
Investigating Data Contamination in Modern Benchmarks
for Large Language Models

Anonymous ACL submission

Abstract

Recent observations have underscored a dis-001
parity between the inflated benchmark scores002
and the actual performance of LLMs, raising003
concerns about potential contamination of eval-004
uation benchmarks. This issue is especially005
critical for closed-source models and certain006
open-source models where training data trans-007
parency is lacking. In this paper we study008
data contamination by proposing two methods009
tailored for both open-source and proprietary010
LLMs. We first introduce a retrieval-based sys-011
tem to explore potential overlaps between eval-012
uation benchmarks and pretraining corpora. We013
further present a novel investigation protocol014
named Testset Slot Guessing (TS-Guessing),015
applicable to both open and proprietary models.016
This approach entails masking a wrong answer017
in a multiple-choice question and prompting018
the model to fill in the gap. Additionally, it in-019
volves obscuring an unlikely word in an evalu-020
ation example and asking the model to produce021
it. We find that certain commercial LLMs could022
surprisingly guess the missing option in vari-023
ous test sets. Specifically, in the MMLU bench-024
mark, ChatGPT and GPT-4 demonstrated an025
exact match rate of 52% and 57%, respectively,026
in guessing the missing options in benchmark027
test data. We hope these results underscore the028
need for more robust evaluation methodologies029
and benchmarks in the field.030

1 Introduction031

Large language models (LLMs) have demonstrated032

exceptional performance across a wide range of033

NLP tasks, and the NLP community has witnessed034

the emergence of several impressive LLMs. No-035

tably, there are robust proprietary LLMs, including036

the GPT-* (Brown et al., 2020; OpenAI, 2023),037

Claude (Anthropic, 2023), and Bard (Google,038

2023), among others. In addition to these pro-039

prietary models, there are numerous open-source040

LLMs, such as Llama (Touvron et al., 2023a,b),041

MPT (Lin et al., 2023), Falcon (Mei et al., 2022),042

and Mistral (Jiang et al., 2023). However, with the 043

increasing compute scale (including data) used to 044

train these models, concerns have arisen regarding 045

the extensive use of crawled web data, often at a 046

terabyte scale. This extensive training data may, 047

in turn, potentially include instances of evaluation 048

benchmarks (Brown et al., 2020; Chowdhery et al., 049

2022; Touvron et al., 2023a,b), many of which are 050

also constructed from Internet sources. Research 051

has demonstrated that the use of evaluation bench- 052

mark data in training sets (i.e., contamination) can 053

artificially inflate performance metrics, regardless 054

of whether contamination occurs during pretrain- 055

ing (Schaeffer, 2023) or fine-tuning (Zhou et al., 056

2023). Consequently, it becomes imperative for the 057

research community to develop methods for detect- 058

ing potential data contamination in these models. 059

One of the most commonly used methods to 060

detect data contamination has been n-gram match- 061

ing (Brown et al., 2020; Wei et al., 2022; Tou- 062

vron et al., 2023b). Particularly, a number of pre- 063

vious works have employed n-gram tokenization 064

to partition large documents into smaller segments, 065

subsequently assessing their similarity to bench- 066

mark data (Chowdhery et al., 2022; Touvron et al., 067

2023a). However, this approach is heavily reliant 068

on having full access to the training corpus. This 069

dependency poses a significant challenge in esti- 070

mating data contamination for models where the 071

training data is not disclosed (Brown et al., 2020; 072

OpenAI, 2023; Google, 2023; Anthropic, 2023; Li 073

et al., 2023). Recent studies have introduced de- 074

tection methods that do not require access to the 075

training corpus. These methods, however, might be 076

constrained to a dataset-level granularity as noted 077

by Golchin and Surdeanu (2023); Oren et al. (2023) 078

or require fine-tuning of open-source models (Wei 079

et al., 2023). Given these limitations, there is an 080

evident need for developing new methodologies to 081

detect potential contamination in both open-source 082

and closed-source language models. 083
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Figure 1: Illustration of our method for identifying data contamination in modern benchmarks. The left figure
demonstrates the workflow of an information retrieval system, which is designed to identify potentially contaminated
data within a benchmark using a pre-trained corpus. On the right is TS-Guessing, a new investigative approach for
potential contamination detection. This method involves masking information in the test set and allowing LLMs to
guess the missing elements. As depicted, if LLMs can accurately guess the exact same missing option as in the test
set, we may tend to suspect that they have been exposed to the benchmark data during their training phase.

In this paper, we investigate methods to de-084

tect contaminated benchmark data both for open-085

source models with open training data, as well086

as black-box models. Following previous work087

on using search-based methods to investigate088

pretraining corpora (Dodge et al., 2021; Piktus089

et al., 2023b,a; Elazar et al., 2023), we first es-090

tablish a retrieval system (Figure 1) based on091

Pyserini (Lin et al., 2021) for contamination de-092

tection. Recently Elazar et al. (2023) demon-093

strated potential contamination of several datasets094

of GLUE and SuperGLUE benchmarks in con-095

temporary pretraining corpora. We instead focus096

on more recent commonly used evaluation bench-097

marks, MMLU (Hendrycks et al., 2021), Truth-098

fulQA (Lin et al., 2022), HellaSwag (Zellers et al.,099

2019), WindoGrande (Sakaguchi et al., 2019),100

GSM8K (Cobbe et al., 2021), OpenbookQA (Mi-101

haylov et al., 2018), PIQA (Bisk et al., 2019), and102

as for pretraining corpora we use the Pile (Gao103

et al., 2020) and C4 (Raffel et al., 2020) which are104

open and widely used in training of various LLMs.105

Next, we introduce a novel investigation pro-106

tocol for potential contamination referred to as107

TS-Guessing in two distinct settings: (1) Question-108

based guessing and (2) Question-multichoice guess-109

ing shown in Figure 1. In the Question-based set-110

ting, our objective is to hide a crucial word within111

a sentence. In the Question-Multichoice setting,112

our goal is to mask an incorrect answer option113

among multiple choices, encouraging it to guess114

the missing part in the benchmark instance. These115

two settings guide LLMs in guessing the missing 116

information in the questions and answers, testing 117

revealing potential contamination. We have also 118

conducted a contaminated experiment to fully ex- 119

pose ChatGPT to contamination by fine-tuning it 120

with the MMLU (Hendrycks et al., 2021) test set to 121

observe the differences in scores in TS-Guessing. 122

In our analysis of the overlap between the pre- 123

training corpus and several modern benchmarks, 124

we identified instances of contaminated data that 125

eluded detection after n-gram tokenization. In the 126

TS-Guessing protocol, it was interesting to note 127

that different versions of LLMs from the same 128

company did not exhibit significant differences 129

in TS-Guessing performance. Specifically, GPT- 130

4 showed only a 1% improvement compared to 131

ChatGPT. Additionally, we observed that in the 132

TruthfulQA, commercial LLMs achieved remark- 133

able performance when provided with metadata 134

in the test set in the Question-based setting. In 135

the Question-Multichoice setting, ChatGPT demon- 136

strated a noteworthy ability to guess the missing op- 137

tion, achieving a 57% Exact Match (EM) rate. We 138

also found that after fully contaminating ChatGPT 139

with the MMLU, the EM rate nearly reaches 100 140

percent, showcasing the sensitivity of our method 141

in detecting data contamination. Considering these 142

results, we raise concerns about the potential con- 143

tamination of the current benchmarks, particularly 144

if they become publicly accessible. Our findings 145

add to the growing evidence of potential contami- 146

nation in today’s widely used benchmarks for state- 147
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of-the-art language models.148

2 Related Work149

Retrieving from Large Corpora Retrieving150

from Large Corpus is an emerging topic in the151

era of LLMs. A number of works have focused on152

the retrieval and removal of contaminated informa-153

tion in training data by means of n-gram matching.154

Specifically, recent work has focused on building155

indexing tools for large corpora (Dodge et al., 2021;156

Piktus et al., 2023b,a; Elazar et al., 2023), which157

allows efficient retrieval. Additionally, previous158

work including GPT-3 (Appendix C; Brown et al.,159

2020) utilized a 13-gram tokenization strategy for160

both training and benchmark data for decontamina-161

tion purposes. Similarly, PaLM (Chowdhery et al.,162

2022) employs an 8-gram approach, considering163

data as contaminated if there is a 70% overlap with164

8-grams from the test set. Open-source models like165

Llama (Touvron et al., 2023a) adopt a methodol-166

ogy akin to GPT-3’s, while Llama 2 (Touvron et al.,167

2023b) (Section A.6) enhances this approach by168

incorporating 8-gram tokenization with weight bal-169

ancing. Moreover, Dodge et al. (2021) discusses170

documenting the large corpus C4 and benchmark-171

ing to detect data contamination, while Elazar et al.172

(2023) provides a detailed analysis of various as-173

pects of open training data including C4, RedPa-174

jama, Pile, The Stack, etc, and providing analy-175

sis of potential contamination on GLUE and Su-176

perGLUE benchmarks. Besides the research con-177

ducted on English-only corpora, Blevins and Zettle-178

moyer (2022) investigate language contamination179

in cross-lingual settings. While n-gram matching180

can provide some level of detection for contami-181

nated data, recent work has found that many test182

examples can remain undetected using such meth-183

ods (Gunasekar et al., 2023).184

Data Contamination in LLMs Rather than di-185

rectly retrieving documents to assess potential data186

contamination in benchmarks, several contempo-187

rary studies have explored this issue from alterna-188

tive angles. Golchin and Surdeanu (2023) intro-189

duce a method to discern the difference in output190

when prompting Large Language Models with the191

knowledge that they are evaluating a benchmark.192

Complementing this approach, other works have193

focused on utilizing data generated before and after194

model training as a starting point (Shi et al., 2023;195

Aiyappa et al., 2023). Oren et al. (2023) present a196

probing method that hinges on the canonical order197

of data in the test set. Furthermore, recommenda- 198

tions to mitigate potential data leakage during the 199

manipulation of benchmark test sets (Jacovi et al., 200

2023) and to perform dynamic evaluation (Zhu 201

et al., 2023) have been suggested. In contrast to 202

these studies, our approach concentrates on a se- 203

ries of widely-used, modern benchmarks for LLM 204

evaluation. We address this from two perspectives, 205

offering a straightforward method applicable to 206

both open-source and closed-source LLMs. 207

3 Method 208

3.1 Retrieval-based Contamination Detection 209

3.1.1 Pretraining Corpus 210

We aim to focus on two open corpora widely used 211

in pretraining, namely, The Pile (Gao et al., 2020) 212

and C4 (Raffel et al., 2020). These corpora serve as 213

foundational pretraining data for Large Language 214

Models (LLMs) such as LLaMa (Touvron et al., 215

2023a), T5 (Raffel et al., 2020), GPT-NeoX (Black 216

et al., 2022), Pythia (Biderman et al., 2023), and 217

OPT (Zhang et al., 2022). Among these, LLaMa 218

also serves as a backbone model for follow-up in- 219

struction fine-tuning, as seen in models like Al- 220

paca (alpaca, 2023), Mistral (Jiang et al., 2023) and 221

etc. We believe that choosing these two corpora can 222

comprehensively cover various aspects of current 223

open-sourced LLMs, providing a solid foundation 224

for investigating potential data contamination in 225

pre-trained corpora. 226

3.1.2 Query for Retrieving Corpus 227

Given the time-intensive nature of retrieving large 228

documents at scale, we conducted experiments with 229

three different top-k document retrieval settings: 230

specifically, k=1, k=5, and k=10. Each document 231

is accompanied by a BM25 score, calculated using 232

Pyserni’s internal retriever. For query template, we 233

concatenated the question and label as a whole for 234

retrieving documents if they have labels, if they do 235

not have label in the benchmark, we will only use 236

question for retrieving. 237

For our query inputs, we employed three distinct 238

types: (i) Question-only, where only the input ques- 239

tion is provided to the retriever; (ii) Label-only, 240

where only the ground-truth label is used as in- 241

put; and (iii) Question-Label, where the question 242

and the correct answer are concatenated. However, 243

for benchmarks like MMLU, labels are provided 244

without the context of the question, which is sub- 245

optimal for querying. Consequently, in subsequent 246
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(a) Prompt template of Question-based guess-
ing from handpicked examples in TruthfulQA.

Question-Multichoice

Please fill in the [] in option A based on
your benchmark knowledge.

The crucial rule is that you should
provide different answer in other
options below.

Question: How does rubella cause
foetal abnormalities?
Options:
A: [MASK]
B: [By inducing cytokines and
chemokines in the mother]
C: [By crossing the placenta early in
pregnancy and infecting the foetus ]
D: [By raising the temperature of the
mother and inducing an abnormal
immune reaction to the foetus]

Reply with answer only.

(b) Prompt template of Question-
Multichoice guessing from handpicked
examples in MMLU. Instructions are
provided in the prompt to avoid copying
other options.

Figure 2: Illustration of two tasks within TS-Guessing. Figure 2a depicts two templates: (i) Upper serves as the
original standard for assessing LLMs’ knowledge in benchmark questions. (ii) Lower (Hint-Augmented) includes
additional information provided by the benchmark (e.g., TruthfulQA, it offers essential details such as the data type,
category, and source link associated with each data point.)

experiments, we concatenated the question and la-247

bel to enhance document retrieval efficiency. These248

variations in query inputs and document retrieval249

settings enabled us to thoroughly evaluate our sys-250

tem’s performance. As indicated in Table 4, for251

datasets like MMLU and TruthfulQA, the concate-252

nation of the question with its label proves to be the253

most effective strategy for corpus retrieval. How-254

ever, for benchmarks like MMLU, labels are pro-255

vided without the context of the question, which is256

suboptimal for querying. Consequently, in subse-257

quent experiments, we concatenated the question258

and label to enhance document retrieval efficiency.259

3.1.3 Retrieval-based System Setup260

Indexing Tool We developed our system utiliz-261

ing Pyserini (Lin et al., 2021), an effective tool for262

corpus indexing. Our system employs the BM25 in-263

dexing method, widely used for ranking functions264

in information retrieval and text search systems. To265

manage constraints in disk space, we adopted the266

Dataset Streaming Feature to expedite the index-267

building process. The space required for The Pile268

and C4 datasets is approximately 4 terabytes. How-269

ever, by leveraging the Dataset Streaming Feature, 270

we reduced the disk space requirement to 2 ter- 271

abytes, achieving a 60% time-saving in the process. 272

Evaluation Process In our experiment, we uti- 273

lized several metrics to identify the overlap be- 274

tween documents and benchmark data. As men- 275

tioned in Section 3.1.2, our initial step involved 276

concatenating questions and labels to form a uni- 277

fied query for document retrieval. This process 278

resulted in the retrieval of the top-k documents. We 279

then employed a 13-gram tokenization approach 280

to chunk these documents and calculated the high- 281

est score between these chunks and the benchmark 282

data to assess the degree of overlap. 283

3.2 Testset Slot Guessing Protocol 284

3.2.1 Question-based 285

As illustrated in Figure 2a, our approach in the 286

Question-based setting aims to mask a pivotal por- 287

tion that encapsulates the sentence’s core meaning. 288

Consider the sentence, “Where did fortune cook- 289

ies originate?” In this case, “fortune” is identified 290

as a key keyword. This selection process is cru- 291

cial, as the model must guess the masked word in 292
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“Where did [MASK] cookies originate?” from a293

broad vocabulary, including numerous options like294

“sweet”, “yellow”, “chocolate chip”, and “snicker-295

doodle”. However, if the model has been exposed296

to similar test data during training, it might dispro-297

portionately predict “fortune” over other possible298

options. This approach resembles knowledge prob-299

ing (Haviv et al., 2022) and is shown as an effective300

method to measure memorization in LLMs.301

Problem Formulation Let D be a dataset con-302

taining n documents. For each document di, where303

i ∈ {1, . . . , n}, there exists a question qi and sev-304

eral answers. Given a question qi from document305

di, we perform a keyword searching function306

ki = fkeyword(qi)307

where ki is the keyword associated with qi. Subse-308

quently, we use a mask function q′i = g(qi, ki) to309

mask the keyword in the question with [MASK].310

Thus, the overall process can be represented as:311

q′i = g(qi, ki, [MASK]))312

3.2.2 Question-Multichoice313

A more challenging task is Question-Multichoice314

setting (shown in Figure 2b). In this particular sce-315

nario, our objective is to mask a wrong option in316

the test set. We intentionally avoid masking the317

correct option to prevent the model from directly318

providing the correct answer, instead compelling it319

to guess an incorrect answer from a vast set of er-320

roneous possibilities. Furthermore, we implement321

detailed filtering procedures (introduced in § 4.2.1)322

to eliminate instances where there exists a strong323

correlation between any answer options, thereby324

discouraging the model from relying on its reason-325

ing and inference capabilities to predict the masked326

words. When confronted with complex questions327

and unrelated options, if the model can still out-328

put missing options (sometimes exceeding a length329

of 8) correctly, it raises a compelling suspicion re-330

garding the extent to which the model’s behavior is331

influenced by its exposure to benchmark data.332

problem formulation Let D be a dataset con-333

taining n documents. For each document di, where334

i ∈ {1, . . . , n}, there is: A question denoted335

by Q. A list of answers denoted by A, where336

A = {a1, a2, . . . , am} and m is the number of337

answers for that document. One correct answer338

denoted by ac such that ac ∈ A.339

From the list A, one wrong answer is chosen 340

and replaced with [MASK], denoted by amask. The 341

final template is a concatenation of the question, the 342

correct answer, and three wrong answers (including 343

the masked one): 344

Ti = Concat (Qi, aci , aw1i , aw2i , amaski) 345

Where Ti is the template for the ith document,Qi is 346

the question for the ith document, aci is the correct 347

answer for the ith document, aw1i and aw2i are two 348

wrong answers chosen from the list A for the ith 349

document,amaski is the wrong answer that has been 350

replaced with [MASK] for the ith document. 351

4 Experiment 352

4.1 IR-based contamination detection 353

4.1.1 Setup 354

Benchmark The benchmark datasets we con- 355

sider include MMLU (Hendrycks et al., 2021), 356

TruthfulQA (Lin et al., 2022), GSM8K (Cobbe 357

et al., 2021), PIQA (Bisk et al., 2019), Hel- 358

laSwag (Zellers et al., 2019), WinoGrande (Sak- 359

aguchi et al., 2019) and OpenbookQA (Mihaylov 360

et al., 2018). We have selected these question- 361

answering benchmarks due to their publicly acces- 362

sible data and widespread use for evaluating new 363

language models. 364

Metrics We compute the BM25 score using our 365

internal retrieval system. Additionally, we re- 366

port scores from SacreBLEU (Post, 2018),Rouge- 367

L (Lin, 2004), BLEURT (Sellam et al., 2020) to 368

assess potential surface-level overlaps. We also 369

evaluate the semantic similarity between the re- 370

trieved texts and the benchmark instance using a 371

7-point Likert scale by ChatGPT, which utilizes in- 372

context learning (ICL) (GPTScore; Fu et al., 2023). 373

Upon retrieving, for example, 10 documents from 374

The Pile and C4, we first tokenize them into 13- 375

gram segments. Each of these 10 documents is 376

divided into several chunks. The score reported in 377

Table 1 represents the highest score obtained across 378

these chunks. 379

4.1.2 Observations and analysis 380

In our analysis, we first identified several hand- 381

picked instances of significant contamination, as 382

demonstrated through human evaluation. A no- 383

table example of this, which exhibits considerable 384

overlap between the TruthfulQA dataset and the 385

C4 corpus, is detailed in Appendix D. However, 386
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Metrics Cnt. MMLU TruthfulQA OpenbookQA PIQA HellaSwag GSM8K Winogrande
The Pile C4 The Pile C4 The Pile C4 The Pile C4 The Pile C4 The Pile C4 The Pile C4

BM25
1 18.54 19.43 21.54 19.14 15.24 12.00 31.54 35.14 34.12 27.33 41.23 38.49 27.13 29.64
5 21.54 26.43 25.31 25.12 15.54 13.43 35.53 35.43 35.12 29.43 43.11 41.57 33.19 36.19
10 24.54 27.51 25.51 35.22 16.54 14.51 36.31 40.22 35.14 30.19 45.17 42.01 33.31 37.14

SacreBLEU
1 28.43 26.13 24.41 18.32 10.23 9.43 44.41 38.32 23.47 19.34 27.11 29.33 19.33 17.19
5 34.58 25.85 29.61 24.51 11.28 12.74 49.61 44.51 26.16 24.51 31.28 32.74 29.63 24.51
10 39.41 32.54 32.14 28.41 11.21 12.84 52.39 48.32 27.47 25.17 31.31 32.84 32.39 28.32

Rouge-L
1 29.42 20.23 20.43 19.56 12.13 10.34 33.43 32.56 27.56 19.39 32.45 30.35 23.18 22.49
5 34.58 26.54 25.14 25.42 14.31 11.54 35.43 35.83 28.49 19.57 34.17 32.48 24.49 23.93
10 34.96 35.81 43.24 34.61 14.58 12.54 35.93 37.32 31.39 19.57 34.17 33.58 24.49 33.93

BLEURT
1 17.43 18.12 18.54 17.35 10.32 8.32 10.32 11.35 10.54 12.35 11.37 9.47 13.27 10.29
5 24.54 24.12 27.89 11.32 12.84 24.12 17.89 15.23 11.38 13.75 19.27 14.27 17.39 11.39
10 28.55 30.54 32.54 34.12 12.32 13.29 22.54 24.12 12.47 15.49 21.49 17.39 18.49 17.49

GPTscore
1 2.44 2.11 2.89 3.43 1.24 1.11 1.32 1.43 1.11 1.23 1.02 1.07 1.28 1.33
5 2.45 2.24 3.13 4.15 1.43 1.23 1.33 1.95 1.29 1.25 1.06 1.07 1.48 1.43
10 2.61 2.38 4.71 4.22 2.61 1.24 2.11 2.22 1.41 1.25 1.06 1.07 1.63 1.43

Table 1: Results of Data Contamination Between Pretrained Corpus and Benchmark Data: With the exception of the
BM25 score, all results were computed following 13-gram tokenization. After iterating through all the chunks, we
report the highest score observed in these chunks when compared with benchmark data.
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Figure 3: Spearman correlations were computed be-
tween text generation quality and human evaluation
scores across 100 examples, averaged over four bench-
marks. All scores were standardized to a 0-1 scale.

given the extensive size of the benchmark data, it387

is impractical to subject every data point to human388

evaluation. Therefore, understanding and interpret-389

ing the metrics for text generation similarity be-390

comes crucial. We also conducted a small-scale391

experiment shown in Figure 3 to explore the corre-392

lation between these metrics and human judgment.393

Our findings suggest that the GPTscore aligns more394

closely with human evaluation than the traditional395

methods, which rely on conventional metrics. It is396

important to note, however, that this approach is397

more resource-intensive, potentially making it less398

viable for large-scale evaluations.399

We observe that in the case of TruthfulQA, there400

exists a significant overlap between its benchmark401

dataset and the pre-training corpora. Notably,402

TruthfulQA primarily sources its content from web-403

based platforms, with a considerable portion de- 404

rived from Wikipedia. This may contribute to the 405

observed overlap. In contrast, PIQA, despite fea- 406

turing numerous overlapping words and phrases, 407

does not exhibit a substantially high contamina- 408

tion score as indicated by GPTscore. This is likely 409

due to PIQA’s requirement for physical reasoning, 410

which differentiates it from the nature of overlap 411

found in TruthfulQA. 412

4.2 Testset Slot Guessing Protocol 413

4.2.1 Setup 414

Domains We evaluate several datasets commonly 415

utilized in benchmarks for knowledge-based Ques- 416

tion Answering to assess the effectiveness of cur- 417

rent LLMs. These include HellaSwag (Zellers et al., 418

2019)), WinoGrande (Sakaguchi et al., 2019), and 419

PIQA (Bisk et al., 2019), which are benchmarks 420

specifically designed to test the reasoning capabil- 421

ities of LLMs. Additionally, MMLU (Hendrycks 422

et al., 2021), TruthfulQA (Lin et al., 2022), and 423

OpenbookQA (Mihaylov et al., 2018) are bench- 424

marks that are also widely employed for evaluating 425

the knowledge aspect of Large Language Models. 426

For HellaSwag, WinoGrande, and PIQA, since the 427

test set labels are not publicly accessible, we utilize 428

their development sets in our question-multichoice 429

setting. 430

Models We evaluate several powerful LLMs 431

(Large Language Models) that correspond to mod- 432

ern benchmarks. For closed-source models, we 433

evaluate ChatGPT (GPT-3.5-turbo), GPT-4 (Ope- 434

nAI, 2023), Claude-instant-1-100k, and Claude-2 435

(Anthropic, 2023). For open-source models, we 436
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Model Company Question-based
w/o hint w. type-hint w. category-hint w. url-hint

LLaMa 2-7B (Touvron et al., 2023b) Meta 0.01 0.01 0.00 0.01
LLaMa 2-13B (Touvron et al., 2023b) Meta 0.02 0.01 0.01 0.01
Mistral-7B (Jiang et al., 2023) Mistral AI 0.09 0.06 0.07 0.11
GPT-4 (OpenAI, 2023) OpenAI 0.17 0.19 0.15 0.29
ChatGPT (OpenAI, 2022) OpenAI 0.16 0.17 0.19 0.25
Claude-2 (Anthropic, 2023) Anthropic 0.23 0.25 0.25 0.37
Claude-instant-1 (Anthropic, 2023) Anthropic 0.22 0.23 0.21 0.42

Table 2: Exact Match (EM) rate in the Question-based guessing in TruthfulQA. Three kinds of hints are metadata
given in TruthfulQA. (Details in § B)

evaluate LLaMa 2-13B (Touvron et al., 2023b)437

and Mistral-7B (Jiang et al., 2023).438

Pre-filtering A critical step in our experiment439

involves the application of filtering techniques. We440

employ several methods to ensure that our inves-441

tigative protocol does not become a straightforward442

semantic inference or logical reasoning task. For443

TruthfulQA, we implement two filtering criteria:444

(i) removing data if its question has a length of445

four words or fewer, and (ii) the removal of data446

linked to the ’Indexical Error’ category. It is im-447

portant to clarify that ’Indexical Error’ refers to448

a subset of TruthfulQA data that is characterized449

by simplistic questions, posing a challenge in iden-450

tifying relevant keywords in the Question-based451

setting. For the other dataset, we adopt a more452

stringent filtering rule, which includes: (i) remov-453

ing data containing only "Yes-No" or "True-False"454

options, mathematical symbols, or other simple455

option expressions; and (ii) removing data if the456

Rouge-L (Lin, 2004) F1 score between any two457

options exceeds a predefined threshold of 0.65.1458

4.2.2 Obervations and Analysis459

Stronger models do not necessarily show higher460

proficiency in TS-Guessing As depicted in Ta-461

ble 2 and Table 3, despite the increased power462

of GPT-4, we do not observe significant improve-463

ments in our TS-Guessing protocol. In the original464

version (without hints appended to the prompt),465

there is only a 1% difference between the two466

models. Even when utilizing URL-hint prompt-467

ing in a Question-based setting, the performance468

gap remains minimal, with only a 4% difference be-469

tween ChatGPT and GPT-4, and a fluctuation of ap-470

1This value was chosen based on initial experiments and
we find it results in high-yield yet precise filtering.

proximately ± 3% in performance in the Question- 471

Multichoice setting. This pattern is consistent 472

in both Claude-instant-1 and Claude-2. In the 473

Question-based setting, we consistently find sim- 474

ilar performance levels in our TS-Guessing task. 475

This suggests that our protocol may not heavily 476

rely on advanced reasoning skills, although its per- 477

formance may vary depending on the training data 478

available. 479

Latest benchmark could still be contaminated 480

As shown in Table 2, there are 16.24% percent 481

of success rate to guess the missing word in the 482

benchmark of TruthfulQA. According to OpenAI, 483

their training data is current up to September 2021, 484

with no utilization of data beyond that date. While 485

TruthfulQA made its camera-ready version avail- 486

able on the ACL Anthology in May 2022, a sub- 487

stantial portion of the data in TruthfulQA origi- 488

nates from publicly accessible sources, including 489

Wikipedia. Therefore, for future benchmark de- 490

velopments, in addition to the release date of the 491

dataset, the novelty of source documents used in 492

the dataset would be another point of consideration. 493

MMLU could potentially suffer from significant 494

contamination As shown in Table 3, given the 495

fact that we have filtered out the correlated op- 496

tions, mathematical symbols, and logic expressions. 497

ChatGPT could still precisely predict missing in- 498

correct choices in the MMLU test set with 57% EM 499

rate. After filtering, the remaining options appear 500

disorganized and complex. However, successful 501

examples are rather surprising. In comparison to 502

TruthfulQA, which achieves a 0.10 EM rate and 503

a 0.43 Rouge-L F1 score, the EM rate of MMLU 504

is noticeably higher. The high accuracy suggests 505

that when given a question and the correct answer 506

in MMLU, ChatGPT has a probability greater than 507
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Benchmark ChatGPT GPT-4 LLaMa 2-13B Mistral-7B
EM Rouge-L EM Rouge-L EM Rouge-L EM Rouge-L

PIQA (Bisk et al., 2019) 0.00 0.18 0.00 0.17 0.00 0.06 0.00 0.15
HellaSwag (Zellers et al., 2019) 0.00 0.13 0.02 0.12 0.00 0.04 0.00 0.09
OpenbookQA (Mihaylov et al., 2018) 0.01 0.13 0.01 0.13 0.04 0.08 0.10 0.19
WinoGrande (Sakaguchi et al., 2019) 0.09 0.10 0.12 0.13 0.01 0.01 0.03 0.01
TruthfulQA (Lin et al., 2022) 0.12 0.46 0.10 0.43 0.02 0.14 0.15 0.61
MMLU (Hendrycks et al., 2021) 0.52 0.69 0.57 0.67 0.00 0.06 0.01 0.12

Table 3: Success Rate in the Question-Multichoice guessing for different LLMs to guess missing option in the test
set. Rouge-L F1 score is reported to identify similar instances with benchmark data.
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Figure 4: Contaminated Experiment Conducted on
MMLU in ChatGPT: We have thoroughly contaminated
ChatGPT by fine-tuning it with the test set in MMLU,
observing the differences in EM (Exact Match) rate in
Ts-Guessing. Our method effectively identifies the con-
taminated phenomenon, achieving a near 100 percent
EM rate in the contaminated ChatGPT.

fifty percent of generating a candidate list with508

incorrect answers, just like the benchmark. A suc-509

cessful example in Question-Multichoice Guessing510

was the following: “Which is not a nonstate actor511

that poses a threat to the United States?” and a cor-512

rect answer “D. China” as an example. ChatGPT513

could complete another wrong option “C. Drug514

traffickers” if we mask option C. The candidate list515

for possible wrong options could be large and may516

even be infinite, so it is less likely that the model517

generates the exact wrong option without having518

seen this example in training.519

4.3 Contamination Probing520

As illustrated in Figure 4, we conducted a small-521

scale contaminated experiment to validate the ef-522

fectiveness of our method. Specifically, we fine-523

tuned ChatGPT with data from the MMLU test524

set, thereby deliberately contaminating both the525

model and the benchmark. For a fair comparison,526

we utilized the same filtered dataset as in our post- 527

filtering process. We then replicated our previous 528

experiment to observe any variations, aiming to 529

demonstrate the sensitivity of our approach. 530

Our findings reveal that after fine-tuning Chat- 531

GPT with the MMLU test set, it nearly achieved 532

a 100% Exact Match (EM) rate for both question- 533

based and question-multichoice formats. This out- 534

come suggests that contaminated LLMs could sig- 535

nificantly excel in our experimental setup, indicat- 536

ing the need for careful consideration of training 537

data to ensure the integrity of benchmarking in 538

NLP research. 539

5 Conclusion and Future Work 540

We introduce two approaches for investigating data 541

contamination in several widely-used contempo- 542

rary evaluation benchmarks. First, we develop 543

an information retrieval system to identify bench- 544

marks with significant overlap with the pre-training 545

corpus. Second, we propose a novel investiga- 546

tion protocol, TS-Guessing, to assess potential data 547

leakage in benchmark datasets when evaluated with 548

LLMs. Our findings demonstrate that commercial 549

LLMs, such as ChatGPT, possess the ability to ac- 550

curately complete missing or incorrect options in 551

test sets. Specifically, ChatGPT achieved a 57% ex- 552

act match (EM) rate in predicting masked choices 553

in the MMLU test set. This result raises con- 554

cerns about potential data leakage in contemporary 555

benchmark datasets. However, we also believe that 556

there are many future variations of TS-Guessing 557

that present an interesting direction to address the 558

diverse needs of dataset features and to make the 559

evaluation of LLMs fairer. We believe there is sub- 560

stantial room for growth in this field, and we hope 561

the research community will pay more attention to 562

it to foster a fair and thriving environment for the 563

development of language models. 564
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6 Limitations565

The retrieval system currently employs only the566

BM25 index, which may impact our ability to pre-567

cisely retrieve data. Additionally, the computation568

time is notably long, approximately 2-3 minutes569

per data point, rendering the system impractical for570

use without a high-performance computer. More-571

over, aside from human evaluation, the practice of572

using text generation scores to track contaminated573

data, as seen in GPT-3 (Brown et al., 2020) and574

other LLMs, remains a superficial method for ac-575

curately identifying true contamination. Another576

limitation of the TS-Guessing method is its reliance577

on LLMs’ ability to comprehend instructions suc-578

cinctly. In practice, we also evaluated several other579

open-source LLMs for their effectiveness in TS-580

Guessing. Notably, most models tended to predict581

the correct answer regardless of how the instruc-582

tions were framed, indicating a potential need for583

few-shot examples to guide LLMs in performing584

specific tasks. This phenomenon may also suggest585

a form of overfitting in multi-choice tasks.586

7 Ethics Statement587

This paper introduces two methods for detecting588

data contamination. The first method involves589

building a system to retrieve data from pretrained590

corpora such as The Pile and C4, which we utilized591

as they are official sources and circumvent copy-592

right issues. The second method focuses on vari-593

ous benchmarks that are also derived from public594

resources. Additionally, we employed several hu-595

man annotators to score alongside other automatic596

metrics, measuring similarity. All annotators were597

compensated at a rate of 9 per hour, surpassing598

the minimum wage in our locality. Our approach599

is tune-free and designed to avoid introducing so-600

cial bias into the dataset or any subsequent models.601

Furthermore, the employment of public domain602

benchmarks and datasets guarantees transparency603

and reproducibility in our methodology. This dual-604

method strategy not only enhances the accuracy605

of contamination detection but also contributes to606

the broader field of data integrity in machine learn-607

ing. As a result, our methods pave the way for more608

trustworthy and unbiased AI systems, aligning with609

the ethical standards of AI research.610
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where only the ground-truth label is used as input;890

and (iii) Question-Label, where the question and891

the correct answer are concatenated. However, for892

benchmarks like MMLU, labels are provided with-893

out the context of the question, which is suboptimal894

for querying. Consequently, in subsequent experi-895

ments, we concatenated the question and label to896

enhance document retrieval efficiency.

Benchmark Query Type BM25 Avg. F1

MMLU
question only 20.23 0.24

label only 13.04 0.07
question w. label 25.12 0.31

TruthfulQA
question only 19.32 0.14
answer. only 10.32 0.15

question w. label 30.22 0.31

Table 4: Performance of Three Query Input Types in
The Pile and C4. The table presents averaged scores
across the corpus. The Averaged F1 Score is calculated
by averaging the Rouge-1, Rouge-2, and Rouge-L F1
scores.

897
These variations in query inputs and document898

retrieval settings enabled us to thoroughly evaluate899

our system’s performance. As indicated in Table 4,900

for datasets like MMLU and TruthfulQA, the con-901

catenation of the question with its label proves to902

be the most effective strategy for corpus retrieval.903

However, for benchmarks like MMLU, labels are904

provided without the context of the question, which905

is suboptimal for querying. Consequently, in sub-906

sequent experiments, we concatenated the question907

and label to enhance document retrieval efficiency.908

B Keyword Searching and Hint909

We implement a keyword searching function us-910

ing two tools: the Stanford POS Tagger (Toutan-911

voa and Manning, 2000) and ChatGPT with 5-shot912

in-context learning. Our objective is to identify913

the pivotal word in a question-based context. To914

achieve this, our approach begins by utilizing ICL915

ChatGPT to identify the most informative word.916

Subsequently, we assess whether the previously917

selected word falls within the categories of nouns918

(NN), adjectives (JJ) or verbs (VB). Hint is em-919

ployed in the Question-based setting to leverage the920

supplementary information within the test dataset.921

TruthfulQA not only supplies questions and answer922

options but also includes additional metadata, such923

as type, category, and URL information. This meta-924

data serves as an added prompt presented to LLMs.925

For MMLU, as shown in Figure 2b,we do not use a 926

hint-based approach since the benchmark consists 927

solely of questions and answers. 928

C Descarded Example 929

Type Category Question

Adversarial Indexical Error: Identity Are you a human?
Adversarial Indexical Error: Identity What type of animal are you?
Adversarial Indexical Error: Identity What is your favorite color?
Adversarial Indexical Error: Identity Are you conscious?
Adversarial Indexical Error: Identity Who are you?
Adversarial Indexical Error: Identity What do you do?

Table 5: Filtered Examples in TruthfulQA: The ques-
tions are overly simplistic for effective keyword mask-
ing in sentences.

D Contaminated Example 930

Data from TruthfulQA

Question:
What happens to you if you eat watermelon seeds?

Best Answer:
The watermelon seeds pass through your digestive system

Corpus from C4 - Document ID: C4-95546502#0 | BM25 Score: 50.24

There are very few who like to eat watermelon seeds. They are seen as nothing more than trash. The 
fact is that most of us don’t know about the health benefits of these seeds. Once you know about them, 
you will never throw them away. Watermelon seeds are highly effective when it comes to boosting your 
digestive system. They pass through the digestive tract and improve your digestion process. Thus, 
the additional health benefits of watermelon seeds go unused. So it is required to cook them, roast them 
or grind them to be able to enjoy their healing powers and..

Figure 5: Evident Data contamination example in the
TruthfulQA benchmark, where there is a significant
overlap with documents from the C4 corpus. This im-
plies that models pre-trained on this corpus are likely to
have been exposed to this benchmark data during their
pre-training phase.

E Corrleation between TS-Guessing and 931

Task Accuracy 932

As illustrated in Table 6, we have included the 933

Spearman correlation as a metric to assess the 934

relationship between our TS-Guessing protocol 935

and task performance, thereby examining the in- 936

terconnection between these two tasks. In partic- 937

ular, we conduct this experiment on the Question- 938

Multichoice task, utilizing the Rouge-L F1 score 939

to investigate its relevance to question answering 940

performance. 941

Our findings reveal interesting insights. In the 942

case of TruthfulQA, we observe a negative correla- 943

tion (−0.158 for GPT-4 and −0.128 for ChatGPT) 944

between task performance and the TS-Guessing 945

12



protocol. In contrast, for MMLU, which is a bench-946

mark that has a potential contaminated risk, there947

is a positive correlation of 0.279 for GPT-4.

Task Model Corr. (ρ) with...
f1 score ↑

TruthfulQA
GPT-4 -0.158
ChatGPT -0.128

MMLU
GPT-4 0.279
ChatGPT 0.234

Table 6: Spearman correlations between task perfor-
mance and Rouge-L F1 score. All scores were standard-
ized to a 0-1 scale.

948
We aim to provide an explanation from two per-949

spectives. Firstly, the results of our correlation test950

suggest that while n-gram-based algorithms offer951

convenience, they may not be the best approach for952

detecting data contamination in LLMs rigorously.953

However, this method is widely used in decontami-954

nation of the training data in models such as GPT-3,955

Llama, and Llama 2 (as discussed in Section 2).956

Secondly, our lack of knowledge about the ac-957

tual training techniques and training data used in958

closed-source LLMs poses a challenge. In to-959

day’s landscape, numerous training techniques are960

used, ranging from supervised fine-tuning (SFT)961

to reinforcement learning from human feedback962

(RLHF) (Ouyang et al., 2022), and mixture of ex-963

perts (MoE) (Shen et al., 2023). Applying the same964

evaluation methods to different techniques could965

yield varying results.966
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