
aware pooling module groups input tokens and
dynamically compresses each group into one core
token based on their significance. In this way,
our method automatically focuses and strength-
ens core context while diminishing redundancy
during the learning process, leading to effective
long-term dependency modeling. 2) Locality-
preserving module incorporates neighboring to-
kens to preserve local context for detailed repre-
sentation. Notably, our CCA-Attention is able
to replace the self-attention module in existing
LLMs with minimal fine-tuning cost. Extensive
experimental results show the superiority of our
method in both long-context modeling and compu-
tational efficiency over state-of-the-art methods.
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1. Introduction
Large language models (LLMs) (Brown et al., 2020; Ope-
nAI, 2023; Touvron et al., 2023a; Liu et al., 2024a) have
demonstrated exceptional proficiency across various appli-
cations by effectively modeling extended contexts, particu-
larly in tasks involving natural language understanding and
generation (Ouyang et al., 2022; Chang et al., 2024). The
remarkable success of Transformer-based LLMs is predom-
inantly credited to the self-attention mechanism (Vaswani
et al., 2017), which requires each token to incorporate all
preceding tokens as its context for attention calculation. In
this mechanism, the context of a token refers to the sequence
of tokens that precede it. By leveraging self-attention, LLMs
are able to capture long-range dependencies and generate
coherent and contextually relevant outputs.

The ability to process longer contexts has been a key fac-
tor in improving the performance of LLMs across a wide
range of tasks, particularly beneficial for tasks requiring
document-level understanding, such as summarization of
extended texts, and multi-turn dialogue (Kitaev et al., 2019;
Wei et al., 2022; Jiang et al., 2024). More importantly, recent
advancements in LLMs, such as OpenAI-o1 (OpenAI, 2023)
and DeepSeek-R1 (Guo et al., 2025), have demonstrated
that extended contexts significantly enhance reasoning ca-
pabilities, enabling models to solve intricate problems that
require multi-step inference and contextual understanding.
This trend underscores the importance of extending the con-
text length in LLMs to enhance modeling capabilities.

However, as the context length L scales to extremely large
magnitudes (e.g., 128K), it becomes impractical for a to-
ken to maintain significant semantic connections with all
tokens within such an extensive context. From this per-
spective, it is natural to consider that not all parts of the
context contribute equally to a token’s representation. In-
stead, the context can be viewed as comprising two primary
aspects: core context, which captures essential semantic
connections, and redundant context, which contains less
critical or repetitive information. The redundant context
may hamper LLMs from capturing dependencies among
crucial tokens, degrading representation performance. In
self-attention, this redundancy manifests as a highly sparse
distribution of attention scores, with a substantial proportion
disproportionately assigned to a limited number of tokens.
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Such sparsity in attention score distribution has been ob-
served across different attention heads in most layers of
LLMs, as shown in recent studies (Beltagy et al., 2020;
Zaheer et al., 2020; Xiao et al., 2024b). This sparsity in
attention scores introduces unnecessary computational and
storage overhead, especially for extremely long contexts.

To address the above issues, numerous studies have been
advanced to eliminate the redundancy and enhance atten-
tion computational efficiency. StreamingLLM (Xiao et al.,
2024b) and LM-Infinite (Han et al., 2023) simply main-
tain the attention over only the initial and last several to-
kens, ignoring the attention connection among remaining
tokens. Besides, MInference (Jiang et al., 2024) introduces
an efficient mixed attention mechanism comprising A-shape,
vertical-slash, and block-sparse attentions, with the mixed
attention patterns determined offline based on some samples.
These methodologies typically involve computing only a
portion of the attention to approximate full attention, thus
compromising the connections among different tokens. In
question-answering tasks, the crucial information can be lo-
cated across any position in the input tokens. Consequently,
it is crucial for the model to have the capability to leverage
information from any position within the input text (Liu
et al., 2024b). In this sense, these methods with fixed spar-
sity patterns may lead to incomplete comprehension of the
long context. Therefore, how to ensure the information ex-
change among tokens in the attention while reducing the
context redundancy is still an open question.

In this paper, we propose an efficient Core Context Aware
(CCA) Attention mechanism, which is designed to effi-
ciently capture both global and local dependencies within
long contexts. Specifically, our CCA-Attention consists of
two complementary components: 1) Globality-aware pool-
ing module first partitions the input tokens into groups and
derives core tokens by compressing the input tokens in each
group based on their significance. We perform attention
on these core tokens instead of original input tokens to ef-
ficiently extract long-term contextual information. These
number-reduced core tokens are more compact represen-
tations than the original ones, which enables our attention
method to automatically focus on the core context. In this
way, our method is able to eliminate the context redundancy
and reduce unnecessary computational overhead. However,
the globality-aware pooling module is only able to cap-
ture long-range and coarse-grained information. 2) To ad-
dress this issue, we propose a Locality-preserving module
that captures the local and fine-grained context by focus-
ing on neighboring tokens, serving as a complement for
the globality-aware pooling module. By fusing the insights
from both these two modules, our method not only excels in
long context modeling but also achieves this with a signifi-
cant reduction in computational costs and storage demands.
Our contributions are as follows:

• We propose a plug-and-play Core Context Aware At-
tention for efficient long-context modeling. Our CCA-
Attention reduces computational complexity to linear
complexity by taking a set of core tokens as efficient
proxies for attention. Unlike traditional efficient at-
tention methods that require extensive retraining, our
CCA-Attention can be easily integrated into pretrained
LLMs with minimal fine-tuning effort.

• We develop a dynamic globality-aware pooling mod-
ule that adaptively derives core tokens based on their
importance. By compressing input tokens into core to-
kens, our method captures essential information more
effectively than static or random token selection ap-
proaches. Our strategy focuses on the most relevant
global context, leading to more accurate and effective
long-term dependency modeling.

• We achieve significant improvements compared with
other baseline methods in both long-context modeling
performance and computational efficiency. Our ex-
perimental results show that CCA-Attention not only
outperforms existing efficient attention mechanisms
in long-context modeling but also achieves a 7.9×
speedup compared to full self-attention when process-
ing 128K token contexts, demonstrating substantial
efficiency gains with compatible accuracy.

2. Related Work
Efficient Attention. Self-attention is a fundamental mod-
ule in Transformer-based Large Language Models (LLMs)
(Brown et al., 2020; OpenAI, 2023; Touvron et al., 2023a). It
captures the global relationship between each token through-
out the input sequence. However, the computational com-
plexity of self-attention increases quadratically with the
sequence length, thereby limiting the application of LLMs
to long documents. Various works have sought to mitigate
this complexity through approaches such as sparse attention
(Beltagy et al., 2020; Zaheer et al., 2020; Ding et al., 2023)
and linear attention approximations (Choromanski et al.,
2020; Katharopoulos et al., 2020; Sun et al., 2023). Specifi-
cally, Longformer (Beltagy et al., 2020) and BigBird (Za-
heer et al., 2020) employ sparse attention mechanisms to
handle long sequences by utilizing strided attention patterns,
where attention is only paid at fixed intervals. Linear Trans-
former (Katharopoulos et al., 2020) and RetNet (Sun et al.,
2023) reformulate self-attention as a linear dot-product of
kernel feature maps and leverages the associativity property
of matrix products to achieve linear complexity.

Recently, LongLoRA (Chen et al., 2024) designs a shifted
sparse attention mechanism that computes attention among
grouped input tokens. To facilitate communication between
groups, this approach shifts the group partition by half the
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Figure 1. Illustration of core contexts and redundant contexts. We show attention scores of the last token relative to the other tokens in
LLaMA2-7B (darker shadows indicate higher attention scores). The last token exhibits high attention scores towards core contexts. The
remains are considered as redundant contexts, introducing unnecessary computational overhead for attention.

group size. StreamingLLM (Xiao et al., 2024b) and LM-
Infinite (Han et al., 2023) prioritize attention on the initial
and final tokens, effectively disregarding the intermediate to-
kens. InfLLM (Xiao et al., 2024a) employs a sliding window
attention mechanism and a block-level context memory to
selectively attend to relevant context information, avoiding
noise and reducing computational costs. MInference (Jiang
et al., 2024) accelerates long-context LLM inference by
applying three distinct sparse attention patterns with opti-
mized GPU kernels. However, these methods can not ensure
that each token has access to all preceding tokens, leading
to inferior performance in tasks requiring comprehensive
long-context understanding. Instead, we propose a globality-
aware pooling module that each token can communicate
with previous tokens via number-reduced core tokens.

Long-context Large Language Models (LLMs). LLMs
are often pretrained with a relatively small and predefined
context length due to computational cost constraints, such
as 4K for LLaMA2 (Touvron et al., 2023b). This limita-
tion restricts the applicability of LLMs to tasks with long
documents. Recently, several attempts have been made to
extend the context length of LLMs through continuous train-
ing. Position Interpolation (Chen et al., 2023) addresses
this by linearly down-scaling the input position indices to
fit within the original context window size, thereby extend-
ing the context length of RoPE-based LLMs. Furthermore,
YaRN (Peng et al., 2024) enhances performance by combin-
ing interpolation techniques with dynamic scaling. Beyond
modifications to position embeddings, other efforts focus on
designing more efficient attention mechanisms (Chen et al.,
2024; Dao et al., 2022; Dao, 2024) for context window ex-
tension. Our method is orthogonal to position embedding
methods. During inference, our approach accelerates the
forward propagation process, which cannot be achieved
through position embedding modifications alone. Some
context compression works attempt to achieve long con-
text modeling by either compressing features via auxiliary
networks (Rae et al., 2020) or compressing context with
extra specific tokens (Mu et al., 2023; Qin & Van Durme,
2023; Mohtashami & Jaggi, 2023; Zhang et al., 2024; Qin
et al., 2024). In contrast, our method dynamically identifies
and enhances task-relevant core-context while suppressing

redundant information. Unlike sequence-length-oriented
compression techniques, our core-context-aware mechanism
optimizes redundancy directly within self-attention compu-
tation, enabling more effective long-context modeling.

3. Core Context Aware Attention
3.1. Motivation and Method Overview

Most existing attention-based large language models
(LLMs), such as GPT (Brown et al., 2020; OpenAI, 2023)
and LLaMA (Touvron et al., 2023a), employ the next-token
prediction (Vaswani et al., 2017) paradigm to generate text.
Given a sequence of tokens X=[x1;x2; . . . ;xL], where
each token xi ∈ R1×d, the model θ predicts the next token
xt by conditioning on all preceding tokens as its context
C(xt)=[x1:t−1]. Specifically, the model generates the next
token with the highest probability as:

xt = argmax
x

Pθ(x|x1,x2, . . . ,xt−1). (1)

However, as the context length L grows, the context in-
evitably exhibits redundant information. This redundancy
stems from the inherent nature of natural language: not
all contextual information is equally important for the rep-
resentation of the target token. These redundant context
(e.g., C1(xt) w.r.t. xt in Figure 1) have weak semantic rele-
vance to the token xt, while introducing significant compu-
tational overhead. In contrast, the core context (e.g., C2(xt)
w.r.t. xt in Figure 1) refers to the contextual information that
is highly relevant to the token xt. This information is crucial
for the token’s representation. Therefore, in long-context
modeling, the model should prioritize the core context over
redundant parts. To this end, most existing methods (Belt-
agy et al., 2020; Ding et al., 2023; Chen et al., 2024) employ
sparse attention with predefined and fixed patterns. Unfortu-
nately, they often overlook the importance of maintaining
comprehensive information exchange among tokens, which
may hinder the performance of long-context modeling tasks.

In this paper, we seek to reduce the context redundancy asso-
ciated with full self-attention. To achieve this, we propose a
Core Context Aware Attention (CCA-Attention), which em-
ploys globality-aware pooling and locality-preserving mod-
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Figure 2. Illustration of CCA-Attention, which includes two components: 1) Globality-aware pooling module encapsulates the input
tokens X into core tokens C according to the importance (Eqn. (2)). The core tokens C serve as representative proxies of X for attention,
thereby reducing computational costs. 2) Locality-preserving module incorporates the local context from neighboring tokens, acting as
supplement for the globality-aware pooling module. We produce the final output Att by fusing these two modules based on Eqn. (5).

ules to capture both global and local dependencies within
a long context. As shown in Figure 2, the globality-aware
pooling module operates by generating representative core
tokens from segmented groups of the input sequence. It then
computes attention using these reduced-number core tokens,
thereby reducing the context redundancy and computational
cost (see Section 3.2). However, the globality-aware pooling
module mainly focuses on long-range and coarse-grained
information and overlooks local context. To address this
limitation, the locality-preserving module is responsible
for capturing the local information of the neighborhood to-
kens to ensure comprehensive coverage (see Section 3.3).
Furthermore, we devise a differentiable fusion strategy to
combine the insights from global and local modules (see
Section 3.4). This is crucial as it retains the comprehen-
sive understanding ability of the full self-attention within
our CCA-Attention. The pseudo-code for our proposed
CCA-Attention is presented in Algorithm 1.

3.2. Globality-aware Pooling Module

The context redundancy aforementioned indicates that com-
putational resources can be dynamically allocated to core
contexts while reducing emphasis on the remaining ones.
This could approximate the full self-attention with both re-
duced redundancy and computational overhead. Motivated
by this, we propose a globality-aware pooling module that
dynamically identifies prominent tokens and encapsulates
them into a smaller set of core tokens for attention.

Given an input sequence of tokens X=[x1;x2; . . . ;xL], we

segment the input sequence X, each group containing g
tokens, in total m=⌊L/g⌋ groups. For simplicity, we de-
note the i-th group by XG

Ii
∈Rg×d, where Ii={(i−1)g +

1, (i−1)g+2, . . . , ig} with xig denoting the last token in the
i-th group. To identify prominent tokens in the i-th group,
we devise a group-wise weighted pooling strategy that em-
ploys the last token xig to evaluate the importance. This
is inspired by attention map visualizations (Section C.4),
which show that important tokens consistently receive high
attention scores from subsequent tokens, indicating their
significant influence regardless of position within the group.
Formally, we derive one core token ci from each group by

ci=softmax

(
QigK

′⊤

Ii√
d

)
XG

Ii
∈ R1×d, i = 1, . . . ,m,

(2)
where Qig is the query vector for the last token in the i-
th group of QIi

=XG
Ii
WQ and K

′

Ii
=XG

Ii
WK , WQ and

WK are learnable parameters. In this way, the core token
ci encapsulates crucial information of the corresponding
group. With m groups in the input sequence X, we derive
m core tokens in total, i.e., C=[c1; c2; . . . ; cm].

To reduce the redundancy, we use the sequence of core to-
kens C=[c1; c2; . . . ; cm] instead of the original tokens X
for attention computation. This substitution reduces the di-
mensionality from X∈RL×d to C∈Rm×d, thereby reducing
the computational and storage complexity. For each query
Qi, tokens that are distant from it typically exhibit lower
relevance and are more likely to be redundant. Formally, we
adopt core tokens to calculate the key and value matrices
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Algorithm 1 The pipeline of Core Context Aware Attention.

Require: Input tokens X=[x1;x2; . . . ;xL], parameters WQ,
WK , WV , the group size g and local window size s.

1: Calculate the query Q = XWQ, #groups m = ⌊L/g⌋
2: for i in {1, 2, . . . ,m} do
3: XG

Ii
=[x(i−1)g+1;x(i−1)g+2; . . . ;xig]

4: ci=softmax

(
QigK

′⊤
Ii√

d

)
XG

Ii
, where K

′
Ii
=XG

Ii
WK

5: end for
6: Let C = [c1; c2; . . . ; cm]
7: KG=CWK , VG=CWV // Globality-aware Pooling Module
8: KL = XWK , VL = XWV // Locality-preserving Module
9: for i in {1, 2, . . . , L} do

10: K̃G
Ti
=KG

1:j , ṼG
Ti
=VG

1:j , j=max(0, ⌊(i−s)/g⌋)
11: K̃L

Ui
=KL

k:i, Ṽ
L
Ui
=VL

k:i, k=max(1, i−s−((i−s) mod g))

12: Atti = softmax(Qi[K̃
G
Ti
; K̃L

Ui
]⊤)/

√
d)[ṼG

Ti
; ṼL

Ui
]

13: end for
14: Return: Representations of tokens Att=[Att1; . . . ;AttL]

KG, VG for these tokens as follows

K̃G
Ti
=[KG

1 ; · · · ;KG
j ], Ṽ

G
Ti
=[VG

1 ; · · · ;VG
j ],

KG=CWK ,VG=CWV ,
(3)

where WK and WV is learnable parameters. In contrast,
tokens in close proximity to the query Qi are likely to
be more relevant. We retain s nearest tokens for a fine-
grained attention computation (discussed in detail in Sec-
tion 3.3). Thus, the index j in Eqn. (3) can be calculated
as j=max(0, ⌊(i−s)/g⌋). When the context is short (i.e.,
i<(g + s)), the key and value KG, VG would be excluded
from attention calculation since the redundancy in the con-
text is negligible. During inference, as tokens are generated
sequentially, we derive a new core token via Eqn. (2) once
the number of generated tokens reaches g. Different from
the full self-attention, we cache K̃G and ṼG for inference.

3.3. Locality-preserving Module

As mentioned above, the globality-aware pooling module ef-
fectively captures long-range dependencies by compressing
input tokens into core tokens. It focuses on coarse-grained
global information, potentially overlooking fine-grained lo-
cal context. However, recent studies (Manakul & Gales,
2021; Yang et al., 2021) demonstrate that local context plays
a critical role in many language modeling tasks. To address
this, we introduce a locality-preserving module that comple-
ments the globality-aware pooling module by focusing on
neighboring tokens to capture detailed local dependencies.

To be specific, the locality-preserving module ensures that
each query Qi attends to the preceding at least s tokens to
capture local dependencies. During the generation process,
it is challenging to maintain the number of tokens as a
multiple of the group size g. To address this, we set the local

window size to s+((i − s) mod g). This strategy ensures
that each key token participates in the attention computation
with the query Qi. Consequently, the key and value matrices
for a specific query Qi in the locality-preserving module
are defined as follows:

K̃L
Ui
=[KL

k; · · · ;KL
i ], ṼL

Ui
=[VL

k; · · · ;VL
i ],

KL = XWK ,VL = XWV
(4)

where k=max(1, i−s−((i−s) mod g)). Note that the
locality-preserving module shares the projection parameters
WQ, WK , and WV with the globality-aware pooling mod-
ule, thereby incurring no additional projection parameters.

3.4. Differentiable Fusion of Global and Local Modules

Both globality-aware pooling and locality-preserving mod-
ules involve only a portion of tokens in the attention compu-
tation, leading to a limited comprehensive understanding of
the context. To address this limitation, we seek to combine
the involved tokens of these two attentions to integrate the
insights they provide. Specifically, we concatenate the key
and value matrices from both attentions, i.e., [K̃G

Ti
; K̃L

Ui
]

and [ṼG
Ti
; ṼL

Ui
], to leverage the combined information. For-

mally, the proposed CCA-Attention is computed as follows:

Atti = softmax
(Qi[K̃

G
Ti
; K̃L

Ui
]⊤)

√
d

)
[ṼG

Ti
; ṼL

Ui
]. (5)

We represent the final output of our CCA-Attention as
Att = [Att1;Att2; . . . ;AttL]. In practice, we imple-
ment our attention mechanism with Triton (Tillet et al.,
2019) to accelerate both training and inference processes.
This implementation enables parallel computation of each
Atti with high computational efficiency. After integrating
the global and local attention, we can formalize Att in Eqn.
(5) element-wise into the structure of full attention, as de-
tailed in Proposition 1 in the supplementary material A. The
Proposition 1 shows that each token accesses all preceding
tokens, ensuring full information exchange among tokens
and thus enhancing capturing long-range dependencies.

More importantly, our CCA-Attention demonstrates dy-
namic flexibility through adjustable group size g and local
window size s during inference. This architectural flexibility
allows the generation of multiple model variants tailored to
varying user traffic, offering a substantial advantage over
the full self-attention mechanisms in real-world deployment
scenarios (see results and analysis in Section 4.3).

3.5. Training Strategies of CCA Transformers

Our proposed CCA-Attention is fully compatible with ex-
isting attention-based LLMs, such as the LLaMA series
models (Touvron et al., 2023b; AI, 2024), serving as a
plug-and-play module that can replace the full self-attention.
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CCA-Attention maintains alignment with full self-attention
in terms of input, output, and parameter dimensions. This
ensures that only a minimal training cost is able to pre-
serve long-context modeling capabilities while reducing
computational costs. In contrast, existing linear attention
approaches (Katharopoulos et al., 2020; Sun et al., 2023)
introduce kernel functions for attention and necessitate train-
ing from scratch, making them less practical for real-world
applications due to their inability to leverage the extensive
knowledge embedded in pretrained LLMs.

We replace the self-attention module in existing attention-
based LLMs with CCA-Attention, enabling compatibility
with three different training strategies: 1) Training from
Scratch: This strategy involves training CCA-Attention
from scratch on large-scale corpora. While this approach
may yield superior performance by fully adapting the model
to the proposed attention mechanism, it is computationally
intensive and requires significant resources. 2) Full Finetun-
ing: A more efficient alternative is to finetune all parameters
of the model based on the parameters of existing pretrained
LLMs. This strategy leverages the pre-trained knowledge
while allowing the model to adapt fully to our attention
mechanism. 3) Partial Finetuning: For scenarios where
efficiency is critical, we can finetune only the learnable pa-
rameters of CCA-Attention, i.e., WQ, WK , and WV . This
strategy requires only a modest finetuning effort on a small
number of corpora, making it computationally efficient for
maintaining long-context modeling capabilities. We pro-
vide empirical evidence to guide the selection of the most
appropriate finetuning strategy in Table 10.

3.6. Computational and Storage Complexity Analysis

Compared with the full self-attention, our CCA-Attention
offers significant benefits in terms of computational com-
plexity and key-value cache storage, as analyzed below.

Acceleration via Reduced Computational Complexity.
Our CCA-Attention exhibits varying computational com-
plexities depending on the type of task. For tasks with
fixed-length sequences (such as multi-choice question an-
swering), our CCA-Attention exhibits a linear computa-
tional complexity of O(Lm + Ls), marking a significant
enhancement over the full self-attention with a complexity
of O(L2). Here, we define the number of group m as a
constant. For the globality-aware pooling module, the query
and key matrices encompass L and m tokens, respectively,
resulting in a computational complexity of O(Lm). Regard-
ing the locality-preserving module, each token only attends
preceding s+ g tokens at most. With L tokens in total, the
upper bound of complexity amounts to O(L(s+ g)).

For tasks with variable-length sequences (such as open-
ended question answering), models generate subsequent
tokens in an autoregressive manner. In this case, we set the

group size g as a constant, ensuring that our CCA-Attention
is able to leverage key-value caching during autoregressive
token generation. Once one group has certain g tokens, the
corresponding core token is also determined and cached.
Thus, our CCA-Attention achieves a computational com-
plexity of O(L2/g + Ls). The complexity analysis follows
a similar pattern to the tasks with fixed-length sequences.

Acceleration through Reduced Key-Value (KV) Cache.
In attention-based LLMs, the KV cache leverages the autore-
gressive nature to store and reuse key-value pairs, thereby
significantly boosting the efficiency. The size of the KV
cache scales linearly with the length of the input sequence,
consuming a major part of the memory footprint during
inference. The expanded KV cache would consume con-
siderable memory and significant memory IO resources.
Compared with full attention’s complexity of O(L), our
CCA-Attention has a storage complexity of O(L/g + s).
For the globality-aware pooling module, we only retain
the key and value matrices for core tokens, rather than for
all original tokens. This reduces the memory requirement
to O(L/g). Besides, the locality-preserving module only
maintains the key and value matrices for the preceding s
tokens. The storage complexity for this component is O(s).

4. Experiments
4.1. Experimental Setup

We apply our CCA-Attention and compared efficient atten-
tion methods to existing pretrained LLMs. We report the
performance in long context modeling and computational
efficiency. We put more implementation details and ablation
studies of our method in the supplementary materials.

Dataset & Evaluation Metrics. We quantitatively evaluate
our models and compare them with other considered models
on the following benchmark and metric: 1) LongBench (Bai
et al., 2023) is a pioneering benchmark for the bilingual,
multi-task, and comprehensive assessment of large language
models’ long context understanding capabilities. It covers
multiple languages like Chinese and English, consisting
of 6 major categories and 21 tasks involving various ap-
plication areas. 2) Exact Match Score (EM Score) (Liu
et al., 2024b) is a metric for measuring the model’s ability
to find the key information within a long context in a multi-
document question-answering task. In this task, each test
sample comprises a certain number of documents to reach
the specified context length, followed by a question about
the key information inserted in context.

Implementation Details1. We apply our proposed CCA-
Attention to LLaMA2-7B-32K, LLaMA2-7B-80K (Fu et al.,

1The source code for this project is publicly available at
https://github.com/chenyaofo/CCA-Attention.
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Table 1. Comparisons of different models on LongBench-E (Bai et al., 2023). The length of 95% of the test samples in LongBench-E
is less than 31K. “FTL” denotes the latency to generate the first token in the pre-filling stage. “Mem.” denotes the memory footprint.
“S. QA” means single document QA, while “M. QA” denotes multi-document QA. We report the latency and memory footprint of
LLaMA2-7B-32K and LLaMA2-7B-80K within contexts of 32K and 64K on A800 GPUs, respectively.

Methods S. QA M. QA Sum. FS. Learning Synthetic Code Avg. FTL (s) Mem. (GB)
LLaMA2-7B-32K (Vanilla Self-Attention) 2.75 1.85 12.43 66.28 0.34 48.99 22.11 9.15 35.58
StreamingLLM (Xiao et al., 2024b) 4.75 2.94 2.97 48.20 0.66 30.16 14.95 5.75 (1.6×) 22.94 (35%↓)
LM-Infinite (Han et al., 2023) 2.04 2.33 1.98 57.45 0.3 48.46 18.76 4.72 (1.9×) 26.35 (26%↓)
MInference (Jiang et al., 2024) 3.68 3.05 10.97 66.26 0.61 42.30 21.14 4.20 (2.2×) 33.52 (6%↓)
CCA-LLM (Ours) 3.63 3.98 7.79 61.79 2.64 51.36 21.86 2.59 (3.5×) 19.12 (46%↓)
LLaMA2-7B-80K (Vanilla Self-Attention) 3.22 2.71 3.90 64.98 0.56 59.16 22.42 32.43 60.03
StreamingLLM (Xiao et al., 2024b) 2.07 2.32 0.37 45.03 2.67 37.17 14.94 9.04 (3.6×) 37.45 (37%↓)
LM-Infinite (Han et al., 2023) 2.54 1.53 2.22 61.29 1.08 58.54 21.20 8.27 (3.9×) 41.54 (31%↓)
MInference (Jiang et al., 2024) 2.44 3.49 4.41 64.26 0.28 57.60 22.08 8.14 (4.0×) 54.09 (10%↓)
CCA-LLM (Ours) 5.62 4.34 8.99 59.60 0.48 54.40 22.24 6.42 (5.7×) 33.86 (44%↓)

Table 2. Comparisons of different methods using latest models on LongBench-E (Bai et al., 2023). We report the latency and memory
footprint of LLaMA3.1-8B-Instruct-128K (short for “LLaMA3.1-8B-128K” in the table) and Qwen2.5-7B-128K within contexts of 32K
on A800 GPUs.

Methods S. QA M. QA Sum. FS. Learning Synthetic Code Avg. FTL (s) Mem. (GB)
LLaMA3.1-8B-128K (Vanilla Self-Attention) 16.71 10.75 20.32 68.75 48.93 62.10 37.93 9.55 40.38
MInference (Jiang et al., 2024) 16.33 10.71 20.44 68.41 48.06 62.50 37.74 4.93 (1.9×) 35.95 (11%↓)
CCA-LLM (Ours) 17.90 16.41 19.63 67.20 43.76 61.98 37.81 3.08 (3.1×) 20.63 (49%↓)
Qwen2.5-7B-128K (Vanilla Self-Attention) 16.67 18.18 18.70 66.81 45.34 64.56 38.38 10.58 35.11
MInference (Jiang et al., 2024) 16.20 17.21 18.59 67.10 38.28 62.95 36.72 4.86 (2.2×) 32.40 (8%↓)
CCA-LLM (Ours) 16.91 17.07 18.60 66.89 45.50 63.52 38.08 2.74 (3.9×) 19.31 (45%↓)

2024), LLaMA3.1-8B-128K (AI, 2024) and Qwen2.5-7B-
128K (Yang et al., 2024) models. We replace the full
self-attention in the above LLMs with our proposed CCA-
Attention. In the continuous finetuning, we adopt the
SlimPajama (Cerebras, 2024) dataset, an open-source repli-
cation of the LLaMA pretraining data mixture. The number
of groups in globality-aware Attention is shared across dif-
ferent model sizes. We finetune the full model on A800
GPUs using a micro-batch size of 1 and a gradient accumu-
lation of 8, with a total of 1000 training steps. This training
configuration is applicable to all model sizes and context
lengths. To scale the models to long contexts, we modified
the “base frequency” in RoPE from 10,000 to 500,000, fol-
lowing (Cerebras, 2024; Xiong et al., 2024). See Section B.2
for more implementation details.

Compared Methods. We conduct comprehensive com-
parisons between our proposed CCA-Attention and sev-
eral state-of-the-art methods, including LLaMA-2 with
vanilla attention, StreamingLLM (Xiao et al., 2024b),
LM-infinite (Han et al., 2023), and MInference (Jiang
et al., 2024), across the LongBench (Bai et al., 2023) and
RULER (Hsieh et al., 2024) benchmarks. Our experiments
are based on the LLaMA-2 7B model fine-tuned on se-
quences of length 32K and 80K (Fu et al., 2024). For
StreamingLLM (Xiao et al., 2024b), we use the official
implementation, adjusting the attention sink to 4 and set-
ting the attention context size to 2000. Similarly, for LM-
infinite (Han et al., 2023), we follow the official code, con-

figuring the local branch size to 1024 and the global branch
size to 16. In the case of MInference (Jiang et al., 2024), we
also employ the official code implementations, configured
with the official settings.

4.2. Comparisons on Long Context Modeling

Comparisons on Longbench-E. We conduct experiments
on Longbench-E (Bai et al., 2023) using our CCA-Attention
and baseline methods, including StreamingLLM (Xiao
et al., 2024b), LM-Infinite (Han et al., 2023), and MIn-
ference (Jiang et al., 2024). As shown in Table 1, our
CCA-LLM attains the highest average score on Longbench-
E, outperforming other efficient attention methods. For
LLaMA-7B-32K, the average score of our CCA-LLM is
higher than that of LM-Infinite (21.86 vs. 18.76) and MInfer-
ence (21.86 vs. 21.14). For the LLaMA-7B-80K model, our
method consistently shows superior performance compared
to alternative approaches. For instance, our CCA-LLM
yields a higher EM score than LM-Infinite (22.24 vs. 21.20)
and MInference (22.24 vs. 22.08). This performance advan-
tage primarily stems from our global-aware pooling module,
which effectively reduces context redundancy in long input
sequences. Consequently, our CCA-LLM model demon-
strates enhanced capability in identifying and focusing on
core contextual elements, thereby facilitating more accu-
rate extraction of crucial information required for question-
answering tasks within the Longbench-E benchmark. No-
tably, our CCA-LLM achieves the lowest inference latency
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Table 3. Comparisons of different models on multi-document EM score (Liu et al., 2024b) evaluated at lengths from 4K to 128K. “FTL”
denotes the latency to generate the first token in the pre-filling stage. We report the latency within a context of 128K on two A800 GPUs.

Methods 4K 8K 16K 32K 64K 128K Avg. FTL (s)
LLaMA2-7B-80K (Vanilla Self-Attention) 39.4 37.8 37.6 36.2 34.6 30.3 36.0 124.85
StreamingLLM (Xiao et al., 2024b) 33.6 26.0 32.2 30.6 27.4 25.1 29.2 34.74 (3.6×)
LM-Infinite (Han et al., 2023) 31.6 25.6 32.4 32.2 28.2 26.3 29.4 32.57 (3.8×)
MInference (Jiang et al., 2024) 39.0 32.4 37.4 36.0 32.3 28.9 34.3 20.18 (6.2×)
CCA-LLM (Ours) 39.3 33.2 35.4 31.4 35.3 32.0 34.4 15.89 (7.9×)
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Figure 3. Illustration of inference flexibility by adjusting the group
size g and local window size s to generate various CCA-LLM
models with different latency and accuracies in the test time. This
architectural flexibility allows for precise control over the trade-off
between inference latency and accuracy, particularly beneficial for
real-world applications with varying user traffic patterns.

and KV cache usage among all compared methods. ur CCA-
LLM is able to reduce the KV cache usage while the best
counterpart MInferencce only accerlerate the prefilling stage
and does not reduce KV cache storage.

To further validate the effectiveness of our method across
different model architectures, we conduct extensive experi-
ments on more recent foundation models: LLaMA3.1-8B-
Instruct-128K and Qwen2.5-7B-128K. As shown in Table 2.
our CCA-Attention demonstrates superior performance over
the state-of-the-art baseline MInference across three key
metrics: computational efficiency, memory reduction, and
model performance. The consistent improvements across
different model architectures suggest that our approach is
not limited to specific model designs.

Comparisons on Long-document QA. We evaluate the
performance of our CCA-Attention against other meth-
ods, including StreamingLLM (Xiao et al., 2024b), LM-
Infinite (Han et al., 2023), and MInference (Jiang et al.,
2024), on LLaMA2-7B-80K models using the multi-
document EM Score metric. As shown in Table 3, we
conduct comparisons across a range of context lengths: 4K,
8K, 16K, 32K, 64K, and 128K. For the short context (e.g.,
4K), our CCA-LLM consistently achieves the highest EM
score across all methods, showcasing significant capability

for short sequence modeling. For example, our CCA-LLM
outperforms StreamLLM (39.3 vs. 33.6) and MInference
(39.3 vs. 39.0) in terms of EM score. The reason is that
our CCA-Attention captures context dependencies without
discarding crucial tokens. In contrast, StreamingLLM (Xiao
et al., 2024b) prioritizes attention on the initial and final to-
kens, effectively discarding intermediate tokens, which may
contain essential information. Similarly, MInference (Jiang
et al., 2024) employs predefined sparse attention patterns,
selectively attending to tokens and potentially overlooking
critical parts of the input sequence. Both approaches risk
losing important contextual information, leading to subopti-
mal performance in tasks requiring comprehensive under-
standing. Our method, by preserving both local and global
contexts, ensures that no critical information is overlooked,
thereby achieving superior performance.

For the extremely long context (e.g., 64K and 128K), Our
CCA-LLM shows much better performance than vanilla
self-attention in terms of EM score (35.3 vs. 34.6) and 7.9x
inference speedup with a context length of 128K. The advan-
tages of our method become more prominent as the length
of the context increases, while the performance of vanilla
self-attention may even decrease when the context length
becomes very large. The reason is that in an extremely long
context, non-core contexts (i.e., the irrelevant context) will
be compressed by the proposed weighted pooling. In this
way, CCA-LLM alleviates the redundant context issue and
improves the long-context modeling performance.

4.3. Demonstration of Inference Flexibility

In real-world applications, user traffic exhibits diurnal vari-
ations. During peak traffic periods, the full self-attention
struggles with throughput limitations, necessitating addi-
tional servers to accommodate the increased demand. In-
stead, our CCA-LLM can dynamically adjust the group size
g and the local window size s during inference to improve
throughput. During off-peak traffic periods, our CCA-LLM
is able to enhance model performance, albeit with a minor
compromise in throughput. This strategy exhibits remark-
able elasticity to address the variable user traffic challenges.

To verify this, we conduct experiments with different group
sizes g and local window sizes s during inference. In Fig-
ure 3, our CCA-LLM demonstrates an improved Longbench-
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Figure 4. Comparisons with state-of-the-art methods in terms of both computational and storage overhead on LLaMA2-7B-80K. “FTL”
(first token latency) is the time taken to generate the first token after receiving the input in the pre-filling stage. “ITL” (inter token latency)
is the time delay between generating consecutive tokens (except for the first token) during the decoding stage.

E Score with a concomitant increase in computational over-
head as g decreases. With a reduction in the group size g
from 16 to 2 and the local window size s from 4096 to 1024,
the Longbench-E Score escalates from 20.54 to 22.69, while
the latency rises from 2.80 seconds to 3.89 seconds. Despite
training CCA-LLM only once, we obtain a spectrum of
models, each with distinct performance and computational
demands. This flexibility comes from two complementary
modules: The globality-aware pooling module dynamically
compress core tokens based on semantic relevance via intra-
group attention, enabling adaptation to different group sizes.
The locality-preserving module uses rotary embeddings to
encode relative positions, achieving translation invariance
and maintaining local context across scales.

4.4. Comparisons on Computational Efficiency

We compare our CCA-LLM with LLaMA2-7B-80K
equipped with full self-attention, LM-Infinite (Han et al.,
2023), and MInference (Jiang et al., 2024) in terms of
inference latency and memory footprint during forward-
propagation on a single NVIDIA A800 GPU. The effi-
ciency performance was assessed across a range of input
sequence lengths, i.e., {4K, 8K, 16K, 32K, 64K, 128K}.
In Figure 4, our CCA-Attention achieves a 7.9× inference
speedup than LLaMA2-7B-80K with the full self-attention
(15.89s vs. 124.85s in 128K context) MInference (15.89s
vs. 44.50s in 128K context) in the pre-filling stage. Our
CCA-Attention also exhibits a reduced KV cache memory
usage than LLaMA2-7B-80K (4.5GB vs. 64GB in 128K
context) and MInference (4.5GB vs. 64GB in 128K context).
Note that Minference (Chen et al., 2024) only accelerates
the pre-filling stage and adopts full self-attention in the
decoding stage. Moreover, it does not reduce KV cache,
leading to the same memory usage as the full self-attention.
Conversely, our CCA-LLM is able to accelerate both pre-
filling and decoding stages with reduced KV cache, which
is more practical in real-world applications.

5. Conclusion
In this paper, we proposed a Core Context Aware Attention
(CCA-Attention) for long-context language modeling with
reduced computational overhead compared with vanilla self-
attention. Our CCA-Attention includes two components: 1)
globality-aware pooling module exploits the importance of
input tokens to encapsulates core tokens and employs them
for attention, capturing global coarse-grained information;
2) The locality-preserving module focuses on neighboring
tokens to capture local fined-grained context, serving as a
complement for the global module. Our proposed attention
is able to replace the full self-attention in existing LLMs
with a minimal finetuning efforts. Experimental results show
the effectiveness of our CCA-Attention with promising per-
formance and decreased computational cost.
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A. Theoretical Analysis on Reachability for CCA-Attention

In the self-attention, the calculation can be formulated as Attention(Q,K,V) = softmax
(
QK⊤/

√
d
)
V, where

Q=XWQ, K=XWK , and V=XWV , WQ, WK , WV are learable parameters. For convenience in analyzing the
attention mechanism, we denote the attention weight as A = softmax(QK⊤/

√
d), where the element in A is represented

as aij . We give the definition of reachability, and show that our method is to satisfy the information among all tokens is
reachability, and then give the concrete expression of attention output.

Definition 1. (Reachability) We say the token j is reachable from the token i in the attention map if and only if the attention
weight from the token j to i is positive, i.e., aij > 0.

Proposition 1. The attention score with causal masking in the CCA-Attention mechanism fully satisfies the reachability
condition from the earlier tokens to the later tokens in the sequence at each transformer layer. Moreover, the final output
representation o ∈ Rd for i-th token in Eqn. (5) can be given by

oj=

{∑i
q=1 A

L
i,qVq,j , if i≤g;∑m

p=1 A
G
i,p

∑g
q=1 Φp,qVg(p−1)+q,j +

∑w
t=1 A

L
i,tVmg+t,j , w=s+(i− s) mod g, else,

(6)

where oj is the j-th element of the output o, Φ∈Rm×g is the weight of all core tokens in Eqn. (2), A denote the attention
score of CCA-Attention in Eqn. (5).

Proof. We decompose the i-th row of the attention scores A into two parts:

Ai =
[
AG

i ,A
L
i

]
, (7)

where AG
i ∈ Rm and AL

i ∈ Rw with w=s+(i − s) mod g. We aim to use these two terms to formalize Ai element by
element into the structure of full attention. For simplicity, we expand each element in these two terms with the weight Φ
although the Φ is not directly weighted on the attention:

Ai=

Φ1,1A
G
i,1, . . . ,Φ1,gA

G
i,1︸ ︷︷ ︸

g

, . . . ,Φm,1A
G
i,m, . . . ,Φm,gA

G
i,m︸ ︷︷ ︸

g

,AL
i,1, . . . ,A

L
i,w︸ ︷︷ ︸

w

 , i=1, . . . , L. (8)

Based on the property of the attention scores of AG, for ∀i > j, we have aij > 0, satisfying the condition of reachability.
Next, we drive the output representation o of a token.

When i ≤ g, for each oj in o, we can use both the attention score of the locality-preserving module and the globality-aware
pooling module to obtain

oj =
i∑

q=1

AL
i,qVq,j . (9)

When i > g, for each oj in o, we can use the attention score of the locality-preserving module to obtain

oj =

m∑
p=1

AG
i,p

g∑
q=1

Φp,qVg(p−1)+q,j +

w∑
t=1

AL
i,tVmg+t,j (10)

Taking Eqn. (8) and Eqn. (10) together, we obtain the results.
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B. More Implementation Details
B.1. More Details on Dataset and Evaluation Metrics

SlimPajama (Cerebras, 2024) dataset is an open-source reproduction of the data mixture used to pretrain the LLaMA
models. It consists of 82% web data, 4.5% code from Github, 4.5% Wikipedia, 4.5% books, 2.5% Arxiv, and 2.0%
StackExchange, used for extending the context lengths of LLMs to 128K tokens through careful data engineering techniques
like per-source length upsampling. We use the SlimPajama dataset (Cerebras, 2024) as our training dataset.

LongBench (Bai et al., 2023) is a pioneering benchmark designed for the bilingual, multitask, and comprehensive
assessment of the long context understanding capabilities within LLMs. It encompasses diverse languages, specifically
Chinese and English, thereby facilitating a more exhaustive evaluation of the multilingual proficiencies of large models
in long context scenarios. Moreover, LongBench is structured with 6 major categories and 21 distinct tasks, spanning
crucial long-text application areas such as single-document QA, multi-document QA, summarization, few-shot learning,
synthetic tasks, and code completion. LongBench has 14 English tasks, 5 Chinese tasks, and 2 code tasks. The average
length of the majority of tasks falls within the range of 5k to 15k, and it comprises a total of 4,750 test data. For detailed
statistical information and construction methodologies of LongBench tasks, reference can be made to the designated source.
Additionally, LongBench-E is a test set featuring a more evenly distributed length constructed through uniform sampling. It
contains comparable data quantities in the 0-4K, 4K-8K, and 8K+ length intervals, enabling an in-depth analysis of the
model’s performance fluctuations across different input lengths. We conduct the experiments on LongBench-E to verify the
long context understanding capability of models in Section 4.2.

Exact Match Score (EM Score) (Liu et al., 2024b) measures the model’s ability to find the key information within a
long context in a multi-document question-answering task. In this task, each test sample comprises a certain number of
documents to reach the specified context length (20 for 4K, 48 for 8K, 96 for 16K, 190 for 32K, 378 for 64K, 755 for 128K),
followed by a question. We evaluate EM score metric with the multi-document question-answering dataset in Lost in the
Middle (Liu et al., 2024b), which is collected from NaturalQuestions-Open and Wikipedia. We use the exact match score as
the evaluation metric, judging whether any of the correct answers appear in the predicted output in Section 4.2.

Massive Multitask Language Understanding (MMLU) (Hendrycks et al., 2021) dataset is designed to assess the
capabilities of language models across a wide array of subjects, delving deeper into their academic and professional
understanding. The MMLU benchmark spans 57 diverse subjects, ranging from elementary mathematics to professional law.
The questions are designed to test both world knowledge and problem-solving abilities, challenging models with content
from elementary to advanced professional levels. We use the MMLU metric to evaluate the model’s proficiency across a
diverse set of language-understanding tasks. It tests the model’s ability to apply its knowledge to a broad spectrum of topics
and question types, reflecting its generalization capability in real-world scenarios. The MMLU metric (Hendrycks et al.,
2021), which tests world knowledge and problem-solving abilities in zero-shot and few-shot settings, is evaluated using the
MMLU dataset (Hendrycks et al., 2021). This dataset spans 57 subjects across disciplines such as STEM, humanities, and
social sciences. We test the MMLU metric in a 5-shot setting with MMLU dataset (Hendrycks et al., 2021) to verify the
commonsense generalization ability of models in the supplementary materials C.3.

Perplexity (PPL) quantifies how effectively a model can predict the context. It is calculated as the exponentiated
average negative log-likelihood of a sequence, offering a statistical measure of language modeling performance. Proof-
pile (Azerbayev et al., 2022) is a 13GB high-quality dataset of mathematical text and code that comprises 8.3 billion tokens
(measured by the gpt-neox tokenizer). The dataset is composed of diverse sources of both informal and formal mathematics
and the raw data are downloaded from the web. We report PPL on the test dataset. We use the test dataset of Proof-pile to
verify long-context language modeling ability of models in the supplementary materials C.5.

B.2. More Experimental Protocols

CCA-Attention (Ours). For the continuous pretraining, we adopt the SlimPajama (Cerebras, 2024) dataset, an open-source
replication of the LLaMA pretraining data mixture. This dataset comprises 82% web data, split between 67% from
CommonCrawl and 15% from C4, alongside 4.5% from GitHub code, 4.5% from Wikipedia, 4.5% from books, 2.5% from
Arxiv, and 2.0% from Stack Exchange. We replace the full self-attention in LLaMA2 with our proposed CCA-Attention.
The number of groups in globality-aware attention is shared across different model sizes. Training is conducted on 8 ×
A800 GPUs using a micro-batch size of 1 and a gradient accumulation of 8, with a total of 1000 training steps. This training
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configuration is applicable to all model sizes and context lengths. Our method requires finetuning on a modest number of
tokens to extend the long-context capabilities of LLMs, enabling efficient attention computation. Specifically, we require
only 2.10 billion tokens for 32K and 5 billion tokens for 80K, which is significantly lower than the token requirements for
retraining a large language model.

To scale the models to long contexts, we modified the “base frequency” in RoPE from 10,000 to 500,000, following (Cerebras,
2024; Xiong et al., 2024). In the globality-aware attention, we set the position embedding of Kglobal to the position
embedding of the token at the middle position in the corresponding group, ensuring that our attention maintains positional
awareness. Following FlashAttention (Dao, 2024), we implement our CCA-Attention by leveraging Triton (Tillet et al.,
2019) to perform low-level operator fusion between our globality-aware pooling and locality-preserving modules. This
enables us to integrate our CCA-Attention as a standalone, cache-friendly operator, effectively eliminating redundant
computations.

Compared Methods. We conduct comprehensive comparisons between our proposed CCA-Attention and several state-
of-the-art methods, including LLaMA-2 with vanilla attention, StreamingLLM (Xiao et al., 2024b), LM-infinite (Han
et al., 2023), and MInference (Jiang et al., 2024), across the LongBench (Bai et al., 2023) and RULER (Hsieh et al., 2024)
benchmarks. Our experiments are based on the LLaMA-2 7B model fine-tuned on sequences of length 32K and 80K (Fu
et al., 2024).

For StreamingLLM (Xiao et al., 2024b), we use the official implementation, adjusting the attention sink to 4 and setting the
attention context size to 2000. Similarly, for LM-infinite (Han et al., 2023), we follow the official code, configuring the local
branch size to 1024 and the global branch size to 16. In the case of MInference (Jiang et al., 2024), we also employ the
official code implementations, configured with the official settings.
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C. More Experimental Results
C.1. Experiments on More Long Context Benchmarks

We further evaluated the long-context modeling performance of our proposed method on RULER (Hsieh et al., 2024) using
the LLaMA2-7B-80K model across various context lengths (ranging from 8K to 64K). As shown in Table 3, our approach
consistently outperforms MInference (Jiang et al., 2024) at all context lengths, demonstrating its superiority in context
modeling. The performance gains primarily stem from two key innovations in our method: 1) Globality-aware Pooling
Module dynamiclly identifies and pools the task-relevant context into core tokens, which effectively reduces redundancy
while preserving essential information; 2) A locality-preserving module that supplements local information and ensures
comprehensive information interaction across all context segments, as opposed to simply discarding tokens.

Table 4. Comparisons on RULER across 8-64K context.
Methods 8K 16K 32K 64K Avg.↑

LLaMA2-7B-80K (Vanilla Self-Attention) 71.90 66.26 61.54 55.15 63.71
MInference (Jiang et al., 2024) 67.78 65.32 61.43 52.77 61.83
CCA-LLM (Ours) 68.15 66.31 60.89 54.88 62.56

C.2. Comparisons with More Efficient Attention Methods

To further evaluate our method, we compare it with LongLoRA (Chen et al., 2024), a recently proposed training-based
approach with PI techniques. As shown in Table 5, on LongBench-E, our CCA-LLM achieves superior performance in
terms of modeling accuracy, inference speed, and memory efficiency. Notably, while S2-Attention proposed by LongLoRA
is only available during training, it defaults to full self-attention during inference, resulting in comparable computational and
memory overhead to standard attention mechanisms. In contrast, CCA-LLM achieves a first-token latency reduction of 3.5×
and a 46% decrease in memory usage, demonstrating its effectiveness for efficient long-context modeling.

Table 5. Comparisons on LongBench-E. “FTL” denotes the latency to generate the first token.
Model Avg. Score ↑ FTL ↓ (s) Memory. ↓ (GB)
LLaMA2-7B-32K 22.11 9.15 35.58
• LongLoRA 21.58 9.15 35.58 (0%↓)
• CCA-LLM (Ours) 21.86 2.59 19.12 (46%↓)

C.3. More Comparisons on MMLU with Multi-choice QA

When applied to tasks with a fixed input length, such as multi-choice QA tasks, we set the number of groups m as a constant
value. This ensures that the overall computational complexity of our method is O(L), where L represents the input sequence
length. In this section, we compare the performance of our method with full self-attention on the MMLU dataset specifically
for multi-choice QA tasks. As shown in Table 6, our method consistently achieves superior performance than the traditional
self-attention method, demonstrating the effectiveness of our approach.

Table 6. Comparisons on MMLU with multi-choice QA.

Method LlaMA2-7B-8K LlaMA2-7B-16K LlaMA2-13B-16K LlaMA2-13B-32K

Full Self-attention Ours Full Self-attention Ours Full Self-attention Ours Full Self-attention Ours

MMLU 33.34 37.55 28.19 39.71 27.17 48.11 26.72 47.93

C.4. Statistical Results of Sparse Attention Scores

We visualized LLaMA2-7B’s attention scores on a sentence of 32 tokens in Figure 5 as a supplement to Figure 1. As shown
in the figure, these attention scores show consistent sparsity from shallow to deep layers. Same as demonstrated in existing
methods (Beltagy et al., 2020; Xiao et al., 2024b).
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Figure 5. A visualization of attention scores in LLaMA2-7B with a sentence of 32 input tokens. The attention map reveals a distinct
pattern: the majority of tokens exhibit minimal attention scores. Conversely, a minority of tokens are associated with significantly higher
attention scores. This trend is observed consistently from the shallow to the deeper layers of the model.

Based on these observations, our CCA-Attention of assessing token importance within each group using the attention from
the last token is both rational and effective. The attention map visualization reveals a distinct pattern where tokens that are
important to the query receive consistently high attention scores from all subsequent tokens. This indicates that important
tokens, regardless of their position within a group, have a notable influence on attention distribution, suggesting that our
method of importance assessment is capable of capturing these crucial tokens.

C.5. More Ablation Studies

Effect of Group-wise Pooling Strategy. For computational efficiency, we conduct ablations with LLaMA2-7B-16K. We
adopt perplexity (PPL) to evaluate our CCA-Attention models. To investigate the effect of different pooling strategies, we
conduct ablations with max pooling, mean pooling and our weighted pooing in Eqn. (2). In Table 7, our CCA-Attention
with group-wise attention pooling strategy achieves superior results in both PPL (e.g., 2.85 vs. 2.99). This advantage arises
since max pooling retains only the token with the highest response, thereby discarding the semantic importance of the
remaining tokens. Mean pooling averages all tokens within a group, which substantially dilutes the semantic significance of
critical tokens. In contrast, our CCA-Attention dynamically assigns aggregation weights of each token, facilitating a more
comprehensive and efficient fusion.

Table 7. Effect of pooling strategy.
Strategy Mean Pooling Max Pooling CCA-Attention (Ours)
PPL ↓ 2.99 2.99 2.85

Effect of Group Size g. To investigate the effect of different group sizes g, we implement the proposed CCA-Attention with
different g ∈ {2, 4, 8, 16, 32, 64}. In Table 8, as g increases, the computational efficiency improves while the PPL increases.
Upon closer examination, the smallest group size g captures the most comprehensive information, which translates to
the highest computational cost but also the optimal PPL. Conversely, an excessively large g leads to an overemphasis on
globality-aware attention, compressing information to the point where crucial semantic nuances may be overlooked, thereby
curtailing performance. To strike a balance between computational efficiency and model performance, we have selected
g=16 as the default training setting.

Effect of Local Window Size s. To systematically evaluate the influence of different local window sizes w, we implement
the proposed CCA-Attention across a range of s ∈ {256, 512, 1024, 2048, 4096}. In Table 9, an increase in s correlates with
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Table 8. Effect of group size g.
g 2 4 8 16 32 64
PPL ↓ 2.75 2.78 2.81 2.86 2.90 2.93
Latency ↓ (ms) 546.7 503.5 479.6 462.8 457.74 456.0

lower PPL, but this is counterbalanced by a rise in computational cost. A larger s captures more contextual information with
neighborhood tokens, but also increases computational demands. Conversely, a smaller s, indicative of a limited receptive
field, constrains the exchange of information within the locality-preserving module, resulting in diminished performance.
Striking a balance between computational efficiency and model efficacy, we opted for s=1024 as the default training setting.

Table 9. Effect of local window size s.
s 256 512 1024 2048 4096
PPL ↓ 2.98 2.92 2.86 2.79 2.73
Latency ↓ (ms) 457.4 460.1 461.4 462.8 473.1

Effect of Different Updating Strategies. As mentioned in Section 3.4, we have two updating strategies: 1) updating all the
parameters during finetuning (full finetuning) and 2) only updating the parameters WQ, WK , WV (partial finetuning).
In Table 10, we compare these two variants of our methods on the Longbench-E benchmark. The variant that updates
all parameters during finetuning achieves better performance because it allows the model to fully adapt to our proposed
attention. In contrast, partial fine-tuning, while limiting the model’s adaptability due to fixed pre-trained features, still
achieves competitive performance. This makes partial fine-tuning a practical choice in scenarios requiring rapid training or
where computational resources are limited. Despite its constraints, partial fine-tuning can deliver performance close to that
of full fine-tuning, offering a balanced trade-off between efficiency and accuracy.

Table 10. Effect of different updating strategies.
Strategies Single-Doc. QA Multi-Doc. QA Sum. FS. Learning Synthetic Code Avg.
Partial Finetuning 5.39 3.62 9.21 60.41 1.34 51.77 21.96
Full Finetuning 5.62 4.34 8.99 59.60 0.48 54.40 22.24

C.6. Training Convergence Curve

In the experiments, we finetune the LLaMA2-7B-32K and LLaMA2-7B-80K models equipped with our CCA-Attention on
SlimPajama (Cerebras, 2024) dataset for 1,000 iterations. We show the training convergence curves of both models with our
CCA-Attention in Figure 6. From the results, by minimizing the training loss, both LLaMA2-7B-32K and LLaMA2-7B-80K
models are able to converge very fast. The perplexity rapidly converges within approximately the first 100 iterations
and remains stable over 1,000 iterations. These results not only demonstrate the effectiveness and training stability of
our proposed CCA-Attention, but also establish it has the potential to be a plug-and-play attention module incorporated
into existing LLMs. Notably, the initial training loss of LLaMA2-7B-32K is higher than that of LLaMA2-7B-80K. This
difference arises because LLaMA2-7B-32K is finetuned from the official LLaMA2-7B-4K model, which has a shorter
context window and thus requires more significant adjustments to adapt to longer sequences. In contrast, LLaMA2-7B-80K
is fine-tuned from a model pre-trained by Fu. et.al. (Fu et al., 2024).
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Figure 6. Convergence curves of our CCA-LLM models under different contexts.
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