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ABSTRACT

Large-scale finite element simulations of complex physical systems governed by
partial differential equations (PDE) crucially depend on adaptive mesh refinement
(AMR) to allocate computational budget to regions where higher resolution is
required. Existing scalable AMR methods make heuristic refinement decisions
based on instantaneous error estimation and thus do not aim for long-term op-
timality over an entire simulation. We propose a novel formulation of AMR as
a Markov decision process and apply deep reinforcement learning (RL) to train
refinement policies directly from simulation. AMR poses a new problem for RL
as both the state dimension and available action set changes at every step, which
we solve by proposing new policy architectures with differing generality and in-
ductive bias. The model sizes of these policy architectures are independent of the
mesh size and hence can be deployed on larger simulations than those used at train
time. We demonstrate in comprehensive experiments on static function estimation
and time-dependent equations that RL policies can be trained on problems without
using ground truth solutions, are competitive with a widely-used error estimator,
and generalize to larger, more complex, and unseen test problems.

1 INTRODUCTION

Numerical simulation of PDEs via the finite element method (FEM) (Brenner & Scott, 2007) plays
an integral role in computational science and engineering (Reddy & Gartling, 2010; Monk et al.,
2003). Given a fixed set of basis functions, the resolution of the finite element mesh determines
the trade-off between solution accuracy and computational cost. For complex systems with large
variations in local solution characteristics, uniform meshes can be computationally inefficient due to
their suboptimal distribution of mesh density, under-resolving regions with complex features such
as discontinuities or large gradients and over-resolving regions with smoothly varying solutions. For
systems with multi-scale properties in particular, attempting to resolve these features with uniform
meshes can be challenging even on the largest supercomputers. To achieve more efficient numerical
simulations, adaptive mesh refinement (AMR), a class of methods that dynamically adjust the mesh
resolution during a simulation to maintain equidistribution of error, is used to significantly increase
accuracy relative to computational cost.

Existing methods for AMR share the same iterative process of computing a solution on the current
mesh, estimating refinement indicators, marking element(s) to refine, and generating a new mesh
by refining marked elements (Bangerth & Rannacher, 2013; Červený et al., 2019). The optimal
algorithms for error estimation and marking in many problems, especially evolutionary PDEs, are
not known (Bohn & Feischl, 2021), and deriving them is difficult for complex refinement schemes
such as hp-refinement (Zienkiewicz et al., 1989). As such, the current state-of-the-art is guided
largely by heuristic principles that are derived by intuition and expert knowledge (Zienkiewicz &
Zhu, 1992), but choosing the best combination of heuristics is complex and not well understood.

We advance the novel notion that adaptive mesh refinement is fundamentally a sequential decision-
making problem in which a sequence of greedy decisions based on instantaneous error indicators
does not constitute an optimal sequence of decisions for the actual goal of achieving high cumulative
or terminal accuracy. In time-dependent problems for example, an error estimator by itself cannot
preemptively refine elements which would encounter complex features in the next time step. This
means that the optimality of a refinement decision depends on the accuracy of the future solution
and that selecting an element which yields the largest reduction in error at the current time step may
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Figure 1: AMR viewed as a Markov decision process.

not be the optimal decision over the entire simulation. Whether and how optimal AMR strategies
can be found by directly optimizing a long-term performance objective are open questions.

Given this perspective, we formulate AMR as a Markov decision process (MDP) (Puterman, 2014)
(Figure 1) and propose a reinforcement learning (RL) (Sutton & Barto, 2018) approach that explic-
itly trains a mesh refinement policy to optimize a performance metric, such as final solution error.
In contrast to most, if not all, benchmark problems and complex applications of RL (Mnih et al.,
2015; Brockman et al., 2016; Osband et al., 2019; Berner et al., 2019; Vinyals et al., 2019), AMR
poses a new challenge as the sizes of both the state and the set of available actions depend on the
current number of mesh elements, which changes with each refinement action at every MDP time
step. While one may define a fixed and bounded state and action space given a finite refinement bud-
get, doing so is very inefficient as the policy’s input-output dimensions would have to accommodate
the full exponentially large space but only subspaces (with increasing size) are encountered during
simulation. In many practical applications, one would routinely encounter input dimensions on the
order of millions or billions of degrees of freedom. This motivates the design of efficient policy
architectures that leverage the correspondence between the current mesh state and valid action set.

In this paper, we make the following conceptual, methodological, and experimental contributions:
1) We formally define an MDP with effective variable-size state and action spaces for AMR (Sec-
tion 3.2); 2) We propose three policy architectures—with differing generality, inductive bias, and
capacity for modeling interaction—that operate on such variable-size spaces (Section 4); 3) As
a path toward potentially solving large and complex problems on which RL cannot tractably be
trained, we investigate the generalizability of policies trained on small representative features with
known analytic solutions and the effectiveness of policies trained using a novel reward formulation
that can be applied to problems without known analytic solutions (Section 5); 4) Our experiments
demonstrate for the first time that RL can be competitive with, and sometimes outperform, a greedy
refinement strategy based on the widely-used Zienkiewicz-Zhu-type error estimator; moreover, we
show that an RL refinement policy can generalize to higher refinement budgets and larger meshes,
transfer effectively from static to time-dependent problems, and can be effectively trained on more
complex problems without readily-available ground truth solutions. (Section 6).

2 RELATED WORK

The formulation of problems in numerical analysis as statistical learning problems can be traced
at least as far in time as to Poincaré (Poincaré, 1912; Diaconis, 1988). Contemporary works have
employed neural networks as powerful function approximators in existing numerical PDE and linear
system solvers to achieve faster convergence rates, generalize to different boundary conditions or
larger problems, and approximate underresolved features in coarse-grained simulations (Hsieh et al.,
2018; Luz et al., 2020; Bar-Sinai et al., 2019). Our work focuses on optimizing a finite element space
rather than components of a numerical solver.

To the best of our knowledge, no prior work has formulated adaptive mesh refinement as a sequential
decision-making problem and proposed a reinforcement learning approach (Sutton & Barto, 2018).
Previous work at the intersection of neural networks and mesh-based simulation trained neural net-
works to predict mesh densities, sizes, or error fields for use by downstream mesh generators (Dyck
et al., 1992; Chedid & Najjar, 1996; Zhang et al., 2020; Pfaff et al., 2020; Chen & Fidkowski, 2020).
Brevis et al. (2020) apply supervised learning to find an optimal parameterized test space without
modifying the degrees of freedom. Bohn & Feischl (2021) show theoretically that the estimation
and marking steps of AMR for an elliptic PDE can be represented optimally by a recurrent neural
network, but model optimization was left as an open question. Recent studies have leveraged the
effectiveness of graph neural networks (GNN) (Sperduti & Starita, 1997; Gori et al., 2005; Scarselli
et al., 2008) at representing relational structure to predict PDE dynamics on general unstructured
and non-uniform meshes (Alet et al., 2019; Belbute-Peres et al., 2020; Pfaff et al., 2020). Previous
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work on graph generation and formation have employed GNNs as the policy model in an RL context
with applications to biological and social network datasets (You et al., 2018; Trivedi et al., 2020).

Learning a policy for unbounded variable-size state and action spaces is a rare—if not new—
problem for RL, which has been typically applied to environments with fixed-size observation and
small bounded action spaces in almost all benchmark problems (Mnih et al., 2015; Brockman et al.,
2016; Osband et al., 2019). While there are notable applications where the available action set varies
with state (Berner et al., 2019; Vinyals et al., 2019), they do not face the challenge of potentially
millions of possible actions that arises in large-scale AMR. The technique of growing action spaces
(Farquhar et al., 2020) maintains a fixed action space size within each episode, whereas both state
and action space sizes change at every time step within an episode in AMR.

3 BACKGROUND AND FORMULATION

3.1 FINITE ELEMENT METHOD

Our mesh adaptation strategy is implemented in a FEM-based framework (Brenner & Scott, 2007).
In FEM, the domain Ω ⊂ RD is modeled with a mesh that is a union of E nonoverlapping subsets
(elements) such that Ω :=

⋃
Ωk where k ∈ N : k 6 E. The solution on these elements is repre-

sented using polynomials (basis functions) which are used to transform the governing equations into
a system of algebraic equations via the weak formulation. AMR is a commonly used approach to im-
prove the trade-off between the solution accuracy, which depends on the shape and sizes of elements,
and the computational cost, which depends on the number of elements. The most ubiquitous method
for AMR is h-refinement, whereby elements are split into smaller elements (refinement) or multiple
elements coalesce to form a single element (derefinement). In practical applications with unknown
true solutions, the conventional AMR approach is to take greedy refinement decisions based on a
posteriori error estimators, which rely on the numerical solution and its derived quantities on the
current mesh, without regard to long-term optimality.

3.2 AMR AS A MARKOV DECISION PROCESS

We formulate AMR with spatial h-refinement1 as a Markov decision process M :=
(O, Nmax,A, R, P, γ) with each component defined as follows. Each episode consists of T RL
time steps: for time-dependent PDEs, T spans the entire simulation and there may be multiple
underlying PDE evolution steps per RL step; for static problems, T is an arbitrary number of
steps at which RL can act. Consider a time step t when the current mesh has Nt ≤ Nmax ∈ N
elements. Each element i is associated with an observation oit ∈ O and the global state is
st := [o1t , . . . , o

N
t ] ∈ ONt . We define O := Rd such that each element’s observation is a ten-

sor of shape d := l × w × c that includes the values and refinement depths of a local window
centered on itself. For brevity, let St denote the current global state spaceONt . We denote an action
by at ∈ At := {0, 1, . . . , Nt} ⊂ A := {0, 1, . . . , Nmax}, where 0 means “do-nothing” and i 6= 0
means refine element i. Given the current state and action, the MDP transition P consists of:

1) refining the selected element into multiple finer elements (which increases Nt) if a refinement
budget B is not exceeded and the selected element is not at the maximum refinement depth dmax;
2) stepping the finite element simulation forward in time (for time-dependent PDEs only);
3) computing a solution on the new finite element space.

When a true solution is available at training time, the reward at step t is defined as the change in error
from the previous step, normalized by the initial error to reduce variation across function classes:

rt := (‖et−1‖2 − ‖et‖2)/‖e0‖2 , (1)

where error e is computed relative to the true solution. With abuse of notation, we shall use e to
indicate the error norm. The ground truth is not needed to deploy a trained policy on test problems.
When the true solution is not readily available, as is the case for most non-trivial PDEs, one may
run a reference simulation on a highly-resolved mesh to compute equation 1, but this approach can
be prohibitively expensive for training on large-scale simulations. Instead, we propose the use of a
surrogate reward rt := ‖ut,refine−ut,no-refine‖2, the normed difference between the estimated solution
u with and without executing the chosen refinement action. This surrogate, which is an upper bound

1Polynomial p-refinement can be formulated in a similar way. r-refinement (Huang & Russell, 2010; Do-
brev et al., 2019) can be formulated as an RL problem but is not treated in this work.
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on the true reward and effectively acts as an estimate of the error reduction, is only used at training
time to minimize computational effort, whereas at test time, the effectiveness of trained policies is
evaluated using the error computed with respect to a highly-resolved reference simulation.

Our objective to find a stochastic policy π : St → ∆(At) to maximize the objective

J(π) := Ea∼π(·|s),st+1∼P (·|a,st)

[
T∑
t=1

γtrt

]
. (2)

Aside from γ ∈ (0, 1), this objective is equivalent to maximizing total error reduction: e0 − efinal.

Although the size of the state vector and set of valid actions changes with each time step due to the
varying Nt, this MDP is well-defined since one can define the global state space as the set of all
possible ON , N < Nmax, and likewise for the action space. Hence, the policy is navigating through
subspaces of increasing size during an episode. Moreover, the exact 1:1 correspondence between the
number of observation components and the number of valid actions calls for designing a dedicated
policy architecture for AMR, which we present below in Section 4.

We work with the class of policy optimization methods as they naturally admit stochastic policies
that could benefit AMR at test time: a stochastic refinement action could reveal the need for further
refinement in a region that appears flat on a coarse mesh. We build on the policy gradient algorithm
(Sutton et al., 2000; Schulman et al., 2017) to train a policy πθ (parameterized by θ) using batches
of trajectories {τb := {(st, at, rt)k}Tt=1}Kk=1 generated by the current policy.

4 POLICY ARCHITECTURES FOR VARIABLE STATE-ACTION SPACES

We propose three policy architectures, each with different inductive biases, that address the chal-
lenge of variable size state vector s ∈ RNt×d and action set {0, 1, . . . , Nt}, both of whose sizes
changes with number of elements Nt within an episode. These architectures are compatible with
any stochastic policy gradient algorithm. We focus on the special case of 1:1 correspondence be-
tween the number of observations that compose each global state and the number of available actions
at that state. Although not treated in this work, these policy architectures can be easily extended to
the general case of 1:k correspondence—e.g., k = 2 to include derefinement actions.

4.1 INDEPENDENT POLICY NETWORK

The Independent Policy Network (IPN) handles the 1:1 correspondence by mapping each observa-
tion to a probability for the corresponding action. Let fθ : Rd 7→ R be a function parameterized by
θ. Given a matrix of observations s := [o1, . . . , oN ] ∈ RN×d, we define the policy as

π(·|s) = softmax
(
fθ(o

1), . . . , fθ(o
N )
)
. (3)

For example, using a neural network with hidden layer W ∈ Rd×h with h nodes, output layer H ∈
Rh×1, and activation function σ, the discrete probability distribution over N actions conditioned on
s is defined by softmax (σ(sW )H).

IPN applies to meshes of any size since the set of trainable parameters θ is independent of N , but
it has two main limitations. Firstly, it makes a strong assumption of locality as the action proba-
bility at an element does not depend on the observations at other elements. This assumption also
appears in existing AMR methods that estimate error independently at each element; in fact, the
output probabilities of IPN may be viewed as normalized error estimates. Secondly, the permutation
equivariance of this architecture—i.e., π(aµ(i)|(oµ(1), . . . , oµ(N))) = π(ai|s) for any permutation
operator µ : [N ] 7→ [N ]—means that one cannot use the ordering of inputs to represent spatial re-
lations among elements, which would be necessary for refining an element based on neighboring
conditions. We mitigate this problem by defining each element’s observation as an image tensor
that includes neighborhood information and using a convolutional network layer, but this may face
difficulties on unstructured meshes with non-quadrilateral elements (Červený et al., 2019).

4.2 HYPERNETWORK POLICY

The hypernetwork policy captures higher-order interaction among inputs via the function form

π(·|s) = softmax
(
fgφ(s)(o

1), ..., fgφ(s)(o
N )
)
. (4)
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The main policy network weights θ are now the output of a hypernetwork (Ha et al., 2017)
gφ : RN×d 7→ Rdim(θ), parameterized by φ, which produces mixing among the inputs s ∈ RN×d.
Continuing with the example in IPN, where the policy network’s first layer is W ∈ Rd×h, a hy-
pernetwork with two layers can be instantiated as

[∑N
i=1 (sU)i,:

]
V = W where U ∈ Rd×h1 and

V ∈ Rh1×(d×h) are the trainable parameters φ, and Mi,: denotes the i-th row of matrix M . The
output W can then be used as part of θ in equation 3.

This increased generality comes with more difficulty in the choice of architecture (specific form of
gφ), which affects the extent to which it captures interaction among inputs. It does not contain an
inductive bias for the local nature of interactions seen in classical applications of AMR. In fact, the
use of a summation from i = 1 to N in the example above means that complete global information
affects each local refinement decision, which is an extremely strong inductive bias.

4.3 GRAPH NETWORK POLICY

We build on graph networks (Scarselli et al., 2008; Battaglia et al., 2018) to address both the issue
of interaction terms and spatial relation among elements. Specifically, we construct a policy based
on Interaction Networks (Battaglia et al., 2016), which is a special case without global attributes2.
At each step, the mesh is represented as a graph G = (V,E). Each vertex vi in V = {vi}i=1:N

corresponds to element i and is initialized to be the observation oi. E = {(ek, rk, sk)}k=1:Ne is
a set of edges with attributes ek between sender vertex sk and receiver vertex rk. An edge exists
between two vertices if and only if they are spatially adjacent. We define the initial edge attribute ek
as a one-hot vector indicator of the difference in refinement depth between rk and sk.

Graph networks capture the relations between nodes and edges via the inductive bias of its internal
update rules. A single forward pass through the graph policy involves one or many rounds of
message passing (Algorithm 1 in the Appendix). Each round is defined by the following sequence
of computations: 1) Each edge attribute ek is updated by learned function ϕe using local node
information via êk ← ϕe(ek, vr

k

, vs
k

); 2) For each node i, we denote by Êi := {(êk, rk, sk)}rk=i
the set of all edges with node i as the receiver, and all updated edge attributes are aggregated into
a single feature ēi ← ρe→v(Êi) by aggregation function ρe→v (e.g., element-wise sum); 3) Then,
each node attribute is updated by v̂i ← ϕv(ēi, vi) using learned function ϕv . Each additional
round increases the size of the local neighborhood that determines node attributes. Finally, we map
each node attribute to a scalar using learned function ψ, apply a global softmax over all nodes, and
interpret the value at each node i as the probability of choosing element i for refinement.

These update rules allow the graphnet policy to address both limitations of the IPN and the hypernet-
work policy. Cross terms arise in the forward pass due to mutual updates of edge and node attributes
using local information. The order of cross terms increases with each message-passing round. Local
spatial relations between mesh elements are included by construction in the initial edge attributes,
so there is no need to include numerical spatial information in each element’s observation vector.

5 EXPERIMENTAL SETUP

Our experiments assess the ability of RL, using the proposed policy architectures, to find AMR
strategies that generalize to test function classes that differ from the training class, generalize to
variable mesh sizes and refinement budgets, and extend to more complex problems without readily-
available ground truth solutions. We define the FEM environment in Section 5.1, the train-test
procedure in Section 5.2, and the implementation of our method and baselines in Section 5.3.

5.1 AMR ENVIRONMENT

MFEM. We use MFEM (Anderson et al., 2021; MFEM), a modular open-source C++ library for
FEM, to implement the MDP for AMR. We ran experiments on two classes of AMR problems:
static and time-dependent. In the static case, the objective of mesh refinement is to minimize the
L2 error norm of projecting a variety of test functions onto a two-dimensional finite element space.
In the time-dependent case, the functions are projected onto the finite element space, and a PDE
of the form ∂u

∂t +∇·F(u) = 0 is solved on a periodic domain using the finite element framework.
2While not demonstrated in this work, it is conceivable to use function coefficients and initial/boundary

conditions as global attributes to improve generalization in a graphnet policy for AMR.
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(a) Bumps (b) Circles (c) Steps (d) Steps2

Figure 2: Individual samples from each true so-
lution function class. Each function sampled in
bumps and circles is a superposition of a random
number of such features in general. Refinements
shown here are produced by IPN.

In contrast to the static case, the numerical error
accumulated at each time step propagates with
the physical dynamics and determines future er-
ror. Two types of PDEs were used: the lin-
ear advection equation, where F(u) = cu with
c = [1, 0], and the nonlinear Burgers equation,
where F(u) = cu2 with c = [1, 0.3]. The ad-
vection equation is used as there is an analytic
solution to provide a ground truth, whereas the
Burgers equation is used as the resulting solu-
tions are representative of more complex phys-
ical systems that include shock and rarefaction waves, albeit without a readily-available analytic
solution. The solution is represented using continuous (or discontinuous) second-order Bernstein
polynomials for the static (or time-dependent) case, and the initial mesh is partitioned into nx × ny
quadrilateral elements.

True solutions. We aim to show that RL policies have the potential to be deployed on larger and
more complex problems without a priori known solutions by either training these policies on small
representative features with known solutions or utilizing the proposed surrogate reward at training
time. As such, we defined a collection of parameterized function classes, each exhibiting features
such as sharp discontinuities and smooth variations, from which we randomly sample ground truth
functions f : [0, 1]2 7→ R to initialize each episode. The collection, shown in Figure 2 and defined
precisely in Appendix A.1.2, includes: bumps, circles, steps, and steps2 (a combination of two
steps). These functions with closed form allow us to compute the error and reward at train time
for static and advection problems. In the case of Burgers equation where the exact solution is not
readily-available, we either use reference simulations on a highly-resolved mesh to act as a “ground
truth” or employ the surrogate reward (defined in Section 3.2) to compute the reward for training.

In the static case, the true solution is fixed and each simulation time step is an RL step. For the
time-dependent PDE cases, the initial solution is transported through the periodic domain and the
ratio of simulation time steps to RL steps is set such that a feature advecting at unit velocity returns
to its original position after 10 RL steps. We set refinement budget B = 10 for static problems,
B = 20 for advection, and B = 50 for Burgers; episode length at train time equals B. Due
to the Gibbs phenomena in FEM, using smooth polynomial approximations to solve hyperbolic
systems containing discontinuities can introduce spurious oscillations which, in turn, can cause the
simulation to become unstable. Therefore, we limit the true solutions to smooth functions (e.g.,
bumps, circles) for the advection and Burgers cases. Due to the nonlinearity of Burgers equation,
initially smooth solutions can develop discontinuities in finite time. This behavior is resolved using
the flux-corrected transport (FCT) approach (Boris & Book, 1997).

5.2 EXPERIMENTS AND PERFORMANCE METRIC

We conducted the following experiments to compare RL policies with baselines:

In-distribution: Train and test on true solutions sampled from the same function class.

Out-of-distribution: For problems such as Burgers equation where training on multiple initial con-
ditions (ICs) may be expensive, we show the effectiveness of policies trained on a single initial
condition (IC) when tested on multiple random ICs, either with or without fine-tuning.

Generalization: 1) Static→advection: Policies trained on static functions are tested on advection.
2) Budget↑: Policies trained with a small refinement budget B (20 on static and 10 on advection)
are test with B = 50, 100. 3) Size↑: Policies trained on an 8× 8 initial mesh are tested on 16× 16
and 64× 64 initial meshes with and without preserving the relative solution and mesh length scales.

We define the performance of a given refinement policy in an episode in the static case as
(einitial−efinal)/einitial, where einitial (or efinal) is the error norm at the beginning (or end) of an episode,
to remove the variation in the error due to different true solution classes and random function ini-
tialization within each class. In the time-dependent case, without any refinement, the error may
increase over the course of the simulation due to the accumulation of discretization error. Hence,
given a refinement policy that achieves efinal at episode termination, we define its performance as
(eno-refine, final − efinal)/einitial, where eno-refine, final is the final error without any refinement.
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We tuned hyperparameters by training on a multitask scenario for static and advection, and individu-
ally for Burgers; the procedure and chosen values are given in Appendix A.3. For every experiment
and every policy architecture, we trained four independent policies with different random seeds.
For each test case, we report the mean and standard error—over the four independent policies and
with different simulator seeds —of the mean performance metric over 100 test episodes. At each test
episode, we ensured that all methods faced the same initial condition (which differs across episodes).

5.3 IMPLEMENTATION AND BASELINES

We describe the high-level implementation here and provide complete details in Appendix A.2. All
policy architectures use a convolutional neural network with the same architecture as the input layer.
The IPN has two fully-connected hidden layers with h1 and h2 nodes and ReLU activation, followed
by a softmax output layer. Its action on input states is described in Section 4.1. The Graphnet
policy is implemented with the Graph Nets library (Battaglia et al., 2018). Each input state consists
of node observation tensors, all edge vectors, and the adjacency matrix. Node tensors are first passed
through an Independent block, after which multiple Interaction networks (Battaglia et al., 2016) act
on both node and edge embeddings to produce a probability at each node (see Section 4.3). The
Hypernet policy is parameterized by matrices U ∈ Rd×h1 , V ∈ Rh1×(d×h), and Y ∈ Rd×h,
where h1 and h are design choices. U and V act on input state s to produce the main policy weights
W ∈ Rd×h (see Section 4.2) while Y acts on s to produce a bias b ∈ Rh, so that the main policy’s
first hidden layer is ReLU(sW + b). Output probabilities are computed in the same way as IPN.

Baselines. The ZZ policy uses a Zienkiewicz-Zhu-type recovery-based error estimator (Zienkiewicz
& Zhu, 1992) and refines the element with the largest estimated error. The TrueError policy refines
the element where the error of the numerical solution with respect to the true solution is largest. It is
not the theoretical upper bound on performance because refining the element with largest error does
not necessarily result in largest reduction of error but it does effectively pose an upper bound on
the performance of an instantaneous error estimator. The GreedyOptimal policy performs one-step
lookahead by checking all possible outcomes of refining each element individually and chooses the
element whose refinement would result in the lowest error at the next step. In comparison to RL
policies, only the ZZ policy can feasibly be deployed at test time as TrueError cannot be deployed
on systems without known solutions and GreedyOptimal is intractable for real applications.

6 RESULTS

We find that the proposed methods achieve performance that is competitive with baselines and, more
importantly, generalize well to larger refinement budgets and mesh sizes, and transfer effectively
from a static problem to a time-dependent problem. Videos of policies on advection and Burgers
can be viewed at https://sites.google.com/view/iclr2022-amr.

6.1 IN-DISTRIBUTION

Static functions (Figure 3a). RL policies either meet or significantly exceed the performance of
ZZ on all function classes. Notably, both IPN and Graphnet outperform ZZ significantly on steps
by spending the limited refinement budget only on regions with discontinuities (Figure 2c). On
the smoother function classes such as bumps where ZZ is known to perform well, all three policy
architectures have comparable performance to ZZ. Overall, IPN outperforms both Graphnet and
Hypernet, while Hypernet performed poorly (albeit still better than random) on all classes except

(a) Static (b) Advection (c) Static→advection
Figure 3: In-distribution and Static→advection. Performance of IPN, Graphnet and Hypernet-
work policies versus baselines. Higher values are better. (a,b) RL policies were trained and tested
on the same function class, for static and advection cases independently. (c) Static-trained policies
on a function class are tested on advection of the same function class.
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bumps. This suggests that capturing higher-order interaction among observations, each of which
already contains local neighborhood information, is unnecessary for estimation of static functions
as they only have a local domain of influence. Hypernetwork policies converged to the behavior
of making no refinements on at least one out of four independent runs on all classes except bumps.
This could be attributed to the inherent difficulty of choosing and training a highly nonlinear model.

Advection (Figure 3b). As explained above, we limit the true solutions to smooth functions (bumps
and circles) in the advection case. Graphnet significantly outperformed ZZ on circles and is com-
parable to TrueError on bumps, while IPN is comparable to ZZ on both functions. Hypernet is
comparable to ZZ on circles but has high variance across independent runs. Graphnet’s higher per-
formance than other methods indicates that its inductive bias can better represent the local geometric
relations between neighboring mesh elements along the circle.

Burgers equation. In experiments with a single bump function (visualized in Figure 4c) as the fixed
initial condition (IC) in both train and test, IPN trained with both the exact and surrogate rewards
outperformed all baselines (Figure 4a). The policy trained using the surrogate reward resulted in
similar performance to the policy trained with the exact reward, indicating that the surrogate reward
can be effectively used to train policies without the need for a ground truth solution, as is necessary
for general random ICs.

(a) Test on fixed IC (b) Test on random ICs (c) Mesh by IPN (Fixed
IC, SR) at T = 50

(d) Mesh by IPN (pre-
trained, SR) at T = 50

Figure 4: Burgers equation and surrogate reward. Solid bars/ER denote exact reward, striped
bars/SR denote surrogate reward. (a) IPN trained and tested on a fixed IC. (b) IPN tested on random
ICs using policies trained on a fixed IC (from Figure 4a), policies pretrained on fixed IC and fine-
tuned on random ICs, and policies only trained on random ICs. (c/d) Visualization of resulting
meshes for Burgers equation with a fixed bump IC.

6.2 OUT-OF-DISTRIBUTION (OOD)

Figure 4b shows the performance of IPN RL policies and baselines on Burgers equation with random
ICs. We observe that policies trained on a fixed IC using either the exact or surrogate reward (labeled
“Fixed IC, ER” and “Fixed IC, SR”) generalize well to random unseen ICs and still outperform
baselines. Moreover, policies that were pretrained with the surrogate reward on the fixed IC for 2k
episodes and fine-tuned with the surrogate reward on random ICs for another 2k episodes performed
the best (“pretrained, SR”). We truncated training around 4-5k episodes due to computational limits,
but we see that performance can improve with more training episodes. Policies trained only on
random ICs with the surrogate reward were not as performant, indicating that the training time was
not sufficient and that pretraining on a fixed IC is a more efficient approach. We do not envision
that one would train and test on highly different function classes in applications involving static
and advection problems, but we include experimental results of all combinations of train and test
function classes in Appendix B.

6.3 GENERALIZATION

Static→advection (Figure 3c). All static-trained policies demonstrated comparable performance
to ZZ and TrueError when tested on advection-bumps, while both IPN and Graphnet significantly
outperformed ZZ on advection-circles. Surprisingly, static-trained IPN significantly outperforms
advection-trained IPN when tested on advection-circles, and the static-trained Hypernet does so as
well on advection-bumps, while static-trained Graphnet maintains comparable performance to its
advection-trained counterpart (Figure 3b vs. Figure 3c). Figure 12 shows that a static-trained policy
on bumps withB = 10 correctly refines the region of propagation on advection-bumps withB = 50.

Budget↑ (Figure 5). RL policies trained with low refinement budget generalize to test cases with
higher budget. In the static case, comparing Figure 3a (B = 10) with Figure 5a (B = 50) shows that
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(a) Static (b) Advection (c) IPN on static circle (d) Graphnet on advection
Figure 5: Budget↑. (a-b) Policies trained with budget B = 10 (static) and B = 20 (advection) are
tested with B = 50. (c) IPN trained with B = 10 generalizes to B = 100. (d) Graphnet trained on
advecting bump with B = 20 generalizes to B = 50.

the performance of RL policies relative to ZZ is generally preserved by the increase in refinement
budget. Figures 5 and 8 show that an IPN trained withB = 10 makes qualitatively correct refinement
decisions when allowed B = 100 during test. In the advection case (Figure 5b), Graphnet trained
with B = 20 significantly outperforms both ZZ and TrueError when tested with B = 50 on bumps
and comes within the margin of error of TrueError on circles. Figure 7 shows that an IPN trained
with B = 20 correctly allocates a higher budget B = 100 to the limited region of propagation.

(a) Static (b) Advection (c) Advection 64x64 (d) Advection 200x200

Figure 6: Size↑. (a-b) Policies trained with initial 8 × 8 mesh were tested on initial 16 × 16 mesh.
(c-d) Policies trained on 8 × 8 initial mesh were tested on initial meshes of size 64 × 64 (c) and
200× 200 (d) with approximately constant feature-to-mesh length scale ratio.

Size↑ (Figure 6). In the static case, the relative performance of RL policies that were trained with
an 8 × 8 initial mesh (Figure 3a) is generally preserved when deployed on a 16 × 16 initial mesh
(Figure 6a). All policy architectures outperform ZZ on bumps, while IPN and Graphnet still out-
perform ZZ on steps. IPN and Graphnet were comparable to ZZ on 8 × 8 but underperformed
on 16 × 16 on circles. Nonetheless, Figure 10 shows that IPN makes qualitatively correct refine-
ments. On advection, relative performance is preserved on circles while IPN and Graphnet deproved
slightly on bumps (Figure 3b vs. Figure 6b). Without preserving the solution-to-mesh length scales,
the prior tests emulate deploying a policy trained on coarser versions of the simulations. When
tested on 64 × 64 and 200 × 200 initial meshes that preserves the relative solution-to-mesh length
scales, which emulates deploying a policy trained on a small subset of a highly-resolved simulation,
Figures 6c and 6d shows that IPN is competitive with baselines on bumps and even outperforms
TrueError on circles.

7 CONCLUSION

We present a novel formulation of adaptive mesh refinement as a Markov decision process and pro-
pose new policy architectures for scalable application of reinforcement learning. Our experiments
on static and time-dependent problems demonstrate that RL policies can outperform a policy based
on the widely-used ZZ-type error estimator, and in some cases even outperform a policy based on
the exact true error, suggesting that RL can potentially provide efficiency gains beyond the reach of
existing AMR approaches. We demonstrated that these RL policies generalize to different refine-
ment budgets and larger meshes, transfer from static to time-dependent settings, and generalize to
more complex problems even when trained without ground truth rewards. Moreover, because these
RL policies do not use problem-specific knowledge or domain expertise as input, our results provide
a path for learning novel AMR strategies for cases such as hp-refinement that currently lack effec-
tive solutions. Future work can extend our RL methods to include derefinement actions, sampling
multiple elements at each time step, and taking a multi-agent perspective that views each element as
an agent who acts concurrently with all other agents.

9
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REPRODUCIBILITY STATEMENT

We have described the experimental protocol involving tuning, training, and testing in Section 5.2;
the high-level implementation of the proposed method in Section 5.3; the specific implementation
details of the proposed method in Appendix A.2; the experimental test cases in Appendix A.1.2
and Table 1; the detailed tuning procedure in Appendix A.3; and the complete specification of all
hyperparameters in Appendix A.3, Table 2, and Table 3.
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Algorithm 1 Graphnet policy forward pass

1: for each message-passing round do
2: for k ∈ {1, . . . , Ne} do
3: êk ← ϕe(ek, vr

k

, vs
k

) # Update edge attribute
4: end for
5: for i ∈ {1, . . . , N} do
6: Êi := {(êk, rk, sk)}rk=i # Edge set for vi

7: ēi ← ρe→v(Êi) # Aggregation for vi
8: v̂i ← ϕv(ēi, vi) # Update vertex attribute
9: end for

10: ek ← êk,∀k ∈ [Ne], vi ← v̂i,∀i ∈ [N ]
11: end for
12: R 3 xi ← ψ(vi),∀i ∈ [N ]
13: π(ai|s) is the i-th entry of softmax(x1, . . . , xN )

A EXPERIMENTAL SETUP

A.1 ENVIRONMENT DETAILS

A.1.1 MFEMCTRL

To interface between the MFEM framework and the RL environment, we developed MFEMCtrl, a
C++/Python wrapper for the AMR and FEM capabilities in MFEM. MFEMCtrl is used to convert
solutions to observations, apply refinement decisions, and calculate errors.

The initial mesh is partitioned into nx × ny = 8× 8 elements for static and advection experiments
and 10×10 for Burgers equation. Generalization experiments on larger initial mesh used nx×ny =
16 × 16 or 64 × 64. The true solution is projected onto the finite element space by interpolation to
the nodes of the Bernstein basis functions. After each refinement action, the solution is projected
again onto the refined mesh (for the static case) or integrated in time until the next refinement action
(for the time-dependent case). The maximum refinement depth is fixed by the parameter dmax such
that the maximally-refined mesh consists of 2dmaxnx × 2dmaxny elements. dmax was set to 3 for static
experiments, whereas dmax = 2 for advection and dmax = 1 for Burgers equation due to the time
step restrictions imposed by the Courant-Friedrichs-Lewy (CFL) condition of the finest elements.

Observation. The observation consisted of the solution and the depth of each element. Since the
gradients of the solution are, by definition, a function of the solution, the observation does not
include the gradients as they can be implicitly learned. The solution/depth of each element was
observed by interpolating the functions to a local equispaced mesh (image) centered around each
element, shown by the white box in Figure 1. Each element’s observation is a l×w×c tensor where
l = w = lelement + 2lcontext is the spatial observation window with lelement = 16 sampled points inside
the element and lcontext = 4 sampled points in a coordinate direction outside the element. We chose
c = 2 channels so that estimated function values and element depths are observed, while gradients
are omitted since the policy network can in principle estimate gradients from the value channel. To
impose a 1:1 map between each observation and possible action, we append a dummy o0 to state s
corresponding to action 0. At most one refinement is allowed per MDP step.
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Table 1: Parameterized true solutions

Parameter [min, max]

Bumps (static)

cx [0.2, 0.9]
cy [0.2, 0.9]
w [0.05, 0.2]
n {1, . . . , 6}

Bumps (advection)

cx [0.3, 0.7]
cy [0.3, 0.7]
w [0.005, 0.05]
n {1, . . . , 4}
cx 0.5

Bumps (Burgers) cy 0.5
single IC w 0.05

n 1

cx [0.3, 0.7]
Bumps (Burgers) cy [0.3, 0.7]

random IC w [0.005, 0.05]
n {1, . . . , 4}

Circles (static)

cx [0.2, 0.8]
cy [0.2, 0.8]
r [0.05, 0.2]
w [0.1, 1.0]
n {1, . . . , 6}

Circles (advection)

cx [0.3, 0.7]
cy [0.3, 0.7]
r [0.05, 0.2]
w [0.03, 0.05]
n {1, . . . , 4}

Steps and Steps2
o [0, 1.0]
θ [0, π/2]
n {1, . . . , 6}

A.1.2 GROUND TRUTH FUNCTIONS

Bumps

n ∼ Uniform[nmin, nmax]

cx,i ∼ Uniform[cx,min, cx,max], i = 1, . . . , n

cy,i ∼ Uniform[cy,min, cy,max], i = 1, . . . , n

wi ∼ Uniform[wmin, wmax], i = 1, . . . , n

f(x, y) =

n∑
i=1

exp

(
− (x− cx,i)2 + (y − cy,i)2

wi

)

Circles

n ∼ Uniform[nmin, nmax]

cx,i, cy,i ∼ Uniform[cmin, cmax], i = 1, . . . , n

ri ∼ Uniform[rmin, rmax], i = 1, . . . , n

wi ∼ Uniform[wmin, wmax], i = 1, . . . , n

f(x, y) =

n∑
i=1

exp

(
−

(
√

(x− cx,i)2 + (y − cy,i)2 − ri)2

wi

)

Steps

n ∼ Uniform[nmin, nmax]

θ ∼ Uniform[θmin, θmax]

oi ∼ Uniform[omin, omax], i = 1, . . . , n

f(x, y) =

n∑
i=1

1 + tanh [100(oi − (x+ y tan θ))]

Steps2

n ∼ Uniform[nmin, nmax]

θi ∼ Uniform[θmin, θmax], i = 1, . . . , n

oi ∼ Uniform[omin, omax], i = 1, . . . , n

si := (x− 0.5) cos θi − (y − 0.5) cos θi

f(x, y) =
1

2

n∑
i=1

1 + tanh [100(si − oi)]
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A.1.3 REWARD

Let ut denote the true solution at time t, let ût denote the estimated solution on the mesh at time
t. For a given mesh at time t − 1, a given time evolution of the true solution from t − 1 to t, and
a refinement action at (which may be “do-nothing”), let ût,refine denote the estimated solution on
the mesh at time t that has undergone refinement action at, and let ût,no-refine denote the estimated
solution on the mesh at time t without that refinement. We have two reward definitions:

1. Delta norm reward with true solution

rt := (et−1 − et)/e0 (5)
et := ‖ut − ût‖2 (6)

2. Surrogate reward

rt := ‖ût,refine − ût,no-refine‖2 (7)

We used the first reward definition for static and advection experiments where analytic true solutions
are available, and for Burgers experiments involving a single initial condition and pre-computed
reference data that acts as the true solution. We used the second reward definition for all other
Burgers experiments.

A.2 IMPLEMENTATION

We used standard policy gradient (Sutton et al., 2000) for all experiments except for experiments
on Burgers equation and generalization of 8x8-trained advection policies to 64x64 test meshes. We
used PPO (Schulman et al., 2017) for the latter two cases. We trained for 20k episodes on static
problems, 10k episodes on advection problems, 2k episodes on Burgers equation with a single IC,
and 4k episodes on Burgers equation with random ICs. The Burgers experiment with pretraining
used 2k episodes on a single IC and a further 2k on random ICs. Each episode is initialized with
refinement budget B, where B = 10 for static problems, B = 20 for advection, and B = 50 for
Burgers.

IPN. For efficient computation on a batch of B trajectories, where each trajectory b consists of T
environment steps and each step tb consists of a variable-sized global state s ∈ RNtb×d, we merge
the variable dimension with the batch and time dimension to form an input matrix whose dimensions
are [

∑B
b=1

∑T
t=1Ntb , d]. The output is reshaped into a “ragged” matrix of logits with dimensions

[B × T,Ntb ], where the row lengths vary for each batch and time step. A softmax operation over
each row produces the final action probabilities at each step.

Graphnet policy. The first graph layer is an Independent recurrent block that passes the input
node tensors through a convolutional layer followed by a fully-connected layer, to arrive at node
embeddings. This is followed by two recurrent passes through an InterationNetwork (Battaglia
et al., 2016) where fully-connected layers are used for edge and node update functions. A final
InteractionNetwork output layer followed by a global softmax over the graph produces a scalar
at each node, which is interpreted as the probability of selecting the corresponding element for
refinement. Except for the input node feature vi ∈ Rd and output node scalar, all internal node
(edge) embeddings have the same size, denoted as dim(v) (dim(e)). We fixed dim(e) = 16 for both
static and advection and tuned dim(v) (Table 2).

Hypernet policy. We fixed the main network’s hidden layer dimension at h = 64 and tuned the
hypernetwork’s hidden layer dimension h1 (Table 2).

A.3 HYPERPARAMETERS

For both static and advection problems, we tuned a subset of all hyperparameters for all methods by
the following procedure to handle the large set of policy architectures and ground truth functions.
Chosen values of tuned hyperparameters are given in Table 2; all other hyperparameters have the
same values for all methods and are listed below. We conducted tuning in a multi-task setup, where
we train a single policy on functions randomly sampled from all ground truth classes, with randomly
sampled parameters according to Appendix A.1.2. This is done separately on static and advection
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problems. The tuning process is coordinate descent where the best parameter from one sweep is
used for the next sweep. We start with exploration decay εdiv ∈ {100, 500, 1000, 5000} (a lower
bound on exploration was enforced by using behavioral policy π̃(at|st) = (1 − ε)π(at|st) + ε/Nt
with ε decaying linearly from εstart to εend by εdiv episodes). Next we tune the size of hidden layers
in the policy network (over (h1, h2) ∈ {(128, 64), (256, 64), (128, 128), (256, 256)} for IPN, node
representation dimension dim(v) ∈ {32, 64, 128, 256} for Graphnet, and h1 ∈ {16, 32, 64, 128} for
Hypernet). Lastly, we tune the learning rate α ∈ {5 · 10−5, 10−4, 5 · 10−4, 10−3, 5 · 10−3}. For
Graphnet and Hypernet, we inherit the best εdiv from IPN because optimal exploration depends in
large part on the complexity of the environment, which is the same across all policy architectures.

Separately for the static and advection cases, all three policy architectures have the same values for
all other hyperparameters. These are: policy gradient batch size 8, initial exploration lower bound
εstart = 0.5, final exploration lower bound εend = 0.05, discount factor γ = 0.99, convolutional
neural network layer with 6 filters of size (5, 5) and stride (2, 2).

Table 2: Hyperparameters for IPN, Graphnet and Hypernet policies on static and advection AMR.

Static Advection

Parameter IPN Graphnet Hypernet IPN Graphnet Hypernet

εdiv 500 500 500 100 100 100
IPN (h1, h2) (128, 64) - - (256,256) - -
Graphnet dim(v) - 64 - - 256 -
Hypernet h1 - - 128 - - 32
α 10−4 10−4 5 · 10−5 10−4 10−4 10−4

For Burgers experiments and advection experiments on generalization from 8× 8 to 64× 64 initial
mesh sizes, we used a more comprehensive population-based hyperparameter search with successive
elimination for all methods. We start with a batch of nbatch tuples, where each tuple is a combination
of hyperparameter values, with each value sampled either log-uniformly from a continuous range or
uniformly from a discrete set. We train independently with each tuple for nepisode episodes, eliminate
the lower half of the batch based on their final performance, then initialize the next set of nepisode
episodes with the current models for the remaining tuples. We use the hyperparameters of the last
surviving model. Chosen values are shown in Table 3.

The hyperparameter ranges are: discount factor in {0.1, 0.5, 0.99}, policy entropy coefficient in
(10−3, 1.0), GAE λ in {0.85, 0.90, 0.95}, learning rate in (10−5, 5 · 10−3, PPO ε in (0.01, 0.5),
value loss coefficient in {0.1, 0.5, 1.0}, IPN h1 in {128, 256}, and IPN h2 in {64, 128, 256}.

Table 3: Hyperparameters for advection size ↑ and Burgers experiments

Advection (IPN) Burgers (IPN)

Parameter Bumps Circles 1 IC Random IC

Discount γ 0.99 0.99 0.1 0.5
Entropy coefficient 0.0133 0.0689 8.84 · 10−3 1.17 · 10−3

GAE λ 0.95 0.9 0.85 0.85
Learning rate 1.18 · 10−3 4.8 · 10−3 1.59 · 10−3 2.11 · 10−4

PPO ε 0.0113 0.195 0.128 0.169
Value loss coefficient 0.1 0.5 0.5 0.1
IPN h1 128 256 256 128
IPN h2 128 128 128 256

A.4 COMPUTING INFRASTRUCTURE AND RUNTIME

Experiments were run on Intel 8-core Xeon E5-2670 CPUs, using one core for each independent
policy training session. Average training time with 20k episodes in the static case was approximately
6 hours for IPN and Hypernet, and 9 hours for Graphnet. Average training time with 10k episodes

16



Under review as a conference paper at ICLR 2022

in the advection case was approximately 14 hours for IPN and Hypernet, and 18 hours for Graphnet.
Policy decision times are shown in Table 4.

Table 4: Mean (standard error) time in milliseconds per
refinement decision on 8× 8 and 16× 16 initial mesh partitions.

8× 8 16× 16 24× 24

IPN 3.22 (0.07) 5.85 (0.05) 9.64 (0.28)
Graphnet 7.74 (0.33) 13.9 (0.43) 23.7 (0.19)
Hypernet 8.08 (0.08) 10.7 (0.05) 14.3 (0.17)
ZZ 1.96 (0.01) 6.94 (0.01) 15.5 (0.05)

t = 0 t = 32 t = 68 t = 100
Figure 7: Advection of a bump function. RL policy trained with budget B = 20 generalizes to
B = 100.

(a) Steps (b) Steps2

Figure 8: Generalization of policies trained with refinement bud-
get B = 10 to test case with B = 100.

Figure 9: Example test case on
64× 64 mesh

B ADDITIONAL RESULTS

OOD. In the static case (Figures 13a to 13c), IPN policies trained on circles transfer well to bumps
(and vice versa). Hypernet policies performed poorly overall even in the case of in-distribution,
and consequently does not show comparable performance when transferring across function classes.
In the advection case (Figures 13d to 13f), both IPN and Graphnet policies trained on bumps signif-
icantly outperformed ZZ when tested on circles (compare to ZZ in Figure 3b).
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(a) IPN (b) ZZ

Figure 10: IPN trained on 8× 8 initial mesh
underperformed ZZ when tested on 16 × 16
initial mesh but makes qualitatively correct
refinements.

(a) 1-bump Burgers (b) Multi-bumps Burgers

Figure 11: OOD. (a) IPN (OOD) was trained on
Burgers with multi-bumps IC and tested on Burgers
with a 1-bump IC. (b) IPN (OOD) was trained on
1-bump IC and tested with multi-bumps IC.

t = 0 t = 22 t = 38 t = 50

Figure 12: Static→advection and Budget↑: IPN trained on static bumps (B = 10) transfers to
advection (B = 50).

(a) Static IPN (b) Static Graphnet (c) Static Hypernet

(d) Advection IPN (e) Advection Graphnet (f) Advection Hypernet

Figure 13: All train-test combinations. Normalized error reduction of IPN, Graphnet and Hyper-
network policies on (a-c) Static AMR and (d-f) Advection PDE. Higher values are better. Legend
(colors) shows test classes. RL policies were trained and tested on each combination of true solu-
tions. Mean and standard error over four RNG seeds of mean final error over 100 test episodes per
method.
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