Which Data Attributes Stimulate Math and Code Reasoning?
An Investigation via Influence Functions

Anonymous Authors'

Abstract

Large language models (LLMs) have demon-
strated remarkable reasoning capabilities in math
and coding, often bolstered by post-training on the
chain-of-thoughts (CoTs) generated by stronger
models. However, existing strategies for curating
such training data predominantly rely on heuris-
tics, limiting generalizability and failing to cap-
ture subtleties underlying in data. To address
these limitations, we leverage influence functions
to systematically attribute LLMs’ reasoning abil-
ity on math and coding to individual training ex-
amples, sequences, and tokens, enabling deeper
insights into effective data characteristics. Our
Influence-based Reasoning Attribution (Infra)
uncovers nontrivial cross-domain effects across
math and coding tasks: high-difficulty math exam-
ples improve both math and code reasoning, while
low-difficulty code tasks most effectively benefit
code reasoning. Based on these findings, we in-
troduce a simple yet effective dataset reweighting
strategy by flipping task difficulty, which doubles
AIME24 accuracy from 10% to 20% and boosts
LiveCodeBench accuracy from 33.8% to 35.3%
for Qwen2.5-7B-Instruct. Moreover, our fine-
grained attribution reveals that the sequence-level
exploratory behaviors enhance reasoning perfor-
mance in both math and code, and the token-level
influence patterns are distinct for math and code
reasoning: the former prefers natural language
logic connectors and the latter emphasizes struc-
tural syntax.

1. Introduction

Large language models (LLMs) for reasoning, with OpenAl-
ol (Jaech et al., 2024) and DeepSeek-R1 (Guo et al., 2025)

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

as popular examples, have shown great promise in solv-
ing complex math and coding problems. Recently, the
community has witnessed the prevalence of reproducing
such reasoning capacities on open-source small- to medium-
sized LLMs (Lambert et al., 2024; Gao et al., 2024; Qin
et al., 2024). An initial stage of the solutions often involves
post-training the model on some chain-of-thought (CoT)
reasoning traces curated by leading models (e.g., R1) for
diverse problems (Wen et al., 2025; Min et al., 2024; Muen-
nighoff et al., 2025; Ye et al., 2025; Huang et al., 2024;
NovaSky, 2024). As a data-centric paradigm, the core re-
search question here is: which attributes of the training data
are effective in stimulating reasoning capabilities?

Pioneering studies addressing this question predominantly
adopt heuristic approaches. Typically, they first establish
quantitative data quality metrics based on human expertise
or empirical preferences, then selectively retain high-quality
data for model training to cultivate robust reasoning capa-
bilities with minimal data inputs. For example, s1K (Muen-
nighoff et al., 2025) filters 1k (question, answer) pairs with
well-structured formatting, longer CoT length, and broader
domain from an initial pool of 59k data for training math
reasoning LLMs. Similarly, LIMO (Ye et al., 2025) suggests
incorporating more challenging questions with complex rea-
soning chains enables better math reasoning.

Beyond focusing exclusively on math, Sky-T1 (NovaSky,
2024) targets competitive reasoning performance across
both math and coding tasks. It notices that the naive in-
corporation of code data from APPS (Hendrycks et al., a)
degrades math performance and advocates mitigating this by
introducing more difficult math questions and code tasks for
training. Nevertheless, the underlying mechanism of such
cross-domain influence remains underexplored. Further-
more, these heuristic strategies suffer from unreliable gen-
eralization to other reasoning scenarios and cannot clearly
explain how some fine-grained reasoning patterns in the
training data (e.g., verification, backtracking, etc.) affect the
learned models.

To bridge the gap, we leverage influence functions (Koh
& Liang, 2017)—a classical technique for tracing the im-
pacts of individual training data on model behavior—to
systematically identify which training examples, along

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

with their internal patterns and tokens, most significantly
enhance the reasoning capabilities on math and coding
tasks. Following previous works on influence functions
for LLMs (Grosse et al., 2023; Ruis et al., 2024), we define
an easy-to-implement and cost-effective influence function
for reasoning-oriented supervised fine-tuning (SFT). We
further extend the instance-wise influence function to more
fine-grained variants at the sequence and token levels for an
in-depth data attribution. We dub our approach as Infra.

We begin by investigating cross-domain influence in basic
math and code reasoning scenarios without long CoT. To
this end, we fine-tune LLaMA3-8B-Base (Grattafiori et al.,
2024) on a mixture of MetaMathQA (Yu et al., 2023) and
OSS-Instruct (Wei et al., 2024) datasets and compute the
influence function on the accuracy of GSM8k (Cobbe et al.,
2021) and MBPP (Hendrycks et al., a). We rank all training
data by their influence scores and find that, while in-domain
data yield the highest scores as expected, cross-domain data
also contribute nontrivially. Furthermore, aggregating these
scores by category and difficulty reveals that symbolic math
examples and high-difficulty math problems are particularly
effective in improving code reasoning.

Extending Infra to complex long CoT reasoning, we fine-
tune Qwen2.5-7B-Instruct (Yang et al., 2024) on Bespoke-
Stratos-17k! dataset and measure influence using AIME,
MATHS00 (Hendrycks et al., b), and LiveCodeBench (Jain
et al., 2021) benchmarks. Consistent with earlier findings,
we observe cross-domain gains, with harder math problems
better helping code reasoning. Going a step further, we find
that both high-difficulty math and code examples are more
influential on math reasoning, whereas low-difficulty code
tasks contribute most significantly to code reasoning (see
Figure 1). Motivated by these insights, we flip easy math
problems as hard and hard code tasks as easy in the training
data. This reweighted dataset doubles AIME accuracy and
improves LiveCodeBench accuracy from 33.8% to 35.3%.

Furthermore, we perform attribution at sequence and token
levels in long CoT. Sequence-level attribution shows that
the exploration behavior of seeking alternative approaches
after reaching correctness (refer to Figure 6), which is com-
mon in long CoTs, improves both math and code reasoning
performance. Despite being seen as overthinking (Chen
et al., 2024; Sui et al., 2025), our studies suggest it is advan-
tageous. Besides, we observe distinct token-level influence
patterns for math and code reasoning. In math, the most
influential tokens are natural language with logical connec-
tors, whereas code CoTs rely more on syntax markers. This
divergence explains why easier code problems with clearer
structural solutions benefit code reasoning when combined
with math CoT that already provides logical skills.

'nttps://huggingface.co/datasets/
bespokelabs/Bespoke-Stratos-17k

2. Related Work

LLM reasoning. Reasoning is a cognitive process that
involves using evidence, arguments, and logic to arrive at
conclusions or make judgments. A very recent approach to
achieve reasoning capacity in LLMs is through post-training,
such as OpenAl-ol (Jaech et al., 2024), and Deepseek-
R1 (Guo et al., 2025), which expose the model to large-
scale curated reasoning examples after the initial pretraining
phase to refine its inferential abilities (Kumar et al., 2025).
These reasoning datasets predominantly fall into two cat-
egories: (1) Mathematical reasoning: In earlier work, the
construction of high-quality mathematical datasets primarily
relied on increasing the quantity of problems and enhanc-
ing their difficulty levels (Li et al., 2024; Yue et al., 2023).
Nevertheless, LIMO dataset (Ye et al., 2025) demonstrated
that complex reasoning capabilities can be elicited through
surprisingly small datasets (hundreds of examples). In ad-
dition, some researchers also opted to distill high-quality
reasoning data from strong LLMs (NovaSky, 2024), leverag-
ing their outputs to construct more targeted and informative
training sets for enhancing reasoning performance in weak
LLMs. (2) Code generation: As a highly structured and
formalized type of data, code has a non-negligible impact
on the development of reasoning abilities in large language
models. Beyond simply testing LLMs on newly coding test
cases (Jain et al., 2021), many efforts have focused on inves-
tigating how and when code data influences the development
of reasoning abilities in language models (Zhang et al., 2025;
Li et al., 2025). In our work, we consider mathematical ca-
pacity and coding ability as two distinct manifestations of
advanced reasoning, and we aim to analyze and understand
the interactions between these capabilities to gain deeper
insights into the underlying mechanisms of LLM reasoning.

Data attribution and influence functions. Training Data
Attribution (TDA) methods seek to interpret a model’s pre-
dictions by analyzing the particular training instances that
contributed to shaping its learned representations. Most
modern TDA methods can broadly be divided into two cate-
gories: retraining-based methods (Ling, 1984; Shapley et al.,
1953; Ilyas et al., 2022) and gradient-based methods (Yeh
et al., 2018; Pruthi et al., 2020; Koh & Liang, 2017). How-
ever, applying traditional data attribution methods to large
language models has remained a significant challenge, pri-
marily due to issues of computational tractability and the
sheer scale of model parameters. Nonetheless, there are
several works successfully apply data attribution on LLMs
by influence function. Researchers in Anthropic adapt EK-
FAC influence functions to large-scale Transformers, by
which they figured out what kind of pretraining data influ-
ences completions of models up to 5S0B parameters (Grosse
et al., 2023). More specifically, for reasoning capabilities,
studies have shown that code data encountered during the
pretraining-phase plays a critical role in the development of

https://huggingface.co/datasets/bespokelabs/Bespoke-Stratos-17k
https://huggingface.co/datasets/bespokelabs/Bespoke-Stratos-17k

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

& Hard Math @ Hard Code

[@ Easy Math

@ Easy Code]

’

1
: * higher influence:
|

+10.00
1 1
| T lower influence 15
10

156

35- W Original dataset
Difficulty-flipped dataset
Math: Easy to Hard & Code: Hard to Easy

A

N

+10.00

Test Accuracy (%)

AIME24 AIME25 LiveCodeBench

Figure 1: An illustration of our key findings towards the question: Which attributes of training data effectively stimulate
reasoning capabilities? Mixing challenging math problems with easier coding tasks leads to the highest influence scores for
mathematical and coding reasoning (/eft). Guided by this insight, we curate an improved dataset and observe enhanced

performance (right).

mathematical reasoning abilities in language models. (Ruis
et al., 2024). In this work, we extend similar methodological
approaches by employing influence functions to attribute
the development of reasoning capabilities during the super-
vised fine-tuning (SFT) phase, with a particular focus on
analyzing the interplay between code and math data.

3. Methodology

This section reviews the basics of influence functions (Koh
& Liang, 2017; Grosse et al., 2023) and presents Infra, our
adaptation for attributing LLM reasoning performance on
math and code problems. In particular, we compute instance-
level influence scores using a mean log-likelihood proxy,
and further shift to sequence and token levels to uncover how
specific reasoning steps and tokens shape model behavior.

3.1. Preliminary: Influence Functions

Given a model parameterized by 6 and trained on a dataset
Dyain = {2:}Y.,, influence functions (Koh & Liang, 2017)
estimate the influence of a training point z,, on @ (or a
function thereof) without retraining the model. Specifically,
it is measured by computing the change in 8 if z,, is up-
weighted by an infinitesimal amount €. This perturbation
can be formalized as the response function:

0(e) = argming (0, Dyyin, €) (1)
OcRP

N
1
= azgeﬂgnﬁ ;E (2:,0) + €L (21m,0), (2)

where £(-) is the training loss. The influence of z,, on 0 is
then defined as the first-order Taylor approximation to the

2For simplicity, we show the response function for optimal
parameters. For non-converged or non-convex models, the actual
response function is the Proximal Bregman response function
(refer to (Grosse et al., 2023) for details).

response function around e = 0 and can be computed using
the implicit theorem:

de
Ig (Zm) = E
e=0

=-H 'Vl (2,,0), 3
where H = V2.7 (6, Dyain) is the Hessian of the cost func-
tion. Direct interpretation of Zg(z,,) can be difficult due
to its high dimensionality, so it is common to instead com-
pute the influence of z,, on a scalar-valued function of the
parameters f(6). Using the chain rule for derivatives, this
influence admits the closed-form:

df(6)
d

Tp(em) = = =| = —Vof (0)" H VoL (2, 0).

e=0
“
A complete derivation of Equation 4 is delayed to Ap-
pendix A. Consequently, f(0) is expected to increase after
upweighting the sample z,,, and then retraining the model if
Z¢(zm) >0, as

F(0(e)—f(8) ~ Ij(2m)e = —Vof (0)" H VoL (2, 0) €.

&)
For transformer-based LLMs with billions of parameters,
the above H is intractable. To address this, Grosse et al.
(2023) propose to approximate H using the Eigenvalue-
Corrected Kronecker-Factored Approximate Curvature (EK-
FAC) method (George et al., 2018), which introduces sim-
plifying assumptions such as layer-wise independence and
restricts computation only to the MLP parameters within
the model. Given the effectiveness of such a strategy, we
also employ it to effectively estimate influence scores.

3.2. Attributing LLM Reasoning to Training Data via
Influence Functions

We now introduce Infra, our adaptation of influence func-
tions to attribute LLM reasoning on challenging math and
code tasks. As mentioned, our setting is mainly an SFT

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

process with CoTs generated by a stronger model to im-
prove the reasoning abilities of the LLM at hand. We are
interested in identifying the most influential training data
to improve model performance. Since task accuracy is non-
differentiable with respect to 8, we instead adopt a smooth
surrogate: the mean log-likelihood over a set of correctly
answered examples. Let Deogrect = { (4, ¥i) 7, denote a
collection of problems x; paired with correct answers y;,
we define the surrogate objective as:

1 n
f(6) = - ZIOgP(yi|$i§ 6), (6)
i=1

where n is the size of Dggrect. The robustness of Deoprect
against variation is ablated in Appendix C.

Instance-level influence scores. Plugging Equation 6 into
Equation 4 yields the instance-level influence score assigned
to each SFT training example z,, reflecting its effect on
f(8). Consistent with (Grosse et al., 2023), we restrict
our focus to positively influential data, which refers to data
points that yield an increase in the log-likelihood of correct
answers and thus more effectively enhances the model’s
reasoning performance.

Sequence-level influence scores. Reasoning traces of re-
cent models often exhibit sequence-level cognitive behav-
iors, such as verification or exploration (refer to Figure 6).
To attribute the contribution of an individual sentence y in
Zm, we employ a simple counterfactual tactic: we remove
y from the example and measure how the influence scores
changes. Let z,\,f’ denote the input with sentence y erased.
Then the sequence-level influence of y is given by

Ti(y) = Zy(zm) — I (2)Y),)
which isolates the influence of y on the target function f(8).

Token-level influence scores. Tokens that mark critical
transitions—such as ‘wait’—frequently appear in long CoT.
Attributing influence at the token level may therefore help
elucidate the underlying mechanisms that guide the model’s
reasoning. Due to the autoregressive nature of LLMs, the
training gradient of a training sequence z,, of length T'
decomposes as:

T
Veﬁ (Z'rru 9) = Z _VO logp(z’rn,t Zm, <ty e)a (8)

t=1

where z,,; denotes the t¢-th token and 2z, < =
{#m1,- -+, Zm—1}. Plugging this into Equation 4 yields
the token-level influence of zmt:3

If(zm.,t) = vOf (O)T HilV@ 1ng(zm,t Zm,<t7 0) (9)

3This term captures the influence of z,, ¢ as the output for the
model to fit, ignoring its role as input in other cases, for simplicity.

4. Experiments

We begin by detailing the experimental setup (§4.1), and
then present the main findings, progressing from coarse- to
fine-grained analyses (§4.2—-§4.4).

4.1. Experimental Setup

We conduct experiments under two SFT settings and in-
terpret math and code reasoning behaviors using influence
functions in both scenarios.

Base models trained w/o long CoT. We fine-tune the
Llama3-8B-Base model (Grattafiori et al., 2024) using a
mixed training dataset comprising MetaMathQA-100k (Yu
et al., 2023) and OSS-Instruct-75k (Wei et al., 2024).
MetaMathQA-100k includes reformulated questions boot-
strapped from training splits of GSM8k (Cobbe et al., 2021)
and MATH (Hendrycks et al., b) paired with brief answers
(~100 tokens) generated from GPT-3.5-Turbo (OpenAl,
2022). OSS-Instruct-75k provides synthetically generated
instructions covering a range of coding tasks. We evalu-
ate the resulting model on the test splits of GSM8k and
MBPP (Austin et al., 2021), filtering correctly answered
data to compute influence scores. The MBPP benchmark
consists of 1,000 Python programming problems, each com-
prising a task description and three automated test cases.

Instruction-tuned models trained w/ long CoT. We fine-
tune the Qwen2.5-7B-Instruct model (Yang et al., 2024) on
the Bespoke-Stratos-17k reasoning dataset (BS-17k), which
includes SFT distillation data from DeepSeek-R1 (Guo et al.,
2025), comprising questions, reasoning traces, and answers.
We employ the AIME24, AIME25, MATHS500, and Live-
CodeBench (Jain et al., 2021) benchmarks to evaluate rea-
soning performance. AIME is a prestigious high school
mathematics competition known for its challenging prob-
lems. MATHS00 is a subset of 500 problems drawn from the
MATH (Hendrycks et al., b) benchmark. LiveCodeBench
evaluates LLMs on diverse coding tasks, including self-
repair, code execution, and test output prediction, and cur-
rently hosts 400 coding problems.

Influence scores computation. We estimate the Hessian
using EK-FAC on the full SFT training set, truncating se-
quences to 4096 tokens to reduce memory usage. We set
n = 100 in Equation 6 by randomly sampling correctly
answered math and code examples.

4.2. Instance-level Attribution

Code data can positively influence math performance,
and vice versa.

To investigate cross-domain influence after fine-tuning

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

® math
4 []
w 20 code
g
Q
3]
]
g
£ 15
Q
=
=
&
o
2
= 10 A
7]
o
=]
2
E
£ 59
-
<
=]
Q
-
01 °
0 10000 20000 30000 40000
Index

(a) Source of data with top influence scores on math

® math

204 ® code

15 A

Logarithmic positive influence scores

20000 30000 40000
Index

(b) Source of data with top influence scores on code

0 10000

Figure 2: Cross-domain influence analysis of LLaMA3-8B-Base fine-tuned on combined MetaMathQA and OSS-Instruct
for math and code performance. The most beneficial examples for math performance predominantly come from the math
domain, while code-domain data also contributes non-trivially (left). A similar cross-domain benefit is observed for code

performance (right).

4.50 197 166 g5
N GSM8k
&
Sg 4.25 MBPP 8.0
aﬁ‘Q&
S ~
& 7.5
< SR S 400 &
k<t N 17 s
a DY 6} 702
2 5° g 3.75 S
] ©
g Fa £ 655
< o 2
[S & 3.50 @
=) @ o
@ o g 6.0 2
[¥ =1 -
= O g 8
s S 5 3.25 2
g SEE g 552
@ VY\Y'Q,?’Q\/ =
© § & £ 3.00 4
ﬁ\v@# Z 50 <
XY
SEFT
RIS 5
P 2.75 15
‘t& v\% ¥ 8
S R
(SO
S 2.50 4.0
O® 00 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Level 5 Level 4 Level 3 Level 2 Level 1
(;,;“/ Average Influence Score on MBPP le7 Difficulty Levels of MATH Training Data

(a) Average score on MBPP by categories

(b) Average score on GSM8k and MBPP by difficulties

Figure 3: Average influence score of the training dataset combining MetaMathQA and OSS-Instruct, evaluated on MBPP
and GSMB8K performance. Results are grouped by training data category (left) and MATH problem difficulty (right).

LLaMA3-8B-Base on MetaMathQA and OSS-Instruct, we
rank training samples based on their positive influence on
the mean likelihood of correct answers in math and cod-
ing tasks, respectively, and categorize them by domain. As
shown in Figure 2 (a), the most influential samples for im-
proving math performance predominantly originate from
the math domain. However, influence scores from code-
domain data are not narrowly concentrated in the low range
(0-10); instead, a substantial number exhibit scores in the
15-20 range, indicating a non-trivial contribution from code
to math. A similar pattern of cross-domain benefit is ob-
served in Figure 2 (b), suggesting that training data from
one domain can provide valuable knowledge that enhance
performance in the other, demonstrating a meaningful trans-
fer of reasoning skills across domains. This also holds in
long CoT reasoning scenarios as shown in Appendix B.

To investigate how var-
ious training data types
influence code reason-
ing, we further ag-
gregate training sam-
ples by category and
compute average influ-
ence scores per cate-
gory. As illustrated in
Figure 3 (a), in-domain
Python data yields the
highest average influ-
ence on MBPP (a
benchmark of 1,000
Python problems). Within the math domain, symbolic
problem-answer pairs—such as those introducing variables

Original Question:
What is $ 6 \div 3 - 2 - 8 + 2 \cdot 8$?

FOBAR Question:

What is $ 6 \div x - 2 - 8 + 2 \cdot 8$?

If we know the answer to the above question is
8, what is the value of unknown variable x?

Self-Verification Question:
$6\div3-x-8+2\cdot 8 =8$.
What is the value of the unknown variable x?

Rephrased Question:
Calculate the value of $6 \div 3 - 2 - 8 + 2 \cdot 8$.

Figure 4: Different types of ques-
tions from MetaMathQA.

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

—e— Math—Math =—#=— Code~Math =4= Math—~Code =#= Code—Code

1e7 1e7

M
on Code Reasoning (~Code)

Avg. InfScore on Math Reasoning (~Math)
¢ > ¢ o

&
Avg. InfScore

/‘a‘_ﬁh——_— .
2.0-

Easy Medium Hard

(a) Influence of Math and Code Data on Reasoning Across Difficulty Levels

= Easy Math Hard Math ~ mmm Easy Code mmm Hard Code

Difficulty Flipped

Original dataset distribution

Difficulty reverse-Flipped

Y’ ®

(b) Hlustration of Training Dataset Distribution

Figure 5: Left: Average influence scores of math and code training data from varying difficulty levels on reasoning
performance. For instance, Math—Code denotes the influence of math data on code reasoning tasks. Right: Distribution
of math and code samples across difficulty levels in the BS17k dataset. The original distribution is shown alongside the
adjusted distribution obtained via the difficulty-flip strategy. See Table 1 for a comparison of SFT results under different

mixing strategies.

Table 1: Comparisons of SFT results with different difficulty-mixing strategies applied to the training dataset on 7B and 14B

models. We report pass@ 1 accuracy of LiveCodeBench.

Model

AIME247 AIME257 MATHS5001 LiveCodeBencht

Qwen2.5-Instruct-7B

Bespoke-Stratos-17k 10.0 6.7 77.2 33.8
Difficulty-reverse-Flipped 13.0 10.0 76.4 30.0
Difficulty-Flipped (Ours) 20.0 16.7 78.2 353
Qwen2.5-Instruct-14B

Bespoke-Stratos-17k 20.0 13.3 84.4 453
Difficulty-reverse-Flipped 20.0 23.3 83.0 43.8
Difficulty-Flipped (Ours) 23.0 233 84.4 45.5

z in FOBAR and SV formats shown in Figure 4—most
effectively enhance coding capabilities. Moreover, college-
level math questions from the MATH dataset, which uti-
lize LaTeX-based formal expressions, contribute more pos-
itively to code performance than simpler, conversational
high-school problems from GSM8k. This suggests that, be-
yond domain relevance, the complexity and formality of the
data—especially the use of precise symbolic language—also
play a critical role in enabling models to generalize effec-
tively to code reasoning tasks.

Finding 2:

Challenging math problems exhibit higher influence
scores on both math and code reasoning, while sim-
pler code problems more effectively enhance code tasks
when combined with math data. The optimal strategy
for co-optimizing reasoning across both domains is to
mix challenging math problems with easier code tasks.

. J

To examine how training data difficulty contributes to model
performance, we first categorize MATH training data into
different difficulty levels and compute the average influ-
ence score for each level. As shown in Figure 3(b), higher-
difficulty problems (Level 5 and 4) contribute more signifi-
cantly to performance improvements on GSM8k and MBPP
compared to lower-difficulty ones (Level 3, 2, and 1). This
may be attributed to the fact that high-difficulty MATH prob-
lems induce more complex reasoning chains and thus better
transfer logical capabilities to reasoning-intensive tasks.

To further investigate the role of difficulty in long CoT rea-
soning scenarios, we fine-tune Qwen2.5-7B-Instruct on the
BS17k dataset and analyze influence scores grouped by dif-
ficulty levels. The results, shown in Figure 5(a), indicate
that challenging tasks in both mathematics and coding are
more beneficial for math reasoning. In contrast, easier math
problems offer limited gains across both math and coding
evaluations. This observation aligns with findings from the
w/o long CoT setting and prior works such as LIMO (Ye

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

. Counts @ Math ® Code
Question: 107 o oo
Your role as an assistant involves exploring questions through a systematic long thinking process before) h
providing the final precise and accurate solutions 3500
For which of the following integers bS is the base-b number $2021_b - 221_bS$ o 47
not divisible by 3? 30001 gmmT T

A)3 B4 (©6 D7 (E)S N 450
» S e ©
g 2500 8
Answer: g 025 8
<|begin_of_thought[> £ §
Okay, so I need to figure out Therefore, 8 is the only base where \\(2b*2(b - 1) \\) is not divisible by 3. g 2000 100 2
Therefore, the answer is E. 3 E
Wait, but let me cross-check this conclusion. Let's compute the expression \\(2b"2(b - 1) \\ £ 1500 375 %
Therefore, the answer is (E) 8. E 8
z = z
But let me just think again if there's another way to approach this problem, perhaps by considering the 1000 — S ol 350
original subtraction in base \\(b \\) Hence, the answer is E. Swo
e
But let me check once again by calculating each expression modulo 3 directly 500 325
Therefore, the answer is (E) 8.
<lend_of thought[> .
<|begin_of_solution|> ? o o > & © 300
L OL_S 2 o S 2
Verification 9‘,\o@“ W&@ o \}e(\i\o?‘\ %%aéa\

<|end_of_solution|>

Exploration
Cognitive Behaviour Categories

Figure 6: Left: An example of long CoT illustrating cognitive behaviors: verification (systematic error-checking) and
exploration (searching for another approach after reaching the correct answer). Right: Distribution of different cognitive
behaviors in BS-17k training dataset and their average impact on math and code reasoning performance.

Table 2: Sequence-level attribution of cognitive behaviors in long CoT. Left: Comparison of influence scores of the example
in Figure 6 on math and code reasoning, w/ and w/o verification and exploration sentences. Right: Comparison of SFT

results w/ and w/o exploration behaviors in BS-17k dataset.

Domain full CoT w/o Ver. w/oExp. w/oboth
Math 2.2e+08 1.5e+08 9.0e+07 7.0e+07
Code 2.2e+07 1.6e+07 8.4e+06 7.5e+06

et al., 2025), which highlight the utility of difficult math
problems in developing reasoning capabilities. On the other
hand, we find that simpler code problems are more effective
for improving performance on coding tasks when mixed
with math data. We hypothesize that, in addition to logical
reasoning, programming tasks rely heavily on learning struc-
tural and syntactic patterns. When paired with math data
that enhances logical thinking, simple coding tasks with
clearer structure and more consistent syntax facilitate the
model’s acquisition of fundamental programming patterns,
thereby improving code generation performance.

Based on these insights, we design an optimized data mixing
strategy: we replace simple math problems in the original
dataset with more challenging ones sourced from a larger
scale OpenThoughts-114k* dataset, and conversely, we re-
place difficult coding problems with simpler ones. The
modified dataset retaining the original size of 17k examples,
compared in Figure 5(b), is used to retrain the model. As
shown in Table 1, this new difficulty flipped mixing strategy
yields consistent improvements across AIME, MATH, and
LiveCodeBench benchmarks. In contrast, applying the re-
verse strategy—simplifying hard math problems and compli-

“https://huggingface.co/datasets/open-
thoughts/OpenThoughts-114k. Note that this dataset is
curated using the same pipeline as BS-17k, with identical question
sources and answers distilled from Deepseek-R1.

Model MATH5001 LiveCodeBench?
w/ Exp. 77.2 33.8
w/o Exp. 73.8 32.0

cating easy coding tasks—results in the worst performance,
further validating our finding.

4.3. Sequence-level Attribution

Finding 3:

The presence of ‘searching for another approach after
reaching correct answers’ in math reasoning traces
benefits to both math and code reasoning. While
previously considered unnecessary overthinking, our
sequence-level influence analysis and SFT ablations
demonstrate its positive impact, suggesting such ex-
ploratory behaviour may promote generalizable rea-
soning skills.

\ J

We are interested in the influence of different cognitive
behaviors on reasoning performance. Following prior
work (Gandhi et al., 2025), we focus on five key behaviors:
exploration (seeking alternative approaches after reaching
a correct answer), verification (systematic error-checking),
backtracking (abandoning ineffective strategies), subgoal
setting (breaking problems into manageable steps), and
backward chaining (reasoning from desired outcomes to
initial inputs). To identify these behaviors in the BS-17k
dataset, we use Qwen-32B-instruct as a classifier, with de-
tails provided in Appendix E.

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

Okay , so I need to find the smallest three -digit palindrome that when multiplied by 1

0 1 doesn 't result in a five -digit palindrome . Hmm,let's start by understanding the
problem step by step . First ,a palindrome is a number that reads the same forwards
and backwards . Three -digit pal ind rom es range from 10 1t0 999 . The condition is that
when you multiply this three -digit palindrome by 1 0 1, the result is not a five -digit
palindrome . So, first , maybe I should figure out what happens when you multiply a three -
digit palindrome by 1 0 1. Let 's take an example . Let's take 1 0 1 . Multiplyby 101:101 *
101.Let's compute that.101*100is10100,plus101*1is101,sototalis102
01.Is10201 apalindrome ? Yes, because creading forwards and backwards (...)

Wait , let's think about how multiplying by 1 0 1 works . Multip lying by 1 0 1 is like
multiplying by 1 0 0 and adding the original number . So , if the original number is ABC (
where A, B, C are digits and A =C because it 's a palindrome), (...) Wait ,no, actually , to

add ABA 0 0 and A BA, they need to be aligned by place value . ABA 0 0 is A BA shifted
two places to the left, so it's AB A 0 0 . Adding A BA (which is 0 0 A B A) shifted right by
two places ? Wait ,no. Wait , when you multiply by 1 0 1, it's equivalent to multiplying by

10 0 and adding multiplying by 1.(...) Ah ,sohere'sthe key .IfAis5orless,(..)

For example,ifA=5,then5+5=10, so we write 0 and carry over 1 to the next digit (
position 4). But position 4 in the sum is B (from ABA 0 0) plus 0 (from A BA) plus the
carry over 1 . So position 4 would be B+ 1. However , position 2 in the sum is B (from A
BA 00 's position 2, which is 0 + B from ABA). (...) Butwait, let's verify this. (...)

Okay , I need to solve this problem where I have to partition an array into two
contiguous sub arrays such that every element in the left is less than or equal to every
element in the right . The left should be as small as possible . Hmm . Let 's think . So the
key here is to find the smallest possible left sub array . The left and right must be non -
empty , so the left 's length can range from 1 to n - 1 . The main condition is that the
maximum of the left part is less than or equal to the minimum of the right part . Wait ,
but checking all possible partitions and their max and min might be time -consuming for
List [int])

-> int: We need to process the array A . So first, compute left_max . n=len (A) left
max=[0]*nleft max[0]=A[0]foriinrange (1,n):left _max [i] =max (left

large arrays . (...) So in Python : def partition Dis joint (self , A :

_max [i-1],A[i]) Then compute right _min . right min=[0]* nright min[-1]=
A[-1]foriinrange(n-2,-1,-1):right min[i]=min(A[i], right min[i+1])
Then iterate through each possiblei. (...) Correct. So this approach works . Now ,
space -wise , forn =3 e 4, we have two arrays of size n each . Which is acceptable .
Time -wise , O (n) for each step . So O (n) time . So the code is correct . So the code
wouldbe : class Solution : def partition Dis joint (self , A : List [int
) = int : n=len(A)left_ max=[0]*nleft_ max[0]=A[0]foriinrange (1
,n):left_max [i]=max (left_max[i-1],A[i]) (..) Butaccording to the problem
statement , there 's at least one valid partition , so the loop will find it and return before
reaching the end . So this should work .

Figure 7: Visualization of top 5% influential tokens in math (Left) and code (Right) CoT.

As shown in Figure 6 (right), exploration behavior is preva-
lent in the training dataset. However, prior work often con-
siders it detrimental, viewing it as overthinking that reduces
efficiency (Chen et al., 2024; Sui et al., 2025). We thus
assess whether this behavior has a positive or negative im-
pact using influence functions. Specifically, we truncate
sentences in training data containing exploration and exam-
ine the change in influence score, as defined in Equation 7.
The results in Table 2 (left) show that exploration is not
redundant; on the contrary, it positively affects both math
and code reasoning, even surpassing verification in impact.

To further validate this, we use GPT-40 to truncate all explo-
ration behaviors in the BS-17k dataset for SFT, with instruc-
tion details in Appendix D. The SFT results in Table 2 (right)
show a significant performance drop when exploration is
removed. We attribute this decline to exploration’s role
in enabling flexible problem-solving, essential for diverse
reasoning tasks. Beyond exploration, we compare average
influence scores across other cognitive behaviors. As shown
in Figure 6 (right), backtracking is crucial for mathemati-
cal reasoning, while subgoal setting is more impactful in
programming. This may be because programming requires
breaking down high-level goals into modular components,
making subgoal setting essential.

4.4. Token-level Attribution

Finding 4:

Token-wise attribution analysis reveals distinct
paradigms in math and code reasoning. In math CoT,
influential tokens are natural language with logical
connectors, whereas code CoT are dominated by struc-
tured code with syntax markers.

To investigate the most influential tokens for stimulating
reasoning, we select the top 100 highly influential examples
on math and code reasoning, compute token-wise influence

scores using Equation 9, and highlight the top 5% most
influential tokens. Interestingly, as shown in Figure 7, the
initial tokens in CoT—such as ‘Okay, so I..”—are frequently
highlighted, suggesting that these openers help orient the
model’s cognitive process to initiate reasoning. Further
analysis reveals that, in math CoTs, the influential tokens
are predominantly natural language logical connectors, such
as ‘Wait’, ‘However’, “Verify’, ‘Hence’, ‘First’, ‘Therefore’,
and ‘Alternatively’. In contrast, in code CoTs, the most
influential tokens are structural or syntactic elements such
as markdown-style headings (e.g., ### Solution), fenced
code blocks (e.g., * * * bash™ *), and syntax markers (e.g.,
def (self, A: List [int])-> int:), which reflect the highly
structured nature of code reasoning. This contrast highlights
a divergence in reasoning paradigms: math reasoning relies
more heavily on logical discourse, while code reasoning
is facilitated by explicit structure and formatting. These
divergent patterns may explain why easier code problems
with clearer structural formats are particularly beneficial for
enhancing code reasoning when integrated with math CoTs
that already provide strong logical skills.

5. Conclusion

In this paper, we propose a fine-grained influence func-
tion framework to trace how training data on SFT phase
shapes LLM reasoning in math and code tasks. Our anal-
ysis reveals that cross-domain examples—especially high-
difficulty math and low-difficulty code—boost reasoning
performance across domains. We further extend influ-
ence functions to the sequence level, revealing that ex-
ploratory behaviors in long CoT consistently enhance perfor-
mance, challenging prior assumptions that such behaviors
reflect overthinking. Token-level analysis reveals distinct
paradigms in math and code reasoning. Our work highlights
the utility of influence-based attribution for data-centric
optimization and opens a path toward more targeted and
interpretable reasoning supervised training.

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

References

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., et al.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Chen, X., Xu, J., Liang, T., He, Z., Pang, J., Yu, D., Song,
L., Liu, Q., Zhou, M., Zhang, Z., et al. Do not think
that much for 2+ 3=? on the overthinking of ol-like llms.
arXiv preprint arXiv:2412.21187, 2024.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Gandhi, K., Chakravarthy, A., Singh, A., Lile, N., and
Goodman, N. D. Cognitive behaviors that enable self-
improving reasoners, or, four habits of highly effective
stars. arXiv preprint arXiv:2503.01307, 2025.

Gao, Z., Niu, B., He, X., Xu, H., Liu, H., Liu, A., Hu,
X., and Wen, L. Interpretable contrastive monte carlo
tree search reasoning. arXiv preprint arXiv:2410.01707,
2024.

George, T., Laurent, C., Bouthillier, X., Ballas, N., and
Vincent, P. Fast approximate natural gradient descent
in a kronecker factored eigenbasis. Advances in neural
information processing systems, 31, 2018.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Vaughan, A., et al. The llama 3 herd of models. arXiv
e-prints, pp. arXiv—2407, 2024.

Grosse, R., Bae, J., Anil, C., Elhage, N., Tamkin, A., Tajdini,
A., Steiner, B., Li, D., Durmus, E., and Perez, E. Study-
ing large language model generalization with influence
functions. arXiv preprint arXiv:2308.03296, 2023.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P, Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora,
A., Guo, E., Burns, C., Puranik, S., He, H., Song, D., et al.
Measuring coding challenge competence with apps. In
Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2), a.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring
mathematical problem solving with the math dataset. In
Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2), b.

Huang, Z., Zou, H., Li, X., Liu, Y., Zheng, Y., Chern, E.,
Xia, S., Qin, Y., Yuan, W,, and Liu, P. O1 replication
journey—part 2: Surpassing ol-preview through simple
distillation, big progress or bitter lesson? arXiv preprint
arXiv:2411.16489, 2024.

Ilyas, A., Park, S. M., Engstrom, L., Leclerc, G., and Madry,
A. Datamodels: Understanding predictions with data and
data with predictions. In International Conference on
Machine Learning, pp. 9525-9587. PMLR, 2022.

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky,
A., Low, A., Helyar, A., Madry, A., Beutel, A., Car-
ney, A., et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Jain, N., Han, K., Gu, A., Li, W.-D., Yan, F., Zhang, T.,
Wang, S., Solar-Lezama, A., Sen, K., and Stoica, I. Live-
codebench: Holistic and contamination free evaluation
of large language models for code. In The Thirteenth

International Conference on Learning Representations,
2021.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In International conference
on machine learning, pp. 1885-1894. PMLR, 2017.

Kumar, K., Ashraf, T., Thawakar, O., Anwer, R. M.,
Cholakkal, H., Shah, M., Yang, M.-H., Torr, P. H., Khan,
F. S., and Khan, S. Llm post-training: A deep dive
into reasoning large language models. arXiv preprint
arXiv:2502.21321, 2025.

Lambert, N., Morrison, J., Pyatkin, V., Huang, S., Ivison,
H., Brahman, F., Miranda, L. J. V., Liu, A., Dziri, N., Lyu,
S., etal. T\" ulu 3: Pushing frontiers in open language
model post-training. arXiv preprint arXiv:2411.15124,
2024.

Li, J., Beeching, E., Tunstall, L., Lipkin, B., Soletskyi, R.,
Huang, S., Rasul, K., Yu, L., Jiang, A. Q., Shen, Z., et al.
Numinamath: The largest public dataset in ai4maths with
860k pairs of competition math problems and solutions.
Hugging Face repository, 13:9, 2024.

Li, J., Guo, D., Yang, D., Xu, R., Wu, Y., and He, J. Codei/o:
Condensing reasoning patterns via code input-output pre-
diction. arXiv preprint arXiv:2502.07316, 2025.

Ling, R. F. Residuals and influence in regression, 1984.

Min, Y., Chen, Z., Jiang, J., Chen, J., Deng, J., Hu, Y., Tang,
Y., Wang, J., Cheng, X., Song, H., et al. Imitate, explore,
and self-improve: A reproduction report on slow-thinking
reasoning systems. arXiv preprint arXiv:2412.09413,
2024.

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

Muennighoff, N., Yang, Z., Shi, W., Li, X. L., Fei-Fei, L.,
Hajishirzi, H., Zettlemoyer, L., Liang, P., Candes, E.,
and Hashimoto, T. s1: Simple test-time scaling. arXiv
preprint arXiv:2501.19393, 2025.

NovaSky. Sky-tl: Train your own ol preview model,
2024. URL https://novasky—-ai.github.io/
posts/sky-tl.

OpenAl. Gpt-3.5-turbo. Technical report, OpenAl, 2022.

Pruthi, G, Liu, F,, Kale, S., and Sundararajan, M. Estimat-
ing training data influence by tracing gradient descent.

Advances in Neural Information Processing Systems, 33:
19920-19930, 2020.

Qin, Y., Li, X., Zou, H., Liu, Y., Xia, S., Huang, Z., Ye,
Y., Yuan, W., Liu, H., Li, Y., et al. O1 replication jour-
ney: A strategic progress report—part 1. arXiv preprint
arXiv:2410.18982, 2024.

Ruis, L., Mozes, M., Bae, J., Kamalakara, S. R., Talupuru,
D., Locatelli, A., Kirk, R., Rocktidschel, T., Grefenstette,
E., and Bartolo, M. Procedural knowledge in pretraining
drives reasoning in large language models. arXiv preprint
arXiv:2411.12580, 2024.

Shapley, L. S. et al. A value for n-person games. 1953.

Sui, Y., Chuang, Y.-N., Wang, G., Zhang, J., Zhang, T.,
Yuan, J., Liu, H., Wen, A., Chen, H., Hu, X,, et al.
Stop overthinking: A survey on efficient reasoning for
large language models. arXiv preprint arXiv:2503.16419,
2025.

Wei, Y., Wang, Z., Liu, J,, Ding, Y., and Zhang, L. Magi-
coder: Empowering code generation with oss-instruct.
Proceedings of Machine Learning Research, 235:52632—
52657, 2024.

Wen, L., Cai, Y., Xiao, F,, He, X., An, Q., Duan, Z., Du, Y.,
Liu, J., Tang, L., Lv, X, et al. Light-r1: Curriculum sft,
dpo and rl for long cot from scratch and beyond. arXiv
preprint arXiv:2503.10460, 2025.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu,
B., Li, C, Liu, D., Huang, F., Wei, H., et al. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115, 2024.

Ye, Y., Huang, Z., Xiao, Y., Chern, E., Xia, S., and Liu,
P. Limo: Less is more for reasoning. arXiv preprint
arXiv:2502.03387, 2025.

Yeh, C.-K., Kim, J., Yen, I. E.-H., and Ravikumar, P. K.
Representer point selection for explaining deep neural
networks. Advances in neural information processing
systems, 31, 2018.

10

Yu, L., Jiang, W., Shi, H., Yu, J., Liu, Z., Zhang, Y., Kwok,
J. T., Li, Z., Weller, A., and Liu, W. Metamath: Boot-
strap your own mathematical questions for large language
models. arXiv preprint arXiv:2309.12284, 2023.

Yue, X., Qu, X., Zhang, G., Fu, Y., Huang, W., Sun, H., Su,
Y., and Chen, W. Mammoth: Building math generalist
models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Zhang, X., Chen, Z. Z., Ye, X., Yang, X., Chen, L., Wang,
W.Y,, and Petzold, L. R. Unveiling the impact of cod-
ing data instruction fine-tuning on large language models
reasoning. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 39, pp. 25949-25957, 2025.

https://novasky-ai.github.io/posts/sky-t1
https://novasky-ai.github.io/posts/sky-t1

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

204

® math

® code 204
1 w
g £
© 184 e
E % 154
@ @
Qo 1=}
-] =
2 16 El
E E 16
2 2
£ 14 s]
2 2 14
& &
2]
g g
S 124 5 129
] E
« ®
) >
g H g0 '

104
T T T T T T T T T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Index Index

(a) Source of data with top influence scores on math (b) Source of data with top influence scores on code

Figure 8: Cross-domain influence analysis of Qwen2.5-7B-Instruct fine-tuned on Bespoke-Stratos-17k dataset for math and
code reasoning performance.

A. Derivation of Influence Score

Given the influence of z,,, on model parameters 6

de

- —_H! 1
o VoL (zn,0). (10)

IH(zm) -

e=0

we can obtain its influence on a function of parameters f () by applying the chain rule for derivatives:

_ df(e)
If(Zm> - d€ o
do
=Vof(6)" —- (11)
~ le=0

=—Vof(0)"H 'VoL(2,0).

B. Cross Domain Influence Analysis in Long CoT Scenarios

In this section, we provide additional instance-level attribution experiment on long CoT reasoning scenarios. We fine-tune
Qwen2.5-7B-Instruct on Bespoke-Stratos-17K reasoning dataset. As shown in Figure 8(a), the most influential samples for
improving math performance predominantly from the math domain, but the samples from code domain are also significant.
In Figure 8(b), there is a similar pattern of cross-domain benefit. This is consistent with the conclusions we obtained in the
experimental section 4.2.

C. Robustness on n

In this section, we evaluate the robustness of the influence function esti- Table 3: Pearson correlation coefficient of
mates with respect to the size of the correct subset Deorrect. Specifically, rankings on training data across different
we fine-tune the LLaMA3-8B-Base model on a mixed training corpus choices of n.

comprising MetaMathQA and OSS-Instruct, and compute influence scores

on the math and code performance. We calculate the Pearson correlation n— 10 25 50 100
be.tween th.e rankings of traini.ng examples induced by influence scores Math 052 060 070 1.0
using varying values of n, using n = 100 as the reference. Results in Code 051 062 060 1.0

Table 3 shows the robustness of n for influence scores estimation.

11

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

(query h

The operation is defined for all non - zero numbers as a®b = %2 Determine the
value of [(1Q2)R3]-[1Q(2Q3)].

2 1
A‘_E B'_Z C.0 D.

NI
m
wIN

answer answer

Okay, let me try to figure out this problem.

Okay, let me try to figure out this problem.

...(Chain of Thought))
...(Chain of Thought)
Wait, but let me think again. The operation is defined for all . . . o .
nonzero numbers, so we don't have any issues with division by %, Wait, but let me think again. The operation is defined for all
«»

zero here. 2®3 is 4/3, which is fine, and then 1®(4/3) is 3/4. ..« | nonzero numbers, so we don't have any issues with division by
Correct. zero here. 2®3 is 4/3, which is fine, and then 1®(4/3) is 3/4.
Correct.

Alternatively, maybe there's a different way to approach the x -
problem? Let me try expanding both expressions using Final Answer** \boxed{A}
variables to see if there's a pattern.

%nal Answer** \boxed{A} / \ /

Figure 9: To assess whether the exploration behavior has a positive or negative impact, we use GPT-40 to truncate all
exploration behaviors in the BS-17K dataset for SFT. If reasoning contains any searching for another approach after reaching
correct answers, like "Alternatively, maybe there’s a different way to approach the problem?", the exploration content will
be truncated.

D. Case of Truncating Exploration Behavior

To evaluate the impact of exploration behaviors in reasoning processes, we systematically truncate exploratory content from
the BS-17K during SFT. Specifically, any post-correct-answer exploration (e.g.,““Alternatively, maybe there’s a different way
to approach the problem”) is removed to isolate the core problem-solving trajectory, as shown in Figure 9.

E. Examples for Reasoning Behaviors Classifier

The five cases below show the prompts of five behaviors on reasoning performance and the corresponding answers. As
shown in Figure 10 and 11, the prompts include task description, examples of each reasoning behavior, task format, etc..

12

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

Exploration

Verification

Prompt:

#Task Description

You will be provided with text from the internet.

Evaluate whether the text contains any "searching for another approach after
reaching correct answers" behavior, where the writer reaches a correct or
satisfactory solution, but then explicitly continues to explore alternate methods or
perspectives. This is a type of cognitive behavior that reflects intellectual curiosity
or seeking multiple strategies even after solving the problem.

This is not the same as:

- Backtracking, where the writer changes method because the current one does not
work or is incomplete.

- Verification,where the writer checks the correctness of a method without
attempting a different one.

Examples of this behavior include:

- "But let me just think again if there's another way to approach this.“

- "Another way to look at this is...*

- "That’s one way to get the result. Now let’s see if we can also derive it using
geometry.”

- "Alternatively, maybe there's a different way to approach the problem?

Count the number of distinct backtracking instances and provide the count between
the tags <count> </count>. If the writer does not exploration, please provide a count
of 0 as <count>0</count>.

#Task Format
Format your response in markdown as follows:

##Thoughts
[Brief description describing what behavior was noticed and where exploration

occurred]

##Does exploration thinking?

Prompt:

Task Description

You will be provided with text from the internet.

Evaluate whether the text contains any verification steps. We want to mark
instances where the writer explicitly checks their own work, such as by comparing
the result to a known value or by checking the result of a calculation.

Verification steps in mathematics might look like:

- "Let's check our answer by substituting x = 3 back into the original equation."

- "To verify this is correct, I'll differentiate the antiderivative and confirm it matches
the original function."

- "Let's test our formula with a simple case: when n = 1, we get f(1) = 2, which
matches our expected result."

- "To ensure this solution is valid, I'll check if it satisfies all the given constraints."

If you find any verification steps, please count them and provide the count between
the tags <count> </count>. If the text does not contain any verification steps, please
provide a count of 0 as <count>0</count>.

Task Format
Format your response in markdown as follows:

Thoughts
[Brief description describing what behavior was noticed and where answer

verification may have occurred]

Does verification?
[yes/no]

Number of answer verification steps
<count> [1/2/...] </count>

Task to evaluate for Verification

The writer explores multiple ways to approach the problem of proving that a
sequence satisfying certain conditions must be a polynomial. After initially
considering the properties of polynomials and the given conditions, the writer
continues to explore different methods and perspectives, such as using finite
differences, induction, and theorems about integer-valued polynomials. The writer
does not stop at the first satisfactory approach but continues to question and explore
further, indicating a behavior of seeking alternative methods even after reaching a
correct or satisfactory solution.

it
Does alternative thinking?
yes

it
Number of alternative thinking steps

<count> 5 </count>

[yes/no] {response}
##Number of exploration thinking steps # Response
<count> [1/2/...] </count>

#Task to evaluate for exploration

{response}

#Response

Answer: Answer:
#it #H
Thoughts Thoughts

The provided text is a detailed exploration of a mathematical problem involving
sequences and polynomials. The writer discusses various approaches and theorems
that could be used to prove that a sequence satisfying certain conditions must be a
polynomial. However, the text does not explicitly check any calculations or results
against known values or re-verify any steps taken in the reasoning process.

it
Does verification?
no

#HH
Number of verification steps

<count> 0 </count>

Figure 10: Left: Exploration: When performing reasoning, seeking alternative approaches after reaching a correct answer.
We capture this behavior and calculate the number of exploration steps by analyzing the content like “Another way to look
at this is...” etc.. Right: Verification: The behavior of reasoning from desired outcomes to initial inputs when performing
reasoning. We capture and calculate the number of backward chaining instances by finding the content like “To solve this

equation, let’s start with what we want to prove” etc..

13

Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions

Backtracking

Backward Chaining

Prompt:

Task Description

You will be provided with text from the internet.

Evaluate whether the text contains any backtracking behavior, where the writer
realizes a path won't work and explicitly goes back to try a different approach.
An example of backtracking is: "Let me try again", "Wait", "I made a mistake",
or "we need to try a different sequence of operations". We want to mark
instances where the writer abandons a thought and backtracks to a previous
computation.

Backtracking in mathematics might look like:

- "I started with the wrong formula. Let's use integration by parts instead."

- "This approach leads to a contradiction. Going back to the original
equation..."

- "I see the error in my calculation. Let's recalculate using..."

- "This algebraic manipulation isn't simplifying as expected. Let's try factoring
differently."

Count the number of distinct backtracking instances and provide the count
between the tags <count> </count>. If the writer does not backtrack, please
provide a count of 0 as <count>0</count>.

Task Format
Format your response in markdown as follows:

Thoughts
[Brief description describing what behavior was noticed and where
backtracking occurred]

Does backtrack?
[yes/no]

Number of backtrack steps
<count> [1/2/...] </count>

Prompt:

Task Description

You will be provided with text from the internet.

Evaluate whether the text contains any backward-chaining behavior, where the
writer is working towards a goal but starts from the goal and works backward.

Backward-chaining in mathematics might look like:

- "To solve this equation, let's start with what we want to prove: x = 4.
Working backward, if x = 4, then x2 - 5x + 4 = 0 must be true. Let's verify
this."

- "If we want to find a function whose derivative is 2x + 3, let's start with the
desired result and work backward.

The derivative of x? + 3x + C would give us 2x + 3."

- "To prove this triangle is a right triangle, I'll start by assuming the
Pythagorean theorem holds (c? = a? + b?) and check if our side lengths satisfy
this condition."

- "In this optimization problem, we know the maximum value occurs when the
derivative equals zero. If we set f(x) = 0 and solve for x, we can find our
critical points."

- "To determine the initial velocity, I know the ball reaches a height of 20
meters. Working backward from this final state using the kinematic equation h
= vt - 0.5gt%, I can solve for the initial velocity v."

Count the number of distinct backward-chaining instances and provide the
count between the tags <count> </count>". If the reasoning does not contain
any backward-chaining behavior, provide a count of 0 as *<count>0</count>".

Task Format
Format your response in markdown as follows:

Thoughts
[Brief description of the observed behavior and where backward chaining may

have occurred]

Does the text exhibit backward chaining?

Task to evaluate for backtracking [yes/no]
{response}
Number of backward chaining instances
Response <count> [1/2/...] </count>
Task to evaluate for backward chaining
{response}
Response
Answer: Answer:
it
Thoughts Thoughts

The writer initially explores the problem by considering the conditions given
and trying to connect them to known properties of polynomials. They then
realize that their initial approach might not be leading to a solution and start to
consider alternative methods, such as using the method of finite differences,
induction, and other properties of polynomials. The writer explicitly mentions
reconsidering their approach multiple times, indicating backtracking behavior.

#Hit
Does backtrack?
yes

#H#
Number of backtrack steps

<count> 4 </count>

The provided text does not exhibit backward-chaining behavior. The writer is
attempting to prove a statement about a sequence of integers satisfying certain
conditions, but the reasoning is forward-looking, starting from the given
conditions and working towards a conclusion. The writer explores various
mathematical concepts and theorems to understand the problem and does not
start from a goal and work backward.

i
Does the text exhibit backward chaining?
no

##
Number of backward chaining instances

<count> 0 </count>

Figure 11: Left: Backtracking: The behavior of realizing a path won’t work and explicitly going back to try a different
approach. We capture this behavior and calculate the number of backtracking steps by finding the content like “This
approach leads to a contradiction. Going back to the original equation...” etc.. Right: Backward Chaining: The behavior of
systematic error-checking when performing reasoning. We capture and calculate the number of backward chaining instances
by finding the content like “To ensure this solution is valid, I’

1I check if it satisfies all the given constraints.” etc..

14

