
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Which Data Attributes Stimulate Math and Code Reasoning?
An Investigation via Influence Functions

Anonymous Authors1

Abstract
Large language models (LLMs) have demon-
strated remarkable reasoning capabilities in math
and coding, often bolstered by post-training on the
chain-of-thoughts (CoTs) generated by stronger
models. However, existing strategies for curating
such training data predominantly rely on heuris-
tics, limiting generalizability and failing to cap-
ture subtleties underlying in data. To address
these limitations, we leverage influence functions
to systematically attribute LLMs’ reasoning abil-
ity on math and coding to individual training ex-
amples, sequences, and tokens, enabling deeper
insights into effective data characteristics. Our
Influence-based Reasoning Attribution (Infra)
uncovers nontrivial cross-domain effects across
math and coding tasks: high-difficulty math exam-
ples improve both math and code reasoning, while
low-difficulty code tasks most effectively benefit
code reasoning. Based on these findings, we in-
troduce a simple yet effective dataset reweighting
strategy by flipping task difficulty, which doubles
AIME24 accuracy from 10% to 20% and boosts
LiveCodeBench accuracy from 33.8% to 35.3%
for Qwen2.5-7B-Instruct. Moreover, our fine-
grained attribution reveals that the sequence-level
exploratory behaviors enhance reasoning perfor-
mance in both math and code, and the token-level
influence patterns are distinct for math and code
reasoning: the former prefers natural language
logic connectors and the latter emphasizes struc-
tural syntax.

1. Introduction
Large language models (LLMs) for reasoning, with OpenAI-
o1 (Jaech et al., 2024) and DeepSeek-R1 (Guo et al., 2025)

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

as popular examples, have shown great promise in solv-
ing complex math and coding problems. Recently, the
community has witnessed the prevalence of reproducing
such reasoning capacities on open-source small- to medium-
sized LLMs (Lambert et al., 2024; Gao et al., 2024; Qin
et al., 2024). An initial stage of the solutions often involves
post-training the model on some chain-of-thought (CoT)
reasoning traces curated by leading models (e.g., R1) for
diverse problems (Wen et al., 2025; Min et al., 2024; Muen-
nighoff et al., 2025; Ye et al., 2025; Huang et al., 2024;
NovaSky, 2024). As a data-centric paradigm, the core re-
search question here is: which attributes of the training data
are effective in stimulating reasoning capabilities?

Pioneering studies addressing this question predominantly
adopt heuristic approaches. Typically, they first establish
quantitative data quality metrics based on human expertise
or empirical preferences, then selectively retain high-quality
data for model training to cultivate robust reasoning capa-
bilities with minimal data inputs. For example, s1K (Muen-
nighoff et al., 2025) filters 1k (question, answer) pairs with
well-structured formatting, longer CoT length, and broader
domain from an initial pool of 59k data for training math
reasoning LLMs. Similarly, LIMO (Ye et al., 2025) suggests
incorporating more challenging questions with complex rea-
soning chains enables better math reasoning.

Beyond focusing exclusively on math, Sky-T1 (NovaSky,
2024) targets competitive reasoning performance across
both math and coding tasks. It notices that the naive in-
corporation of code data from APPS (Hendrycks et al., a)
degrades math performance and advocates mitigating this by
introducing more difficult math questions and code tasks for
training. Nevertheless, the underlying mechanism of such
cross-domain influence remains underexplored. Further-
more, these heuristic strategies suffer from unreliable gen-
eralization to other reasoning scenarios and cannot clearly
explain how some fine-grained reasoning patterns in the
training data (e.g., verification, backtracking, etc.) affect the
learned models.

To bridge the gap, we leverage influence functions (Koh
& Liang, 2017)—a classical technique for tracing the im-
pacts of individual training data on model behavior—to
systematically identify which training examples, along

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

with their internal patterns and tokens, most significantly
enhance the reasoning capabilities on math and coding
tasks. Following previous works on influence functions
for LLMs (Grosse et al., 2023; Ruis et al., 2024), we define
an easy-to-implement and cost-effective influence function
for reasoning-oriented supervised fine-tuning (SFT). We
further extend the instance-wise influence function to more
fine-grained variants at the sequence and token levels for an
in-depth data attribution. We dub our approach as Infra.

We begin by investigating cross-domain influence in basic
math and code reasoning scenarios without long CoT. To
this end, we fine-tune LLaMA3-8B-Base (Grattafiori et al.,
2024) on a mixture of MetaMathQA (Yu et al., 2023) and
OSS-Instruct (Wei et al., 2024) datasets and compute the
influence function on the accuracy of GSM8k (Cobbe et al.,
2021) and MBPP (Hendrycks et al., a). We rank all training
data by their influence scores and find that, while in-domain
data yield the highest scores as expected, cross-domain data
also contribute nontrivially. Furthermore, aggregating these
scores by category and difficulty reveals that symbolic math
examples and high-difficulty math problems are particularly
effective in improving code reasoning.

Extending Infra to complex long CoT reasoning, we fine-
tune Qwen2.5-7B-Instruct (Yang et al., 2024) on Bespoke-
Stratos-17k1 dataset and measure influence using AIME,
MATH500 (Hendrycks et al., b), and LiveCodeBench (Jain
et al., 2021) benchmarks. Consistent with earlier findings,
we observe cross-domain gains, with harder math problems
better helping code reasoning. Going a step further, we find
that both high-difficulty math and code examples are more
influential on math reasoning, whereas low-difficulty code
tasks contribute most significantly to code reasoning (see
Figure 1). Motivated by these insights, we flip easy math
problems as hard and hard code tasks as easy in the training
data. This reweighted dataset doubles AIME accuracy and
improves LiveCodeBench accuracy from 33.8% to 35.3%.

Furthermore, we perform attribution at sequence and token
levels in long CoT. Sequence-level attribution shows that
the exploration behavior of seeking alternative approaches
after reaching correctness (refer to Figure 6), which is com-
mon in long CoTs, improves both math and code reasoning
performance. Despite being seen as overthinking (Chen
et al., 2024; Sui et al., 2025), our studies suggest it is advan-
tageous. Besides, we observe distinct token-level influence
patterns for math and code reasoning. In math, the most
influential tokens are natural language with logical connec-
tors, whereas code CoTs rely more on syntax markers. This
divergence explains why easier code problems with clearer
structural solutions benefit code reasoning when combined
with math CoT that already provides logical skills.

1https://huggingface.co/datasets/
bespokelabs/Bespoke-Stratos-17k

2. Related Work
LLM reasoning. Reasoning is a cognitive process that
involves using evidence, arguments, and logic to arrive at
conclusions or make judgments. A very recent approach to
achieve reasoning capacity in LLMs is through post-training,
such as OpenAI-o1 (Jaech et al., 2024), and Deepseek-
R1 (Guo et al., 2025), which expose the model to large-
scale curated reasoning examples after the initial pretraining
phase to refine its inferential abilities (Kumar et al., 2025).
These reasoning datasets predominantly fall into two cat-
egories: (1) Mathematical reasoning: In earlier work, the
construction of high-quality mathematical datasets primarily
relied on increasing the quantity of problems and enhanc-
ing their difficulty levels (Li et al., 2024; Yue et al., 2023).
Nevertheless, LIMO dataset (Ye et al., 2025) demonstrated
that complex reasoning capabilities can be elicited through
surprisingly small datasets (hundreds of examples). In ad-
dition, some researchers also opted to distill high-quality
reasoning data from strong LLMs (NovaSky, 2024), leverag-
ing their outputs to construct more targeted and informative
training sets for enhancing reasoning performance in weak
LLMs. (2) Code generation: As a highly structured and
formalized type of data, code has a non-negligible impact
on the development of reasoning abilities in large language
models. Beyond simply testing LLMs on newly coding test
cases (Jain et al., 2021), many efforts have focused on inves-
tigating how and when code data influences the development
of reasoning abilities in language models (Zhang et al., 2025;
Li et al., 2025). In our work, we consider mathematical ca-
pacity and coding ability as two distinct manifestations of
advanced reasoning, and we aim to analyze and understand
the interactions between these capabilities to gain deeper
insights into the underlying mechanisms of LLM reasoning.

Data attribution and influence functions. Training Data
Attribution (TDA) methods seek to interpret a model’s pre-
dictions by analyzing the particular training instances that
contributed to shaping its learned representations. Most
modern TDA methods can broadly be divided into two cate-
gories: retraining-based methods (Ling, 1984; Shapley et al.,
1953; Ilyas et al., 2022) and gradient-based methods (Yeh
et al., 2018; Pruthi et al., 2020; Koh & Liang, 2017). How-
ever, applying traditional data attribution methods to large
language models has remained a significant challenge, pri-
marily due to issues of computational tractability and the
sheer scale of model parameters. Nonetheless, there are
several works successfully apply data attribution on LLMs
by influence function. Researchers in Anthropic adapt EK-
FAC influence functions to large-scale Transformers, by
which they figured out what kind of pretraining data influ-
ences completions of models up to 50B parameters (Grosse
et al., 2023). More specifically, for reasoning capabilities,
studies have shown that code data encountered during the
pretraining-phase plays a critical role in the development of

2

https://huggingface.co/datasets/bespokelabs/Bespoke-Stratos-17k
https://huggingface.co/datasets/bespokelabs/Bespoke-Stratos-17k

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

 Hard Math Hard Code

 Easy Math Easy Code

higher influence

 Math: Easy to Hard & Code: Hard to Easy

lower influence

Figure 1: An illustration of our key findings towards the question: Which attributes of training data effectively stimulate
reasoning capabilities? Mixing challenging math problems with easier coding tasks leads to the highest influence scores for
mathematical and coding reasoning (left). Guided by this insight, we curate an improved dataset and observe enhanced
performance (right).

mathematical reasoning abilities in language models. (Ruis
et al., 2024). In this work, we extend similar methodological
approaches by employing influence functions to attribute
the development of reasoning capabilities during the super-
vised fine-tuning (SFT) phase, with a particular focus on
analyzing the interplay between code and math data.

3. Methodology
This section reviews the basics of influence functions (Koh
& Liang, 2017; Grosse et al., 2023) and presents Infra, our
adaptation for attributing LLM reasoning performance on
math and code problems. In particular, we compute instance-
level influence scores using a mean log-likelihood proxy,
and further shift to sequence and token levels to uncover how
specific reasoning steps and tokens shape model behavior.

3.1. Preliminary: Influence Functions

Given a model parameterized by θ and trained on a dataset
Dtrain = {zi}Ni=1, influence functions (Koh & Liang, 2017)
estimate the influence of a training point zm on θ (or a
function thereof) without retraining the model. Specifically,
it is measured by computing the change in θ if zm is up-
weighted by an infinitesimal amount ϵ. This perturbation
can be formalized as the response function2:

θ(ϵ) = argmin
θ∈RD

J (θ,Dtrain, ϵ) (1)

= argmin
θ∈RD

1

N

N∑
i=1

L (zi,θ) + ϵL (zm,θ) , (2)

where L(·) is the training loss. The influence of zm on θ is
then defined as the first-order Taylor approximation to the

2For simplicity, we show the response function for optimal
parameters. For non-converged or non-convex models, the actual
response function is the Proximal Bregman response function
(refer to (Grosse et al., 2023) for details).

response function around ϵ = 0 and can be computed using
the implicit theorem:

Iθ(zm) =
dθ

dϵ

∣∣∣∣
ϵ=0

= −H−1∇θL (zm,θ) , (3)

where H = ∇2
θJ (θ,Dtrain) is the Hessian of the cost func-

tion. Direct interpretation of Iθ(zm) can be difficult due
to its high dimensionality, so it is common to instead com-
pute the influence of zm on a scalar-valued function of the
parameters f(θ). Using the chain rule for derivatives, this
influence admits the closed-form:

If (zm) =
df(θ)

dϵ

∣∣∣∣
ϵ=0

= −∇θf (θ)
T
H−1∇θL (zm,θ) .

(4)
A complete derivation of Equation 4 is delayed to Ap-
pendix A. Consequently, f(θ) is expected to increase after
upweighting the sample zm and then retraining the model if
If (zm) > 0, as

f(θ(ϵ))−f(θ) ≈ If (zm)ϵ = −∇θf (θ)
T
H−1∇θL (zm,θ) ϵ.

(5)
For transformer-based LLMs with billions of parameters,
the above H is intractable. To address this, Grosse et al.
(2023) propose to approximate H using the Eigenvalue-
Corrected Kronecker-Factored Approximate Curvature (EK-
FAC) method (George et al., 2018), which introduces sim-
plifying assumptions such as layer-wise independence and
restricts computation only to the MLP parameters within
the model. Given the effectiveness of such a strategy, we
also employ it to effectively estimate influence scores.

3.2. Attributing LLM Reasoning to Training Data via
Influence Functions

We now introduce Infra, our adaptation of influence func-
tions to attribute LLM reasoning on challenging math and
code tasks. As mentioned, our setting is mainly an SFT

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

process with CoTs generated by a stronger model to im-
prove the reasoning abilities of the LLM at hand. We are
interested in identifying the most influential training data
to improve model performance. Since task accuracy is non-
differentiable with respect to θ, we instead adopt a smooth
surrogate: the mean log-likelihood over a set of correctly
answered examples. Let Dcorrect = {(xi,yi)}ni=1 denote a
collection of problems xi paired with correct answers yi,
we define the surrogate objective as:

f(θ) =
1

n

n∑
i=1

log p(yi|xi;θ), (6)

where n is the size of Dcorrect. The robustness of Dcorrect
against variation is ablated in Appendix C.

Instance-level influence scores. Plugging Equation 6 into
Equation 4 yields the instance-level influence score assigned
to each SFT training example zm reflecting its effect on
f(θ). Consistent with (Grosse et al., 2023), we restrict
our focus to positively influential data, which refers to data
points that yield an increase in the log-likelihood of correct
answers and thus more effectively enhances the model’s
reasoning performance.

Sequence-level influence scores. Reasoning traces of re-
cent models often exhibit sequence-level cognitive behav-
iors, such as verification or exploration (refer to Figure 6).
To attribute the contribution of an individual sentence y in
zm, we employ a simple counterfactual tactic: we remove
y from the example and measure how the influence scores
changes. Let z\ym denote the input with sentence y erased.
Then the sequence-level influence of y is given by

If (y) = If (zm)− If (z\ym), (7)

which isolates the influence of y on the target function f(θ).

Token-level influence scores. Tokens that mark critical
transitions—such as ‘wait’—frequently appear in long CoT.
Attributing influence at the token level may therefore help
elucidate the underlying mechanisms that guide the model’s
reasoning. Due to the autoregressive nature of LLMs, the
training gradient of a training sequence zm of length T
decomposes as:

∇θL (zm,θ) =

T∑
t=1

−∇θ log p(zm,t|zm,<t,θ), (8)

where zm,t denotes the t-th token and zm,<t =
{zm,1, . . . , zm,t−1}. Plugging this into Equation 4 yields
the token-level influence of zm,t:3

If (zm,t) = ∇θf (θ)
T
H−1∇θ log p(zm,t|zm,<t,θ). (9)

3This term captures the influence of zm,t as the output for the
model to fit, ignoring its role as input in other cases, for simplicity.

4. Experiments
We begin by detailing the experimental setup (§4.1), and
then present the main findings, progressing from coarse- to
fine-grained analyses (§4.2–§4.4).

4.1. Experimental Setup

We conduct experiments under two SFT settings and in-
terpret math and code reasoning behaviors using influence
functions in both scenarios.

Base models trained w/o long CoT. We fine-tune the
Llama3-8B-Base model (Grattafiori et al., 2024) using a
mixed training dataset comprising MetaMathQA-100k (Yu
et al., 2023) and OSS-Instruct-75k (Wei et al., 2024).
MetaMathQA-100k includes reformulated questions boot-
strapped from training splits of GSM8k (Cobbe et al., 2021)
and MATH (Hendrycks et al., b) paired with brief answers
(~100 tokens) generated from GPT-3.5-Turbo (OpenAI,
2022). OSS-Instruct-75k provides synthetically generated
instructions covering a range of coding tasks. We evalu-
ate the resulting model on the test splits of GSM8k and
MBPP (Austin et al., 2021), filtering correctly answered
data to compute influence scores. The MBPP benchmark
consists of 1,000 Python programming problems, each com-
prising a task description and three automated test cases.

Instruction-tuned models trained w/ long CoT. We fine-
tune the Qwen2.5-7B-Instruct model (Yang et al., 2024) on
the Bespoke-Stratos-17k reasoning dataset (BS-17k), which
includes SFT distillation data from DeepSeek-R1 (Guo et al.,
2025), comprising questions, reasoning traces, and answers.
We employ the AIME24, AIME25, MATH500, and Live-
CodeBench (Jain et al., 2021) benchmarks to evaluate rea-
soning performance. AIME is a prestigious high school
mathematics competition known for its challenging prob-
lems. MATH500 is a subset of 500 problems drawn from the
MATH (Hendrycks et al., b) benchmark. LiveCodeBench
evaluates LLMs on diverse coding tasks, including self-
repair, code execution, and test output prediction, and cur-
rently hosts 400 coding problems.

Influence scores computation. We estimate the Hessian
using EK-FAC on the full SFT training set, truncating se-
quences to 4096 tokens to reduce memory usage. We set
n = 100 in Equation 6 by randomly sampling correctly
answered math and code examples.

4.2. Instance-level Attribution

Finding 1:

Code data can positively influence math performance,
and vice versa.

To investigate cross-domain influence after fine-tuning

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

0 10000 20000 30000 40000
Index

0

5

10

15

20

Lo
ga

ri
th

m
ic

 p
os

it
iv

e
in

fl
ue

nc
e

sc
or

es

(a) Source of data with top influence scores on math

math
code

0 10000 20000 30000 40000
Index

0

5

10

15

20

Lo
ga

ri
th

m
ic

 p
os

it
iv

e
in

fl
ue

nc
e

sc
or

es

(b) Source of data with top influence scores on code

math
code

Figure 2: Cross-domain influence analysis of LLaMA3-8B-Base fine-tuned on combined MetaMathQA and OSS-Instruct
for math and code performance. The most beneficial examples for math performance predominantly come from the math
domain, while code-domain data also contributes non-trivially (left). A similar cross-domain benefit is observed for code
performance (right).

Figure 3: Average influence score of the training dataset combining MetaMathQA and OSS-Instruct, evaluated on MBPP
and GSM8K performance. Results are grouped by training data category (left) and MATH problem difficulty (right).

LLaMA3-8B-Base on MetaMathQA and OSS-Instruct, we
rank training samples based on their positive influence on
the mean likelihood of correct answers in math and cod-
ing tasks, respectively, and categorize them by domain. As
shown in Figure 2 (a), the most influential samples for im-
proving math performance predominantly originate from
the math domain. However, influence scores from code-
domain data are not narrowly concentrated in the low range
(0–10); instead, a substantial number exhibit scores in the
15–20 range, indicating a non-trivial contribution from code
to math. A similar pattern of cross-domain benefit is ob-
served in Figure 2 (b), suggesting that training data from
one domain can provide valuable knowledge that enhance
performance in the other, demonstrating a meaningful trans-
fer of reasoning skills across domains. This also holds in
long CoT reasoning scenarios as shown in Appendix B.

FOBAR Question:
What is $ 6 \div x - 2 - 8 + 2 \cdot 8$?
If we know the answer to the above question is
8, what is the value of unknown variable x?

Original Question:
What is $ 6 \div 3 - 2 - 8 + 2 \cdot 8$?

Self-Verification Question:
$ 6 \div 3 - x - 8 + 2 \cdot 8 = 8$.
What is the value of the unknown variable x?

Rephrased Question:
Calculate the value of $6 \div 3 - 2 - 8 + 2 \cdot 8$.

Figure 4: Different types of ques-
tions from MetaMathQA.

To investigate how var-
ious training data types
influence code reason-
ing, we further ag-
gregate training sam-
ples by category and
compute average influ-
ence scores per cate-
gory. As illustrated in
Figure 3 (a), in-domain
Python data yields the
highest average influ-
ence on MBPP (a
benchmark of 1,000
Python problems). Within the math domain, symbolic
problem-answer pairs—such as those introducing variables

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

(a) Influence of Math and Code Data on Reasoning Across Difficulty Levels (b) Illustration of Training Dataset Distribution

Difficulty Flipped

Difficulty reverse-Flipped

Original dataset distribution

Figure 5: Left: Average influence scores of math and code training data from varying difficulty levels on reasoning
performance. For instance, Math−→Code denotes the influence of math data on code reasoning tasks. Right: Distribution
of math and code samples across difficulty levels in the BS17k dataset. The original distribution is shown alongside the
adjusted distribution obtained via the difficulty-flip strategy. See Table 1 for a comparison of SFT results under different
mixing strategies.

Table 1: Comparisons of SFT results with different difficulty-mixing strategies applied to the training dataset on 7B and 14B
models. We report pass@1 accuracy of LiveCodeBench.

Model AIME24↑ AIME25↑ MATH500↑ LiveCodeBench↑
Qwen2.5-Instruct-7B
Bespoke-Stratos-17k 10.0 6.7 77.2 33.8
Difficulty-reverse-Flipped 13.0 10.0 76.4 30.0
Difficulty-Flipped (Ours) 20.0 16.7 78.2 35.3

Qwen2.5-Instruct-14B
Bespoke-Stratos-17k 20.0 13.3 84.4 45.3
Difficulty-reverse-Flipped 20.0 23.3 83.0 43.8
Difficulty-Flipped (Ours) 23.0 23.3 84.4 45.5

x in FOBAR and SV formats shown in Figure 4—most
effectively enhance coding capabilities. Moreover, college-
level math questions from the MATH dataset, which uti-
lize LaTeX-based formal expressions, contribute more pos-
itively to code performance than simpler, conversational
high-school problems from GSM8k. This suggests that, be-
yond domain relevance, the complexity and formality of the
data—especially the use of precise symbolic language—also
play a critical role in enabling models to generalize effec-
tively to code reasoning tasks.

Finding 2:

Challenging math problems exhibit higher influence
scores on both math and code reasoning, while sim-
pler code problems more effectively enhance code tasks
when combined with math data. The optimal strategy
for co-optimizing reasoning across both domains is to
mix challenging math problems with easier code tasks.

To examine how training data difficulty contributes to model
performance, we first categorize MATH training data into
different difficulty levels and compute the average influ-
ence score for each level. As shown in Figure 3(b), higher-
difficulty problems (Level 5 and 4) contribute more signifi-
cantly to performance improvements on GSM8k and MBPP
compared to lower-difficulty ones (Level 3, 2, and 1). This
may be attributed to the fact that high-difficulty MATH prob-
lems induce more complex reasoning chains and thus better
transfer logical capabilities to reasoning-intensive tasks.

To further investigate the role of difficulty in long CoT rea-
soning scenarios, we fine-tune Qwen2.5-7B-Instruct on the
BS17k dataset and analyze influence scores grouped by dif-
ficulty levels. The results, shown in Figure 5(a), indicate
that challenging tasks in both mathematics and coding are
more beneficial for math reasoning. In contrast, easier math
problems offer limited gains across both math and coding
evaluations. This observation aligns with findings from the
w/o long CoT setting and prior works such as LIMO (Ye

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

Answer:
<|begin_of_thought|>
Okay, so I need to figure out (...) Therefore, 8 is the only base where \\(2b^2(b - 1) \\) is not divisible by 3.
Therefore, the answer is E.
Wait, but let me cross-check this conclusion. Let's compute the expression \\(2b^2(b - 1) \\ (...)
Therefore, the answer is (E) 8.

<|end_of_thought|>
<|begin_of_solution|>
 (...)
<|end_of_solution|>

Question:
Your role as an assistant involves exploring questions through a systematic long thinking process before
providing the final precise and accurate solutions (...)
For which of the following integers b is the base-b number $2021_b - 221_b$
 not divisible by 3?
 (A) 3 (B) 4 (C) 6 (D) 7 (E) 8

Wait, but let me cross-check this conclusion. Let's compute the expression \\(2b^2(b - 1) \\ (...)
Therefore, the answer is (E) 8.

But let me just think again if there's another way to approach this problem, perhaps by considering the
original subtraction in base \\(b \\) (...) Hence, the answer is E.

But let me check once again by calculating each expression modulo 3 directly (...)
Therefore, the answer is (E) 8.

Verification
Exploration

Figure 6: Left: An example of long CoT illustrating cognitive behaviors: verification (systematic error-checking) and
exploration (searching for another approach after reaching the correct answer). Right: Distribution of different cognitive
behaviors in BS-17k training dataset and their average impact on math and code reasoning performance.

Table 2: Sequence-level attribution of cognitive behaviors in long CoT. Left: Comparison of influence scores of the example
in Figure 6 on math and code reasoning, w/ and w/o verification and exploration sentences. Right: Comparison of SFT
results w/ and w/o exploration behaviors in BS-17k dataset.

Domain full CoT w/o Ver. w/o Exp. w/o both

Math 2.2e+08 1.5e+08 9.0e+07 7.0e+07
Code 2.2e+07 1.6e+07 8.4e+06 7.5e+06

Model MATH500↑ LiveCodeBench↑
w/ Exp. 77.2 33.8
w/o Exp. 73.8 32.0

et al., 2025), which highlight the utility of difficult math
problems in developing reasoning capabilities. On the other
hand, we find that simpler code problems are more effective
for improving performance on coding tasks when mixed
with math data. We hypothesize that, in addition to logical
reasoning, programming tasks rely heavily on learning struc-
tural and syntactic patterns. When paired with math data
that enhances logical thinking, simple coding tasks with
clearer structure and more consistent syntax facilitate the
model’s acquisition of fundamental programming patterns,
thereby improving code generation performance.

Based on these insights, we design an optimized data mixing
strategy: we replace simple math problems in the original
dataset with more challenging ones sourced from a larger
scale OpenThoughts-114k4 dataset, and conversely, we re-
place difficult coding problems with simpler ones. The
modified dataset retaining the original size of 17k examples,
compared in Figure 5(b), is used to retrain the model. As
shown in Table 1, this new difficulty flipped mixing strategy
yields consistent improvements across AIME, MATH, and
LiveCodeBench benchmarks. In contrast, applying the re-
verse strategy—simplifying hard math problems and compli-

4https://huggingface.co/datasets/open-
thoughts/OpenThoughts-114k. Note that this dataset is
curated using the same pipeline as BS-17k, with identical question
sources and answers distilled from Deepseek-R1.

cating easy coding tasks—results in the worst performance,
further validating our finding.

4.3. Sequence-level Attribution

Finding 3:

The presence of ‘searching for another approach after
reaching correct answers’ in math reasoning traces
benefits to both math and code reasoning. While
previously considered unnecessary overthinking, our
sequence-level influence analysis and SFT ablations
demonstrate its positive impact, suggesting such ex-
ploratory behaviour may promote generalizable rea-
soning skills.

We are interested in the influence of different cognitive
behaviors on reasoning performance. Following prior
work (Gandhi et al., 2025), we focus on five key behaviors:
exploration (seeking alternative approaches after reaching
a correct answer), verification (systematic error-checking),
backtracking (abandoning ineffective strategies), subgoal
setting (breaking problems into manageable steps), and
backward chaining (reasoning from desired outcomes to
initial inputs). To identify these behaviors in the BS-17k
dataset, we use Qwen-32B-instruct as a classifier, with de-
tails provided in Appendix E.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

Figure 7: Visualization of top 5% influential tokens in math (Left) and code (Right) CoT.

As shown in Figure 6 (right), exploration behavior is preva-
lent in the training dataset. However, prior work often con-
siders it detrimental, viewing it as overthinking that reduces
efficiency (Chen et al., 2024; Sui et al., 2025). We thus
assess whether this behavior has a positive or negative im-
pact using influence functions. Specifically, we truncate
sentences in training data containing exploration and exam-
ine the change in influence score, as defined in Equation 7.
The results in Table 2 (left) show that exploration is not
redundant; on the contrary, it positively affects both math
and code reasoning, even surpassing verification in impact.

To further validate this, we use GPT-4o to truncate all explo-
ration behaviors in the BS-17k dataset for SFT, with instruc-
tion details in Appendix D. The SFT results in Table 2 (right)
show a significant performance drop when exploration is
removed. We attribute this decline to exploration’s role
in enabling flexible problem-solving, essential for diverse
reasoning tasks. Beyond exploration, we compare average
influence scores across other cognitive behaviors. As shown
in Figure 6 (right), backtracking is crucial for mathemati-
cal reasoning, while subgoal setting is more impactful in
programming. This may be because programming requires
breaking down high-level goals into modular components,
making subgoal setting essential.

4.4. Token-level Attribution

Finding 4:

Token-wise attribution analysis reveals distinct
paradigms in math and code reasoning. In math CoT,
influential tokens are natural language with logical
connectors, whereas code CoT are dominated by struc-
tured code with syntax markers.

To investigate the most influential tokens for stimulating
reasoning, we select the top 100 highly influential examples
on math and code reasoning, compute token-wise influence

scores using Equation 9, and highlight the top 5% most
influential tokens. Interestingly, as shown in Figure 7, the
initial tokens in CoT—such as ‘Okay, so I...’—are frequently
highlighted, suggesting that these openers help orient the
model’s cognitive process to initiate reasoning. Further
analysis reveals that, in math CoTs, the influential tokens
are predominantly natural language logical connectors, such
as ‘Wait’, ‘However’, ‘Verify’, ‘Hence’, ‘First’, ‘Therefore’,
and ‘Alternatively’. In contrast, in code CoTs, the most
influential tokens are structural or syntactic elements such
as markdown-style headings (e.g., ### Solution), fenced
code blocks (e.g., ``` bash```), and syntax markers (e.g.,
def (self, A: List [int])-> int:), which reflect the highly
structured nature of code reasoning. This contrast highlights
a divergence in reasoning paradigms: math reasoning relies
more heavily on logical discourse, while code reasoning
is facilitated by explicit structure and formatting. These
divergent patterns may explain why easier code problems
with clearer structural formats are particularly beneficial for
enhancing code reasoning when integrated with math CoTs
that already provide strong logical skills.

5. Conclusion
In this paper, we propose a fine-grained influence func-
tion framework to trace how training data on SFT phase
shapes LLM reasoning in math and code tasks. Our anal-
ysis reveals that cross-domain examples—especially high-
difficulty math and low-difficulty code—boost reasoning
performance across domains. We further extend influ-
ence functions to the sequence level, revealing that ex-
ploratory behaviors in long CoT consistently enhance perfor-
mance, challenging prior assumptions that such behaviors
reflect overthinking. Token-level analysis reveals distinct
paradigms in math and code reasoning. Our work highlights
the utility of influence-based attribution for data-centric
optimization and opens a path toward more targeted and
interpretable reasoning supervised training.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

References
Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,

H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., et al.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Chen, X., Xu, J., Liang, T., He, Z., Pang, J., Yu, D., Song,
L., Liu, Q., Zhou, M., Zhang, Z., et al. Do not think
that much for 2+ 3=? on the overthinking of o1-like llms.
arXiv preprint arXiv:2412.21187, 2024.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Gandhi, K., Chakravarthy, A., Singh, A., Lile, N., and
Goodman, N. D. Cognitive behaviors that enable self-
improving reasoners, or, four habits of highly effective
stars. arXiv preprint arXiv:2503.01307, 2025.

Gao, Z., Niu, B., He, X., Xu, H., Liu, H., Liu, A., Hu,
X., and Wen, L. Interpretable contrastive monte carlo
tree search reasoning. arXiv preprint arXiv:2410.01707,
2024.

George, T., Laurent, C., Bouthillier, X., Ballas, N., and
Vincent, P. Fast approximate natural gradient descent
in a kronecker factored eigenbasis. Advances in neural
information processing systems, 31, 2018.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Vaughan, A., et al. The llama 3 herd of models. arXiv
e-prints, pp. arXiv–2407, 2024.

Grosse, R., Bae, J., Anil, C., Elhage, N., Tamkin, A., Tajdini,
A., Steiner, B., Li, D., Durmus, E., and Perez, E. Study-
ing large language model generalization with influence
functions. arXiv preprint arXiv:2308.03296, 2023.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora,
A., Guo, E., Burns, C., Puranik, S., He, H., Song, D., et al.
Measuring coding challenge competence with apps. In
Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2), a.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring
mathematical problem solving with the math dataset. In
Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2), b.

Huang, Z., Zou, H., Li, X., Liu, Y., Zheng, Y., Chern, E.,
Xia, S., Qin, Y., Yuan, W., and Liu, P. O1 replication
journey–part 2: Surpassing o1-preview through simple
distillation, big progress or bitter lesson? arXiv preprint
arXiv:2411.16489, 2024.

Ilyas, A., Park, S. M., Engstrom, L., Leclerc, G., and Madry,
A. Datamodels: Understanding predictions with data and
data with predictions. In International Conference on
Machine Learning, pp. 9525–9587. PMLR, 2022.

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky,
A., Low, A., Helyar, A., Madry, A., Beutel, A., Car-
ney, A., et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Jain, N., Han, K., Gu, A., Li, W.-D., Yan, F., Zhang, T.,
Wang, S., Solar-Lezama, A., Sen, K., and Stoica, I. Live-
codebench: Holistic and contamination free evaluation
of large language models for code. In The Thirteenth
International Conference on Learning Representations,
2021.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In International conference
on machine learning, pp. 1885–1894. PMLR, 2017.

Kumar, K., Ashraf, T., Thawakar, O., Anwer, R. M.,
Cholakkal, H., Shah, M., Yang, M.-H., Torr, P. H., Khan,
F. S., and Khan, S. Llm post-training: A deep dive
into reasoning large language models. arXiv preprint
arXiv:2502.21321, 2025.

Lambert, N., Morrison, J., Pyatkin, V., Huang, S., Ivison,
H., Brahman, F., Miranda, L. J. V., Liu, A., Dziri, N., Lyu,
S., et al. T\" ulu 3: Pushing frontiers in open language
model post-training. arXiv preprint arXiv:2411.15124,
2024.

Li, J., Beeching, E., Tunstall, L., Lipkin, B., Soletskyi, R.,
Huang, S., Rasul, K., Yu, L., Jiang, A. Q., Shen, Z., et al.
Numinamath: The largest public dataset in ai4maths with
860k pairs of competition math problems and solutions.
Hugging Face repository, 13:9, 2024.

Li, J., Guo, D., Yang, D., Xu, R., Wu, Y., and He, J. Codei/o:
Condensing reasoning patterns via code input-output pre-
diction. arXiv preprint arXiv:2502.07316, 2025.

Ling, R. F. Residuals and influence in regression, 1984.

Min, Y., Chen, Z., Jiang, J., Chen, J., Deng, J., Hu, Y., Tang,
Y., Wang, J., Cheng, X., Song, H., et al. Imitate, explore,
and self-improve: A reproduction report on slow-thinking
reasoning systems. arXiv preprint arXiv:2412.09413,
2024.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

Muennighoff, N., Yang, Z., Shi, W., Li, X. L., Fei-Fei, L.,
Hajishirzi, H., Zettlemoyer, L., Liang, P., Candès, E.,
and Hashimoto, T. s1: Simple test-time scaling. arXiv
preprint arXiv:2501.19393, 2025.

NovaSky. Sky-t1: Train your own o1 preview model,
2024. URL https://novasky-ai.github.io/
posts/sky-t1.

OpenAI. Gpt-3.5-turbo. Technical report, OpenAI, 2022.

Pruthi, G., Liu, F., Kale, S., and Sundararajan, M. Estimat-
ing training data influence by tracing gradient descent.
Advances in Neural Information Processing Systems, 33:
19920–19930, 2020.

Qin, Y., Li, X., Zou, H., Liu, Y., Xia, S., Huang, Z., Ye,
Y., Yuan, W., Liu, H., Li, Y., et al. O1 replication jour-
ney: A strategic progress report–part 1. arXiv preprint
arXiv:2410.18982, 2024.

Ruis, L., Mozes, M., Bae, J., Kamalakara, S. R., Talupuru,
D., Locatelli, A., Kirk, R., Rocktäschel, T., Grefenstette,
E., and Bartolo, M. Procedural knowledge in pretraining
drives reasoning in large language models. arXiv preprint
arXiv:2411.12580, 2024.

Shapley, L. S. et al. A value for n-person games. 1953.

Sui, Y., Chuang, Y.-N., Wang, G., Zhang, J., Zhang, T.,
Yuan, J., Liu, H., Wen, A., Chen, H., Hu, X., et al.
Stop overthinking: A survey on efficient reasoning for
large language models. arXiv preprint arXiv:2503.16419,
2025.

Wei, Y., Wang, Z., Liu, J., Ding, Y., and Zhang, L. Magi-
coder: Empowering code generation with oss-instruct.
Proceedings of Machine Learning Research, 235:52632–
52657, 2024.

Wen, L., Cai, Y., Xiao, F., He, X., An, Q., Duan, Z., Du, Y.,
Liu, J., Tang, L., Lv, X., et al. Light-r1: Curriculum sft,
dpo and rl for long cot from scratch and beyond. arXiv
preprint arXiv:2503.10460, 2025.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu,
B., Li, C., Liu, D., Huang, F., Wei, H., et al. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115, 2024.

Ye, Y., Huang, Z., Xiao, Y., Chern, E., Xia, S., and Liu,
P. Limo: Less is more for reasoning. arXiv preprint
arXiv:2502.03387, 2025.

Yeh, C.-K., Kim, J., Yen, I. E.-H., and Ravikumar, P. K.
Representer point selection for explaining deep neural
networks. Advances in neural information processing
systems, 31, 2018.

Yu, L., Jiang, W., Shi, H., Yu, J., Liu, Z., Zhang, Y., Kwok,
J. T., Li, Z., Weller, A., and Liu, W. Metamath: Boot-
strap your own mathematical questions for large language
models. arXiv preprint arXiv:2309.12284, 2023.

Yue, X., Qu, X., Zhang, G., Fu, Y., Huang, W., Sun, H., Su,
Y., and Chen, W. Mammoth: Building math generalist
models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Zhang, X., Chen, Z. Z., Ye, X., Yang, X., Chen, L., Wang,
W. Y., and Petzold, L. R. Unveiling the impact of cod-
ing data instruction fine-tuning on large language models
reasoning. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 39, pp. 25949–25957, 2025.

10

https://novasky-ai.github.io/posts/sky-t1
https://novasky-ai.github.io/posts/sky-t1

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

0 2000 4000 6000 8000 10000
Index

10

12

14

16

18

20

Lo
ga

ri
th

m
ic

 p
os

it
iv

e
in

fl
ue

nc
e

sc
or

es

(a) Source of data with top influence scores on math

math
code

0 2000 4000 6000 8000 10000
Index

10

12

14

16

18

20

Lo
ga

ri
th

m
ic

 p
os

it
iv

e
in

fl
ue

nc
e

sc
or

es

(b) Source of data with top influence scores on code

math
code

Figure 8: Cross-domain influence analysis of Qwen2.5-7B-Instruct fine-tuned on Bespoke-Stratos-17k dataset for math and
code reasoning performance.

A. Derivation of Influence Score
Given the influence of zm on model parameters θ

Iθ(zm) =
dθ

dϵ

∣∣∣∣
ϵ=0

= −H−1∇θL (zm,θ) , (10)

we can obtain its influence on a function of parameters f(θ) by applying the chain rule for derivatives:

If (zm) =
df(θ)

dϵ

∣∣∣∣
ϵ=0

= ∇θf(θ)
T dθ

dϵ

∣∣∣∣
ϵ=0

(11)

= −∇θf(θ)
TH−1∇θL

(
zm,θ

)
.

B. Cross Domain Influence Analysis in Long CoT Scenarios
In this section, we provide additional instance-level attribution experiment on long CoT reasoning scenarios. We fine-tune
Qwen2.5-7B-Instruct on Bespoke-Stratos-17K reasoning dataset. As shown in Figure 8(a), the most influential samples for
improving math performance predominantly from the math domain, but the samples from code domain are also significant.
In Figure 8(b), there is a similar pattern of cross-domain benefit. This is consistent with the conclusions we obtained in the
experimental section 4.2.

C. Robustness on n

Table 3: Pearson correlation coefficient of
rankings on training data across different
choices of n.

n → 10 25 50 100

Math 0.52 0.60 0.70 1.0
Code 0.51 0.62 0.60 1.0

In this section, we evaluate the robustness of the influence function esti-
mates with respect to the size of the correct subset Dcorrect. Specifically,
we fine-tune the LLaMA3-8B-Base model on a mixed training corpus
comprising MetaMathQA and OSS-Instruct, and compute influence scores
on the math and code performance. We calculate the Pearson correlation
between the rankings of training examples induced by influence scores
using varying values of n, using n = 100 as the reference. Results in
Table 3 shows the robustness of n for influence scores estimation.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

query

answer

The operation ⊗ is defined for all non - zero numbers as 𝑎⊗b =
𝑎2

𝑏
​. Determine the

value of [(1⊗2)⊗3]−[1⊗(2⊗3)].

answer
Okay, let me try to figure out this problem.

…(Chain of Thought)

Wait, but let me think again. The operation is defined for all

nonzero numbers, so we don't have any issues with division by

zero here. 2⊗3 is 4/3, which is fine, and then 1⊗(4/3) is 3/4.

Correct.

Alternatively, maybe there's a different way to approach the

problem? Let me try expanding both expressions using

variables to see if there's a pattern.

Final Answer \boxed{A}

Okay, let me try to figure out this problem.

…(Chain of Thought)

Wait, but let me think again. The operation is defined for all

nonzero numbers, so we don't have any issues with division by

zero here. 2⊗3 is 4/3, which is fine, and then 1⊗(4/3) is 3/4.

Correct.

Final Answer \boxed{A}

A. −
2

3
 B. −

1

4
 C. 0 D.

1

4
 E.

2

3

Figure 9: To assess whether the exploration behavior has a positive or negative impact, we use GPT-4o to truncate all
exploration behaviors in the BS-17K dataset for SFT. If reasoning contains any searching for another approach after reaching
correct answers, like "Alternatively, maybe there’s a different way to approach the problem?", the exploration content will
be truncated.

D. Case of Truncating Exploration Behavior
To evaluate the impact of exploration behaviors in reasoning processes, we systematically truncate exploratory content from
the BS-17K during SFT. Specifically, any post-correct-answer exploration (e.g.,“Alternatively, maybe there’s a different way
to approach the problem”) is removed to isolate the core problem-solving trajectory, as shown in Figure 9.

E. Examples for Reasoning Behaviors Classifier
The five cases below show the prompts of five behaviors on reasoning performance and the corresponding answers. As
shown in Figure 10 and 11, the prompts include task description, examples of each reasoning behavior, task format, etc..

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

Exploration
Prompt:

#Task Description
You will be provided with text from the internet.
Evaluate whether the text contains any "searching for another approach after
reaching correct answers" behavior, where the writer reaches a correct or
satisfactory solution, but then explicitly continues to explore alternate methods or
perspectives. This is a type of cognitive behavior that reflects intellectual curiosity
or seeking multiple strategies even after solving the problem.

This is not the same as:
- Backtracking, where the writer changes method because the current one does not
work or is incomplete.
- Verification,where the writer checks the correctness of a method without
attempting a different one.

Examples of this behavior include:
- "But let me just think again if there's another way to approach this.“
- "Another way to look at this is...“
- "That’s one way to get the result. Now let’s see if we can also derive it using
geometry.“
- "Alternatively, maybe there's a different way to approach the problem?“
Count the number of distinct backtracking instances and provide the count between
the tags <count> </count>. If the writer does not exploration, please provide a count
of 0 as <count>0</count>.

#Task Format
Format your response in markdown as follows:

##Thoughts
[Brief description describing what behavior was noticed and where exploration
occurred]

##Does exploration thinking?
[yes/no]

##Number of exploration thinking steps
<count> [1/2/...] </count>

#Task to evaluate for exploration
{response}

#Response

Answer:
##
Thoughts
The writer explores multiple ways to approach the problem of proving that a
sequence satisfying certain conditions must be a polynomial. After initially
considering the properties of polynomials and the given conditions, the writer
continues to explore different methods and perspectives, such as using finite
differences, induction, and theorems about integer-valued polynomials. The writer
does not stop at the first satisfactory approach but continues to question and explore
further, indicating a behavior of seeking alternative methods even after reaching a
correct or satisfactory solution.

##
Does alternative thinking?
yes

##
Number of alternative thinking steps

<count> 5 </count>

Prompt:

Task Description
You will be provided with text from the internet.
Evaluate whether the text contains any verification steps. We want to mark
instances where the writer explicitly checks their own work, such as by comparing
the result to a known value or by checking the result of a calculation.

Verification steps in mathematics might look like:
- "Let's check our answer by substituting x = 3 back into the original equation."
- "To verify this is correct, I'll differentiate the antiderivative and confirm it matches
the original function."
- "Let's test our formula with a simple case: when n = 1, we get f(1) = 2, which
matches our expected result."
- "To ensure this solution is valid, I'll check if it satisfies all the given constraints."

If you find any verification steps, please count them and provide the count between
the tags <count> </count>. If the text does not contain any verification steps, please
provide a count of 0 as <count>0</count>.

Task Format
Format your response in markdown as follows:

Thoughts
[Brief description describing what behavior was noticed and where answer
verification may have occurred]

Does verification?
[yes/no]

Number of answer verification steps
<count> [1/2/...] </count>

Task to evaluate for Verification
{response}

Response

Answer:
##
Thoughts
The provided text is a detailed exploration of a mathematical problem involving
sequences and polynomials. The writer discusses various approaches and theorems
that could be used to prove that a sequence satisfying certain conditions must be a
polynomial. However, the text does not explicitly check any calculations or results
against known values or re-verify any steps taken in the reasoning process.

##
Does verification?
no

##
Number of verification steps

<count> 0 </count>

Verification

Figure 10: Left: Exploration: When performing reasoning, seeking alternative approaches after reaching a correct answer.
We capture this behavior and calculate the number of exploration steps by analyzing the content like “Another way to look
at this is...” etc.. Right: Verification: The behavior of reasoning from desired outcomes to initial inputs when performing
reasoning. We capture and calculate the number of backward chaining instances by finding the content like “To solve this
equation, let’s start with what we want to prove” etc..

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

Backtracking
Prompt:

Task Description
You will be provided with text from the internet.
Evaluate whether the text contains any backtracking behavior, where the writer
realizes a path won't work and explicitly goes back to try a different approach.
An example of backtracking is: "Let me try again", "Wait", "I made a mistake",
or "we need to try a different sequence of operations". We want to mark
instances where the writer abandons a thought and backtracks to a previous
computation.

Backtracking in mathematics might look like:
- "I started with the wrong formula. Let's use integration by parts instead."
- "This approach leads to a contradiction. Going back to the original
equation..."
- "I see the error in my calculation. Let's recalculate using..."
- "This algebraic manipulation isn't simplifying as expected. Let's try factoring
differently."

Count the number of distinct backtracking instances and provide the count
between the tags <count> </count>. If the writer does not backtrack, please
provide a count of 0 as <count>0</count>.

Task Format
Format your response in markdown as follows:

Thoughts
[Brief description describing what behavior was noticed and where
backtracking occurred]

Does backtrack?
[yes/no]

Number of backtrack steps
<count> [1/2/...] </count>

Task to evaluate for backtracking
{response}

Response

Answer:
##
Thoughts
The writer initially explores the problem by considering the conditions given
and trying to connect them to known properties of polynomials. They then
realize that their initial approach might not be leading to a solution and start to
consider alternative methods, such as using the method of finite differences,
induction, and other properties of polynomials. The writer explicitly mentions
reconsidering their approach multiple times, indicating backtracking behavior.

##
Does backtrack?
yes

##
Number of backtrack steps

<count> 4 </count>

Prompt:

Task Description
You will be provided with text from the internet.
Evaluate whether the text contains any backward-chaining behavior, where the
writer is working towards a goal but starts from the goal and works backward.

Backward-chaining in mathematics might look like:
- "To solve this equation, let's start with what we want to prove: x = 4.
Working backward, if x = 4, then x² - 5x + 4 = 0 must be true. Let's verify
this."
- "If we want to find a function whose derivative is 2x + 3, let's start with the
desired result and work backward.
The derivative of x² + 3x + C would give us 2x + 3."
- "To prove this triangle is a right triangle, I'll start by assuming the
Pythagorean theorem holds (c² = a² + b²) and check if our side lengths satisfy
this condition."
- "In this optimization problem, we know the maximum value occurs when the
derivative equals zero. If we set f'(x) = 0 and solve for x, we can find our
critical points."
- "To determine the initial velocity, I know the ball reaches a height of 20
meters. Working backward from this final state using the kinematic equation h
= vt - 0.5gt², I can solve for the initial velocity v."

Count the number of distinct backward-chaining instances and provide the
count between the tags `<count> </count>`. If the reasoning does not contain
any backward-chaining behavior, provide a count of 0 as `<count>0</count>`.

Task Format
Format your response in markdown as follows:

Thoughts
[Brief description of the observed behavior and where backward chaining may
have occurred]

Does the text exhibit backward chaining?
[yes/no]

Number of backward chaining instances
<count> [1/2/...] </count>

Task to evaluate for backward chaining
{response}

Response

Answer:
##
Thoughts
The provided text does not exhibit backward-chaining behavior. The writer is
attempting to prove a statement about a sequence of integers satisfying certain
conditions, but the reasoning is forward-looking, starting from the given
conditions and working towards a conclusion. The writer explores various
mathematical concepts and theorems to understand the problem and does not
start from a goal and work backward.

##

##
Does the text exhibit backward chaining?
no

Number of backward chaining instances

<count> 0 </count>

Backward Chaining

Figure 11: Left: Backtracking: The behavior of realizing a path won’t work and explicitly going back to try a different
approach. We capture this behavior and calculate the number of backtracking steps by finding the content like “This
approach leads to a contradiction. Going back to the original equation...” etc.. Right: Backward Chaining: The behavior of
systematic error-checking when performing reasoning. We capture and calculate the number of backward chaining instances
by finding the content like “To ensure this solution is valid, I’ll check if it satisfies all the given constraints.” etc..

14

