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Deep neural networks have been extensively used for the solution of both the forward and the 
inverse problem for dynamical systems. However, their implementation necessitates optimizing a 
high-dimensional space of parameters and hyperparameters. This fact, along with the requirement 
of substantial computational resources, pose a barrier to achieving high numerical accuracy, 
but also interpretability. Here, to address the above challenges, we present Random Projection-

based Operator Networks (RandONets): shallow networks with random projections and tailor-

made numerical analysis methods that learn accurately and fast linear and nonlinear operators. 
Building on previous works, we prove that RandOnets are universal approximators of linear and 
nonlinear operators. Due to their simplicity, RandONets provide a one-step transformation of the 
input space, facilitating interpretability. For the evaluation of their performance, we focus on 
operators of PDEs. We show, that RandONets outperform by several orders of magnitude, both 
in terms of numerical approximation accuracy and computational cost, the “vanilla” DeepONets. 
Hence, we believe that our method will trigger further developments in the field of scientific 
machine learning, for the development of new ‘’light”schemes that will provide high accuracy 
while reducing dramatically the computational cost. A MATLAB toolbox for RandONets, including 
demos, is available on GitHub at https://github.com/GianlucaFabiani/RandONets.

1. Introduction

In recent years, significant advancements in machine learning (ML) have broadened our computational toolkit with the ability to 
solve both the forward and, importantly, the inverse problem in differential equations and multiscale/complex systems. For the for-

ward problem, ML algorithms such as Gaussian process and physics-informed neural networks (PINNs) are trained to approximate the 
solutions of nonlinear differential equations, with a particular interest in stiff and high-dimensional systems of nonlinear differential 
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equations [1–8], as well as for the solution of nonlinear functional equations [9–14]. The solution of the inverse problem leverages the 
ability of ML algorithms to learn the physical laws, their parameters and closures among scales from data [15,3,16,9,17–20,10,11]. 
To the best of our knowledge, the first neural network-based solution of the inverse problem for identifying the evolution law (the 
right-hand-side) of parabolic Partial Differential Equations (PDEs), using spatial partial derivatives as basis functions, was presented 
in Gonzalez et al. (1998) [21]. In the same decade, such inverse identification problems for PDEs, were investigated through reduced 
order models (ROMs) for PDEs, using data-driven Proper Orthogonal Decomposition (POD) basis functions [22] and Fourier basis 
functions (in a context of approximate inertial manifolds) in [23].

Over the last few years several advanced ML-based approaches for the approximation of nonlinear operators, focused on partial 
differential operators, stand out: the Deep Operator Networks (DeepONets) [10], the Fourier Neural Operators (FNOs) [24], and the 
Graph-based Neural Operators [25,26] are the most prominent ones. DeepONets extend the universal approximation theorem for 
dynamical systems –given back in 90’s by Chen and Chen [27]– employing the so-called branch and trunk networks that handle 
input functions and spatial variables and/or parameters separately, thus providing a powerful and versatile framework for operator 
learning in dynamical systems. Various architectures can be used for either/both networks, thus offering new avenues for tackling 
challenging problems in the modeling of complex dynamical systems [10,28–30]. FNOs [24] exploit the Fourier transform to capture 
global patterns and dependencies in the data. FNOs employ convolutional layers in the frequency domain and the inverse Fourier 
transform to map back to the original domain. This transformation allows the neural network to efficiently learn complex, high-

dimensional inputs and outputs with long range correlations. This method is particularly advantageous for problems involving large 
spatial domains. The family of graph-based neural Operators [26,25] model the nonlinear operator as a graph –where nodes represent 
spatial locations of the output function– learning the kernel of the network which approximates the PDE. They define a sequence of 
compositions, where each layer is a map between infinite-dimensional spaces with a finite-dimensional parametric dependence. The 
authors also prove a universal approximation theorem, showing that the formulation can approximate any given nonlinear continuous 
operator. Building on the above pioneering methods, other approaches include wavelet neural operators (WNOs) [31] and spectral 
neural operators (SNOs) [32] using a fixed number of basis functions for both the input and the output functions, which can be either 
Chebyshev polynomials or complex exponentials. For a comprehensive review on the applications of neural operators, the interested 
reader can refer to the recent work in [33].

Here, we present Random Projection-based Operator Networks (RandONets) to deal with the “curse of dimensionality” in the training 
process of DNNs schemes such as DeepONets [10] and facilitate interpretability. DeepONets, while being a powerful methodology 
that revolutionized scientific machine learning for dynamical systems, are not without their limitations. Their training often involves 
iterating over large datasets multiple times to update the high-dimensional space of the deep learning network parameters, requiring 
significant computational time and memory. Additionally, the complexity of the underlying nonlinear operators and the size of the 
problem domain can further increase the computational burden. Moreover, hyperparameter tuning, regularization techniques, and 
model selection procedures contribute to additional computational overhead. As a result, training DeepONets can require substantial 
computational resources, including high-performance computing clusters or GPUs, while due to their deep architecture are not in-

terpretable. Importantly, the computational demands of training DNNs can significantly impact convergence behavior and numerical 
approximation accuracy. The high-dimensional parameter space may lead to challenges in converging to a (near) global optimum. In 
some cases, the optimization algorithm may get stuck in local minima or plateaus, hindering the network’s ability to approximate the 
underlying nonlinear or even linear, as we will show, operators with a high accuracy. Addressing these challenges requires careful 
consideration of optimization strategies, regularization methods and dataset size, balancing computational efficiency with the desired 
level of approximation accuracy (see also critical discussions and approaches to deal with this cost-accuracy tradeoff in [34–37]).

Our proposed RandONets deal with these challenges, leveraging shallow (just one hidden layer) feedforward neural networks, 
random projections [38–42,17,6] and numerical analysis methods to enable a computationally efficient framework for the approxi-

mation of linear and nonlinear operators, thus enhancing interpretability. In particular, we integrate established numerical analysis 
methods, such as the Tikhonov regularization, and pivoted QR decomposition with regularization, for the solution of an ill-posed 
linear problem. These methods offer highly efficient numerical approximations with guaranteed (near) optimal convergence proper-

ties. Importantly, based on previous works, we prove that RandONets are universal approximators of linear and nonlinear operators. 
Furthermore, we assess their performance with a focus on the approximation of linear and nonlinear evolution operators (right-hand-

sides (RHS)) of PDEs. We demonstrate that, RandONets outperform the vanilla DeepONets both in terms of numerical approximation 
accuracy (reaching for linear operators machine precision) and computational cost by orders of magnitude. In summary, our work 
shows that carefully designed “light” neural networks, aided by tailor-made numerical methods, can provide significantly faster and 
more accurate approximations of nonlinear operators compared to DNNs, while also enhancing interpretability.

The paper is organized as follows. In Section 2, we describe the problem. In Sections 3.1 and 3.2, we present the preliminaries 
regarding the fundamentals and necessary notation for DeepONets and the random projection neural networks (RPNNs) approaches, 
respectively. In section 3.3 we introduce RandONets, and then, in Section 3.3.1, we extend the theorem of Chen and Chen [27] on 
the universal approximation of Operator to RandONets architectures. In Section 4, we assess the performance of RandONets and 
various linear and nonlinear benchmark problems and compare its performance with the vanilla DeepONet. We start with some 
simple problems of ODEs, where we approximate the solution operator, and then we proceed with the presentation of the results on 
2

the approximation of the evolution operator of PDEs. We conclude, thus giving future perspectives, in Section 5.
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2. Description of the problem

In this study, we focus on the challenging task of learning linear and nonlinear functional operators  ∶ 𝖴 →𝖵 which constitute 
maps between two infinite-dimensional function spaces 𝖴 and 𝖵. Here, for simplicity, we consider both 𝖴 and 𝖵 to be subsets of 
the set 𝖢(ℝ𝑑 ) of continuous functions on ℝ𝑑 . The elements of the set 𝖴 are functions 𝑢 ∶ 𝖷 ⊆ℝ𝑑 →ℝ that are transformed to other 
functions 𝑣 =  [𝑢] ∶ 𝖸 ⊆ℝ𝑑 →ℝ through the application of the operator  . We use the following notation for an operator evaluated 
at a location 𝒚 ∈ 𝖸 ⊆ℝ𝑑

𝑣(𝒚) =  [𝑢](𝒚). (1)

These operators play a pivotal role in various scientific and engineering applications, particularly in the context of (partial) differential 
equations. By effectively learning (discovering from data) such nonlinear operators, we seek to enhance our understanding and 
predictive capabilities in diverse fields, ranging from fluid dynamics and materials science to financial and biological systems and 
beyond [43,10,9,34,29,17,44,19,45,18]. One prominent example is the right-hand side (RHS) evolution operators  associated with 
differential equations (PDEs), which govern the temporal evolution of the associated system dynamics. We denote these evolution

operators in the following way:

𝑣(𝒙, 𝑡) = 𝜕𝑢(𝒙, 𝑡)
𝜕𝑡

=[𝑢](𝒙, 𝑡), 𝒙 ∈Ω, 𝑡 ∈ [0, 𝑇 ], (2)

where 𝑢 ∶Ω × [0, 𝑇 ] ⊆ℝ𝑑 ×ℝ+ →ℝ is the unknown solution of the PDE (methods for the identification of such PDEs and in general 
RHS of dynamical systems with ML can be traced back to the ’90s [22,46,47,23,48]). Given a state profile 𝑢(⋅, 𝑡) ∶ Ω → ℝ at each 
time 𝑡, e.g., the initial condition 𝑢0 of the system at time 𝑡 = 0, the evolution operator (the right-hand-side) of differential equations) 
 provides the corresponding time derivative (the output 𝑣(⋅, 𝑡)) of the system at that time 𝑡. Again, a method for learning the RHS 
of PDEs with a different ANN architecture than DeepONet was proposed back in ’90s in [21]. There, the RHS was estimated in terms 
of spatial derivatives.

One can also learn the corresponding solution operators 𝑡, which embody both the time integration and the satisfaction of boundary 
conditions, of the underlying physical phenomena. Given the initial condition 𝑢0 at time 𝑡 = 0, the solution operator outputs the state 
profile 𝑢(⋅, 𝑡) ∶Ω →ℝ after a certain amount of time 𝑡:

𝑣(𝒙) = 𝑢(𝒙, 𝑡) = 𝑡[𝑢0](𝒙). (3)

We will deal with this problem in the part II that will follow.

Although our objective is to learn functional operators from data, which take functions (𝑢) as input, we must discretize them to 
effectively represent them and be able to apply network approximations. One practical approach, as implemented in the DeepONet 
framework, is to use the function values (𝑢(𝒙𝑗 , 𝑗 = 1, ⋯ , 𝑚)) at a sufficient, but finite, number of locations 𝒙1,𝒙2,… ,𝒙𝑚, where 
𝒙𝑗 ∈ 𝖷 ⊆ℝ𝑑 ; these locations are referred to as “sensors.” Other methods to represent functions in functional spaces include the use 
of Fourier coefficients [24], wavelets [31], spectral Chebychev basis [32], reproducing kernel Hilbert spaces (RKHS) [49], graph 
neural operators [26] or meshless representations [50]. Regarding the availability of data for the output function, we encounter two 
scenarios. In the first scenario, the functions in the output are known at the same fixed grid 𝒚1,𝒚2,… ,𝒚𝑛, where 𝒚𝑖 ∈ 𝑌 ; this case is 
termed as “aligned” data. Conversely, there are cases where the output grid may vary randomly for each input function, known as 
“unaligned” data. If this grid is uniformly sampled and dense enough, interpolation can be used to approximate the output function 
at fixed locations. Thus, this leads us back to the aligned data case. However, if the output is only available at sparse locations, 
interpolation becomes impractical. As we will see later in the text, despite this challenge, our approach can address this scenario, 
albeit with a higher computational cost for training the machine learning model (since, in such cases, the fixed structure of the data 
cannot be fully leveraged).

3. Methods

For the completeness of the presentation, we start with some preliminaries on the use of neural networks and DeepONets for 
the approximation of nonlinear continuous functional operators. We then introduce the concepts of random projections for neural 
networks (RPNN) and extend them to the DeepONet framework, arriving at the proposed Random Projection-based Operator networks 
(RandONets).

3.1. Preliminaries on DeepONets

As universal approximators, feedforward neural networks (FNN) have the capability to approximate continuous functions ef-

fectively [51–55]. However, a lesser-known theorem by Chen & Chen (1995) [27], which gained prominence with the advent of 
DeepONet by Lu et al. (2021) [10] and Fourier Neural Operator (FNO) by Li et al. (2020) [24], asserts the existence of a neural net-

work architecture capable of approximating any continuous nonlinear operator to an arbitrary degree of accuracy. Before introducing 
this theorem, let us introduce the following definition:

Definition 3.1 (Tauber-Wiener function [27]). A function 𝜓 ∶ℝ →ℝ is called a Tauber-Wiener function if, for any interval [𝑎, 𝑏] ⊂ℝ, 
3

the set of finite linear combinations
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𝑁∑
𝑖=1

𝑤𝑖𝜓(𝜉𝑖𝑥+ 𝜃𝑖) ∣ 𝑁 ∈ℕ, 𝜉𝑖 ∈ℝ, 𝜃𝑖 ∈ℝ, 𝑤𝑖 ∈ℝ

}
is dense in 𝐶[𝑎, 𝑏].

Theorem 3.1 (Universal approximation for functions [27]). Suppose 𝐾 is a compact set in ℝ𝑑 , 𝑈 is a compact set in 𝖢(𝐾) and 𝜓 is a 
Tauber-Wiener function, then ∀𝑓 ∈ 𝖴 and any 𝜖 > 0, there exist scaling factors {𝜉𝑖}𝑁𝑖=1 and shifts {𝜃𝑖}𝑁𝑖=1 both independent of 𝑓 , and also 
coefficients {𝑤𝑖[𝑓 ]}𝑁𝑖=1 depending on 𝑓 , such that‖‖‖‖‖‖𝑓 (𝑥) −

𝑁∑
𝑖=1

𝑤𝑖[𝑓 ]𝜓(𝜉𝑖𝑥+ 𝜃𝑖)
‖‖‖‖‖‖∞ < 𝜖. (4)

Moreover, the coefficients 𝑤𝑖[𝑓 ], 𝑖 = 1, … , 𝑁 , are continuous functionals on 𝖴.

In other words, any function in 𝖢(𝐾) can be approximated arbitrarily closely by a finite linear combination of scaled and shifted 
versions of 𝜓 . It has been demonstrated that continuous non-polynomial functions are Tauber-Wiener functions [54,27]. Then, the 
following theorem holds:

Theorem 3.2 (Universal approximation for operators [27]). Suppose that 𝜓 is a Tauber-Wiener function, 𝖷 is a Banach space, and 𝖪1 ⊂𝖷, 
𝖪2 ⊂ℝ𝑑 are two corresponding compact sets. Let 𝖴 be a compact set in 𝖢(𝖪1), and let  ∶ 𝖴 →𝖢(𝖪2) be a nonlinear continuous operator. 
Then, for any 𝜖 > 0, there are 𝑁, 𝑀, 𝑚 ∈ ℕ, and network parameters 𝑤𝑘𝑖, 𝜉𝑘𝑖𝑗 , 𝜃𝑘𝑖, 𝛽𝑘 ∈ ℝ, 𝒄𝑘 ∈ ℝ𝑑 , 𝒙𝑗 ∈ 𝖪1, with 𝑘 = 1, … , 𝑁 , 𝑖 =
1, … , 𝑀 , 𝑗 = 1, … , 𝑚, such that ∀𝑢 ∈𝑈, 𝒚 ∈ 𝖪2:|||||| (𝑢)(𝒚) −

𝑁∑
𝑘=1

𝑀∑
𝑖=1

𝑤𝑘𝑖𝜓
( 𝑚∑
𝑗=1

𝜉𝑘𝑖𝑗𝑢(𝒙𝑗 ) + 𝜃𝑘𝑖
)
⋅𝜓(𝒄𝑘 ⋅ 𝒚 + 𝛽𝑘)

|||||| < 𝜖. (5)

To briefly describe how the above Theorem in the original paper of Chen & Chen in [27] works, let us assume that our goal is 
to approximate an operator  , acting on functions 𝑢 ∈ 𝖴. These functions 𝑢 (which are inputs to the DeepONet) are assumed to be 
known and sampled at 𝑚 fixed locations 𝑥𝑗 in the domain 𝖪1. The vector 𝑼 = (𝑢(𝒙1), 𝑢(𝒙2), … , 𝑢(𝒙𝑚)) ∈ ℝ𝑚×1 (a column vector) is 
the input of a single-hidden layer FNN with 𝑀 neurons, the so-called branch network, that process the function values space. At the 
same time there is a second single-hidden layer FNN with 𝑁 neurons, the so-called trunk network, that process the new location 
𝒚 ∈𝐾2 ⊂ ℝ1×𝑑 (for convenience let us assume it as a row vector) in which we have to evaluate the transformed function  [𝑢]. For 
convenience, let us define the vector 𝑩 = (𝐵1, 𝐵2, … , 𝐵𝑀 ) ∈ℝ𝑀×1 (column vector) of hidden layers value of the branch network:

𝐵𝑖(𝑼 ) = 𝜓
( 𝑚∑
𝑗=1

𝜉𝑘𝑖𝑗𝑢(𝒙𝑗 ) + 𝜃𝑘𝑖
)
, 𝑖 = 1,2,… ,𝑀, (6)

and let us define the vector 𝑻 = (𝑇1, 𝑇2, … , 𝑇𝑁 ) ∈ℝ1×𝑁 (row vector):

𝑇𝑘(𝒚) = 𝜓(𝒄𝑘𝑇 ⋅ 𝒚 + 𝛽𝑘), 𝑘 = 1,2,… ,𝑁. (7)

Then, the output of the network as in Eq. (5) can be written as:

 [𝑢](𝒚) ≃
𝑁∑
𝑘=1

𝑀∑
𝑖=1

𝑤𝑘𝑖𝐵𝑖(𝑼 )𝑇𝑘(𝒚)⇔  [𝑢](𝑦) = 𝑻𝑊 𝑩 = ⟨𝑻 ,𝑩⟩𝑊 , (8)

where the matrix 𝑊 ∈ℝ𝑁×𝑀 has elements 𝑤𝑘𝑖. As can be seen, the output of the scheme is a weighted inner product ⟨⋅, ⋅⟩𝑊 of the 
trunk and branch networks. In the next section, we will take advantage of this formulation for an efficient and accurate training of 
the network through the use of random bases.

We note, that the original Theorem 3.2 considers only two shallow feedforward neural networks with a single hidden layer. On the 
other hand, DeepONet uses deep networks instead, but also can incorporate any other type of networks such as CNNs. An extension 
of the Theorem 3.2, given by Lu et al. [10], states that the branch network and the trunk network can be chosen by diverse classes of 
ANNs, which satisfy the classical universal approximation theorem. Also, while the Chen and Chen architecture in (5) does not include 
an output bias, the DeepONet usually utilize biases to improve generalization performance [10]. More broadly, DeepONets can be 
considered conditional models, where  [𝑢](𝒚) represents a function of 𝒚 given 𝑢. These two independent inputs, 𝑢 and 𝒚, are given as 
inputs to the trunk and branch networks, respectively. At the end, the embeddings of 𝑢 and 𝒚 are combined through an inner product 
operation. However, the challenge remains in finding efficient approaches to train these networks. DeepONets do not come without 
limitations. While they enhance the models’ ability to capture complex relationships, they introduce challenges in the optimization 
process. It is also worth noting that, as it happens for shallow FNNs, while the universal approximation theorem for operators ensures 
the existence of an effective approximating DeepONet, it does not offer a constructive numerical method for the computation of 
the specific weights and biases of the DNNs. Furthermore, computing the values of the networks parameters and hyperparameters
4

requires significant computational resources, entailing complexity that can lead to moderate generalization ability and/or numerical 
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approximation accuracy. Hence, it is nearly implicit that training such DeepONets heavily relies on parallel computing and GPU-based 
computations.

Here we present a computationally efficient method for approximating nonlinear operators, based on shallow networks with a 
single hidden layer, as in the paper of Chen and Chen in [27], coupled with random projections, that relaxes the “curse of dimension-

ality” in the training process. First, we give some preliminaries for random projection neural networks, and then we proceed with 
the presentation of the RandONets and building on previous works, we prove its universal approximation property for linear and 
nonlinear operators.

3.2. Preliminaries on random projection neural networks

Random Projection Neural Networks (RPNN) are a type of single-hidden-layer ANNs with randomized activation functions to 
facilitate the training process. The family of RPNNs includes random weights neural networks (RWNN) [56], Random Vector Func-

tional Link Network (RVFLN) [57,76,58], Reservoir Computing (RC) [59,60], Extreme Learning Machines (ELM) [61] and Random 
Fourier Features Networks (RFFN) [39,41]. Some seeds of this idea can be also found in gamba perceptron proposed initially by Frank 
Rosenblatt (1962) [62] and the Distributed Method algorithm proposed by Gallant (1987) [63]. For a review on random projection 
neural networks see in [64,17,6].

Here we consider for simplicity, and refer with the acronym RP-FNN to, a single hidden layer feed-forward neural network, denoted 
by a vector function 𝒇 ≡ (𝑓1, 𝑓2, … , 𝑓𝑛) ∶ ℝ𝑑 → ℝ𝑛, with 𝑛 outputs 𝑓𝑘, 𝑁 neurons and with an activation function 𝜓 ∶ ℝ → ℝ. To 
simplify our notation, we consider here each scalar output 𝑦𝑘 = 𝑓𝑘(𝒙) of the RP-FNN:

𝑓𝑘(𝒙;𝑊 ,𝜷,𝐶,𝑷 ) =
𝑁∑
𝑗=1

𝑤𝑘𝑗𝜓(𝒄𝑗 ⋅ 𝒙+ 𝛽𝑗 ;𝑷 ), 𝑘 = 1,… , 𝑛, (9)

In RP-FNNs, the weights 𝑊 are the only trainable parameters of the network. While the internal weights/parameters and hyper-

parameters of 𝜓𝑗 are randomly pre-determined and fixed. In order to simplify the notation, let us group the set of parameters and 
hyperparameters in the vector of random variables 𝜶 over the set 𝖠 ⊆ℝ𝑞 , containing the stacking of all parameters in {𝐶, 𝜷 , 𝑷 }. The 
vector of random variables 𝜶 is in general sampled from a probability distribution function 𝑝𝜶 on 𝖠. Thus, we can rewrite Eq. (9)

as: where the matrix 𝐶 ∈ℝ𝑁×𝑑 , with rows 𝒄𝑗 ∈ℝ1×𝑑 , contains a priori randomly-fixed internal weights, sampled appropriately from a 
probability distribution 𝑝𝒄 , connecting the input layer with the hidden layer (in other configurations, they can also be set all to ones, 
see e.g. [6]); the vector 𝜷 = (𝛽1, … , 𝛽𝑁 ) ∈ℝ𝑁×1 includes a priori randomly-fixed vector of biases (shifts), sampled appropriately from 
a probability 𝑝𝛽 ; the vector 𝒙 ∈ℝ𝑑×1 represents the input, the matrix 𝑊 ∈ℝ𝑛×𝑁 , with elements 𝑤𝑘𝑗 , contains the external weights 
that connect the hidden layer to the output; the vector 𝑷 includes any additional required hyperparameters (either deterministically 
or randomly fixed) for the activation function, for example the shape parameters of Gaussian Radial Basis functions.

𝑓𝑘(𝒙;𝜶) =
𝑁∑
𝑗=1

𝑤𝑘𝑗𝜓(𝒙;𝜶𝑗 ), (10)

where 𝜶𝑗 ∈ 𝖠 are 𝑁 realizations of the random variables 𝜶.

Having {𝒙𝑖, 𝑓𝑘( 𝒙𝑖)}, 𝑖 = 1, 2, … , 𝑚 pairs of training data for each 𝑓𝑘 , the unknown parameters 𝒘𝑘 ∈ ℝ𝑁 , which are the rows of 
the matrix 𝑊 , can be computed for example using truncated SVD, preconditioned QR decomposition with regularization, and/or 
Tikhonov regularization. For example, with truncated SVD, the least-squares solution reads:

𝒘𝑘 =
𝑘∑
𝑖=1

𝑢𝑖
𝑇 𝑌𝑘

𝜎𝑖
𝑣𝑖, (11)

with 𝑢𝑖, 𝑣𝑖 being the first 𝑘 right and left singular vectors of Ψ is the 𝑁 × 𝑚 matrix with entries Ψ𝑗𝑖 = 𝜓(𝒙𝑖; 𝜶𝑗 ), and 𝜎𝑖, the corre-

sponding singular values. On the other hand, the Tikhonov regularization reads:

𝒘𝑘 = argmin
𝒘𝑘

{‖𝒘𝑘Ψ− 𝑌𝑘‖2 + 𝜆‖𝒘𝑘𝐿‖2} , (12)

where 𝑌𝑘 is the vector of dimension 𝑚, containing the values (samples) of 𝑓𝑘 at 𝑚 sampling points 𝒙𝑖, 𝜆 > 0 is the regularization 
parameter and 𝐿 ∈ ℝ𝑁×𝑁 is a regularization operator, often taken as the identity matrix 𝐼 . The Tikhonov regularized solution can 
be expressed as:

𝒘𝑘 = 𝑌𝑘Ψ𝑇 (ΨΨ𝑇 + 𝜆𝐿𝐿𝑇 )−1. (13)

Setting, 𝐿 = 𝐼 , the above problem can be solved, e.g., by substituting the truncated SVD of Ψ into the Tikhonov regularization formula 
to get: [66]:

𝑟∑ 𝜎𝑖
2 𝑢𝑖

𝑇 𝑌𝑘
5

𝒘𝑘 =
𝑖=1 𝜎𝑖

2 + 𝜆2 𝜎𝑖
𝑣𝑖, (14)
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where 𝑟 is the rank of Ψ. Let us now define the hidden layer map 𝝓𝑁 ∶ ℝ𝑑 × 𝖠 → ℝ𝑁 , that maps the input layer to the (random) 
features 𝒛 of the hidden layer, as:

𝒛 = 𝝓𝑁 (𝒙;𝜶) = [𝜓(𝒄1 ⋅ 𝒙+ 𝛽1;𝑃 ), 𝜓(𝒄2 ⋅ 𝒙+ 𝛽2;𝑃 ),… , 𝜓(𝒄𝑁 ⋅ 𝒙+ 𝛽𝑁 ;𝑃 )]. (15)

In its simplest form (taking just a linear projection of the input space), the above is – conceptually equivalent – to the celebrated 
Johnson-Lindenstrauss (JL) lemma [38], which states that there exists an approximate isometry projection 𝝓𝑁 ∶ℝ𝑑 →ℝ𝑁 of input 
data 𝒙 ∈ℝ𝑑 induced by a random matrix 𝑅 ∈ℝ𝑁×𝑑 :

𝒛𝐽𝐿 = 𝝓𝐽𝐿
𝑁

(𝒙;𝑅) = 1√
𝑁

𝑅𝒙, (16)

where the matrix 𝑅 = [𝑅𝑗𝑖] ∈ℝ𝑁×𝑑 has components which are i.i.d. random variables sampled from a standard normal distribution. 
Let us assume 𝑋 to be a set of 𝑚 sample points 𝒙 ∈ℝ𝑑 , such that 𝑁 ≥ 𝑂

(
log(𝑚)∕𝜖2

)
. Then with probability ℙ, for every 𝜖 ∈ (0, 1), 

we obtain:

ℙ
(|||‖𝒙‖2 − ‖𝒛𝐽𝐿‖2||| ≤ 𝜖‖𝒙‖2) ≥ 1 − 2exp

(
−(𝜖2 − 𝜖3)𝑁

4

)
. (17)

Let us consider a simple regression problem, with training data (𝒙(𝑠), 𝒚(𝑠)) ∈ℝ𝑑 ×ℝ𝑛, 𝑠 = 1, … , 𝑚. Let us call the matrix 𝑋 ∈ℝ𝑑×𝑚 the 
collection of inputs, and the matrix 𝑌 ∈ℝ𝑛×𝑚 the collection of outputs. A simple approach can consist in considering linear random 
JL projections of the input, and then approximating the output as a weighted linear combination of random JL features. Thus, one 
finds 𝑊 ∈ℝ𝑛×𝑁 such that:

𝑌 = 1√
𝑁

𝑊𝑅𝑋. (18)

At this stage, one can solve for the unknown parameters in 𝑊 using a linear regularization problem as briefly described above. When 
considering nonlinear projections, the training of an RP-FNN, involves solving a system of 𝑛 × 𝑚 linear algebraic equations, with 
𝑛 ×𝑁 unknowns:

𝑊Φ𝑁 (𝑋;𝜶) = 𝑌 , Φ𝑗𝑖 = 𝜓(𝒙𝑖;𝜶𝑗 ), (19)

where Φ𝑁 (𝑋) ∈ℝ𝑁×𝑚 is the random matrix of the hidden layer features, with elements Φ𝑗𝑖 . Note that despite the nonlinearity of 𝜓 , 
the problem is still linear with respect to the external weights 𝑊 .

While JL linear random projections are appealing due to their simplicity, studies have highlighted that well-designed nonlinear

random projections can outperform such linear embeddings [53,58,42,65]. In this context, back in ’90s Barron [53] proved that 
for functions with integrable Fourier transformations, a random sample of the parameters of sigmoidal basis functions from an 
appropriately chosen distribution results to an approximation error on the order of 𝑂(1∕(𝑛(2∕𝑑))). Igelnik and Pao [58] extended 
Barron’s proof [53] for any family of 𝐿2 integrable basis functions, thus addressing the so-called RVFLNs [57]. Later on, the works 
of Rahimi and Recht [39,41] have explored the effectiveness of nonlinear random bases for preserving any shift-invariant kernel 
distances. It is also worth mentioning that the “kernel trick” [67,68], a common feature approach in machine learning, including 
Support Vector Machines (SVMs) and Gaussian Processes (GPs), provides a straightforward method to generate features for algorithms 
that rely solely on the inner product between pairs of input points:

⟨�̃�(𝒖), �̃�(𝒗)⟩ =𝐾(𝒖,𝒗), (20)

where �̃� represents a generic implicit lifting and 𝐾 is a kernel distance function. This technique is commonly employed to effectively 
handle high-dimensional data without explicitly computing the feature vectors �̃�(𝒖) and �̃�(𝒗).

However, large training sets often lead to significant computational and storage costs. Instead of depending on the implicit lifting 
provided by the kernel trick, we seek an explicit mapping of the data to a low-dimensional Euclidean inner product space, using a 
nonlinear randomized (randomly parametrized) feature map 𝝓𝑁 (⋅, 𝜶) ∶ℝ𝑑 ×𝖠 →ℝ𝑁 :

𝐾(𝒖,𝒗) ≈ 𝝓𝑁 (𝑢;𝜶)𝑇𝝓𝑁 (𝑣;𝜶), (21)

where 𝜶 ∈ℝ𝑞 is a set of hyperparameters (random variables) sampled from a probability distribution 𝑝𝜶 .

Here, for the sake of completeness of the presentation, we restate the following theorem [39],

Theorem 3.3 (Low-distortion of kernel-embedding [39]). Let 𝐾 be a positive definite shift-invariant kernel 𝐾(𝒖, 𝒗) = 𝐾(𝒖 − 𝒗). Consider 
the Fourier transform 𝑝𝐾,𝜶 = ̂ [𝐾] of the kernel 𝐾 , resulting a probability density function (pdf) 𝑝𝐾,𝜶 in the frequency space 𝖠: 𝑝𝐾,𝜶(𝛼) =
1
2𝜋 ∫ 𝑒𝑗𝛼Δ𝐾(Δ)𝑑Δ, and draw 𝑁 i.i.d. samples weights 𝜶1, … , 𝜶𝑁 ∈ℝ𝑑 from 𝑝𝐾,𝜶 . Define

𝝓𝑁 (𝒖;𝜶) ≡
√

1
𝑁

[cos(𝜶𝑇
1 𝒖),… , cos(𝜶𝑇

𝑛
𝒖), sin(𝜶𝑇

1 𝒖),… , sin(𝜶𝑇
𝑛
𝒖)]. (22)
6

Then, ∀𝜖 > 0
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ℙ
[
(1 − 𝜖)𝐾(𝒖,𝒗) ≤ 𝝓𝑁 (𝒖)𝑇𝝓𝑁 (𝒗) ≤ (1 + 𝜖)𝐾(𝒖,𝒗)

] ≥ 1 −𝑂

(
exp

(
− 𝑁𝜖2

4(𝑑 + 2)

))
, (23)

where ℙ stands for the probability function.

The above approach for the kernel approximation, employing trigonometric activation functions, is also known as Random Fourier 
Features (RFFN). An equivalent result can be obtained by employing only cosine as the activation function and random biases in [0, 2𝜋]
[39]. More generally, there is no constraint in considering trigonometric activation functions, as sigmoid and radial basis functions 
have equivalently shown remarkable results [4,6,65,7,8,20,13]. Here we restate, the following theorem [41,40]:

Theorem 3.4. (cf. Theorem 3.1 and 3.2 in [40])) Consider the parametric set activation functions on 𝖷 ⊆ ℝ𝑑 , 𝜓(𝒙; 𝜶) ∶ 𝖷 × 𝖠 → ℝ
parametrized by random variables 𝜶 in 𝖠, that satisfy sup𝒙,𝜶 |𝜙(𝒙, 𝜶)| ≤ 1. Let 𝑝 be a probability distribution on 𝖠 and 𝜇 be a probability 
measure on 𝖷 and the corresponding norm ‖𝑓‖𝐿2(𝜇) = ∫𝖷 𝑓 (𝒙)2𝜇(𝑑𝒙). Define the set:

𝖦𝑝 ≡
{
𝑔(𝒙) = ∫

𝖠

𝑤(𝜶)𝜙(𝒙;𝜶)𝑑𝜶 ∶ ‖𝑔‖𝑝(𝜶) <∞
}
, ‖𝑔‖𝑝 ∶= sup

𝜶∈𝖠
‖𝑤(𝜶)∕𝑝(𝜶)‖. (24)

Fix a function 𝑔∗ in 𝖦𝑝. Then, for any 𝛿 > 0, there exist 𝑁 ∈ ℕ, and 𝜶1, 𝜶2, … , 𝜶𝑁 of 𝜶 drawn i.i.d. from 𝑝, and a function �̂� in the random 
set of finite sums

�̂�𝜶 ≡
{
�̂� ∶ �̂�(𝒙) =

𝑁∑
𝑗=1

𝑤𝑗𝜙(𝒙;𝜶𝑗 )
}

(25)

such that√√√√∫
𝖷

(𝑔∗(𝒙) − �̂�(𝒙))2𝑑𝝁(𝒙) ≤ ||𝑔∗||𝑝√
𝑁

(
1 +

√
2 log 1

𝛿

)
, (26)

holds with probability at least 1 − 𝛿. Moreover, if 𝜙(𝒙; 𝜶) = 𝜑(𝜶 ⋅ 𝒙), for a 𝐿-Lipschitz function 𝜓 , the above approximation is uniform (i.e. 
in the supremum norm).

The above Theorem implies that the function class 𝐺𝑝 can be approximated to any accuracy when 𝑁 →∞. Moreover (see [40]) 
this class of functions is dense in Reproducing Kernel Hilbert Spaces defined by 𝜙 and 𝑝. For a detailed discussion on the pros and cons 
of function approximation with such random bases see [42]. Finally, very recently, Fabiani (2024) [65] have theoretically proved 
the existence and uniqueness of RP-FNN of the best approximation and their exponential convergence rate when approximating low-

dimensional infinitely differentiable functions. These theoretical results are also numerically validated through extensive benchmarks 
in [65]. This showcases a concrete possibility of bridging the gap between theory and practice in ANN-based approximation [69,65].

3.3. Random projection-based operator networks (RandONets)

In this section, we present RandONets for approximating nonlinear operators. Building on previous works, we first demonstrate that 
the proposed shallow–single hidden layer–random projection neural networks are universal approximators of non-linear operators. 
Then we discuss how RandONets can be used in both the aligned and unaligned data cases, and finally present their numerical 
implementation for the solution of the inverse problem: the approximation of the differential operator, i.e., the RHS of the differential 
equations as well as their solution operator.

3.3.1. RandONets as universal approximators of nonlinear operators

In this section, we prove that RandONets are universal approximators of nonlinear operators. Following the methodological thread 
in [27], we first state the following proposition:

Proposition 1. Let 𝖪 ⊂ ℝ𝑑 compact and 𝖴 ⊂ 𝖢(𝖪) compact and consider a parametric family of random activation functions {𝜓(𝒙; 𝜶) ∶
𝒙 ∈ℝ𝑑 , 𝜶 ∈ 𝖠}, where 𝜶 ∈ 𝖠 is a vector of randomly chosen (hyper) parameters, and assume that 𝜓 are uniformly bounded in ℝ𝑑 ×𝖠. Let 
𝑝 be a probability distribution on 𝖠. Given any 𝜖, there exists a 𝑁 ∈ℕ and i.i.d. sample 𝜶1, ⋯ , 𝜶𝑁 from 𝑝, chosen independently of 𝑓 , such 
that for every 𝑓 ∈ 𝖴 the random approximation

𝑓𝜖(𝒙) =
𝑁∑
𝑗=1

𝑐𝑗 [𝑓 ]𝜓(𝒙;𝜶𝑗 ), (27)

approximates 𝑓 in the sense that with high probability

‖𝑓 − 𝑓𝜖‖𝐿2(𝜇) < 𝜖, (28)

for a suitable probability measure 𝜇 over 𝖪. Moreover, if 𝜓(𝒙; 𝜶) = 𝜑(𝜶 ⋅𝒙), for a 𝐿-Lipschitz function 𝜓 , the above approximation is uniform 
7

(i.e. in the supremum norm).
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Proof. We only show the uniform approximation result. The 𝐿2(𝜇) approximation follows similar arguments.

We apply Theorem 3 in [27]. Given a continuous sigmoidal (non-polynomial) function 𝜎, for every 𝜖 > 0, there exist 𝑁 ∈ ℕ, 
(�̂�𝑖, 𝝎𝑖) ∈ℝ ×ℝ𝑑 , 𝑖 = 1, ⋯ , 𝑁 such that for every 𝑓 ∈ 𝖴 ⊂ 𝖢(𝖪), there exists a linear continuous functional on 𝑈 , 𝑓 ↦ 𝑐𝑖[𝑓 ], with the 
property that

|𝑓 (𝒙) − 𝑁∑
𝑖=1

𝑐𝑖[𝑓 ]𝜎(𝝎𝑖 ⋅ 𝒙+ �̂�𝑖)| < 𝜖, ∀𝒙 ∈𝐾. (29)

This approximation is deterministic. Note that even though according to Theorem 3 [27] this approximation holds for any Tauber-

Wiener function (i.e. even for non-continuous 𝜎) here we must insist on the continuity of 𝜎.

In the above, we obtain a uniform approximation 𝑓𝜖 to 𝑓 in terms of

𝑓𝜖(𝒙) =
𝑁∑
𝑖=1

𝑐𝑖[𝑓 ]𝜎(𝝎𝑖 ⋅ 𝒙+ �̂�𝑖) (30)

We emphasize that 𝜎 is chosen to be a continuous and bounded sigmoidal function. Note that the choice of 𝑁 , (𝜃𝑖, 𝜔𝑖), are independent 
of 𝑓 , while the coefficients 𝑐𝑖[𝑓 ] depend on 𝑓 and in fact 𝑓 ↦ 𝑐𝑖[𝑓 ] is a linear continuous functional on 𝑈 .

To connect with the random features approach of Rahimi and Rechts we first employ an expansion of each sigmoid in (29) in 
terms of a radial basis function (RBF) (which is eligible to a random features expansion a la Rahimi and Rechts) and then follow with 
the expansion of the RBFs in random features. We follow the subsequent steps:

(a) For each 𝑖 = 1, ⋯ , 𝑁 , we consider the function 𝜙𝑖, defined by 𝖪 ∋ 𝒙↦ 𝜙𝑖(𝒙; 𝝎𝑖, �̂�𝑖) ∶= 𝜎(𝝎𝑖 ⋅𝒙+ �̂�𝑖). By the properties of 𝜎, the 
functions 𝜙𝑖 ∈ 𝖢(𝖪). Hence, we may apply the approximation of each 𝜙𝑖 in terms of an RBF neural network. Using standard results 
(e.g. Theorem 3 [70]) we have that if 𝑔 ∈ 𝖢(ℝ𝑑 ) is a bounded radial basis function  ∶= span{𝑔(𝑎𝒙 + 𝒃) ∶ 𝑎 ∈ℝ, 𝒃 ∈ℝ𝑑} is dense 
in 𝖢(𝖪). Note that without loss of generality we may impose the extra assumption that 𝑔 can be expressed in terms of the inverse 
Fourier transform of some function (i.e. an element of a function space on which the Fourier transform is surjective, for example, 
𝑔 belongs in the Schwartz space). This assumption also allows us to invoke the standard results of [71], [72] leading to the same 
density result). Note that this step does not affect the generality of our results, as it is only used in the intermediate step (a) which 
re-expands the general sigmoids used in (29) into a more convenient basis on which the step (b) is applicable. Moreover, the choice 
of 𝑔 is not unique.

Using the above result, we can approximate each 𝜙𝑖 in terms of the functions

𝜙𝑖,𝜖(𝒙) =
𝑀𝑖∑
𝑗=1

𝑤𝑖𝑗𝑔(𝑎𝑖𝑗𝒙+ 𝒃𝑖𝑗 ), (31)

where importantly, the (𝑤𝑖𝑗 , 𝑎𝑖𝑗 , 𝒃𝑖𝑗 ) ∈ℝ ×ℝ ×ℝ𝑑 are independent of the choice of the function 𝑓 (as they only depend on (𝝎𝑖, �̂�𝑖) ∈
ℝ𝑑 ×ℝ, which are independent of 𝑓 – see (29)). The function 𝜙𝑖,𝜖 satisfies the property ‖𝜙𝑖 −𝜓𝑖,𝜖‖ < 𝜖

𝑁
, in the uniform norm ∀𝜖 > 0. 

Combining (29) (and (30)) with (31), we obtain an approximation 𝑓𝑅𝐵𝐹
𝜖

to 𝑓𝜖 in terms of

𝑓𝑅𝐵𝐹
𝜖

(𝒙) =
𝑁∑
𝑖=1

𝑀𝑖∑
𝑗=1

𝑐𝑖[𝑓 ]𝑤𝑖𝑗𝑔(𝑎𝑖𝑗𝒙+ 𝒃𝑖𝑗 ), (32)

such that ‖𝑓𝜖 − 𝑓𝑅𝐵𝐹
𝜖

‖ < 𝜖, hence satisfying by (29) that ‖𝑓 − 𝑓𝑅𝐵𝐹
𝜖

‖ < 2𝜖 (in the uniform norm).

(b) Now, by appropriate choice of the RBF function 𝑔 we apply Rahimi and Recht for a further expansion of each term 𝑔(𝑎𝑖𝑗𝒙+𝒃𝑖𝑗 ), 
using the random features RPNN. By the choice of 𝑔 as above, this is now possible, and the results of Rahimi and Recht [40]

(Theorem 3.4), are now applicable to 𝑔. This holds, since RBFs can be elements of the RKHS that the Rahimi and Recht framework 
applies to, i.e., they belong to the space of functions 𝖦𝑝, defined in (24). For such a choice Theorem 3.1 in [40] can be directly applied 
to each of the RBF 𝑔 in the function (32). Under the extra assumption that 𝜙(𝒙; 𝜶) = 𝜑(𝜶 ⋅ 𝒙), for 𝜑 L-Lipschitz (which without loss 
of generality can be shifted so that 𝜑(0) = 0 and scaled so that sup |𝜑| ≤ 1), we can also apply Theorem 3.2 [40] for a corresponding 
uniform approximation. We only present the second case, the first one being similar. There are two equivalent ways to proceed.

b1) Using Theorem 3.2 [40], for an 𝐿-Lipschitz 𝜑 as defined above, for any 𝛿 > 0 there exists a random function 𝑔𝛿 of the form

𝑔𝛿(𝒙) =
𝐾∑
𝑘=1

𝑐𝑘𝜑(𝜶𝑘 ⋅ 𝒙), (33)

where 𝜶𝑘 is i.i.d. randomly sampled from a chosen distribution 𝑝, which approximates 𝜖(𝛿) close 𝑔 with probability at least 1 − 𝛿.

Using (33) into (32) we obtain

𝑓𝜖,𝛿(𝒙) =
𝑁∑
𝑖=1

𝑀𝑖∑
𝑗=1

𝐾∑
𝑘=1

𝑐𝑖[𝑓 ]𝑤𝑖𝑗𝑐𝑘𝜑(𝜶𝑘 ⋅ (𝑎𝑖𝑗𝒙+ 𝒃𝑖𝑗 )), (34)
8

which if 𝛿 is chosen such that 𝜖(𝛿) < 𝜖

𝑁𝑀
satisfies ‖𝑓𝑅𝐵𝐹 − 𝑓𝜖,𝛿‖ < 𝜖, hence, ‖𝑓 − 𝑓𝜖,𝛿‖ < 3𝜖.
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Using a resummation of (34) in terms of a single summation index 𝓁 we end up with an approximation 𝑓𝜖,𝛿 for 𝑓 in the form

𝑓𝜖,𝛿(𝒙) =
�̂�∑
𝓁=1

�̂�𝓁[𝑓 ]𝜑(𝜶𝓁 ⋅ (𝑎𝓁𝒙+ 𝒃𝓁)), (35)

where �̂�𝓁[𝑓 ] = 𝑐𝑖[𝑓 ]𝑤𝑖𝑗𝑐𝑘 are continuous functionals on 𝖴. Hemce, we obtain an approximation in terms of shifted and re-scaled 
𝐿-Lipschitz random feature functions.

b2) One possible drawback of this expansion is that – see (34) – it depends both on the 𝑎𝑗 , 𝒃𝑗 and the 𝜶𝑘 and not on the 𝜶𝑘 only. 
An alternative could be to expand each one of the 𝑔𝑗 (𝒙) ∶= 𝑔(𝛼𝑗𝒙+ 𝒃𝑗 ) separately. If it holds that 𝑔𝑗 ∈  for each 𝑗 then

𝑔𝑗 (𝒙) =
𝐾∑
𝑘=1

𝑐𝑗𝑘𝜑(𝜶
(𝑗)
𝑘

⋅ 𝒙), 𝑗 = 1,⋯ ,𝑀, (36)

where 𝜶(𝑗) ∶= {𝜶(𝑗)
𝑘
, ∶ 𝑘 = 1, ⋯ , 𝐾} ∼𝑖.𝑖.𝑑 𝑝 for each 𝑗 = 1, ⋯ , 𝑀 and with the �̂�(𝑗) for different 𝑗 being independent. When using this 

approach we get the expansion (35) with 𝛼𝑘 i.i.d. from our initial distribution 𝑝. Upon resummation the stated result follows. □

Based on the Proposition 1, we can now prove the following proposition for universal approximation of functional  ∶𝑈 →ℝ in 
terms of the random projection neural network (RPNN):

Proposition 2 (Random Projection Neural Networks (RPNNs) for functionals). Adopting the framework from Proposition 1, and additionally, 
let 𝖴 be a compact subset of 𝖢(𝖪) and  be a continuous functional in 𝑈 . Let us define the compact set 𝖴𝑚 ⊆ℝ𝑑 of vectors, whose elements 
consist of the values of the function 𝑢 ∈ 𝖴 on a finite set of 𝑚 grid points 𝒙1, … , 𝒙𝑚 ∈ℝ𝑑 and denote the vector 𝒖 ∶= [𝑢(𝒙1), … , 𝑢(𝒙𝑚)] ∈ℝ𝑚.

Then, with high probability, w.r.t. 𝑝, for any 𝜖 > 0, there exist 𝑀, 𝑚 ∈ℕ, 𝜶1, … , 𝜶𝑀 ∈ 𝖠, i.i.d. distributed from 𝑝, such that:‖‖‖‖‖‖ (𝑢) −
𝑀∑
𝑖=1

𝑤𝑖𝜑
(
𝜶𝑖 ⋅ 𝒖(𝒙)

)‖‖‖‖‖‖∞ < 𝜖, ∀𝑢 ∈ 𝖴. (37)

Proof. The representation of the function 𝑢 ∈ 𝖴 through a finite set of 𝑚 evaluations 𝑢(𝒙𝑗 ) is possible by the Tietze Extension Theorem 
for functionals from the set 𝖴𝑚 to 𝖴 (see [27] for more details). Then the proof comes directly from Proposition 1. □

Finally, using the above ideas and results and possibly allowing for different random embeddings for the branch and trunk 
networks, we can prove the following theorem:

Theorem 3.5 (RandONets universal approximation for operators). Adopting the framework of Propositions 1, 2 and the notation of Theo-

rem 3.2, and additionally, let: 𝖷 be a Banach Space, and 𝖪1 ⊂𝖷, 𝖪2 ⊂ℝ𝑑 , 𝖴 ⊂ 𝐶(𝖪1) be compact sets, and  ∶ 𝖴 →𝖢(𝖪2) be a continuous 
(in the general case nonlinear) operator. Then, with high probability w.r.t. 𝑝, for any 𝜖 > 0, there exist positive integers 𝑀, 𝑁, 𝑚 ∈ ℕ, and 
network (hyper)parameters 𝜶𝑏𝑟,𝑡𝑟

1 , … , 𝜶𝑏𝑟,𝑡𝑟

𝑁
∈ 𝖠𝑏𝑟,𝑡𝑟, i.i.d. distributed from 𝑝𝜶 such that:‖‖‖‖‖‖ (𝑢)(𝒚) −

𝑁∑
𝑘=1

𝑀∑
𝑖=1

𝑤𝑘𝑖𝜑
𝑏𝑟
(
𝜶𝑏𝑟
𝑖
⋅ 𝒖(𝒙)

)
𝜑𝑡𝑟(𝜶𝑡𝑟

𝑘
⋅ 𝒚)

‖‖‖‖‖‖∞ < 𝜖, ∀𝑢 ∈ 𝖴,𝒚 ∈ 𝖪2, (38)

where the superscripts 𝑏𝑟, 𝑡𝑟 correspond to branch and trunk networks and can be chosen in generally independently.

Proof. From the Proposition 1, we have that with high probability, for any 𝜖1 > 0, there are 𝑁 ∈ ℕ, �̃�𝑘[ [𝑢]] and 𝜶𝑡𝑟
𝑘
∈ 𝖠𝑡𝑟, such 

that ‖‖‖‖‖‖ (𝑢)(𝒚) −
𝑁∑
𝑘=1

�̃�𝑘[ [𝑢]]𝜑𝑡𝑟(𝜶𝑡𝑟 ⋅ 𝒚)
‖‖‖‖‖‖∞ < 𝜖1. (39)

Moreover, from Proposition 1, we have that for any 𝑘 = 1, … , 𝑁 , �̃�𝑘[ [𝑢]] is a continuous functional on 𝖴. We can therefore repeatedly 
apply Proposition 2, for each 𝑘, and obtain approximations of each functional �̃�𝑘[ [𝑢]] on 𝖴𝑚. Thus, with high probability, for any 
𝜖2 > 0 there exist 𝑚, 𝑀 ∈ℕ, 𝑤𝑘𝑖, 𝜶𝑏𝑟

𝑖
∈ 𝖠𝑏𝑟, such that:

‖‖‖‖�̃�𝑘[ [𝑢]] −
𝑀∑
𝑖=1

𝑤𝑖𝑘𝜑
𝑏𝑟
(
𝜶𝑏𝑟
𝑖
⋅ 𝒖(𝒙)

)‖‖‖‖∞ < 𝜖2. (40)

Combining (39) and (40) we obtain Eq. (38). This completes the proof. □

3.3.2. Implementation of RandONets

In this section, we present the architecture of RandONets, depicted in Fig. 1. As in Theorem 3.2, we use two single-hidden-layer 
9

FNNs with appropriate random bases as activation functions. We employ (nonlinear) random based projections for embedding, in the 
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Fig. 1. Schematic of the random projection-based operator network (RandONet). The RandONets first discretizes the input function (𝑢) over a fixed grid of spatial 
points. Then it separately embeds the space of the spatial locations (𝒚) into a random hidden layer (e.g., with sigmoidal activations functions) and the space of the 
discretized functions into low-distortion kernel-embedding (e.g., with Johnson-Lindenstrauss random projections [38] or Rahimi and Recht Random Fourier Features 
[39]). Finally, the output is composed of a weighted (𝑊 ) inner product of the branch (𝐵) and trunk (𝑇 ) features. The training can be performed through linear 
least-squares techniques (e.g., Tikhonov regularization, SVD and QR decomposition).

two separate hidden layer features, both the (high-dimensional) space of the discretized function (𝑢) and the domain (low-dimensional) 
of spatial locations (𝒚) of the transformed output (𝑣(𝒚) =  [𝑢](𝒚)).

Specifically, we propose leveraging nonlinear random projections to embed the space of spatial locations efficiently, employing 
parsimoniously chosen random bases. Thus, the random projected-based trunk feature vector 𝑻 = (𝑇1, … , 𝑇𝑁 ), as denoted in Eq. (7), 
can be re-written as:

𝑻 =𝝋𝑡𝑟
𝑛
(𝒚;𝜶𝑡𝑟) = [𝜑(𝒚 ⋅ 𝜶𝑡𝑟

1 + 𝑏1),… , 𝜑(𝒚 ⋅ 𝜶𝑡𝑟
𝑁
+ 𝑏𝑁 )], (41)

where 𝜶𝑡𝑟
𝑘
∈ℝ𝑑 , 𝑏𝑘, 𝑗 = 1, … , 𝑁 are i.i.d. randomly sampled from a continuous probability distribution function.

Here, when the domain of  [𝑢] is a one-dimensional interval [𝑎, 𝑏] ⊆ℝ, we select the activation function 𝜑 of the trunk network 
to be the hyperbolic tangent, and we utilize a parsimonious function-agnostic randomization of the weights as explained in [65,4,6]. 
In particular, the weights 𝜶𝑡𝑟

𝑗
are uniformly distributed as  [−𝑎𝑈 , 𝑎𝑈 ]. The bounds 𝑎𝑈 , of the uniform distributions, have been 

optimized in [65,4,6]. For the branch network, we have implemented two types of embeddings:

• Linear random Johnson-Lindenstrauss (JL) embeddings [38], in which case, we denote the branch feature vector 𝑩 = (𝐵1, … , 𝐵𝑀 )
as:

𝑩 = 𝝓𝑏𝑟
𝑀
(𝑼 ) = 𝝓𝐽𝐿

𝑀
(𝑼 ) = 1√

𝑀
𝑅𝑼 , (42)

where 𝑅 is a matrix with elements that are sampled from a standard Gaussian distribution and 𝑼 is the vector of function 
evaluation in the input grid.

• Nonlinear random embeddings [40]. Here, for our illustrations, we use a random Fourier feature network (RFFN) [39], as 
embedding of the functional space:

𝑩 =𝝋𝑏𝑟
𝑀
(𝑼 ;𝜶𝑏𝑟) =𝝋𝑅𝐹𝐹𝑁

𝑀
(𝑼 ;𝜶𝑏𝑟,𝒃𝑏𝑟) =

= 1
𝑚

√
2
𝑀

[cos(𝜶𝑏𝑟
1 ⋅𝑼 + 𝑏𝑏𝑟1 ),… , cos(𝜶𝑏𝑟

𝑀
⋅𝑼 + 𝑏𝑏𝑟

𝑀
)],

(43)

where we have two vectors of random variables 𝜶𝑏𝑟 and 𝒃𝑏𝑟, from which we sample 𝑀 realizations. The weights 𝜶𝑏𝑟
𝑖

are i.i.d. 
sampled from a standard Gaussian distribution, and the biases 𝒃𝑏𝑟

𝑖
are uniformly distributed in  [0, 2𝜋]. This explicit random 

lifting has a low distortion for a Gaussian shift-invariant kernel distance.

The training of RandONets reduces to the solution of a linear least-squares problem in the unknowns 𝑊 , i.e., the external weights 
of the weighted inner product as in Eq. (8). In what follows, before presenting the numerical implementation, we first present the 
treatment of aligned and unaligned data. The aligned data case refers to datasets where the training pairs are consistently organized, 
say in a grid, facilitating the learning process. In such scenarios, the network can more effectively learn the underlying nonlinear 
operator mappings due to the structured form of the data. On the other hand, training for unaligned data presents challenges compared 
to the aligned data case. In such scenarios, where the input and output pairs are not consistently organized, the network must learn 
10

to identify and map the complex relationships between disjoint datasets. This lack of alignment can make it more difficult for the 
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network to capture the underlying nonlinear operator mappings accurately. In general, achieving high accuracy in this context often 
demands greater computational resources and more extensive hyperparameter tuning to ensure the network converges to an optimal 
solution.

RandONets for aligned data Let us assume that the training dataset consists of 𝑠 sampled input functions at 𝑚 collocation/grid points. 
Thus, the input is included in a matrix 𝑈 ∈ℝ𝑚×𝑠. Let us also assume that the output function can be evaluated on a fixed grid of 𝑛
points 𝒚𝑘 ∈ℝ𝑑 , which are stored in a matrix 𝑌 ∈ℝ𝑛×𝑑 (row-vector); 𝑑 is the dimension of the domain. In this case, we assume that 
for each input function 𝑢, we have function evaluations 𝑣 at the grid 𝑌 stored in matrix 𝑉 =  [𝑈 ] ∈ℝ𝑛×𝑠.

While this assumption may appear restrictive at a first glance (as for example some values in the matrix 𝑉 could be missing, or 𝑌
can be nonuniform, and may change in time), nonetheless, for many problems in dynamical systems and numerical analysis, such as 
the numerical solution of PDEs, entails employing a fixed grid where the solution is sought. This is clearly the case in methods like 
Finite Difference or Finite Elements-based numerical schemes without mesh adaptation. Additionally, even in cases where the grid is 
random or adaptive, there is still the opportunity to construct a “regular” output matrix 𝑉 through “routine” numerical interpolation 
of outputs on a fixed regular grid. Now, given that the data are aligned, following Eq. (8), we can solve the following linear system 
(double-sided) of 𝑛 × 𝑠 algebraic equations in 𝑁 ×𝑀 unknowns:

𝑉 =  [𝑈 ] =𝝋𝑡𝑟
𝑛
(𝑌 ;𝜶𝑡𝑟)𝑊 𝝋𝑏𝑟

𝑚
(𝑈 ;𝜶𝑏𝑟) = 𝑇 (𝑌 )𝑊 𝐵(𝑈 ). (44)

Let us observe that –differently from a classical system of equations (e.g., 𝐴𝑥 = 𝑏), here we have two matrices from the trunk and the 
branch features, that multiply the readout weights 𝑊 on both sides.

Although the number of unknowns and equations appears large due to the product, the convenient alignment of the data allows 
for effective operations that involve separate and independent (pseudo-) inversion of the trunk/branch matrices 𝑇 (𝑌 ) ∈ ℝ𝑛×𝑁 and 
𝐵(𝑈 ) ∈ℝ𝑀×𝑠. Thus, the solution weights of Eq. (44), can be found by employing methods such as the Tikhonov regularization [73], 
truncated singular value decomposition (SVD), QR/LQ decomposition and Complete Orthogonal Decomposition (COD) [74] of the 
two matrices, as we will detail later, obtaining:

𝑊 =
(
𝑇 (𝑌 )

)†
𝑉
(
𝐵(𝑈 )

)†
. (45)

As one might expect, the trunk matrix typically features smaller dimensions compared to the branch matrix. This is because the 
branch matrix may involve numerous samples 𝑠 of functions (usually exceeding the number 𝑛 of points in the output grid), along 
with a higher number of neurons 𝑀 required to represent the high-dimensional function input, as opposed to the 𝑁 neurons of the 
RP-FNN trunk which embeds the input space. At the end, the computational cost associated with the training (i.e., the solution of the 
linear least-squares problem) of RandONets is of the order 𝑂(𝑀2𝑠 + 𝑠2𝑀). Here, we use the COD algorithm [74] for the inversion of 
both 𝑇 and 𝐵 matrices (for a comparison of truncated SVD and COD algorithms for RP-FNN training see in [65]).

RandONets for unaligned data In contrast to the aligned data, the output 𝑉 cannot be usually stored in a matrix, but we have to 
consider a (long) vector. To address learning with unaligned data, it is sufficient to assume that for each input function 𝑢, the output 
𝑣(𝒚) is available at a single random location in the output domain. This encompasses scenarios with a sparse random grid, where each 
output in the grid is treated separately, yet necessitating the introduction of multiple copies of the function 𝑢. Thus, let us assume we 
have stored the input functions in a matrix 𝑈 ∈ℝ𝑚×𝑆 and a vector of outputs 𝑉 ∈ℝ1×𝑆 .

Here, 𝑆 ∈ ℕ denotes both the total number of output functions and the total number of input functions. Unlike the aligned case, 
we store the random points for each input in the matrix 𝑌 ∈ℝ𝑑×𝑆 , where 𝑑 now represents the columns instead of the rows, and 𝑆
reflect the total number of (single) random locations where the individual outputs are sought.

Now, returning to Eq. (8), we notice that with the current format of inputs (both column-wise), we can express the output using 
the Hadamard (Shur) product (⊗):

𝑉 =
𝑁∑
𝑘=1

𝑀∑
𝑖=1

𝑤𝑘𝑖𝑇𝑘(𝑌 )𝐵𝑖(𝑈 ) =
𝑛∑

𝑘=1
𝑇𝑘(𝑌 )⊗𝒘𝑘 𝐵(𝑈 ), (46)

where 𝒘𝑘 are the rows of the matrix 𝑊 . This corresponds to the original formulation of the DeepONet by Lu et al. (2021) [10], where 
instead of considering the merging of the branch and trunk networks as a weighted inner product, the focus is on the individual output 
at a single location, rather than treating the output as an entire transformed function. In this scenario, to solve the linear least-squares 
problem in terms of the 𝑁 ×𝑀 unknown weights 𝑊 , we need to reshape the matrix 𝑊 into a row vector 𝝎, where the elements 
𝜔𝑞 =𝑤𝑘𝑖, with 𝑞 = 𝑘 + (𝑖 − 1)𝑛. Then we construct the full collocation matrix 𝑍 ∈ℝ𝑁𝑀×𝑆 , such that the rows 𝒛𝑞 are obtained as:

𝒛𝑞 = 𝑇𝑘 ⊗𝐵𝑖, 𝑞 = 𝑘+ (𝑖− 1)𝑁. (47)

Note that the Hadamard product 𝑇𝑘 ⊗𝐵𝑖 is possible as both lie in ℝ𝑆 .

At this point, the weights 𝝎 can be computed, through a (pseudo-) inversion of the matrix 𝑍 , in analogy to what was detailed in 
section 3.2, resulting in:
11

𝝎 = 𝑌 𝑍†. (48)
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We note that the total number 𝑆 of single outputs can be viewed as proportional to the product of 𝑠 (the number of different input 
functions) and 𝑁 (the number of points in the output grid), as explained in the aligned case. In particular, employing an unaligned 
training algorithm for aligned data (by augmenting the input function with copies and reshaping the output) will result exactly in 
𝑆 =𝑁𝑠. Now, the pseudo-inversion of the matrix 𝑍 will result in a computational cost of the order 𝑂

(
(𝑁𝑠)2𝑀𝑁 + (𝑀𝑁)2𝑁𝑠

)
, 

which is significantly higher. For instance, in the case the values of 𝑀 , 𝑠 are similar/proportional to 𝑁 , we obtain a transition, in 
terms of computational complexity, from an order 𝑂(𝑁3) for the aligned case to an order 𝑂(𝑁6) for the unaligned case.

To this end, we argue that the unaligned approach described here should only be considered if the output data display substantial 
sparsity, suggesting that the random output grid does not adequately represent the output function. Conversely, we advocate for 
prioritizing the aligned approach in other scenarios. Even if it entails performing interpolation on a fixed grid to generate new 
aligned output data.

Numerical implementation of the training of RandONets Below, we provide more details on the training process of RandONets. From 
a numerical point of view, the resulting random trunk 𝑇 (𝑌 ) and branch 𝐵(𝑈 ) matrices, tend to be ill-conditioned. Therefore, in 
practice, we suggest solving Eq. (44) as described in 3.2 via a truncated SVD (tSVD), Tikhonov regularization, QR decomposition or 
regularized Complete Orthogonal decomposition (COD) [74,65]. Here, we describe the procedure for the branch network. For the 
trunk matrix, the procedure is similar.

The regularized pseudo-inverse (𝐵(𝑈 ))†, for the solution of the problem in Eq. (45) is computed as:

𝐵(𝑈 ) =𝑈Σ𝑉 𝑇 = [𝑈𝑟 �̃� ]
[
Σ𝑘 0
0 Σ̃

]
[𝑉𝑘 𝑉 ]𝑇 , (𝐵(𝑈 ))† = 𝑉𝑘Σ−1

𝑘
𝑈𝑇
𝑟
, (49)

where the matrices 𝑈 = [𝑈𝑘 �̃� ] ∈ℝ𝑘×𝑛 ⊕ℝ(𝑛−𝑘)×𝑛 and 𝑉 = [𝑉𝑘 𝑉 ] ∈ ℝ𝑘×𝑠 ⊕ℝ(𝑠−𝑘)×𝑠 are orthogonal and Σ ∈ ℝ𝑛×𝑠 is a diagonal 
matrix containing the singular values 𝜎𝑖 = Σ(𝑖,𝑖). Here, we select the 𝑘 largest singular values exceeding a specified tolerance 0 < 𝜖 ≪ 1, 
i.e., 𝜎1, … , 𝜎𝑘 > 𝜖, effectively filtering out insignificant contributions and improving numerical stability.

Alternatively, a more robust method that further enhances numerical stability, involves utilizing a rank-revealing LQ decomposi-

tion (transposition of the QR decomposition, which can be used for the trunk matrix 𝑇 (𝑌 )) with column-pivoting:

𝑃 𝐵(𝑈 ) = [𝐿 0]
[
𝑄1
𝑄2

]
, (50)

where (e.g., if 𝑛 > 𝑠) the matrix 𝑄 = [𝑄1 𝑄2] ∈ℝ𝑠×𝑛 ⊕ℝ(𝑛−𝑠)×𝑛 is orthogonal, 𝐿 ∈ℝ𝑠×𝑠 is a lower triangular square matrix and the 
matrix 𝑃 ∈ ℝ𝑛×𝑛 is an orthogonal permutation of the columns. The key advantage of the column permutations lies in its ability to 
automatically identify and discard small values that contribute to instability. Indeed, in case of ill-conditioned matrices, we have that 
effectively the rows of the matrix 𝑄 do not span the same space as the rows of the matrix 𝐵(𝑈 ). As a result, the matrix 𝐿 is not full 
lower triangular, but we have:

𝐵(𝑈 ) = 𝑃𝑇

[
𝐿11 0
𝐿21 0

][
𝑄1
𝑄2

]
, (51)

where, if 𝑟𝑎𝑛𝑘(𝐵(𝑈 )) = 𝑟 < 𝑛, the matrix 𝐿11 ∈ℝ𝑟×𝑟 is effectively lower triangular and 𝐿21 ∈ℝ(𝑠−𝑟)×𝑟 are the remaining rows. Note that 
numerically, one selects a tolerance 0 < 𝜖 << 1 to estimate the rank 𝑟 of the matrix 𝐵(𝑈 ) and set values of 𝐵(𝑈 ) below the threshold to 
zero. Then, to find the pseudo inverse of the branch matrix, we can additionally use the Complete Orthogonal Decomposition (COD) 
[74], by also computing the LQ decomposition of the transposed non-zero elements in 𝐿 (for the trunk matrix this will correspond 
to a second QR decomposition):

[𝐿𝑇
11 𝐿𝑇

21] = [𝑇 𝑇
11 0]𝑉 . (52)

Finally, by setting 𝑆𝑇 = 𝑉 𝑃 , one obtains:

𝐵(𝑈 ) = 𝑆

[
𝑇11 0
0 0

][
𝑄1
𝑄2

]
, (53)

where 𝑇11 is an upper triangular matrix of size 𝑟 × 𝑟. Note that the inversion of the matrix 𝑇11 , can be efficiently computed using the 
back substitution algorithm that is numerically stable.

4. Numerical results

In this section, we present numerical results focusing exclusively on the aligned case within the framework of RandONets. This 
choice stems from (a) the observed superior computational cost of the proposed aligned approach; and (b) the aligned case fits well 
with the nature of the considered PDEs problems in dynamical systems and numerical analysis approaches. For a first proof of concept, 
our investigation encompasses a selection of benchmark problems originally addressed in the paper introducing DeepONet by Lu et 
al. (2021) [10]. Additionally, we focus on other benchmark problems concerning the evolution operator (right-hand-side (RHS)) of 
PDEs. Through these numerical experiments, we aim to demonstrate the effectiveness and versatility of RandONets in tackling a 
12

diverse array of challenging problems in dynamical systems and scientific computing for the solution of the inverse problem.
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In [10], there is a discussion on how to generate the dataset of functions: they compare Gaussian Random Fields and other random 
parametrized orthogonal polynomial sets. Here, we decided to generate the input-output data functions without using precomputed 
datasets. We consider a random parametrized RP-FNN with 200 neurons and Gaussian radial basis functions combined with a few 
additional random polynomial terms.

𝑢(𝑡) =𝒘 exp
(
𝒔(𝑡− 𝒄)2

)
+ 𝑎0 + 𝑎1 𝑡+ 𝑎2 𝑡

2, (54)

where the parameters 𝒘, 𝒔, 𝒄 ∈ℝ200, 𝑎0, 𝑎1, 𝑎2 ∈ℝ are all randomized to generate the dataset of input functions.

In all numerical examples, we select many different realizations of these functions. In some of these, in selecting the training 
datasets, we distinguish the case in which we utilize limited-data for training. In particular, we utilize 15% of the data for the training 
set and 85% for the test set. In the case in which we assume that we have available extensive-data, we utilize 80% of the data for the 
training set and 20% for the test set.

The range of the values of the parameters (𝒘, 𝒔, 𝒄, 𝑎0, 𝑎1, 𝑎2) is detailed for each case study. When possible, the output function 
is computed analytically. Otherwise, a well-established numerical method (with sufficiently small tolerances) is used to compute 
accurate solutions as the “ground truth”. To represent both the input functions 𝑢 and output functions 𝑣, we use an equally spaced grid 
of 100 points in the domains 𝖪1 and 𝖪2 of interest. In particular, in all examples considered here, we take as input, one-dimensional 
domains (intervals in [𝑎, 𝑏]).

Regarding the architecture of the RandONets, as also detailed in Section 3.3.2, we investigate and compare the performance 
of two different RandONets architectures, with two well-established embedding techniques, respectively: linear random Johnson-

Lindenstrauss (JL) embeddings denoted by 𝜙𝐽𝐿
𝑀

(as presented in Eq. (42)) and Random Fourier Feature Network (RFFN) embeddings 
denoted by 𝜙𝑅𝐹𝐹𝑁

𝑀
(as presented in Eq. (43)). These architectures will be subsequently referred to as RandONets-JL and RandONets-

RFFN, respectively. We will explore the impact of varying the number of neurons (𝑀) within the single hidden layer of the branch, 
effectively controlling the dimension of the branch embedding. For both RandONets-JL and RandONets-RFFN, the trunk embedding 
leverages a non-linear RP-FNN architecture denoted by 𝜙𝑡𝑟

𝑁
(as presented in (41)), which utilizes hyperbolic tangent activation 

functions 𝜓 and parsimoniously function-agnostic randomization of the internal weights (as described in [65,6,4]). Throughout the 
experiments, we will maintain a consistent number of neurons (𝑁 = 200) within the trunk’s hidden layer, thus ensuring a fixed size for 
the trunk embedding. It is important to note that the RandONets-JL architecture incorporates a combination of linear and non-linear 
embedding techniques, whereas the RandONets-RFFN architecture is entirely non-linear.

Given the big difference in the computational cost for the inversion of the branch matrix compared to the trunk matrix, we 
decided to fix the number of neurons 𝑁 = 200 in the trunk RP-FNN embedding for both the RandONets-JL and RandONets-RFFN. 
The inversion of the corresponding trunk matrix 𝑇 ∈ ℝ100×200 thus it is, for any practical purposes, relatively negligible. Here, we 
investigate the performance of the scheme for 𝑀 = 10, 20, 40, 80, 100, 150, 300, 500, 1000, 2000 neurons in the branch embedding of 
both RandONets-JL and RandONets-RFFN and the corresponding increment in computational cost.

Metrics To assess the performance of the RandONets, we utilize both the mean squared error (MSE) for the entire test set, as well the 
𝐿2–error for each output-function in the test set. In particular, we report the median 𝐿2 and the percentiles 5% − 95%. Importantly, 
we report the execution time in seconds of the scheme, thus indicating when the computations are performed with GPU or CPU.

Remark on the DeepONet architectures used Given the high-computational cost associated when training DeepONets with the Adaptive 
Moment Estimation (Adam) algorithm, (even if we employ a GPU hardware), we do not focus now on performing a convergence 
diagram of the scheme or finding the best architecture. For our illustrations, we just selected a few configurations. In particular, we 
selected 2 hidden layers for both trunk and branch networks, each layer with a prescribed number 𝑁 = {5, 10, 20, 40} of neurons. 
Also, we employ hyperbolic tangent as activation functions for both branch and trunk networks. We will refer to the performance 
of these vanilla DeepONets in Tables with the notation [𝑁, 𝑁]. We remark that the number of free trainable parameters 𝜁 of such 
DeepONet configurations is 𝑚 × 𝑁 + 3𝑁 ×𝑁 + 5𝑁 , (e.g., 𝑁 = 40, 𝑚 = 100, then 𝜁 = 9000) which is not higher than the biggest 
considered RandONets. Indeed, RandONets have a number of free trainable parameters equal to 𝑁 ×𝑀 (e.g., in the biggest case 
considered here, 𝑁 = 200, 𝑀 = 2000, it corresponds to 𝜁 = 400, 000 parameters). However, as we will show, despite the high number 
of parameters, such RandONets can be trained in around one second. Finally, we also remark that when employing a gradient-descent 
based algorithm, like the Adam one, there is no guarantee of convergence, and the generalization of the network can be moderate. 
We anyway decided to train DeepONet for a fixed number of iterations equal to 20, 000 for ODE benchmarks and to 50, 000 for the 
PDEs.

Remark on the hardware and software used In our experiments, we utilized the DeepONet framework implemented in Python with 
the DeepXde library [2], leveraging TensorFlow as the back-end for computations. These computations are executed on a GPU 
NVIDIA GeForce RTX 2060, harnessing its parallel processing capabilities to expedite training and evaluation. Additionally, we ran 
the Python code on Google Colab using a Tesla K80 GPU, resulting in computational times approximately 6 to 7 times slower than 
those reported in the main text. While we do not include these execution times in the main text, we mention them here as a reference. 
In contrast, the RandONets framework is implemented in MATLAB 2024a and executed on a single CPU of an Intel(R) Core(TM) 
i7-10750H CPU @ 2.60 GHz, with 16 GB of RAM. The code is available at https://github .com /GianlucaFabiani /RandONets.

It is worth noting that while the hardware and software environments for the two frameworks differ significantly, hindering a 
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direct comparison of computational times, we report the computational times for both approaches for transparency. Despite the 

https://github.com/GianlucaFabiani/RandONets
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Fig. 2. Case study 1: antiderivative operator, in Eq. (56). (First row) extensive-data case, 800 training input functions; (Second row) limited-data case, 150 training 
input functions. (a), (d) MSE for the training and test sets, with DeepONets with 2 hidden layers (indicatively) with 40 neurons each, for both the branch and trunk 
networks. (b), (c), (e), (f) MSE and 𝐿2 error, 5% − 95% range and median, of the RandONets, for different size 𝑀 of the branch embedding. The errors are computed 
w.r.t. only the output functions in the test dataset. Comparison of Johnson-Lindenstrauss (JL) branch embedding with random Fourier features (RFFN) embeddings. 
We set the size of the Trunk network to 𝑁 = 200 and the grid of input points to 𝑚 = 100. Numerical approximation accuracy vs. (b)-(e) the number of neurons 𝑀 in 
the hidden layer of the branch network; and (c)-(f) vs. computational times in seconds.

disparity in hardware and software, it is noteworthy that the single CPU utilized is not suitable for the Python code, whereas it proves 
to be efficient for the RandONets implemented in MATLAB. Additionally, while we acknowledge that differences in computational 
times between MATLAB and Python platforms may arise due to a range of factors beyond software differences alone, we believe that 
the reported differences cannot be just explained by the two different software implementations. We provide these computational 
costs as they are observed, recognizing that, while a hand-made MATLAB implementation of DeepONet is feasible, our objective is to 
compare with the professionally implemented and widely used DeepXde library [2] to ensure a reliable comparison.

4.1. Some simple (pedagogical) ODE benchmark problems

We start with some very simple benchmark problems involving non-autonomous ODEs subject to a time dependent source term 
𝑢(𝑡), in the form:

𝑑𝑣

𝑑𝑡
(𝑡) = 𝑓 (𝑡, 𝑣(𝑡)) + 𝑢(𝑡), 𝑡 ∈ [0, 𝑇 ], 𝑣(0) = 𝑣0, (55)

with some forcing time-dependent input function 𝑢(𝑡). The solution function 𝑣(𝑡) depends directly on the forcing term, and the function 
𝑢(𝑡). Thus, there exists an operator that maps 𝑢(𝑡) into 𝑣(𝑡). The task here, different from the one for the PDEs, is to learn the “solution 
operator” for one initial condition. Of course, learning the full solution operator would need a set of different initial conditions as in 
[10] but as mentioned these serve purely for pedagogical purposes. Still, the focus, in this first work, is on the approximation of the 
evolution operators of PDEs; we will present these results in the subsection 4.2.

4.1.1. Case study 1: anti-derivative operator

The first benchmark problem that we consider is the anti-derivative operator [75], thus the solution 𝑣(𝑡) given the function 𝑢(𝑡)
of the following (phase-independent, 𝑓 (𝑡, 𝑣) ≡ 0) ODE problem (see Fig. 2 and Table 1):

𝑑𝑣

𝑑𝑡
(𝑡) = 𝑢(𝑡), 𝑡 ∈ [0, 𝑇 ], 𝑣(0) = 𝑣0, 𝑡 ∈ [0,1], (56)
14

thus learning the linear operator  [𝑢](𝑡) = 𝑣(𝑡). The corresponding analytical anti-derivatives are:
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Table 1

Case study 1: Anti-derivative operator in Eq. (56). We report Mean Squared Error (MSE), percentiles (median, 5%, 95%
of 𝐿2 error across the test set. The extensive-data case comprises 800 training functions, while the limited-data case uses 
150 functions as training. We employed vanilla DeepONets with 2 hidden layers, denoted as [𝑁, 𝑁] neurons, for both 
the branch and the trunk. We set 𝑁 = 5, 10, 20, 40. DeepONets are trained with 20, 000 Adam iterations (with learning 
rate 0.001 and then 0.0001). We report the RandONets encompassing Johnson-Lindenstrauss (JL) Featured branch 
network (with 𝑀 = 100 neurons) as well as the Random Fourier Feature branch Network (RFFN) (with 𝑀 = 2000
neurons).

data ML-model MSE 5% 𝐿2 median–𝐿2 95% 𝐿2 comp. time

80% DeepONet [5,5] 9.83E−01 2.31E+00 6.90E+00 1.80E+01 4.75E+02 (GPU)

DeepONet [10,10] 2.28E−03 2.43E−01 4.37E−01 7.46E−01 4.62E+02 (GPU)

DeepONet [20,20] 4.39E−04 1.26E−01 2.00E−01 2.97E−01 4.79E+02 (GPU)

DeepONet [40,40] 1.22E−04 7.04E−02 1.03E−01 1.60E−01 5.23E+02 (GPU)

RandONets–JL (100) 9.43E−23 4.33E−11 8.01E−11 1.68E−10 1.02E−02 (CPU)

RandONets–RFFN (2000) 8.09E−16 6.81E−08 1.73E−07 5.99E−07 1.96E−01 (CPU)

15% DeepONet [5,5] 8.88E−02 1.08E+00 2.48E+00 5.15E+00 1.05E+02 (GPU)

DeepONet [10,10] 2.99E−03 2.73E−01 4.91E−01 8.51E−01 9.78E+01 (GPU)

DeepONet [20,20] 7.48E−04 1.51E−01 2.54E−01 4.07E−01 1.13E+02 (GPU)

DeepONet [40,40] 1.16E−02 2.57E−01 7.36E−01 2.12E+00 1.24E+02 (GPU)

RandONets–JL (100) 1.66E−21 2.22E−10 3.74E−10 6.11E−10 3.60E−03 (CPU)

RandONets–RFFN (2000) 8.12E−12 8.14E−06 2.03E−05 5.25E−05 1.88E−02 (CPU)

𝑣(𝑡) =𝒘

(
−
√
𝜋erfi

(√
𝒔(𝒄 − 𝑡)

)
∕(2

√
𝒔)
)
+ 𝑎0𝑡+ 𝑎1𝑡

2∕2 + 𝑎2𝑡
3∕3 +𝐶, (57)

where erfi is the error function and 𝐶 is a constant that has to be fit by the initial condition 𝑣(0) = 𝑣0. We select 𝑣0 = 0 and we set 
�̃�(𝑡) = 𝑣(𝑡) − 𝑣(0) as the output function.

The values of the parameters 𝒘, 𝑎0, 𝑎1, 𝑎2 ∼ [−1, 1], 𝒔 ∼ [0, 500] and 𝒄 ∼ [0, 1], of the RP-FNN based function dataset, as in 
Eq. (54), are (element-wise) sampled from the corresponding aforementioned uniform distributions. To generate the data, we used 
1000 random realizations. We considered two different sizes of training sets. In particular, we used 15% for the training and 85% for 
the test set (we remind the reader that we call this limited-data case). As described above, for the extensive data-case we used 80%
for the training and 20% for the test set.

In Fig. 2, we depict the numerical approximation accuracy for the test set in terms of the MSE and percentiles median, 5% − 95%
of 𝐿2–errors. As shown, the training of all RandONets takes approximately less than 1 second and is performed without iterations. 
In Table 1, we summarize the comparison results with the vanilla DeepONet in terms of the best accuracy and best computational 
times. For the RandONets, we used 100 neurons for the JL embedding, and 2000 neurons for the RFFN embedding for the branch 
network. As shown, the JL-based RandONets gets an astonishing almost machine-precision accuracy of 𝑀𝑆𝐸 ≃ 1𝐸-23, 𝐿2 ≃ 1𝐸-11
with just 40 neurons in the branch with a computational time of ≃ 0.01 seconds. Such “perfect” results are due to the simplicity of the 
problem and its linearity. The nonlinear RFFN embedding result in a lower performance with respect to the JL RandONets, for this 
linear problem, obtaining an 𝑀𝑆𝐸 ≃ 1𝐸-16 and a median 𝐿2 ≃ 1𝐸-08, using 2000 neurons in the branch, with a computational time 
of less of the order 0.1 seconds. We employ vanilla DeepONets with two hidden layers, denoted as [𝑁, 𝑁] neurons, in both Trunk 
and Branch. We observe a rather slow convergence in accuracy by increasing the size of the Vanilla DeepONets. However, the vanilla 
DeepONets need many iterations to reach an adequate accuracy. After 20, 000 iterations, the accuracy in the extensive-data case, for 
𝑁 = 40, is around 1𝐸-04 in terms of MSE, but the 𝐿2 error is on the order of 1𝐸-01. In the limited-data case, the vanilla DeepONet, 
with 𝑁 = 40, gives a rather poor performance: the MSE on test data is stuck at 1𝐸-02 thus, overfitting. The corresponding 𝐿2 error is 
on the order of 1. Indeed, the DeepONet with 𝑁 = 20 performs better. We can explain such failure due to difficult dataset considered, 
that needs sufficient input-output functions to be well represented.

Our results for the two hidden layers vanilla DeepONet are in line with the ones presented in [10]. Also, for investigations on 
different architectures one can refer to the same paper. In particular, there, for the vanilla DeepONet with 4 hidden layers and 
[2560, 2560, 2560, 2560] neurons in both trunk and branch, they report an MSE of around 1𝐸-08 after 50, 000 iterations.

As a matter of fact, for this case study, the execution times (training times) for RandONet, utilizing both linear JL and nonlinear 
RP-FNN random embeddings, are 10,000 times faster, while achieving 𝐿2 accuracy that is 6 to 10 orders of magnitude higher.

4.1.2. Case study 2: pendulum with external force

We consider the motion of a simple pendulum, consisting of a point mass suspended from a support by a mass-less string of length 
𝑙 = 1, on which act the gravity force and an additional external force 𝑢(𝑡). The system is described by the following second order ODE:

𝑑2𝑣

𝑑𝑡2
(𝑡) = −𝑘 sin𝑣(𝑡) + 𝑢(𝑡), 𝑡 ∈ [0,1], 𝑣(0) = 0, 𝑣′(0) = 0, (58)

where 𝑣 represents the angle with the vertical, and 𝑘 = 9.81. (See Fig. 3 and Table 2.)

Again, the goal is to learn the operator that maps the input function 𝑢(𝑡) to the output function 𝑣(𝑡).
The values of the parameters, of the RP-FNN based function dataset (see in Eq. (54)), are randomly sampled from uniform distri-

butions as follows: The values of 𝒘, 𝑎0, 𝑎1, 𝑎2 are sampled uniformly in  [−0.05, 0.05], the value of 𝒔 from  [0, 500] and the value 
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of 𝒄 is uniformly sampled from  [0, 1].
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Fig. 3. Case study 2: pendulum with external force, in Eq. (58). (First row) extensive-data case, 2400 training input functions; (Second row) limited-data case, 450
training input functions. (a), (d) Convergence of training and test set MSE of the DeepONet with two hidden layers (indicatively) with 40 neurons each, for both the 
branch and trunk networks. (b), (c), (e), (f) MSE and 𝐿2 error percentiles (median, 5% − 95%), of the RandONets, for different size 𝑀 of the branch embedding. 
The errors are computed w.r.t. only the output functions in the test dataset. Comparison of Johnson-Lindenstrauss (JL) branch embedding, in Eq. (42), with Random 
Fourier Feature Networks (RFFN) embeddings, in Eq. (43). We set the size of the Trunk network to 𝑁 = 200 and the grid of input points to 𝑚 = 100. Numerical 
approximation accuracy vs. (b)-(e) number of neurons 𝑀 in the hidden layer of the branch network; and (c)-(f) vs. computational time in seconds.

Table 2

Case study 2: simple pendulum with external force, as in Eq. (58). We report Mean Squared Error (MSE) and percentiles 
(median, 5% − 95%) of 𝐿2 error across the test set. The extensive-data case comprises 2400 training functions, while 
the limited-data case uses 450 functions as training. We employed vanilla DeepONets with 2 hidden layers, with [𝑁, 𝑁]
neurons, in both trunk and branch. We set 𝑁 = 5, 10, 20, 40. DeepONets are trained with 20, 000 Adam iterations (with 
learning rate 0.001 and then 0.0001). We report the RandONets encompassing Johnson-Lindenstrauss (JL) Featured 
branch network (with 𝑀 = 100 neurons) and the Random Fourier Feature branch Network (RFFN) (with 𝑀 = 150
neurons for few data and with 𝑀 = 2000 neurons for many data).

data ML-model MSE 5% 𝐿2 median–𝐿2 95% 𝐿2 comp. time

80% DeepONet [5,5] 2.63E−07 2.41E−03 4.50E−03 8.40E−03 1.25E+03 (GPU)

DeepONet [10,10] 1.50E−07 1.71E−03 3.48E−03 5.88E−03 1.19E+03 (GPU)

DeepONet [20,20] 1.83E−08 7.92E−04 1.27E−03 1.91E−03 1.36E+03 (GPU)

DeepONet [40,40] 7.02E−09 5.37E−04 7.96E−04 1.13E−03 1.32E+03 (GPU)

RandONets–JL (100) 1.19E−13 3.96E−07 1.89E−06 3.75E−06 3.31E−02 (CPU)

RandONets–RFFN (2000) 6.52E−17 1.09E−08 4.66E−08 1.58E−07 3.91E+00 (CPU)

15% DeepONet [5,5] 2.30E−07 2.09E−03 4.10E−03 7.87E−03 2.97E+02 (GPU)

DeepONet [10,10] 1.08E−07 1.48E−03 2.98E−03 5.02E−03 2.6170E+02 (GPU)

DeepONet [20,20] 2.27E−08 8.57E−04 1.37E−03 2.24E−03 2.77E+02 (GPU)

DeepONet [40,40] 2.92E−08 8.77E−04 1.45E−03 2.81E−03 2.89E+02 (GPU)

RandONets–JL (100) 1.41E−13 2.82E−07 1.62E−06 5.03E−06 5.63E−03 (CPU)

RandONets–RFFN (150) 2.91E−13 8.55E−07 3.14E−06 9.59E−06 8.91E−03 (CPU)

To obtain the “ground-truth” corresponding output functions, we employ the MATLAB solver ode45 with absolute tolerance set 
to 1E−12 and relative tolerance set to 1E−10. Here, we consider, compared to case 1, relatively smaller amplitudes in the functions, 
since a high forcing term can lead the system far from the initial condition. It is important to note also that in this case, the solution 
𝑣 is not a simple primitive of the function 𝑢: it corresponds for a given initial condition to a nonlinear solution operator.

To generate the data, we used 3000 random realizations for the values of the parameters. We consider two different sizes for the 
training set. As described above, we used 15% of the data for training and 85% for testing (for the limited-data case) and 80% of the 
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data for training and 20% for testing (for the extensive-data case).
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In Fig. 3, we report the numerical approximation accuracy for the test set in terms of the MSE and the median (and corresponding 
percentiles 5% − 95%) of the 𝐿2–error. As shown, the training time of RandONets takes approximately less than one second and is 
performed without iterations. In Table 2, we also summarize the comparative results in terms of the approximation errors, and com-

putational times between RandONets, and vanilla DeepONets. For our illustrations, for RandONets, we have used 𝑀 = 100 neurons 
for the JL embeddings and 𝑀 = 150 neurons for the RFFN, in the limited-data case, and 𝑀 = 2000 neurons in the extensive-data case. 
Compared to case 1, the nonlinear RFFN embeddings perform slightly better than the linear JL embeddings, especially for higher 
sizes of the branch network. This is due to nonlinearity of the benchmark, yet they still both schemes exhibit comparable perfor-

mance for smaller sizes of the networks. Actually, JL embeddings converge faster, generalizing better with few neurons compared to 
the nonlinear RFFN embeddings. This indicates that, despite the JL embedding being linear, the nonlinearity of the operator can be 
effectively approximated by the hyperbolic tangent RP-FNN based trunk embedding for the spatial locations 𝑦. Also, the DeepONets 
performed better than in case 1.

Finally, for this case study, the execution times when using RandONets (with JL and nonlinear RFFN embeddings) are 3 to 5 orders 
faster, than DeepONets, while achieving a 3 to 4 orders higher numerical approximation accuracy in terms of the 𝐿2 error.

4.2. Approximation of evolution operators (RHS) of time-dependent PDEs

Here, we consider some benchmark problems relative to the identification of the evolution operator, i.e., the right-hand-side (RHS) 
of time-dependent PDEs:

𝑣(𝑥, 𝑡) = 𝜕𝑢

𝜕𝑡
(𝑥, 𝑡) = (𝑢)(𝑥, 𝑡). (59)

The output function, the time derivative, (i.e., the right-hand-side of the evolutionary PDE) depends on the current state profile 𝑢(𝑥, 𝑡)
at a certain time 𝑡. In the following examples, we do not consider the limited-data case.

4.2.1. Case study 3: 1D linear diffusion-advection-reaction PDE

As a first example for the learning of the evolution operator, we consider a simple 1D linear Diffusion-advection-reaction problem, 
described by:

𝜕𝑢

𝜕𝑡
= 𝜈

𝜕2𝑢

𝜕𝑥2
+ 𝛾

𝜕𝑢

𝜕𝑥
+ 𝜁𝑢, 𝑥 ∈ [−1,1] (60)

where 𝜈 = 0.1, 𝛾 = 0.4 and 𝜁 = −1. (See Fig. 4 and Table 3.)

The output function can be computed analytically/symbolically based on Eq. (54). The values of the parameters of the RP-FNN 
based function dataset, in Eq. (54), are uniformly sampled as follows: 𝒘, 𝑎0, 𝑎1, 𝑎2 ∼ [−1, 1], 𝒔 ∼ [0, 50] and 𝒄 ∼ [0, 1]. Here 
we select 𝑤 in a smaller range, as higher values may correspond to high derivatives resembling singularity in the second derivative.

To generate the data, we used 2000 random realizations of the values of the parameters of the RP-FNNs based function dataset, 
as in (54). We set 80% for training and 20% for testing.

In Fig. 4, we depict the approximation accuracy w.r.t. the test set in terms of the MSE and the percentiles (median, 5% − 95%) of 
𝐿2–approximation errors. As shown, the training of all RandONets takes approximately less or around 0.1 seconds and it is performed 
without iterations. In Table 3, we report the comparative results w.r.t. the numerical approximation accuracy and computational 
times of the RandONets, here for JL with 100 neurons and RFFN with 500 neurons in the branch embedding. In this case, the 
numerical results suggest that DeepONets architectures exhibit limitations in achieving satisfactory accuracy, even if the operator is 
a simple linear RHS of a PDE. This is evident despite extensive training with Adam for 50, 000 iterations. Furthermore, we observed 
a concerning trend of slow convergence in DeepONet performance as the hidden layer size (𝑁) increased from 5 to 40 neurons. 
In contrast, RandONets architectures demonstrate significantly faster learning and superior performance. RandONets-JL achieves 
exceptional accuracy with a modest number of neurons (𝑀 = 100). This is reflected in the Mean Squared Error (MSE) on the order 
of 10−17 and the 𝐿2 error on the order of 10−8. While RandONets-RFFN requires slightly more neurons (𝑀 = 500) to reach its best 
performance. This still delivers respectable results with an MSE on the order of 10−11 .

As a matter of fact, also for this case study, RandONets, utilizing both JL and RFFN, exhibits execution times (training times) 
that are on the order of 1000 times faster, while achieving 𝐿2 accuracy that is 5 to 8 orders of magnitude higher than the vanilla 
DeepONets.

4.2.2. Case study 4: 1D viscous Burgers PDE

We consider the nonlinear evolution operator of the Burgers’ equation given by:

𝑣 = 𝜕𝑢

𝜕𝑡
= 𝜈

𝜕2𝑢

𝜕𝑥2
− 𝑢

𝜕𝑢

𝜕𝑥
, (61)

where 𝜈 = 0.01. (See Fig. 5 and Table 4.)

The output function can be computed analytically/symbolically based on (54). The parameters 𝒘, 𝑎0, 𝑎1, 𝑎2 ∼ [−0.05, 0.05], 𝒔∼
 [0, 50] and 𝒄 ∼ [−1, 1], of the RP-FNN based function dataset, as in Eq. (54), to represent the functional space are (element-wise) 
uniformly distributed. Here we select 𝑤 in a smaller range, as higher values may correspond to high second derivatives approaching 
17

singularity.
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Fig. 4. Case study 3: 1D diffusion-advection-reaction linear PDE in Eq. (60). We use 1600 training input functions; (a) Convergence of training and test MSE of the 
DeepONet with two hidden layers (indicatively) with 40 neurons each, for both branch and trunk networks. (b), (c), MSE and 𝐿2 error percentiles (median, 5% −95%), 
of the RandONets, for different size 𝑀 of the branch embedding. The errors are computed w.r.t. only the output functions in the test dataset. Comparison of Johnson-

Lindenstrauss (JL) random features, in Eq. (42), with random Fourier features (RFFN) embeddings, in Eq. (43). We set the size of the trunk network to 𝑁 = 200 and 
the grid of input points to 𝑚 = 100. Numerical approximation accuracy vs. (b) number of neurons 𝑀 in the hidden layer of the branch network; and (c) computational 
time in seconds.

Table 3

Case study 3: 1D diffusion-advection-reaction linear PDE (Eq. (60)). We report the mean squared error (MSE) 
and percentiles (median, 5% −95%) of 𝐿2 error for the test set. We used 1600 training functions. We employed 
a vanilla DeepONet with 2 hidden layers with [𝑁, 𝑁] neurons. We set 𝑁 = 5, 10, 20, 40. DeepONets are 
trained with 50, 000 Adam iterations (with learning rate 0.001 and then 0.0001). We report the RandONets 
encompassing Johnson-Lindenstrauss (JL) Featured branch network (with 𝑀 = 100 neurons) and the random 
Fourier features (RFFN) (with 𝑀 = 500 neurons).

ML-model MSE 5% 𝐿2 median–𝐿2 95% 𝐿2 comp. time

DeepONet [5,5] 4.74E+01 3.42E+01 6.30E+01 1.04E+02 2.18E+03 (GPU)

DeepONet [10,10] 2.03E+01 1.88E+01 4.15E+01 6.81E+01 2.20E+03 (GPU)

DeepONet [20,20] 1.57E+00 6.68E+00 1.09E+01 1.95E+01 2.31E+03 (GPU

DeepONet [40,40] 1.69E−01 2.29E+00 3.73E+00 6.30E+00 2.30E+03 (GPU)

RandONets–JL (100) 4.33E−17 3.14E−08 5.98E−08 1.02E−07 1.83E−02 (CPU)

RandONets–RFFN (500) 7.03E−11 2.14E−05 5.87E−05 1.56E−04 1.02E−01 (CPU)

Fig. 5. Case study 4: 1D nonlinear Burgers’ PDE (Eq. (61)). We used 1600 training input functions: (a) MSE when using a vanilla DeepONet with 2 hidden layers with 
(indicatively) 40 neurons each, for both branch and trunk networks. (b), (c), MSE and 𝐿2 error percentiles (median, 5% − 95%), of the RandONets for different size 
𝑀 of the branch embedding. Comparison of Johnson-Lindenstrauss random embeddings, as in Eq. (42), with random Fourier features (RFFN) embeddings, as in Eq. 
(43). We have set the size of the trunk network to 𝑁 = 200 and the grid of input points to 𝑚 = 100. Numerical approximation accuracy vs. (b) number of neurons 𝑀
in the hidden layer of the branch network; and (c) vs. computational time in seconds.

To generate the data, we used 2000 random realizations of the parameters. We set 80% for training and 20% for testing. In Fig. 5, 
we report the accuracy w.r.t. the test set in terms of the MSE and the median (and percentiles 5% −95%) of 𝐿2–errors. As shown, the 
training of all RandONets takes approximately less or around one second. In Table 4, we also report the comparison results in terms 
of the numerical approximation accuracy and computational times.

Due to the inherent non-linearity of this example, linear JL random embeddings exhibit limitations in efficiently approximating the 
non-linear operator. This observation aligns with the theoretical understanding of JL embeddings being most effective in capturing 
linear relationships. Unlike case study 2, the non-linearity within only the trunk architecture appears insufficient for this specific 
problem. Therefore, incorporating non-linearity also in the branch embedding becomes crucial for achieving optimal performance.

Interestingly, the performance of JL embeddings approaches that of fully trained, entirely non-linear vanilla DeepONets. While 
DeepONets can achieve a minimum Mean Squared Error (MSE) on the order of 1E−04 and an 𝐿2 error on the order of 1E−01, their 
18

performance is not significantly better than the JL approach. In contrast, the RandONets-RFFN architecture emerges as the clear 
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Table 4

Case study 4: Burgers’ nonlinear PDE in Eq. (61). We report Mean Squared Error (MSE) and percentiles 
(median, 5% − 95%) of 𝐿2 approximation errors, for the test set. We use 1600 training functions. We employ 
DeepONets with 2 hidden layers with [𝑁, 𝑁] neurons in both the branch and trunk. We set 𝑁 = 5, 10, 20, 40. 
DeepONets are trained with 50, 000 Adam iterations (with learning rate 0.001 and then 0.0001). We report 
the RandONets results encompassing Johnson-Lindenstrauss (JL) Featured branch network (with 𝑀 = 40
neurons) and the Random Fourier Feature branch Network (RFFN) (with 𝑀 = 2000 neurons).

ML-model MSE 5% 𝐿2 median–𝐿2 95% 𝐿2 comp. time

DeepONet [5,5] 9.00E−03 3.70E−01 7.60E−01 1.66E+00 2.16E+03 (GPU)

DeepONet [10,10] 4.75E−03 3.43E−01 5.59E−01 1.20E+00 2.01E+03 (GPU)

DeepONet [20,20] 1.51E−03 2.24E−01 3.28E−01 6.16E−01 2.40E+03 (GPU)

DeepONet [40,40] 5.50E−04 1.30E−01 2.03E−01 3.82E−01 2.34E+03 (GPU)

RandONets–JL (40) 1.09E−02 3.32E−01 8.11E−01 1.91E+00 1.29E−02 (CPU)

RandONets–RFFN (2000) 1.12E−12 1.01E−05 1.04E−05 1.19E−05 1.51E+00 (CPU)

Fig. 6. Case study 5: 1D Allen-Cahn phase-field PDE in Eq. (62). We use 800 training input functions; (a) Convergence of training and test MSE of the DeepONet with 
2 hidden layer (indicatively) with 40 neurons each, for both branch and trunk networks. (b), (c), MSE and 𝐿2 approximation errors percentiles (median, 5% −95%), of 
the RandONets, for different size 𝑀 of the branch embedding. The errors are computed w.r.t. only the output functions in the test dataset. Comparison of RandONets 
with Johnson-Lindenstrauss random features, as in Eq. (42), RandONets with Random Fourier Feature Networks (RFFN), as in Eq. (43). We set the size of the Trunk 
network to 𝑁 = 200 and the grid of input points to 𝑚 = 100. Numerical approximation accuracy vs. (b) number of neurons 𝑀 in the hidden layer of the branch 
network; and (c) vs. computational time in seconds.

Table 5

Case study 5: 1D Allen-Cahn phase-field PDE in Eq. (62). We report the mean Squared Error (MSE) and 
percentiles (median, 5% −95%) of the 𝐿2 approximation error for the test set. We use 2400 training functions. 
Here, we depict, indicatively, the results with a vanilla DeepONet with 2 hidden layers with [𝑁, 𝑁] neurons. 
We set 𝑁 = 5, 10, 20, 40. DeepONets are trained with 50′000 Adam iterations (with learning rate 0.001 and 
then 0.0001). We report the RandONets encompassing Johnson-Lindenstrauss (JL) Featured branch network 
(with 𝑀 = 40 neurons) and the Random Fourier Feature branch Network (RFFN) (with 𝑀 = 2000).

ML-model MSE 5% 𝐿2 median–𝐿2 95% 𝐿2 comp. time

DeepONet [5,5] 1.75E−03 1.57E−01 3.50E−01 7.28E−01 3.20E+03 (GPU)

DeepONet [10,10] 1.60E−04 6.46E−02 1.04E−01 2.12E−01 3.03E+03 (GPU)

DeepONet [20,20] 5.62E−05 3.49E−02 5.52E−02 1.28E−01 3.39E+03 (GPU)

DeepONet [40,40] 3.10E−05 2.39E−02 4.06E−02 9.38E−02 3.49E+03 (GPU)

RandONets–JL (40) 2.42E−04 7.61E−02 1.04E−01 2.77E−01 2.32E−02 (CPU)

RandONets–RFFN (2000) 3.15E−10 1.28E−04 1.60E−04 2.60E−04 3.20E+00 (CPU)

leader in this specific case study. It achieves a remarkably low MSE on the order of 1E−12, demonstrating its superior capability in 
handling the non-linearities present in this example.

Also for this case study, RandONets, utilizing both JL and RP-FFN random embeddings, demonstrates execution times (training 
times) that are 3 to 5 order times faster, while achieving 𝐿2 accuracy that is 4 orders of magnitude higher in the case of RandONets-

RFFN, and of a similar level of accuracy in the case of JL random embeddings.

4.2.3. Case study 5: 1D Allen-Cahn phase-field PDE

Here we consider the nonlinear evolution operator of the Allen-Cahn equation, described by:

𝑣 = 𝜕𝑢

𝜕𝑡
= 𝜈

𝜕2𝑢

𝜕𝑥2
+ (𝑢− 𝑢3) (62)

where we set the parameter 𝜈 = 0.01. (See Fig. 6 and Table 5.)

The output function can be computed analytically/symbolically based on (54). The parameters 𝒘, 𝑎0, 𝑎1, 𝑎2 ∼  [−0.05, 0.05], 
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𝒔 ∼ [0, 50] and 𝒄 ∼ [−1, 1], of the RP-FNN based function dataset, as in Eq. (54), to represent the functional space are (element-
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wise) uniformly distributed. Here, similarly to case study 4, we select 𝑤 in a smaller range as higher values may correspond to high 
second derivatives approaching singularity.

To generate the data, we used 3000 random realizations of the parameters. We set 80% for training and 20% for testing. We report 
the accuracy w.r.t. the test set in terms of MSE and the percentiles (median, 5% − 95%) of 𝐿2 approximation errors in Fig. 6. As 
shown, the training of the all RandONets takes approximately less or around 3 seconds and it is performed without iterations. In 
Table 5, we also report the comparison results with the vanilla DeepONets, denoted as [𝑁, 𝑁]. We set 𝑁 = 5, 10, 20, 40.

Consistent with our observations in case study 4, linear JL random embeddings exhibit limitations in efficiently approximating the 
non-linear Allen-Cahn operator. Like in case Study 4, the performance of JL embeddings approaches that of fully trained, entirely non-

linear vanilla DeepONets. While DeepONets can achieve a minimum Mean Squared Error (MSE) on the order of 1E−04 and an 𝐿2 error 
on the order of 1E−01, their performance is not significantly better than the RandONets-JL approach. Once again, the RandONets-

RFFN architecture emerges as the superior method. It achieves a remarkably low MSE on the order of 1E−10, demonstrating its 
capability in handling the non-linearities present in this example.

Finally, RandONets, utilizing both JL and RFFN embeddings, exhibit execution times (training times) that are of 3 to 5 orders 
faster, while achieving 𝐿2 approximation accuracy that is of 2 orders of magnitude higher when using RFFN embeddings, and of the 
same level of accuracy when using the linear JL random embeddings.

5. Conclusions

In this work, we presented RandONets to approximate linear and nonlinear operators. Our work builds on three keystones: (a) 
Linear and nonlinear random embeddings of the input function space, (b) shallow (one-hidden layer) random neural networks, and, 
(c) tailor-made numerical analysis methods for the solution of a linear ill-posed problem. First, buliding on previous works, we 
prove that RandOnets are universal approximators. We furthermore assessed their performance by comparing them with vanilla 
DeepONets on various benchmark problems, including, simple problems of the approximation of the solution operator of ODEs, and 
linear and nonlinear evolution operators (right-hand-sides) of PDEs. We show that RandOnets outperform the vanilla DeepONets in 
both computational cost and numerical accuracy by orders of magnitude. In particular, we show that RandONets with JL random 
embeddings are unbeatable when approximating linear evolution operators of PDEs, reaching almost machine-precision accuracy for 
aligned data. RandONets with nonlinear random embeddings are on the order of 102 − 103 more accurate and 103 times faster than 
the vanilla DeepONets.

Here, we aimed at introducing to the community RandONets. So, an extensive comparison, with more advanced versions of 
DeepONets and other approaches such as FNOs and others, is beyond the scope of this current work. However, in a following work, 
we aim at assessing the performance of RandONets considering high-dimensional nonlinear operators, and the approximation of 
the solution operator of PDEs, thus performing “a comprehensive and fair comparison” of the various machine learning schemes as 
performed also in [28].

We believe our work will inspire further advancements in the field, encouraging exploration into how numerical analysis can im-

prove the applicability and interpretability of shallow neural networks. This could potentially enable shallow networks to outperform 
DNNs by several orders of magnitude in both accuracy and computational efficiency for specific scientific machine learning tasks. 
Towards to this direction, for example, in [77] the authors show that “accurate” optimization of shallow feedforward neural networks 
can yield superior results compared to training deep neural networks for PDEs.
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