
Under review as submission to TMLR

Linear algebra with transformers

Anonymous authors
Paper under double-blind review

Abstract

Transformers can learn to perform numerical computations from examples only. We study
nine problems of linear algebra, from basic matrix operations to eigenvalue decomposition and
inversion, and introduce and discuss four encoding schemes to represent real numbers. On
all problems, transformers trained on sets of random matrices achieve high accuracies (over
90%). Our models are robust to noise, and can generalize out of their training distribution.
In particular, models trained to predict Laplace-distributed eigenvalues generalize to different
classes of matrices: Wigner matrices or matrices with positive eigenvalues. The reverse is
not true.

1 Introduction

Since their introduction for machine translation by Vaswani et al. (2017), transformers were applied to many
problems, from text generation (Radford et al., 2018; 2019) to image processing (Carion et al., 2020) and
speech recognition (Dong et al., 2018), where they now achieve state-of-the-art performance (Dosovitskiy
et al., 2021; Wang et al., 2020b). In mathematics, transformers were used for symbolic integration (Lample &
Charton, 2019), theorem proving (Polu & Sutskever, 2020), formal logic (Hahn et al., 2021), SAT solving (Shi
et al., 2021), symbolic regression (Biggio et al., 2021) and dynamical systems Charton et al. (2020). All these
tasks mostly feature symbolic computations. When performing them, transformers manipulate mathematical
symbols just like words in natural language.

Beyond symbol manipulation, mathematics also involve numerical calculations, either exact (e.g. arithmetic)
or approximate (e.g. numerical solutions of equations). These have received significantly less attention from
the transformer community, and early experiments with arithmetic have proved disappointing (Nogueira et al.,
2021). This is nevertheless an important question. Most scientific problems feature numerical calculations.
To be used in science, transformers must be able to learn to compute.

In this paper, we train transformers to solve, from examples only, nine problems of linear algebra,
ranging from basic operations on matrices to inversion and eigenvalue decomposition. We show that
approximate solutions can be computed up to a few percents of their L1 norm, with more than 90%
accuracy (99% most of the time). We propose four encodings to represent real numbers, and train
small transformers (up to 6 layers, 10 to 50 million trainable parameters) from generated datasets of random
matrices. Finally, we show that our models are robust to noisy data, and that they can generalize out
of their training distribution when special attention is paid to data generation.

Four considerations motivate our work. First, demonstrating that transformers can learn these
numerical tasks is a requirement for using them in maths and science. If transformers cannot learn to
perform numerical computations, their applicability in science is severely restricted. Second, whereas
efficient algorithms already exist for solving these problems, learning them from numerical examples only is a
much more difficult and interesting task. Nature seldom presents us with formalized problems, set up as
“invert this matrix” or “find the eigenvalues of that operator”, that can be solved by calling the right function
from the right library. Most of the time, we are only given experimental data, from which we must learn
the operation to perform. This is the problem we address in this work, we are not proposing replacement
for existing algorithms. Third, we believe this research can provide new insight on transformers and their
capabilities, especially as previous attempts at arithmetic have failed. Finally, out-of-domain generalization,

1

Under review as submission to TMLR

a known limitation of transformers (Welleck et al., 2021), is usually difficult to investigate for lack of metrics
over problem space. In this work, we leverage the rich theory of random matrices to help understand
out-of-domain generalization.

2 Problems and datasets

Let M and N be m × n real matrices and V ∈ Rm . We study nine problems of linear algebra:

• matrix transposition: find MT , a n × m matrix,
• matrix addition: find M + N , a m × n matrix,
• matrix-vector multiplication: find MT V , in Rn,
• matrix multiplication: find MT N , a n × n matrix,
• eigenvalues: M symmetric, find its n (real) eigenvalues, sorted in descending order,
• eigenvectors: M symmetric, find D diagonal and Q orthogonal such that M = QT DQ, set as a

(n + 1) × n matrix, with (sorted) eigenvalues in its first line,
• singular values: find the n eigenvalues of MT M , sorted in descending order,
• singular value decomposition: find orthogonal U, V and diagonal S such that M = USV , set as a

(m + n + 1) × min(m, n) matrix,
• inversion: M square and invertible, find its inverse P , such that MP = PM = Id.

These problems range from operations on single coefficients of the matrices (transposition and addition), to
computations over lines and columns, involving several arithmetic operations (multiplication), and complex
nonlinear transformations involving the whole matrix (decompositions and inversion).

For each problem, we generate training data by sampling random input matrices I (see section 2.2), and
computing the output O with a linear algebra package (NumPy linalg). All coefficients in I and O are set in
base ten floating-point representation, and rounded to three significant digits in the mantissa. If a problem
has several input or output matrices, they are concatenated into one (for instance, the two m × n operands of
the addition task are concatenated into one m × 2n matrix I).

2.1 Encoding matrices as sequences

The input and output to our problems are matrices. Transformers process sequences of tokens. To encode a
m × n matrix as a sequence, we encode its dimensions as two symbolic tokens (Vm and Vn), and then its mn
coefficients as sequences. We propose four encoding schemes for matrix coefficients (set in scientific notation
with three significant digits): P10, P1000, B1999, and FP15.

Base 10 positional encoding (P10) represents numbers as sequences of five tokens : one sign token (+ or
-), 3 digits (from 0 to 9) for the mantissa, and a symbolic token (from E-100 to E+100) for the exponent. For
instance, 3.14 is represented as 314.10−2, and encoded as [+, 3, 1, 4, E-2].

Base 1000 positional encoding (P1000) provides a more compact representation. The mantissa is encoded
as a single token (from 0 to 999) and a number is represented as the triplet (sign, mantissa, exponent).

Balanced base 1999 (B1999) encodes the sign and mantissa as a single token (from -999 to 999).

15 bit floating point (FP15) encodes a floating point number x = m10b as a single token FPm/b. Table 1
provides examples for the four encodings. More information can be found in Appendix A.

Encoding 3.14 −6.02.1023 Tokens / coefficient Size of vocabulary

P10 [+, 3, 1, 4, E-2] [-, 6, 0, 2, E21] 5 210
P1000 [+, 314, E-2] [-, 602, E21] 3 1100
B1999 [314, E-2] [-602, E21] 2 2000
FP15 [FP314/-2] [FP-602/21] 1 30000

Table 1: Four encodings for matrix coefficients.

2

Under review as submission to TMLR

Choosing an encoding is a trade-off. Long encodings (P10, P1000) use a small vocabulary, and embed
knowledge about numbers that the model can use (e.g. that numbers can be crudely compared from their
signs and exponents only, that addition and multiplication can be learned by memorizing small tables).
Compact encodings use a larger vocabulary (harder to learn) but result in shorter sequences that facilitate
training with transformers. In P10, a 20 × 20 matrix is a sequence of 2002 tokens, close to the practical limit
of transformers with quadratic attention. In FP15, it is only 402 tokens long.

2.2 Random matrix generation

In most experiments, we generate random matrices with coefficients uniformly distributed in [−A, A] (with
A = 10). When symmetric, these matrices are known as Wigner matrices. Their eigenvalues have a centered
distribution with standard deviation σ =

√
n/3A (see Mehta (2004) and Appendix G) that converges as n

grows to the semi-circle law p(λ) =
√

4σ2 − λ2/2πσ2. If the coefficients follow a gaussian distribution, the
associated eigenvectors are uniformly distributed over the unit sphere.

In section 4.4, while investigating out-of-distribution generalization, we generate random symmetric matrices
with specific eigenvalue distributions (i.e. classes of random matrices with non-independent coefficients).
To this effect, we randomly sample symmetric matrices M with gaussian coefficients, and compute their
eigenvalue decomposition M = PDP T , with P an orthogonal matrix of eigenvectors (uniformly distributed
over the unit sphere because the coefficients are gaussian). We then replace D, the diagonal matrix of
eigenvalues of M , with a diagonal D′ sampled from a different distribution, and recompute M ′ = PD′P T . M ′

is a symmetric matrix (because P is orthogonal) with eigenvalues distributed as we choose, and eigenvectors
uniformly distributed over the unit sphere.

3 Models and experimental settings

Models and training. We use the transformer architecture from Vaswani et al. (2017): an encoder and
a decoder connected by cross-attention. Our default model has 512 dimensions, 8 attention heads and up
to 6 layers. Training is supervised and minimizes the cross-entropy between model predictions and correct
solutions. We use the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 10−4, a linear warm-up
phase of 10,000 steps and cosine scheduling (Loshchilov & Hutter, 2016). Training data is generated on the
fly in batches of 64. All models are trained on an internal cluster, using NVIDIA Volta GPU with 32GB
memory. Basic operations on matrices and eigenvalues train on 1 GPU in less than a day (from a few hours
for transposition and addition, to a day for multiplication and eigenvalues). Eigenvectors, SVD and inversion
train on 4 GPU, in 3 days (decomposition) to a week (inversion).

Evaluation. At the end of each epoch (300,000 examples), a random test set (10,000 examples) is generated
and the model accuracy is evaluated. A predicted sequence is a correct solution to the problem (I, O) (I
and O the input and output matrices) if it can be decoded as a valid matrix P and approximates the
correct solution to a given tolerance τ . For most problems, we check that P verifies ∥P − O∥ < τ∥O∥.
When computing eigenvectors, we check that the predicted solution (Q, D) can reconstruct the input matrix,
∥QT DQ − I∥ < τ∥I∥. For singular value decomposition, we check that ∥USV − I∥ < τ∥I∥, and for matrix
inversion, that ∥PI − Id∥ < τ∥Id∥ = τ . For all experiments, we use the L1 norm: ∥A∥ =

∑
i,j |ai,j |, for

A = (ai,j). Using the L2 or L∞ norm would favor models that correctly predict the largest coefficients in
the solution. For eigenvalue and singular value prediction, this amounts to finding the largest values, a
different, and easier, problem. Additional discussion and comparisons between different norms can be found
in Appendix B.

Numerical tolerance. We report results for tolerance τ between 0.5 and 5%. Since coefficients are rounded
to three significant digits, 0.5% is the best we can achieve in computations that involve rounding error. As
computations become more complex, error accumulates, and larger values of τ should be considered. We use
τ = 0% for transposition, τ = 1% for basic matrix operations (addition and multiplication), and τ = 2 or 5%
for non linear operations (decomposition, inversion).

Problem size. All experiments are performed on dense matrices. Our main results are for 5 × 5 matrices
(or rectangular matrices with as many coefficients: 6 × 4, 2 × 13), but we also experiment with larger matrices

3

Under review as submission to TMLR

(from 8 × 8 to 15 × 15), and datasets of matrices with variable dimensions (e.g. 5 × 5 to 15 × 15). In this
paper, we limit ourselves to problems that can be solved using small models.

4 Experiments and results

In this section, we present experimental results for the nine problems considered. We compare encodings
for different matrix sizes and tolerance levels, using the best choice of hyperparameters for each problem
(i.e. the smallest architecture that can achieve high accuracy). We also show that our models are robust
to noise in the training data. We present learning curves and experiments with model size in Appendix C,
discuss alternative architectures in Appendix D.1 (LSTM and GRU) and D.2 (universal transformers), and
additional tasks (re-training, co-training) in Appendix E.

4.1 Transposition

Learning to transpose a matrix amounts to learning a permutation of its elements. For a square matrix, all
cycles in the permutation have length 1 or 2. Longer cycles may appear in rectangular matrices. This task
involves no arithmetic operations: tokens in the input sequence are merely copied to different positions in the
output. We investigate two cases. In the fixed-dimension case, all matrices in the dataset have the same
dimensions and only one permutation must be learned. In the variable-dimension case, the dataset includes
matrices of different formats, and several permutations must be learned (one per matrix format). We train
transformers with one layer, 256 dimensions and 8 attention heads, using the four encodings.

After training, all models achieve 99% exact accuracy (0% tolerance) for fixed-size matrices with dimensions
up to 30 × 30. This holds for all encodings and input and output sequence lengths up to 2000 tokens. The
variable-size case proves more difficult, because the model must learn many different permutations. Still, we
achieve 99% accuracy on matrices with 5 to 15 dimensions, and 96% for matrices with 5 to 20 dimensions.
Table 2 summarizes our results.

Fixed dimensions Variable dimensions
Square Rectangular

5x5 10x10 20x20 30x30 5x6 7x8 9x11 5-15 5-20 5-15 5-20
P10 100 100 100 - 100 100 100 100 - 97.0 -
P1000 100 100 99.9 - 100 100 100 99.9 - 98.4 -
B1999 100 100 99.9 100 100 100 100 100 96.6 99.6 91.4
FP15 99.8 99.5 99.4 99.8 99.8 99.5 99.3 99.8 99.6 99.4 96.1

Table 2: Exact prediction of matrix transposition for different matrix dimensions. Transformers
with 1 layer, 256 dimensions and 8 attention heads.

4.2 Addition

To add two m × n matrices, the model must learn the correspondence between input and output positions
and the algorithm for adding two numbers in scientific notation. Then, it must apply the algorithm to mn
pairs of coefficients. We train transformers with 1 and 2 layers, 8 attention heads and 512 dimensions.

We achieve 99% accuracy at 1% tolerance (and 98% at 0.5%) on sums of fixed-size matrices with dimensions
up to 10 × 10, for all four encodings. B1999 models achieve 99.5% accuracy at 0.5% tolerance for 15 × 15
matrices and 87.9% accuracy at 1% tolerance on 20 × 20 matrices. As dimensions increase, models using the
long encodings (P1000 and P10) become more difficult to train as their input sequences grow longer. For
instance, adding two 15 × 15 matrices involves 450 coefficients, an input of 1352 tokens in P1000 and 2252 in
P10.

On variable-size matrices, we achieve 99.5% accuracy at 1% tolerance for dimensions up to 10, with 2-layer
transformers using the B1999 encoding. Their accuracy drops to 48 and 37% for square and rectangular

4

Under review as submission to TMLR

matrices with 5 to 15 dimensions. To mitigate this, we increase the depth of the decoder, and achieve 77
and 87% accuracy using models with one layer in the encoder and 6 in the decoder. Table 3 summarizes our
results.

Fixed dimensions Variable dimensions
Square Rectangular

Size 5x5 6x4 3x8 10x10 15x15 20x20 5-10 5-15 5-15 5-10 5-15 5-15
Layers 2/2 2/2 2/2 2/2 2/2 1/1 2/2 1/1 1/6 2/2 2/2 1/6

5% 100 99.9 99.9 100 100 98.8 100 63.1 99.3 100 72.4 99.4
2% 100 99.5 99.8 100 100 98.4 99.8 53.3 88.1 99.8 50.8 94.9
1% 100 99.3 99.7 100 99.9 87.9 99.5 47.9 77.2 99.6 36.9 86.8
0.5% 100 98.1 98.9 100 99.5 48.8 98.9 42.6 72.7 99.1 29.7 80.1

Table 3: Accuracies of matrix sums, for different tolerances. B1999 encoding, 512 dimension and 8
attention heads.

4.3 Multiplication

Multiplication of a matrix M of dimension m × n by a vector V ∈ Rn amounts to computing m dot products
between V and the lines of M . Each calculation features n multiplications and n − 1 additions, and involves
one row in the matrix and all coefficients in the vector. The model must now learn two operations: add
and multiply. Experimenting with models with 1 and 2 layers, we observe that high accuracy can only be
achieved with the P10 or P1000 encoding, with P1000 performing better on average. The number of layers,
on the other hand, makes little difference.

On this task, we achieve 99.9% accuracy at 1% tolerance for 5 × 5 and 10 × 10 square matrices, and 99%
for rectangular matrices with about 30 coefficients. The variable-size case proves much harder. Our models
achieve non-trivial results: 60% accuracy with 1% tolerance for square matrices, but larger models are needed
for high accuracy. We present detailed results in Table 4.

P10 P1000 P1000 Variable 5-10 (P1000)
5x5 5x5 10x10 14x2 9x3 4x6 2x10 Square Rectangular

Tolerance 2/2 layers 2/2 2/2 1/1 1/1 2/2 2/2 4/4 2/2

5% 100 100 100 99.3 99.9 100 100 72.4 41.7
2% 99.9 100 100 99.0 99.7 100 99.8 68.4 35.0
1% 98.5 99.9 99.9 98.7 99.5 99.9 99.2 60.1 20.1
0.5% 81.6 99.5 98.4 98.1 99.0 98.6 94.5 30.8 4.4

Table 4: Accuracies of matrix-vector products, for different tolerances. All model have 512 dimensions
and 8 heads.

Square matrices Rectangular matrices
5x5 5x5 2x13 2x12 3x8 4x6 6x4 8x3 12x2 13x2

Tolerance P10 2/2 layers 1/4 4/4 4/4 2/6 1/4 1/6 1/6 1/6 1/4

5% 100 100 100 100 100 100 100 100 100 99.9
2% 100 100 100 100 100 100 100 100 99.7 99.8
1% 99.8 100 99.9 100 100 99.9 100 99.9 99.3 99.8
0.5% 64.5 99.9 97.1 98.5 99.6 99.7 99.5 99.5 99.0 99.8

Table 5: Accuracy of matrix multiplication, for different tolerances. Fixed-size matrices with 24-26
coefficients. All encodings are P1000 unless specified. Models have 512 dimensions and 8 attention heads.

5

Under review as submission to TMLR

Multiplication of matrices M and P is a scaled-up version of matrix-vector multiplication, now performed
for every column in matrix P . As above, high accuracy is only achieved with the P10 and P1000 encoding.
We achieve 99% accuracy at 1% tolerance for 5 × 5 square matrices and rectangular matrices of comparable
dimensions (see Table 5). Performance is the same as matrix-vector multiplication, a simpler task. However,
matrix multiplication needs deeper models (especially decoders), and more training time.

4.4 Eigenvalues

Compared to basic operations on matrices, computing the eigenvalues of symmetric matrices is a much harder
problem, non-linear and typically solved by iterative algorithms. For this task, we train deeper models, with
4 or 6 layers. We achieve 100% accuracy at 5% tolerance, and 99% at 2%, for 5 × 5 and 8 × 8 matrices. We
reach high accuracy with all four encodings, but P1000 proves more efficient with 8 × 8 matrices.

On fixed-size datasets, scaling to larger problems proves difficult. It takes 360 million examples for our best
models to reach 25% accuracy on 10 × 10 matrices. As a comparison, 40 million examples are required to
train 5 × 5 models to 99% accuracy, and 60 million for 8×8 models. We overcome this limitation by training
on variable-size datasets, and achieve 100% accuracy at 5% tolerance, and 100, 100 and 76% at 2%, for sets
of 5-10, 5-15 and 5-20 matrices. Table 6 summarizes our results.

Fixed dimensions Variable dimensions
5x5 5x5 5x5 5x5 8x8 8x8 10x10 5-10 5-15 5-20

Encoding P10 P1000 B1999 FP15 P1000 FP15 FP15 FP15 FP15 FP15
Layers 6/6 4/1 6/6 6/1 6/1 1/6 1/6 4/4 6/6 4/4
5% 100 100 100 100 100 100 25.3 100 100 100
2% 100 99.9 100 100 99.2 97.7 0.4 99.8 100 75.5
1% 99.8 98.5 98.6 99.7 84.7 77.9 0 87.5 94.3 45.3
0.5% 93.7 88.5 73.0 91.8 31.1 23.9 0 37.2 40.6 22.5

Table 6: Accuracy of eigenvalues for different tolerances and dimensions. All models have 512
dimensions and 8 attention heads, except the 10x10 model, which has 510 and 12.

4.5 Eigenvectors

In this task, we predict both the eigenvalues and an associated orthogonal matrix of eigenvectors. Using the
P10 and P1000 encoding we achieve 97 and 94% accuracy at 5% tolerance for 5 × 5 matrices. P1000 models
also reach 82% accuracy on 6 × 6 matrices. Whereas FP15 models only reach 52% accuracy, an asymmetric
model, coupling a 6-layer FP15 encoder and a 1-layer P1000 decoder, achieves 94% accuracy at 5% and 87
at 2%, our best result on this task. Table 7 summarizes our results (all models have 512 dimensions and 8
attention heads).

5x5 6x6
P10 P1000 FP15 FP15/P1000 P1000

4/4 layers 6/6 1/6 6/1 6/1
5% 97.0 94.0 51.6 93.5 81.5
2% 83.4 77.9 12.6 87.4 67.2
1% 31.2 41.5 0.6 67.5 11.0
0.5% 0.6 2.9 0 11.8 0.1

Table 7: Accuracies of eigenvectors, for different tolerances and depths.

6

Under review as submission to TMLR

4.6 Inversion

Computing the inverses of 5×5 matrices proves our hardest task so far. We achieve 74 and 80% accuracy at
5% tolerance with the P10 and P1000 encodings, using 6-layer encoders and 1-layer decoders with 8 attention
heads. Adding more heads in the encoder bring no gain in accuracy, but makes training faster: 8-head models
need 250 millions examples to train to 75% accuracy, 10 and 12-head models only 120. As in the previous
task, asymmetric models achieve the best results. We reach 90% accuracy at 5% tolerance using a 6-layer
FP15 encoder with 12 attention heads, and a 1-layer P1000 decoder with 8 heads.

P10 P1000 FP15/P1000
Tolerance 8/8 heads 8/8 heads 10/8 heads 12/8 heads 10/4 heads 12/8 heads
5% 73.6 80.4 78.8 76.9 88.5 90.0
2% 46.9 61.0 61.7 52.5 78.4 81.8
1% 15.0 30.1 34.2 16.2 55.5 60.0
0.5% 0.2 3.1 5.9 0.1 20.9 24.7

Table 8: 5x5 matrix inversion. All models have 512 dimension and 6/1 layers, except P1000 10 heads,
which has 6/6.

4.7 Singular value decomposition (SVD)

For symmetric matrices, singular value and eigenvalue decompositions are related: the singular values of
a symmetric matrix are the square roots of the absolute values of its eigenvalues, and the vectors are the
same. Yet, this task proves more difficult than computing the eigenvectors. We achieve 100 accuracy at 5%
tolerance, and 86.7% at 1% when predicting the singular values of 4 × 4 symmetric matrices. For the full
decomposition, we achieve 98.9 and 75.3% accuracy. The SVD of 5×5 matrices could not be predicted using
transformers with up to 6 layers, and using the P10 or P1000 encoding. Table 9 summarizes our results, on
models with 512 dimensions and 8 attention heads.

Singular values Singular vectors
P10 2/2 layers P1000 4/4 layers P10 1/6 layers P1000 6/6 layers

5% 100 100 71.5 98.9
2% 98.5 99.8 15.6 95.7
1% 84.5 86.7 0.4 75.3
0.5% 41.1 39.8 0 6.3

Table 9: Accuracies of SVD for 4x4 matrices.

4.8 Experiments with noisy data

Because experimental data is often noisy, robustness to noise is a key feature of efficient models. In this section,
we investigate model behavior in the presence of random error when computing the sum and eigenvalues of
5 × 5 matrices. We add a random gaussian error to all coefficients of the input matrices in our train and
test sets, and consider three levels of noise, with standard deviation equal to 1, 2 and 5% of the standard
deviation of the random matrix coefficients (σ = 5.77 for uniform coefficients in [−10, 10]). For a linear
operation like addition, we expect the model to predict correct results so long tolerance τ is larger than error.
For non-linear computations like eigenvalues, expected outcomes are unclear, as errors may be amplified by
non-linearities or reduced by concentration laws.

Addition. Training on noisy data causes no loss in accuracy in our models, so long the ratio between the
standard deviation of noise and that of the coefficients is lower than tolerance. Within 5% tolerance, models
trained with 0.01σ and 0.02σ noise reach 100% accuracy, as do models trained with trained with 0.01σ noise
at 2% tolerance. Accuracy drops to about 40% when error levels are approximately equal to tolerance, and

7

Under review as submission to TMLR

to zero once error exceeds tolerance. Model size and encoding have no impact on robustness (see Table 10,
2-layer, 8-head models and Table 22 in Appendix E.3).

Eigenvalues. Models trained with the P1000 encoding prove more robust to noise when computing eigenvalues
than when calculating sums. For instance, we achieve 99% accuracy at 5% tolerance with noise equal to 0.05σ,
vs only 41% for addition. As before, model size has no impact on robustness. However, FP15 models prove
more difficult to train on noisy data than P1000 (see Table 10 and Table 23 in Appendix E.3 for additional
results, models have 4 layers and 8 heads).

Addition Eigenvalues
Encoding B1999 FP15 P1000
Dimension 256 512 512 1024 512 1024
5% tolerance
0.01σ error 100 100 6.1 100 100 100
0.02σ 100 100 100 100 100 100
0.05σ 41.5 41.2 99.1 99.3 99.3 99.0
2% tolerance
0.01σ error 99.8 99.9 0.7 99.8 99.3 99.6
0.02σ 43.7 44.2 97.0 97.1 97.3 97.9
0.05σ 0 0 37.9 38.4 40.1 37.3
1% tolerance
0.01σ error 39.8 41.7 0.1 82.1 79.7 83.8
0.02σ 0.1 0.1 47.8 51.3 46.2 47.5
0.05σ 0 0 3.8 4.2 4.1 3.8

Table 10: Accuracy with noisy data, for different error levels and tolerances (5 × 5 matrices).

5 Out-of-domain generalization

So far, model accuracy was measured on test sets of matrices generated with the same procedure as the
training set. In this section, we investigate accuracies on test sets with different distributions. We focus on
one task: predicting the eigenvalues of symmetric matrices (with tolerance 2%).

Wigner matrices. Our models are trained on datasets of random symmetric n × n real matrices, with
independent and identically distributed (iid) coefficients sampled from a uniform distribution over [−A, A].
These are known as Wigner matrices (see 2.2). They constitute a very common class of random matrices.
Yet, matrices with different eigenvalue distributions (and non iid coefficients) appear in important problems.
For instance, statistical covariance matrices have all their eigenvalues positive, and the adjacency matrices of
scale-free and other non-Erdos-Renyi graphs have centered but non semi-circle distributions of eigenvalues
(Preciado & Rahimian, 2017). We now investigate how models trained on Wigner matrices perform on test
sets of matrices with different distributions.

Testing on different distributions. Matrix coefficients in our training set are sampled from U [−10, 10],
with standard deviation σtr = 5.77. We first consider test sets of Wigner matrices with different standard
deviation σtst. We achieve high accuracy (96% at 2% tolerance) for 0.6σtr < σtst < σtr. Out of this range,
accuracy drops to 54% for 0.4σtr, 26% for 1.1σtr, 2% for 1.3σtr and 0% for 0.2σtr. We then test our model
on matrices with different eigenvalue distributions: positive, uniform, Gaussian and Laplace (generated as per
section 2.2), with standard deviation σtr and 0.6σtr. With σtst = σtr, we achieve 26% accuracy for Laplace,
25 for Gaussian, 19 for uniform, and 0 for positive. With σtst = 0.6σtr, accuracies are slighly higher: 28, 44, 60
and 0% respectively, but remain low overall, and matrices with positive eigenvalues cannot be predicted at
all. These results are summarized in line 1 of Table 11. These results confirm previous observations Welleck
et al. (2021): transformers only generalize to a narrow neighborhood around their training distribution.

8

Under review as submission to TMLR

Training on different distributions. A common approach to improving out-of-distribution accuracy is
to make the training set more diverse. Models trained from a mixture of Wigner matrices with different
standard deviation (A ∈ [1, 100]) generalize to Wigner matrices of all standard deviation (which are no longer
out-of-distribution), and achieve better performances on the uniform, Gaussian and Laplace test set (line 2 of
Table 11), but matrices with positive eigenvalues cannot be predicted. Training on a mixture of Wigner and
positive eigenvalues (line 3 of Table 11), we predict positive eigenvalues, now in-domain, with high accuracy,
but performance degrades on all other test sets.

Training on mixtures of Wigner and Gaussian eigenvalues, or Wigner and Laplace eigenvalues (lines 4 and 5
of Table 11), achieves high accuracies over all test sets, including the out-of-distribution sets: uniform and
positive eigenvalues, and Wigner with low or high standard deviations.

Finally, models trained on matrices with Laplace eigenvalues only, or a mixture of uniform, gaussian and
Laplace eigenvalues (all non-Wigner matrices) achieve 95% accuracy over all test sets (lines 6 and 7 of
Table 11). These result confirm that out-of-distribution generalization is possible, if attention is paid to the
training data distribution. They also suggest that Wigner matrices, the default model for random matrices,
might not be the best choice for training transformers: while models trained on Wigner matrices do not
generalize to different distributions, models trained on non-Wigner matrices, with non-iid coefficients, do
generalize to Wigner matrices.

Train set distribution Test set eigenvalue distribution
Wigner Positive Uniform Gaussian Laplace

σtst/σtr 0.3 1.0 1.2 0.6 1 0.6 1 0.6 1 0.6 1

Wigner, A=10 (baseline) 12 100 7 0 0 60 19 44 25 28 26

Wigner, A ∈ [1, 100] 99 98 97 0 0 68 60 65 59 57 53
Wigner - Positive 1 99 14 88 99 45 23 31 23 17 20
Wigner - Gaussian 88 100 100 99 99 96 98 93 97 84 90
Wigner - Laplace 98 100 100 100 100 100 100 99 100 96 99
Laplace 95 99 99 100 100 98 98 97 98 94 96
Gaussian-Uniform-Laplace 99 100 100 100 100 100 100 99 100 97 99

Table 11: Out-of-distribution eigenvalue accuracy (tolerance 2%) for different training distribu-
tions. All models have 512 dimensions and 8 attention heads, and use the P1000 encoding.

6 Related work

Algorithms using neural networks to compute eigenvalues and eigenvectors have been proposed since
the early 1990s (Samardzija & Waterland, 1991; Cichocki & Unbehauen, 1992; Yi et al., 2004; Tang & Li,
2010; Oja, 1992; Finol et al., 2019), and were extended to various problems of linear algebra (Wang, 1993a;b;
Zhang et al., 2008). They leverage the Universal Approximation Theorem (Cybenko, 1989; Hornik, 1991),
which states that, under weak conditions on their activation functions, neural networks can approximate any
continuous mapping (here, the mapping between one matrix and its eigenvalues). Observing that eigenvalues
appear in the solutions of differential equations involving matrix coefficients (Brockett, 1991), these methods
represent the equation as a neural network. The matrix to decompose is the input, the coefficients in
the output layer are the solution. During training, the input is kept constant, and prediction errors are
back-propagated until a solution is found, which allows to recover the eigenvalues. These models compute
solutions as they train, and must be retrained every time a new matrix is to be processed. Our models are
trained once, and compute at inference for any matrix input, a much faster process.

Architectures that can perform mathematical operations. Neural GPU (Kaiser & Sutskever, 2015)
can learn to add and multiply binary integers. Neural Arithmetic Logic Units (NALU (Trask et al., 2018)),
perform exact additions, substractions, multiplications and divisions by constraining the weights of a linear
network to remain close to 0, 1 or -1. Both Neural GPU and NALU can extrapolate to numbers far larger than
those they were trained on, and could serve as building blocks for larger models. In a recent paper, Blalock
& Guttag (2021) use learning techniques to refine known approximate algorithms for matrix multiplication.

9

Under review as submission to TMLR

Use of transformers in mathematics has mostly focused on symbolic computations. Lample & Charton
(2019) show that transformers can compute symbolic integrals and solve differential equations. Charton et al.
(2020) use them to predict properties of differential systems. Transformers have also been applied to theorem
proving (Polu & Sutskever, 2020), temporal logic (Hahn et al., 2021) and math word problems (Griffith &
Kalita, 2021; Meng & Rumshisky, 2019; Cobbe et al., 2021). The use of language models for arithmetic
and problem solving has been studied by Saxton et al. (2019), and Nogueira et al. (2021) investigates their
limitations in arithmetic.

7 Discussion

Encodings and architecture. Experiments with the four encodings suggest that P10 is dominated by
P1000, which is also more compact (i.e. more economical), and that B1999 never finds its use, since FP15
is more compact and P1000 more efficient. P1000 emerges as a good choice for problems of moderate size,
and FP15 when sequences grow long. For the hardest problems, eigenvectors and inversion, asymmetric
architectures, based upon a deep FP15 encoder with 10-12 attention heads and a shallow P1000 decoder with
4 heads, achieve the best performances. By representing the output as a meaningful triplet (sign, mantissa,
exponent), a P1000 decoder provides better error feedback to the model, which facilitates training. On the
other hand, a FP15 deep encoder can create complex representations of the input matrix, while being easier
to train thanks to the shorter sequences.

Problem size and scaling. Most of our experiments feature matrices with 5 to 10 dimensions. Experiments
with eigenvalues suggest that larger problems can be solved by training from samples of matrices of variable
size. In these experiments, all dimensions were sampled in equal proportion and presented for training in
random order, a crude form of curriculum learning. Optimizing their proportions and scheduling should
result in better performance. As dimension increases, sequence lengths will reach the practical limits of
quadratic attention models. Experimenting with transformers with linear or log-linear attention (Zaheer
et al., 2021; Wang et al., 2020a; Vyas et al., 2020; Child et al., 2019) is a natural extension of our work. Most
of our problems are solved with shallow transformers. This is at odds with usual practice, which usually
recommends deep transformers. Experimenting with deeper models is an interesting future direction.

Out-of-distribution experiments. These are our most significant results. They prove that transformers
trained on random data can generalize to a wide range of test distributions, provided their training data
distribution is chosen with care. Selecting a training distribution can be counter-intuitive. In our experiments,
Wigner matrices are the “obvious” random model, but “special” matrices (with non-iid coefficients and
Laplace eigenvalues) produce models that better generalize, notably on Wigner matrices. This matches the
intuitive idea that we learn more from edge cases than averages.

8 Conclusion.

We have shown that transformers can learn to perform numerical computations from examples only. We
also proved that they can generalize out of domain, when their training distribution is carefully selected.
This suggests that applications of transformers to mathematics are not limited to symbolic computation,
and can cover a broader range of scientific problems. We believe these results pave the way for wider use of
transformers in science.

10

Under review as submission to TMLR

References
Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascandolo. Neural

symbolic regression that scales. arXiv preprint arXiv:2106.06427, 2021.

Davis Blalock and John Guttag. Multiplying matrices without multiplying. arXiv preprint arXiv:2106.10860,
2021.

Roger W Brockett. Dynamical systems that sort lists, diagonalize matrices, and solve linear programming
problems. Linear Algebra and its applications, 146:79–91, 1991.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko.
End-to-end object detection with transformers. arXiv preprint arXiv:2005.12872, 2020.

François Charton, Amaury Hayat, and Guillaume Lample. Learning advanced mathematical computations
from examples. arXiv preprint arXiv:2006.06462, 2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078, 2014.

Andrzej Cichocki and Rolf Unbehauen. Neural networks for computing eigenvalues and eigenvectors. Biological
Cybernetics, 68(2):155–164, 1992.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and
John Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Róbert Csordás, Kazuki Irie, and Jürgen Schmidhuber. The neural data router: Adaptive control flow in
transformers improves systematic generalization. arXiv preprint arXiv:2110.07732, 2021.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals
and systems, 2(4):303–314, 1989.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal transformers.
arXiv preprint arXiv:1807.03819, 2018.

Linhao Dong, Shuang Xu, and Bo Xu. Speech-transformer: A no-recurrence sequence-to-sequence model for
speech recognition. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5884–5888, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929,
2021.

David Finol, Yan Lu, Vijay Mahadevan, and Ankit Srivastava. Deep convolutional neural networks for
eigenvalue problems in mechanics. International Journal for Numerical Methods in Engineering, 118(5):
258–275, 2019.

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint arXiv:1603.08983,
2016.

Kaden Griffith and Jugal Kalita. Solving arithmetic word problems with transformers and preprocessing of
problem text. arXiv preprint arXiv:2106.00893, 2021.

Christopher Hahn, Frederik Schmitt, Jens U. Kreber, Markus N. Rabe, and Bernd Finkbeiner. Teaching
temporal logics to neural networks. arXiv preprint arXiv:2003.04218, 2021.

11

Under review as submission to TMLR

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):251–257,
1991.

Łukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. arXiv preprint arXiv:1511.08228, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Donald E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Addison-
Wesley, third edition, 1997.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. arXiv preprint
arXiv:1912.01412, 2019.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

Madan Lal Mehta. Random Matrices. Academic Press, 3rd edition, 2004.

Yuanliang Meng and Anna Rumshisky. Solving math word problems with double-decoder transformer. arXiv
preprint arXiv:1908.10924, 2019.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Investigating the limitations of transformers with simple
arithmetic tasks. arXiv preprint arXiv:2102.13019, 2021.

Erkki Oja. Principal components, minor components, and linear neural networks. Neural networks, 5(6):
927–935, 1992.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving. arXiv
preprint arXiv:2009.03393, 2020.

Victor M. Preciado and M. Amin Rahimian. Moment-based spectral analysis of random graphs with given
expected degrees. arXiv preprint arXiv:1512.03489, 2017.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding by
generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Nikola Samardzija and RL Waterland. A neural network for computing eigenvectors and eigenvalues. Biological
Cybernetics, 65(4):211–214, 1991.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical reasoning
abilities of neural models. arXiv preprint arXiv:1904.01557, 2019.

Feng Shi, Chonghan Lee, Mohammad Khairul Bashar, Nikhil Shukla, Song-Chun Zhu, and Vijaykrishnan
Narayanan. Transformer-based machine learning for fast sat solvers and logic synthesis. arXiv preprint
arXiv:2107.07116, 2021.

Ying Tang and Jianping Li. Another neural network based approach for computing eigenvalues and eigenvectors
of real skew-symmetric matrices. Computers & Mathematics with Applications, 60(5):1385–1392, 2010.

Andrew Trask, Felix Hill, Scott Reed, Jack Rae, Chris Dyer, and Phil Blunsom. Neural arithmetic logic units.
arXiv preprint arXiv:1808.00508, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,
pp. 6000–6010, 2017.

12

Under review as submission to TMLR

Apoorv Vyas, Angelos Katharopoulos, and François Fleuret. Fast transformers with clustered attention.
arXiv preprint arXiv:2007.04825, 2020.

Jun Wang. A recurrent neural network for real-time matrix inversion. Applied Mathematics and Computation,
55(1):89–100, 1993a.

Jun Wang. Recurrent neural networks for solving linear matrix equations. Computers & Mathematics with
Applications, 26(9):23–34, 1993b.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with linear
complexity. arXiv preprint arXiv:2006.04768, 2020a.

Yongqiang Wang, Abdelrahman Mohamed, Due Le, Chunxi Liu, Alex Xiao, Jay Mahadeokar, Hongzhao
Huang, Andros Tjandra, Xiaohui Zhang, Frank Zhang, and et al. Transformer-based acoustic modeling for
hybrid speech recognition. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), May 2020b.

Sean Welleck, Peter West, Jize Cao, and Yejin Choi. Symbolic brittleness in sequence models: on systematic
generalization in symbolic mathematics. arXiv preprint arXiv:2109.13986, 2021.

Zhang Yi, Yan Fu, and Hua Jin Tang. Neural networks based approach for computing eigenvectors and
eigenvalues of symmetric matrix. Computers & Mathematics with Applications, 47(8-9):1155–1164, 2004.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip
Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Transformers for longer
sequences. arXiv preprint arXiv:2007.14062, 2021.

Yunong Zhang, Weimu Ma, and Binghuang Cai. From zhang neural network to newton iteration for matrix
inversion. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(7):1405–1415, 2008.

13

Under review as submission to TMLR

A Number encodings

Let x be a non-zero real number, it can be represented uniquely as x = s.m.10e, with s ∈ {−1, 1},
m ∈ [100, 1000[and e ∈ Z. Rounding m to the nearest integer n (and potentially adjusting for round-up to
1000), we get the base ten, floating-point representation of x, with three significant digits:

x ≈ s.n.10e, (s, n, e) ∈ Z3

By convention, 0 is encoded as +0.100. All our encodings are possible representations of the triplets (s, n, e).
In this paper, we limit e to the range [−100, 100], and n to the range [100, 999].

In base N positional encoding, we encode s (the sign) and e (the exponent) as unique tokens: + or - for s,
and a token from E-100 to E100 for e. The mantissa, n, is encoded as the representation of n in base N (e.g.
binary representation if N = 2, decimal representation if N = 10), a sequence of ⌈logN (1000)⌉ tokens from 0
to N-1. Overall, a number will be encoded as a sequence of ⌈logN (1000)⌉ + 2 tokens, from a vocabulary of
202 + N tokens.

For instance, x = eπ ≈ 23.14069, will be represented by +231.10−1, and encoded in P10 (base 10 positional)
as the sequence [+,2,3,1,E-1], and in P1000 (base 1000 positional) as [+,231,E-1]. x = −0.5 will be
represented as −500.10−3, and encoded in P10 as [-,5,0,0,E-3], and in P1000 as [-,500,E-3]. Other bases
N could be considered, as well as different bases for the exponent, and different lengths for the mantissa. In
this paper, we use P10 to encode numbers with absolute value in [10−100, 10101] as sequences of 5 tokens,
using a vocabulary of 213 tokens (10 digits, 2 signs, and 201 values of the exponent), and P1000 as sequences
of 3 tokens, with a vocabulary of 1104.

Balanced base 2a + 1 uses digits between −a and a (Knuth, 1997). For instance, in balanced base 11, digits
range from −5 to 5. An every day example of a balanced base can be found in the way we state the hour as
“twenty to two”, or “twenty past two”. Setting a to 999, we define B1999, and encode the sign an mantissa as
a single token between −999 and 999. Compared with P1000, B1999 encodes the sign and mantissa in a
single token. Numbers are then encoded on two tokens, with a vocabulary of 2004.

For an even more compact representation, we can encode floating point numbers as unique tokens by rewriting
any number x = m10b, with m ∈ [−999, 999], b ∈ [−(p + 2)/2, (p + 2)/2] and p + 2 = 0, [2], and encoding it as
the unique token FPm,b. This allows to represent numbers with 3 significant digits and a dynamic range of
10p+2, using a vocabulary of 1800(p + 3) tokens. In this paper, we use p = 14: encoding numbers as unique
tokens, with a vocabulary of 30, 000 (FP15).

B L1, L2 and L∞ norms for evaluation

We evaluate the accuracy of our trained models by decoding model predictions and verifying that they
approximate the correct solution up to a fixed tolerance τ . In the general case, if the model predict a sequence
SP , and the solution of the problem is O, we consider that the prediction is correct if SP can be decoded into
a matrix P and

∥P − O∥ < τ∥O∥ (1)
For eigenvalue decomposition, we check that the solution (Q, D) predicted by the model can reconstruct the
input matrix, i.e. ∥QT DQ − I∥ < τ∥I∥. For singular value decomposition, we check that ∥USV − I∥ < τ∥I∥.
For matrix inversion, we check that ∥PI − Id∥ < τ∥Id∥ = τ .

In this paper, we use the norm L1: ∥A∥ =
∑

i,j |ai,j |, for A = (ai,j). In this section, we discuss the impact of
using different norms, namely L2 (∥A∥ =

∑
i,j a2

i,j), or L∞ (∥A∥ = maxi,j |ai,j |).

Using L1 norm in equation 1 amounts to comparing the average absolute error on the predicted coefficients
(P − O) to the average absolute value of coefficients of O. Using L2 compares the squared values and errors.
L∞ will compare the largest absolute error to the largest coefficient in |O|. Compared to L1, using L2 and
L∞ (Max) will biase the estimation towards large absolute errors, and coefficients of O with large absolute
values. The impact of the norm varies from one problem to another. Figure 1 presents learning curves using
the three norms for our best models, on different problems.

14

Under review as submission to TMLR

0 20 40 60 80 100 120 140

0

20

40

60

80

100

Transposition
5-15 rectangular matrices

L1
L2
Max

0 10 20 30 40 50

0

20

40

60

80

100

Addition
10x10 matrices

0 5 10 15 20 25

0

20

40

60

80

100

Matrix vector multiplication
5x5 matrices

0 10 20 30 40 50 60

0

20

40

60

80

100

Eigenvalues
5x5 matrices

0 100 200 300 400 500 600 700 800

0

20

40

60

80

100

Eigenvalues
5-15 matrices

0 200 400 600 800 1000 1200

0

20

40

60

80

100

Eigenvalues
10x10 matrices

0 50 100 150 200 250 300

0

20

40

60

80

100

Singular Values
4x4 matrices

0 25 50 75 100 125 150 175 200

0

20

40

60

80

100

Eigenvectors
6x6 matrices

0 50 100 150 200 250 300 350 400

0

20

40

60

80

100

Matrix Inversion
5x5 matrices

Figure 1: Learning accuracies for different problems measured with norms L1, L2and L∞ (Max).

15

Under review as submission to TMLR

For basic arithmetic operations (transposition, addition, multiplication), there is little difference between L1

and L2 accuracies, and no reason to prefer one over the other for model evaluation. L∞ provides a more
strict criterion for accuracy, but it has little practical impact.

For eigenvalue and singular value problems, L2 accuracies reach a high value early during training, long
before the model begins to learn according to the other norms. This is due to the fact that the eigenvalues
of Wigner matrices tend to be regularly spaced over the interval [−2σ, 2σ] (σ =

√
ns with s the standard

deviation of coefficients and n the dimension of the matrix). This means that the model can predict the
largest absolute eigenvalues from the distribution of the coefficients, which can be computed from the dataset.
For this reason, L2 accuracy is not a good evaluation metric for the eigenvalue or singular value problem.
This is particularly clear in the 10 × 10 case: transformers struggle with such matrices, and L1 and L∞

accuracies remain very low even after a thousand epochs (300 million examples), but L2 accuracy is close to
100% since the beginning of training.

A similar phenomenon takes place for eigenvector calculations: L2 and L∞ accuracy rise steeply, long before
the model begins to learn according to the L1 norm. In this task, we are predicting both the eigenvalues
and the coefficients of the matrix of eigenvectors Q. Because Q is orthogonal, its coefficients will usually
have small absolute values, compared to those of eigenvalues. As training goes on, the largest eigenvalue is
first predicted, which causes the rise in the L2 curve, then other eigenvalues are, which cause the rise in the
L∞, and finally the eigenvectors are correctly predicted, which is depicted in the (much slower) rise of the
L1 curve. Again, using L2 or L∞ amounts to evaluating an easier problem (computing eigenvalues) than
the one we are currently solving (eigen decomposition). These observations motivate the choice of L1 as our
evaluation norm.

C Additional experimental results

C.1 Learning curves for different encodings and architectures

Figure 2 presents learning curves for loss and accuracy (within 5 and 1% tolerance) on different models, for
four problems. These curves indicate the number of training examples needed for each problem. On average,
our best models learn basic operations on matrices in less than 50 epochs (15 million examples). Training
size requirement increases with operation complexity : from 30 million for eigenvalues, to 120 million for
eigenvectors, and over 150 million for matrix inversion.

On the inversion problem, we experiment with the number of attention heads in the encoder. Increasing
the number of head from 8 to 10 and 12 improves learning speed and accuracy. Over 12 heads, this benefit
disappears: with 16 heads, our models need 800 epochs to train to 55% accuracy (with 5% tolerance). We
believe that this reflects the trade-off being the number of heads (more heads catch more dependencies
between elements in the input sequence) and the downsampling of attention patterns (when internal model
dimension remains fixed).

Finally, we notice that the learning curves for the harder problems (eigenvalues, vectors and inversion) are
noisy. This is caused by the learning rates: our models usually need small learning rates (5 × 10−4 before
scheduling is typical) and there is a trade-off between low rates that will stabilize the learning curve, and
larger rates that accelerate training.

C.2 Model size

The two main factors influencing model size are depth and the number of dimensions (see Appendix F). In
this section we discuss how these factors influence accuracy and learning speed, when adding 10 × 10 matrices,
multiplying a 5 × 5 matrix by a vector, and computing the eigenvalues of a 5 × 5 matrix. All the models in
this section are symmetric (same dimension and number of layers in the encoder and decoder) and have 8
attention heads.

For the addition task, tables 12 and 13 present the accuracy reached after 60 epochs (18 million examples)
and the number of epochs (of 300,000 examples) needed to reach 95% accuracy, for models using the P1000

16

Under review as submission to TMLR

0 20 40 60 80 100 120 140
50

100

150

200

250

300

350

400

450
Addition (10x10): test loss

P10 2/2 layers
P1000 2/2 layers
B1999 2/2 layers
B1999 1/1 layers
FP15 2/2 layers
FP15 1/1 layers

0 20 40 60 80 100 120 140

0

20

40

60

80

100

Addition (10x10): 5% accuracy

0 20 40 60 80 100 120 140

0

20

40

60

80

100

Addition (10x10): 1% accuracy

0 25 50 75 100 125 150 175 200

10

15

20

25

30
Eigenvalues: test loss

P10 6/6 layers
P10 4/1 layers
P1000 4/1 layers
P1000 2/2 layers
B1999 6/6 layers
FP15 6/1 layers

0 25 50 75 100 125 150 175 200

0

20

40

60

80

100

Eigenvalues: 5% accuracy

0 25 50 75 100 125 150 175 200

0

20

40

60

80

100

Eigenvalues: 1% accuracy

0 100 200 300 400 500

40

60

80

100

120

Eigenvectors: test loss
P10 4/4 layers
P10 6/6 layers
P1000 4/4 layers
P1000 6/1 layers
FP15/P1000 6/1 layers
FP15 6/1 layers

0 100 200 300 400 500

0

20

40

60

80

100

Eigenvectors: 5% accuracy

0 100 200 300 400 500

0

20

40

60

80

100

Eigenvectors: 1% accuracy

0 100 200 300 400 500 600 700

40

60

80

100

120

Inversion: test loss
P10 8/8 heads
P1000 8/8 heads
P1000 10/8 heads
P1000 12/8 heads
FP15/P1000 10/4 heads
FP15/P1000 12/8 heads

0 100 200 300 400 500 600 700

0

20

40

60

80

100

Inversion: 5% accuracy

0 100 200 300 400 500 600 700
Epochs

0

20

40

60

80

100

Inversion: 1% accuracy

Figure 2: Learning curves for different problems. All problems except addition use 5 × 5 matrices. All
models have 512 dimensions and 8/8 heads (except when mentioned in the legend). Inversion models have
6/1 layers. Epochs correspond to 300,000 training examples. Test loss is cross-entropy.

17

Under review as submission to TMLR

and B1999 encoding. Both encodings allow shallow architectures (1/1 and 2/2 layers) to learn addition with
high accuracy, but the more compact B1999 support smaller models (256 dimensions). In terms of speed,
with B1999, shallow models are learned very fast, but it takes a lot of examples to train deeper models. The
opposite is true for P1000 models.

B1999 P1000
dimension 64 128 256 512 64 128 256 512
1/1 layers 31 7 82 100 0 0 1 40
2/2 layers 0 0 100 100 0 0 0 99
4/4 layers 0 0 0 14 0 0 0 98
6/6 layers 0 0 0 0 0 0 0 99

Table 12: Accuracy of matrix addition for different model sizes. 10 × 10 matrices, 60 epochs (18
millions examples), 5% tolerance.

B1999 P1000
dimension 64 128 256 512 64 128 256 512
1/1 layers - - 76 15 - - - 96
2/2 layers - - 26 6 - - - 37
4/4 layers - - 70 63 - - - 53
6/6 layers - - - - - - - 23

Table 13: Learning speed of matrix addition for different model sizes. Number of epochs needed to
reach 95% accuracy (5% tolerance). 1 epoch = 300,000 examples.

Table 14 presents the learning speed of models of different sizes for the matrix/vector product and eigenvalue
computation tasks (5 × 5 matrices, and P1000 encoding). For each problem, there exist a minimal dimension
and depth under which models struggle to learn: one layer and 128 dimensions for products, one layer or 128
dimensions for eigenvalues. Over that limit, increasing the dimension accelerates learning. Increasing the
depth, on the other hand, bring no clear improvement in speed or accuracy.

Matrix product Eigenvalues
128 256 512 128 256 512 1024

1/1 layers - 29 18 - - - -
2/2 layers 24 12 7 - 102 36 23
4/4 layers 28 11 5 244 90 24 13
6/6 layers 24 10 6 - - 129 16
8/8 layers 18 12 6 - - 34 24

Table 14: Learning speed of matrix and vector products and eigenvalue calculations for different
model sizes. Number of epochs needed to reach 95% accuracy (with 5% tolerance). 1 epoch = 300,000
examples. 5 × 5 matrices, P1000 encoding.

Finally, we experiment with larger models on larger problems. We trained models with 8 to 12 layers and 512
to 2048 dimensions on sets of 10 × 10 matrices, without success. As discussed in section 4.4, those problems
are out of reach of the models we use in this paper (unless we use curriculum learning and train on mixed-size
datasets). Increasing model size does not seem to help scaling to larger matrices.

C.3 Model performance on different training sets

The models presented in the main part of this paper were trained on Wigner matrices (matrices with
independent and identically distributed, iid, coefficients) with fixed-range coefficient. In section 5, we argued

18

Under review as submission to TMLR

that different training sets allowed for better out-of-domain generalization. Table 15 summarizes in-domain
performance (i.e. accuracy when the test set is generated with the same procedure as the training set) on
different training sets.

Wigner matrices with uniform or gaussian distributed, and fixed or variable-range, coefficients, are learned
to high accuracy (more than 99%) by all models. The eigenvalues of non-Wigner matrices with Gaussian
or Laplace distributed eigenvalues, and of mixtures of Wigner and non-Wigner matrices, are also predicted
to high accuracy by all models. Over matrices with positive or uniformly distributed eigenvalues, smaller
models using the FP15 encoding prove difficult to train.

FP15 P1000
4/1 layers 6/1 layers 4/1 layers 6/1 layers

Wigner matrices (iid coefficients)
Uniform iid A=10 99.6 100 99.8 100
Gaussian iid A=10 99.8 100 99.8 100
Uniform iid A=1,100 99.0 99.2 99.8 100
Uniform iid A=1,1000 99.2 99.5 99.7 99.8
Non Wigner
Positive A=10 12.7 100 100 100
Uniform A=10 8.2 10.8 99.9 100
Gaussian A=10 99.6 100 100 100
Laplace A=10 99.4 99.9 99.9 99.9
Gaussian+uniform+Laplace A=10 3.8 99.8 99.6 99.9
Wigner and non-Wigner mixtures
iid+gaussian A=10 99.5 99.9 98.0 99.7
iid+positive A=10 99.8 99.9 99.8 99.8
iid+Laplace A=10 99.6 99.8 99.6 99.5
iid+positive+gaussian A=10 99.8 99.9 99.7 99.9
iid+positive+Laplace A=10 99.0 99.8 99.6 99.8

Table 15: In-distribution eigenvalue accuracy (tolerance 2%) for different training distributions.
All models have 512 dimensions, and 8 attention heads, and are trained on 5x5 matrices.

D Alternative architectures

D.1 Other sequence to sequence models : LSTM and GRU

We experimented with two popular recurrent architectures: long short-term memories (LSTM Hochreiter &
Schmidhuber (1997)), and gated recurrent units (GRU Cho et al. (2014)), on three tasks : addition of 5 × 5
and 10 × 10 matrices, eigenvalues and matrix inversion of 5 × 5 matrices. To this effect, we used sequence to
sequence models, featuring an encoder and a decoder (LSTM or GRU), with 2 to 8 layers, and 1024 or 2048
hidden dimensions. The input and output sequences, encoded as in the rest of the paper, were pre-processed
(and decoded) via an embedding layer with 256 or 512 dimensions.

Addition, a very easy task for transformers (see section 4.2) proves difficult for LSTM and GRU. None of
our models can learn addition of 10 × 10 matrices. Some models can learn addition of 5 × 5 matrices, but
whereas transformers achieve 100% accuracy for all tolerances, our best LSTM and GRU only exceed 90% at
1% tolerance. GRU seem to perform better than LSTM on this task, and 2-layer models perform better than
4-layer models, but transformers have a distinct advantage over LSTM and GRU for addition.

Both LSTM and GRU can be trained to predict eigenvalues of 5 × 5 matrices with the same accuracy as
transformers, for the P1000 and FP15 encoding (table 17). Matrix inversion, on the other hand, cannot be
learned. Overall, these experiments show that other sequence to sequence architectures, LSTM and GRU,

19

Under review as submission to TMLR

2 layers 4 layers
Hidden dimension 1024 2048 1024 2048
Embedding dimension 256 512 256 512 256 512 256 512
Long short-term memory
5% tolerance 100 0 0 100 0 0 0 0
2% tolerance 98 0 0 100 0 0 0 0
1% tolerance 95 0 0 86 0 0 0 0
0.5% tolerance 34 0 0 1 0 0 0 0
Gated recurrent Units
5% tolerance 100 100 0 100 0 100 0 0
2% tolerance 100 28 0 100 0 99 0 0
1% tolerance 44 0 0 91 0 74 0 0
0.5% tolerance 0 0 0 9 0 4 0 0

Table 16: 5 × 5 matrix addition using LSTM and GRU.

can learn tasks like eigenvalues and addition of small matrices. However, they are less efficient on addition
(in terms of precision and scaling to larger matrices) and fail on more complex tasks, like matrix inversion.

FP15 P1000
Hidden dimension 1024 2048 1024 2048
Layers 4 6 8 4 6 8 4 6 8 4 6 8

LSTM
5% tolerance 100 100 100 100 100 6 100 100 5 100 100 100
2% tolerance 95 100 100 99 100 1 100 100 1 100 99 100
1% tolerance 78 98 99 91 98 0 97 98 0 100 92 99
0.5% tolerance 46 81 83 62 68 0 78 88 0 89 57 76
Gated recurrent Units
5% tolerance 100 100 100 100 100 100 100 100 100 100 5 100
2% tolerance 98 99 100 100 100 100 99 100 100 100 1 100
1% tolerance 86 93 96 98 99 97 94 98 95 97 0 98
0.5% tolerance 53 68 75 78 83 65 65 76 63 75 0 66

Table 17: Eigenvalue computation with LSTM and GRU, 5 × 5 matrices.

D.2 Shared-layer transformers: Universal transformers

In the Universal Transformer (Dehghani et al., 2018), the stacked layers of usual transformer implementations
are replaced by one layer that is looped through a fixed number of times (feeding the output of one iteration
into the input of the next). This amounts to sharing the weights of the different layers, therefore greatly
reducing the number of parameters in the model. This technique can be applied to the encoder, the decoder
or both. The number of iterations is a fixed hyperparameter, but the original paper also proposed a halting
mechanism inspired by Adaptive Computation Time (Graves, 2016), to adaptively control loop length at the
token level. In this version, a stopping probability is learned for every position in the input sequence, and
once it reaches a certain threshold, the layer merely copies the input onto the output. The iteration stops
when all positions have halted, or a specific value is reached. A recent paper (Csordás et al., 2021) proposed
to use a similar copy-gating mechanism to skip iterations in a fixed-length loop. We experiment with these
three variants (fixed length, adaptive halting, copy gating) on the addition (of 10 × 10 matrices), eigenvalue
and matrix inversion tasks (5 × 5 matrices).

For the addition task, we train universal transformers with one layer and in the encoder and decoder, 256 or
512 dimensions and 8 attention heads. We use the B1999 encoding for the data. We experiment with looped
encoder, looped decoder, and loop in both, a loop length of 4, copy-gating and ACT (the 4 loops in then
a maximum number of iterations)and copy-gating. Table 18 summarizes our findings. Only models with

20

Under review as submission to TMLR

encoder loops learn to add, and models with 512 dimensions learn with over 95% accuracy for all tolerances.
Universal Transformers with one layer (looped-encoder only) perform as well as 2/2 transformers.

5% 2% 1% 0.5%
Looped encoder
256 dimensions, 4 loops 15 1 0 0
512 dimensions, 4 loops 100 100 100 100
256 dimensions, 4 loops, gated 97 66 41 29
512 dimensions, 4 loops, gated 100 100 100 100
256 dimensions, 4 loops, ACT 100 92 76 66
512 dimensions, 4 loops, ACT 100 100 98 96
Looped decoder 0 0 0 0
Looped encoder and decoder 0 0 0 0
2/2 transformer (baseline) 100 100 100 100

Table 18: Accuracy of Universal transformers, 10 × 10 matrix addition for different tolerances.

On the eigenvalue task, we experiment on the P1000 and FP15 encoding, with encoder-loop only 1/1
Universal Transformers with 4 or 8 loops. Universal transformers using the P1000 encoding achieve the same
performances (with only one layer) than the transformers in our main research 4 loop transformers seem best,
with gates not improving perfomance and ACT slightly degrading it. With the FP15 encoding, universal
transformers become very difficult to train: only the 4 loop gated version achieves significant accuracy (still
lower than the 6/1 transformers).

5% 2% 1% 0.5%
P1000
4 loops 100 100 97 87
8 loops 100 99 93 69
4 loops, gated 100 100 98 91
8 loops, gated 100 100 99 90
4 loops, ACT 100 97 89 62
8 loops, ACT 100 95 77 42
FP15
4 loops 4 0 0 0
8 loops 0 0 0 0
4 loops, gated 94 84 57 23
8 loops, gated 6 1 0 0
4 loops, ACT 4 0 0 0
8 loops, ACT 4 0 0 0
4/1 transformer (P1000 baseline) 100 100 99 89
6/1 transformer (FP15 baseline) 100 100 100 92

Table 19: Accuracy of Universal transformers, 5 × 5 matrices eigenvalue computation for different
tolerances.

Finally, we experimented with matrix inversion, with FP15/P1000 and P1000/P1000 encodings, and 4 or 8
loops in the encoder. A gated universal transformer using FP15 in the input and P1000 in the output achieved
73% accuracy, a significant result albeit lower than the best result acieved with 6/1 transformers using
the same encodings (90%). With the P1000 encoding, the best universal transformers reach 55% accuracy,
compared to 80% for their 6/1 transformer counterparts. Overall, Universal Transformers seem to achieve
comparable performances with deep transformers (except on the inversion tasks), using less parameters. This
makes shared layer transformers an interesting direction for future work.

21

Under review as submission to TMLR

E Additional experiments

E.1 Retraining

Models trained on matrices of a given size do not generalize to different dimensions, but they can be retrained
over samples of matrices of different size. This takes comparatively few examples: a 5 × 5 model, that takes 40
million examples to be trained, can learn to predict with high accuracy eigenvalues of matrices of dimension
6 and 7 with about 25 million additional examples. Table 20 presents those results. The possibility to retrain
large transformers (such as GPT-3) on different tasks is well documented, it is interesting to observe the
same phenomenon in smaller models.

Encoding Retrain dimensions Accuracy (5%) Accuracy (2%) Retrain examples
P10 5-6 100 99.9 10M
P10 5-7 100 93.6 25M
P1000 5-6 100 97.7 25M

Table 20: Model accuracy after retraining. Models trained over 5x5 matrices, retrained over 5-6 and 5-7.
Overall performance after retraining (tolerance 5 and 2%), and number of examples needed for retraining.
All models have 512 dimensions and 8 attention heads

E.2 Co-training

We have shown that transformers can be trained to performed all the tasks mentioned above, training one
specific model for each task. In this section, we experiment with co-training: learning several tasks at once.
We add a token at the beginning of the input and output sequence indicating the task to be solved (e.g.
Transpose or Add), and generate data by randomly selecting a task (with equal probability for all tasks) and
producing the corresponding pairs.

We train transformers with 4 or 6 layers, 512 dimensions and 8 attention heads on eight datasets corresponding
to different co-training tasks:

• Transpose and add (TA)
• Transpose, add and dot product (vector matrix multiplication) (TAD)
• Transpose, add, dot product and matrix multiplication (TADM)
• Transpose, add, dot product, matrix multiplication and eigenvalues (TADME)
• Transpose, add, dot product, matrix multiplication, eigenvalues and eigenvectors (TADMEF)
• Transpose, add, dot product, matrix multiplication, eigenvalues, eigenvectors and matrix inversion

(TADMEFI)
• Eigenvalues, eigenvectors and matrix inversion (EFI)

T A D M E F I
TA 100 100
TAD 100 100 100
TADM 100 100 100 100
TADME 100 100 26 100 80
TADMEF 100 100 100 100 3 0
TADMEFI 100 100 100 100 3 0 0
EFI 100 22 0

Table 21: Accuracy of co-training, 5 × 5 matrices, 5% tolerance.

Table 21 summarizes our findings. Lines correspond to a co-training tasks, columns to the performance
achieved on this specific task (with 5% tolerance). Co-training over a mixture of basic operations (transposition,
addition, dot products and multiplication: the TA, TAD and TADM tasks) learn to predict the results of all

22

Under review as submission to TMLR

operations with almost perfect accuracy. Co-training on the basic operations and eigenvalue computations
(the TADME task) allows the model to predict eigenvalues with 80% accuracy, in exchange for a loss of
performances on the dot product task. In other experiments with this task, the model learned all basic
operation to 100% accuracy (as in the TADM setting), and the eigenvalue to a few percents. Adding more
tasks, eigenvectors and inversion, results in the same performance. Co-training on the advanced tasks only
(eigenvalues, vectors and inversion) results in 100% accuracy on eigenvalue computation, 22% on eigenvectors,
and 0 on inversion. These results demonstrate the feasibility of co-training on basic matrix operations, but
also suggest that further research is needed if one wants to extend it to all the tasks considered in this paper.

E.3 Additional results with noisy data

B1999 P1000
2/2 layers 4/4 layers 2/2 layers 4/4 layers
256 512 256 512 256 512 256 512

5% tolerance
0.01σ error 100 100 100 100 100 100 99.4 100
0.02σ 100 100 99.8 100 100 100 100 100
0.05σ 41.5 41.2 41.7 41.6 39.3 41.2 39.4 40.7
2% tolerance
0.01σ error 99.8 99.9 99.8 99.9 99.4 100 98.2 99.9
0.02σ 43.7 44.2 42.1 44.7 39.0 44.9 42.6 45.3
0.05σ 0 0 0 0 0 0 0 0
1% tolerance
0.01σ error 39.8 41.7 39.6 44.0 36.6 44.0 28.9 44.6
0.02σ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.05σ 0 0 0 0 0 0 0 0

Table 22: Accuracy of noisy 5 × 5 matrix addition for different error levels and tolerances.

FP15 P1000
4/4 layers 6/6 layers 4/4 layers 6/6 layers
512 1024 512 1024 512 1024 512 1024

5% tolerance
0.01σ error 6.1 100 5.1 6.0 100 100 100 100
0.02σ 100 100 6.7 100 100 100 100 100
0.05σ 99.1 99.3 99.3 6.4 99.3 99.0 99.0 98.8
2% tolerance
0.01σ error 0.7 99.8 0.5 0.8 99.3 99.6 99.9 99.8
0.02σ 97.0 97.1 0.8 88.4 97.3 97.9 93.1 95.4
0.05σ 37.9 38.4 40.6 0.5 40.1 37.3 37.5 35.3
1% tolerance
0.01σ error 0.1 82.1 0.1 0.2 79.7 83.8 87.9 83.8
0.02σ 47.8 51.3 0.1 26.1 46.2 47.5 36.4 41.3
0.05σ 3.8 4.2 4.1 0.1 4.1 3.8 3.9 3.4

Table 23: Accuracy of noisy eigenvalue computations, for different error levels and tolerances,
5 × 5 matrices.

23

Under review as submission to TMLR

F Number of parameters

The number of parameters in the sequence to sequence transformer we use in this paper can be calculated as
follows.

• A self-attention mechanism with dimension d has 4d(d + 1) parameters: it is composed of four linear
layers (K, Q, V and the output layer), with d input, d output and a bias.

• A cross-attention mechanism with de dimensions in the encoder, and d in the decoder has 2d(d+de +2)
parameters (K and V are de × d layers).

• A FFN with one hidden layer, d input and output, and h hidden units has d(h + 1) + h(d + 1)
parameters.

• A layer normalization with d dimensions has 2d parameters.
• An encoder layer with dimension d has a self-attention mechanism, a FFN with 4d hidden units (in

our implementation) and two layer normalizations, for a total number of parameters of 12d2 + 13d.
• A decoder layer has a cross-attention layer (encoding dimension de) and a layer normalization on top

of an encoder, for a total of 14d2 + 19d + 2ded parameters.
• An embedding of dimension d for a vocabulary of w words will use dw parameters, and 2d more if it

is coupled to a layer normalization.
• The final prediction layer with an output dimension of d and a decoded vocabulary of w words will

use (d + 1)w parameters (but in our case, dw will be shared with the decoder embedding).

Overall, the number of parameters for a transformer with ne encoding layers with dimension de, n∗d decoding
layers with dimension dd, an input vocabulary of wi words, an output vocabulary of wo words and a positional
embedding of wp words (corresponding to the maximum sequence length) can be computed by the formula:

P = de(wi + wp + 2) + ((wo + wp + 2)dd + wo) + nede(12de + 13) + nddd(14dd + 2de + 19)

the four terms in the sum corresponding to the input embedding, the output embedding, the encoder and the
decoder.

Table 24 provides the number of parameters for some of the models used in this paper. For the positional
embedding, we set the number of words as the longest input and output sequence studied with that model.

Experiment Model Parameters

Transposition 1/1 layers 256 dimensions P10 2,276,171
1/1 layers 256 dimensions P1000 2,737,871
1/1 layers 256 dimensions B1999 3,297,554
1/1 layers 256 dimensions FP15 17,045,441

Addition 2/2 layers, 512 dimensions, B1999 17,619,218

Matrix vector multiplication 2/2 layers 512 dimensions P10 15,578,443
2/2 layers 512 dimensions P1000 16,500,943
4/4 layers 512 dimensions P1000 31,213,775

Matrix multiplication 1/4 layers 512 dimensions P1000 21,756,623
1/6 layers 512 dimensions P1000 30,164,687

Eigen decomposition 1/6 layers 512 dimensions FP15 58,751,937
6/1 layers 512 dimensions FP15 53,493,697
6/1 layers 512 dimensions P1000 24,906,447
661 layers 512 dimensions P1000 45,926,607

Matrix inversion 6/1 layers 512 dimensions FP15/P1000 39,186,127

Table 24: Number of parameters of transformers used in the paper.

24

Under review as submission to TMLR

0

200

400

600

800

1000

un
ifo

rm
5x5

 = 12.92

10x10

 = 18.25

15x15

 = 22.36

20x20

 = 25.82

0

200

400

600

800

1000

ga
us

sia
n

 = 12.91 = 18.25 = 22.37 = 25.82

60 40 20 0 20 40 60
0

250

500

750

1000

1250

1500

1750

2000

la
pl

ac
e

 = 12.90

75 50 25 0 25 50 75

 = 18.25

75 50 25 0 25 50 75

 = 22.37

75 50 25 0 25 50 75

 = 25.83

Figure 3: Empirical distributions of eigenvalues for Wigner matrices, dimension 5x5 (left) to 20x20
(right), with uniform (top), gaussian (middle) and Laplace (bottom) coefficients. All distributions computed
from 100 000 random matrices.

G Eigenvalue distribution of Wigner matrices, an empirical justification

Figure 3 provides an empirical confirmation of the property of Wigner matrices mentioned in sections 2.2
and 5: the standard deviation of their eigenvalues is a function of their dimension and standard deviation of
their coefficients only, and does not depend on the actual dsitribution of the coefficient. In particular, for
coefficients with standard deviation σ = 10/

√
(3) = 5.77, we expect the standard deviation of their eigenvalue

distribution to be σ = 12.91, 18.26, 22.36 and 25.81 for square matrices of dimension 5, 10, 15 and 20.

For three distributions, uniform, Laplace and gaussian, and four dimensions (5, 10, 15, and 20), we generated
100 000 random matrices with the same standard deviation of coefficients, and computed their eigenvalues.
Standard deviations are within 0.01 of theoretical values for all distributions and dimensions. It is interesting
to note how the distributions (which correspond to the original coefficient distribution for n = 1) resemble
the semi-circle as dimension increases.

25

	Introduction
	Problems and datasets
	Encoding matrices as sequences
	Random matrix generation

	Models and experimental settings
	Experiments and results
	Transposition
	Addition
	Multiplication
	Eigenvalues
	Eigenvectors
	Inversion
	Singular value decomposition (SVD)
	Experiments with noisy data

	Out-of-domain generalization
	Related work
	Discussion
	Conclusion.
	Number encodings
	L1, L2 and L norms for evaluation
	Additional experimental results
	Learning curves for different encodings and architectures
	Model size
	Model performance on different training sets

	Alternative architectures
	Other sequence to sequence models : LSTM and GRU
	Shared-layer transformers: Universal transformers

	Additional experiments
	Retraining
	Co-training
	Additional results with noisy data

	Number of parameters
	Eigenvalue distribution of Wigner matrices, an empirical justification

