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Abstract
The challenging task composed image retrieval targets at identi-
fying the matched image from the multi-modal query with a ref-
erence image and a textual modifier. Most existing methods are
devoted to composing the unified query representations from the
query images and texts, yet the distribution gaps between the hybrid-
modal query representations and visual target representations are
neglected. However, directly incorporating target features on the
query may cause ambiguous rankings and poor robustness due to
the insufficient exploration of the distinguishments and overfitting
issues. To address the above concerns, we propose a novel frame-
work termed SemAntic Distillation from Neighborhood (SADN) for
composed image retrieval. For mitigating the distribution diver-
gences, we construct neighborhood sampling from the target do-
main for each query and aggregate neighborhood features with
adaptive weights to restructure the query representations. Specif-
ically, the adaptive weights are determined by the collaboration
of two individual modules, as correspondence-induced adaption
and divergence-based correction. Correspondence-induced adap-
tion accounts for capturing the correlation alignments from neigh-
bor features under the guidance of the positive representations,
and the divergence-based correction regulates the weights based
on the embedding distances between hard negatives and the query
in the latent space. Extensive results and ablation studies on CIRR
and FashionIQ validate that the proposed semantic distillation from
neighborhood significantly outperforms baseline methods.

CCS Concepts
• Information systems → Information retrieval; • Comput-
ingmethodologies→ Visual content-based indexing and retrieval.
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1 Introduction
Achieving mutual understanding across diverse modalities (such
as images, texts, and videos) [4, 7, 23] has long been a fundamen-
tal concern in the field of artificial intelligence research. With the
remarkable development of social media platforms, the trend to-
wards utilizing multimodal inputs for user queries is gaining mo-
mentum for a more convenient and efficient expression of users’
requirements. However, traditional image search [45, 49] and text-
to-image retrieval [2, 26] could not support this desire to compre-
hend the multi-modal query directly. The task of Composed Image
Retrieval (CIR) [1, 3, 9, 24, 38] naturally arises out of necessity to
search for the required images given the input composed of a ref-
erence image and a sentence describing the modifications on the
query image. Through attaining high-level conceptual comprehen-
sion and implicit semantics, researches on the CIR promote the
related applications, e.g., vision reasoning [17, 21] and change cap-
tioning [36, 37], and drive the growth of cognitive intelligence.

Despite the remarkable advancements [5, 16, 47], this interac-
tive composed image retrieval still poses a significant challenge.
The contents in query images andmodifiers complement each other
for they form a complete user’s requirement, yet they also conflict
with each other for the textual information implyingmodifications
on images. Drawing upon the above facts, the model involves an
effective combination of the semantics to retain and alter, to bring
it closer to the target feature within the shared subspace via ap-
propriate measurement metrics. To tackle the aforementioned ob-
stacles, prior approaches can be categorized into two classes, i.e.,
compositional learning and target-guided learning. The first cate-
gory [9, 20, 24, 44] resorts to global feature fusion or synthesizes
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local alignment clues from the query images and query texts to ob-
tain the unified representations for the hybrid-modal query. Under
the guidance of the target images, the second category [13, 27, 41]
incorporates the visual features in the target domain into similar-
ity measurements to achieve sufficient interactions within the se-
mantic triplets i.e., query images, modification sentences, and tar-
get images. For example, ARTEMIS [13] decomposes the query-to-
target similarity into implicit similarity to compare the correlated
triplet and explicit similarity to measure the shared characteristics
between query text and the target image, yet the guidance of tar-
gets usually entails significant time consumption and computation
cost especially in testing.

Query features

Traditional Compositional 
Methods (eg. Combiner[3])

Our proposed method

Target features

make a person 
holding the crab

Neighborhood

Correspondence
s

Disparities

Correspondence-Induced Adaption

Divergence-based Correction

Figure 1: Illustration of proposed SADN. Distribution diver-
gence exists in previous compositional methods (seen in the
top-left corner). After the cooperation of Correspondence-
Induced Adaption to extract semantic alignments and
Divergence-based Correction to repel irrelevant informa-
tion, our SADN refines the query features to better align
matched embeddings (seen in the bottom-left corner).

Although the abovementioned methods achieve advancement,
several crucial issues have been disregarded in the prior research.
Firstly, notable distribution discrepancy as shown in Figure 1 is
observed between the distributions of query and target, since the
target features originate from the visual modality and the query
features are mapped in the mixed-modal composition space. The
heterogeneous gap could accumulate statistic errors for the diver-
gent distributions and cause misleading alignments, which further
impairs the retrieval performance. Secondly, as the annotators for
the modifications mainly concentrate on the differences between
one-to-one pairs of the reference images and target images [11, 20],
an abundance of candidate images conveying visual concepts that
are coherent with the multi-modal query are unlabeled as positive
instances. For example, in Figure 1, several pictures showing aman
seizing the crab that fits the query demands are regarded as nega-
tive instances and punished in traditional compositional methods
when they are embedded close to the anchor query embeddings.
Considering that most previous work exploits batch-based classifi-
cation loss as the main optimization objective, these false negative

samples with semantic correlations would misdirect the model to
overfit the noises.Thirdly, subtle semantic differences remain to be
explored and a robust model should be aware of the distinctions be-
tween the query and the negative examples which are similar to
the target image. Yet existing frameworks still make ambiguous
predictions when facing hard negative examples. As shown in Fig-
ure 1, though the images with high ranking results (in the purple
dashed circle) resemble the query image and target image to some
extent, they conflict with the “holding the crab” or ”a person” that
the text cues in the query domain require. Overall, the above lim-
itations of distribution discrepancy, noisy supervision and model
discrimination entail a systematic approach for this task.

For addressing the above issues, we present a novel method
named SemAntic Distillation fromNeighborhood (SADN) to balance
the correlation extractions from false negatives and discrimination
awareness from neighborhood for composed image retrieval. Fig-
ure 2 displays the whole architecture of the proposed approach,
which is comprised of three major processes. After extracting fea-
tures for the target images and the query with reference image and
text modifier, we construct neighborhood sampling from the target
domain for each query based on the initial similarity ranking. To
alleviate misdirecting effects to drive correlated candidates apart
from the query for the noisy annotations, the correspondence-induced
adaption is introduced to capture correlations from the neighbor
representations with the supervision of target representations. Un-
der the adaption constraint from the query to the target, shared
characteristics are strengthened during optimization. For promot-
ing the discriminations between matched instances and hard nega-
tives, we exploit Mahalanobis distance measurement in the mixed-
modal space to evaluate the distribution divergences of each neigh-
bor sample from the query. The correspondence-induced adaption
and the divergence-based correction jointly compose the weights
for the neighbor representations, and samples in the neighborhood
are adaptively aggregated on the query features to encourage the
query-to-target interactions across different domains. Extensive
experiments and ablation studies validate the effectiveness of dis-
tilling semantics from the constructed neighborhood on Fashion-
IQ [42] and CIRR [29].

In summary, the contributions of the SADN are listed as:

• We propose a novel Semantic Distillation from Neighbor-
hood approach dubbed SADN for composed image retrieval,
which incorporates shared semantic characteristics from the
targets into query representations to bridge the distribution
discrepancy between queries and targets.

• We construct the neighborhood for each query, which cap-
tures inherent semantic correlations and filters irrelevant
components from the target domain to reconstruct the query
featureswith adaptiveweights for improving the robustness
of the model.

• We apply correspondence-induced adaption with the guid-
ance of target representations to distill alignments between
query and target, in collaboration with divergences mea-
surement to evaluate the distribution disparity for refining
similarity ranking.
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2 Related Works
2.1 Composed Image Retrieval
Composed image retrieval [3, 24, 38, 39, 41] targets identifying
the hidden intention of user queries based on the reference im-
ages and sentences describing modifications. TIRG [38] was the
first to propose the paradigm of composing reference images and
modifiers and measuring the distances between candidate images
and the query compositions, which was further refined by [20, 44].
Specialized in the fashion domain, FashionVLP [15] utilized the
prior knowledge from large multi-modal corpora to guide fashion
matching in the transformer structure with multiple visual context
layers. Anwaar [1] and Kim [22] implemented the composed image
retrieval into symmetrical bi-directional matching with an addi-
tional reverse retrieval from the target to query to strengthen the
supervision through reversible transformations. TG-CIR [41] intro-
duced knowledge distillation from the target-guided teacher mod-
ule to lead the similarity distributions in the student network with-
out targets. To deal with uncertainty issue by unlabeled candidates,
Chen et al. [10] designed an uncertainty modeling module to learn
the tolerable ranges of features with a regularization to ensure the
alignments. In summary, most previous works mainly focus on the
combinations of query image and modification sentences, and ex-
tracting fine-grained matching components from the query to the
target, but they ignore the potential correlations lying in the false
negative candidates and discriminations between hard negatives
and target samples. Through enhancing the neighborhood repre-
sentations integrated on the query features, the proposed SADN
aims to magnify the differences between highly similar instances
while addressing the issue of noisy annotations.

2.2 Deep Metric Learning
The goal of deep metric learning is to guarantee that similar in-
puts are mapped to points close in distance while dissimilar inputs
are mapped to points far apart in the embedding space. Due to
the high dimensionality of the feature space after deep neural net-
works, one of the core issues for deep metric learning is the effi-
cient computation of pairwise distances in the hidden space. To
address this issue, various approximation techniques have been
proposed, including triplet loss functions [33], siamese architec-
tures [25], and contrastive learning [18, 31]. The advances in met-
ric learning have led to significant improvements in a range of
applications, including image retrieval [6], representation learn-
ing [50], and clustering. Specifically, Lim et al. [28] designed a
novel hypergraph-based loss function to incorporate multiple se-
mantic tuples into the edges, which improved class-discriminative
semantic relation learning for the image classification task. To avoid
false negative sampling from the negative examples, adaptive false
negative elimination and attraction [43] solved the negative sam-
pling issue by selecting instances based on semantic distances from
the reference sentence representations. However, there are still is-
sues unsolved when applying deep metric learning in the down-
stream tasks including the impacts of outliers and noisy labels. In
this work, we exploit a flexible trade-off mechanism to balance cor-
recting matching triplets and mining the hard negative samples to
promote the discrimination of the model.

3 Methodology
3.1 Problem Definition
The task of composed image retrieval could be formulated as mini-
mizing the distances between query embeddings and pairwise tar-
get embeddings. To formulate this retrieving process, the reference
image, modification sentences, and the candidate images are de-
noted as I𝑞 , T𝑞 , and I𝑡 , respectively. According to the annotations
of the datasets for CIR, I𝑖𝑞 ,T 𝑖𝑞 and I𝑖𝑡 construct a matched triplet
from the query to the target. Note thatI𝑖𝑞 and T 𝑖𝑞 are always bound
together and the model is expected to find the identical I𝑖𝑡 for the
𝑖-th query (I𝑖𝑞 ,T 𝑖𝑞 ) during validating and testing. In this work, the
images and sentences are encoded through pretrained CLIP visual
encoders and textual encoders [32] to obtain the primal represen-
tations. The reference image I𝑖𝑞 , the modification sentence T 𝑖𝑞 and
the target imageI𝑖𝑡 are embedded as 𝑰𝑖 ∈ R𝑑 ,𝑴𝑖 ∈ R𝑑 and 𝑻𝑖 ∈ R𝑑 ,
respectively. Therefore, the goal of this interactive retrieval task
could be interpreted as maximizing the similarity measurement be-
tween the hybrid-modal query embeddings and the corresponding
target embeddings in the latent space, as:

max
Θ,Ψ

𝜅 (𝑓 (𝑰𝑖 ,𝑴𝑖 ,Θ), 𝑔(𝑻𝑖 ,Ψ)), (1)

where 𝑓 (𝑰𝑖 ,𝑴𝑖 ,Θ) refers to composition functions to generate query
features for reference image 𝑰𝑖 andmodification text𝑴𝑖 with learn-
able parameter Θ. 𝑔(𝑻𝑖 ,Ψ) is the visual encoder with parameter Ψ
for the target image. In this work, we simply use the original target
features formeasurement, i.e.,𝑔(𝑻𝑖 ,Ψ) = 𝑻𝑖 .𝜅 (𝑓 (𝑰𝑖 ,𝑴𝑖 ,Θ), 𝑔(𝑻𝑗 ,Ψ))
denotes the kernel functions to calculate the similarity score be-
tween the 𝑖-th query (composed of 𝑰𝑖 and 𝑴𝑖 ) and the 𝑗-th target.
The Eq. 1 is optimized to ensure that 𝜅 (𝑓 (𝑰𝑖 ,𝑴𝑖 ,Θ), 𝑔(𝑻𝑖 ,Ψ)) >
𝜅 (𝑓 (𝑰𝑖 ,𝑴𝑖 ,Θ), 𝑔(𝑻𝑗 ,Ψ)), where 𝑗 ≠ 𝑖 .

3.2 Neighborhood Construction
Prior models usually design delicate mechanisms to combine fea-
tures of the reference images and modification texts to obtain the
query representations and then rank the distances between the
query and target representations in the embedding space. Never-
theless, since the reference images andmodification sentencesmay
contain conflict semantics in most cases, we argue that overempha-
sis on the combination of themulti-modal information in the query
could bring redundancy. Since textual information describes the
alterations on the query images and an overly complicated fusion
scheme could cause more noise and ambiguous semantic learning.
In the proposed SADN, we apply a concise compositor to yield the
raw query features and calculate the initial similarities between the
query and target to select neighbor target instances for each query.
The neighborhood construction based on the query-to-target rank-
ing is the prerequisite for fine-grained comparison and measure-
ment in subsequent learning to improve the model discrimination.
Besides, the neighbor features selected among the candidate im-
ages could mirror the concept of query instances lying in the tar-
get image domain and guide the query representation to bridge the
distribution differences from the query to the target domain.
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Figure 2: Overview of the proposed SADN. Given the reference image, modification sentences (in the query domain) and the
candidate images (in the target domain), the raw representations are extracted via CLIP encoders, as seen in (a). The neigh-
borhood construction for each query is obtained through ranking the initial similarities 𝑺𝑖 between the composed query and
targets. The Neighbor-Aware Aggregation is constituted of Correspondence-Induced Adaption to measure the alignments be-
tween the neighborhood and the targets, and a Divergence-based Correction to evaluate the distribution divergences between
the query and neighbor features. Each candidate sample in the neighborhood with an adaptive weight is aggregated on the
query feature, which distills the distribution characteristics from the target domain for the query (See the top box). The trans-
formation of the embeddings of query and candidate examples in the latent space is shown in (b).

3.2.1 Multi-modal Compositional Learning. Given the extracted
visual and textual features from the query, an effective composi-
tor to merge the visual information from the reference images and
textual semantics frommodifiers is essential for obtaining a unified
query representation. Since the contributions of the image and text
modalities may vary from instances to instances, a weighted visual
and textual representation is an intuitive solution to adjust the pro-
portions of different modalities in composing the query features.
In this work, we follow the Combiner [3] to integrate the embed-
dings of concatenation of query image and query text features on
the weighted raw features 𝐼𝑖 and 𝑀𝑖 . The composed query feature
𝑄𝑖 ∈ R𝑑 could be formulated as:

𝑸𝑖 = 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑟 (𝑰𝑖 ,𝑴𝑖 ) (2)
= 𝛼𝑀𝐿𝑃𝐼 (𝑰𝑖 ) + (1 − 𝛼)𝑀𝐿𝑃𝑀 (𝑴𝑖 ) + 𝐹𝐶 (⊕(𝑰𝑖 ,𝑴𝑖 )),

where ⊕ is the concatenation operation and 𝛼 is the weight con-
trolling the contributions of the visual component in the composed
query. 𝑀𝐿𝑃𝑋 and 𝐹𝐶 are the abbreviation of Multi-Layer Percep-
tron for 𝑋 modality and fully-connected layer respectively.

3.2.2 Neighbor Representations. As introduced above, we construct
the neighborhood in the target domain for each query through
the ranking of the query-to-target similarities to reflect the query

features and guide the cross-domain alignments. On the basis of
the unified query representations 𝑸𝑖 , the computation of the ini-
tial similarity adopts the widely-used cosine similarity as 𝑠𝑖 𝑗 =
𝑸⊤

𝑖 ·𝑻𝑗

∥𝑸𝑖 ∥ ∥𝑻𝑗 ∥ . For the 𝑖-th query, we simply use 𝑺𝑖 = {𝑠𝑖1, 𝑠𝑖2, ..., 𝑠𝑖𝑁 } ∈
R𝑁 to refer to the similarity list containing the similarities be-
tween the 𝑖-th query and all the 𝑁 candidate images in the mini-
batch. Through ranking the similarities by the descending order,
we would screen the top-𝐾 candidate images that exhibit a signif-
icant degree of similarity with the query as the neighborhood set
S𝑁𝑖 = { 𝑗 |𝑠𝑖 𝑗 ∈ TOP(𝑠𝑖 𝑗 , 𝐾)}. Afterward, the corresponding neigh-
bor representations 𝑵𝑖 ∈ R𝐾×𝑑 for the 𝑖-th query are sampling
from the visual features in the target domain based on the neigh-
borhood set S𝑁𝑖 , which is constituted as follows:

𝑵𝑖 = ⊕{𝑔(𝑻𝑗 ,Φ)}, 𝑗 ∈ S𝑁𝑖 , (3)

where ⊕ is the concatenation operation and 𝑵 𝑗
𝑖 ∈ R𝑑 represents

the 𝑗-th candidate images features in the 𝑖-th query neighborhood.

3.3 Neighbor-Aware Aggregation
The unified query feature 𝑸𝑖 only integrates features from query
images and modification texts while it lacks the guidance of the
target image to align semantics explicitly. The neighbor features
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𝑵𝑖 obtained in Sec. 3.2, originating in the target domain, possess
the following characteristics. On one hand, as the neighbor fea-
tures share high similarity scores with the query, they also exhibit
a strong inclination to be false negative samples for the query. Ac-
tually, an inherent issue with this interactive task is that multi-
ple candidate images corresponding with the user intents miss an-
notations to be labeled as positive samples, which could not be
neglected. On the other hand, neighbor features inevitably have
some nuance to the target features and the retrieval model is ex-
pected to be capable of detecting subtle differences and be aware
of the real user requirements when dealing with hard negatives.
Considering the above two aspects, we design the Neighbor-Aware
Aggregation decomposed as two branches, i.e., Correspondence-
Induced Adaption to distill correlated semantics from false neg-
atives in the neighborhood, and Divergence-based Correction to
percept the distribution differences from hard negatives.

3.3.1 Correspondence-Induced Adaption. As aforementioned, this
branch prioritizes the guidance from the target features to steer
the adaption from the hybrid-modal distributions in the query do-
main towards visual distributions in the candidate image domain.
Specifically, we first establish dual alignments including alignment
embeddings of each neighbor sample and target feature 𝑬𝑖 , and the
alignment embeddings of each neighbor sample and query feature
�̃�𝑖 , to separately measure the resemblances from the neighborhood
to the target and query examples, which is calculated via:

𝑬 𝑗𝑖 = 𝑵 𝑗
𝑖 ⊙ 𝑻𝑖 , �̃� 𝑗𝑖 = 𝑵 𝑗

𝑖 ⊙ 𝑸𝑖 , (4)

where ⊙means pointwise product.We denote 𝑬𝑖 = {𝑬1
𝑖 , 𝑬

2
𝑖 , ..., 𝑬

𝐾
𝑖 } ∈

R𝐾×𝑑 and �̃�𝑖 = {�̃�1
𝑖 , �̃�

2
𝑖 , ..., �̃�

𝐾
𝑖 } ∈ R𝐾×𝑑 for simplification.

Since the alignment embedding 𝑬𝑖 evaluates the correlations
between the neighbor instances and target instance, we could de-
rive the correspondence score to infer the correlations between the
neighbor instance and the 𝑖-th query among all the neighbors via:

𝒄 𝑗𝑖 =
𝑒𝑥𝑝 (Conv(𝑬 𝑗𝑖 ))∑𝐾
𝑗 𝑒𝑥𝑝 (Conv(𝑬

𝑗
𝑖 ))

, (5)

where Conv denotes a 1 × 1 convolutional layer to encode the
alignment features into the correspondence score 𝒄 𝑗𝑖 for the 𝑗-th
instance in the 𝑖-th query’s neighborhood. A high correspondence
score 𝒄 𝑗𝑖 implies that the 𝑗-th candidate image has great semantic
overlap with the 𝑖-th target image. Hence, the 𝑗-th candidate fea-
ture in the 𝑖-th query neighborhood is supposed to aggregate with
more emphasis on the query feature.

Note that in the validating and testing, the guidance of target im-
ages is invalid and we substitute the �̃�𝑖 for 𝑬𝑖 in Eq. 5. In an ideal
form, it behooves the �̃�𝑖 to be consistent with 𝑬𝑖 , for the alignments
between the neighbors with the queries are in parallel with align-
ments between the neighbors with the targets. We assign a Kull-
back Leibler (KL) divergence between �̃�𝑖 and 𝑬𝑖 during training to
ensure the consistency and strengthen the adaptation between the
query and target domain, which is formulated as:

L𝑎𝑑𝑎𝑝𝑡 =
1
𝑁

𝑁∑
𝑖=1

𝐷𝐾𝐿 (�̃�𝑖 ∥ 𝑬𝑖 ) =
1
𝑁

𝑁∑
𝑖=1

𝐾∑
𝑗=1

�̃� 𝑗𝑖 log
�̃� 𝑗𝑖

𝑬 𝑗𝑖

. (6)

Therefore, with the supervision of the target representations to cap-
ture the correlations from neighbors, the query features would be
incorporated with shared semantics from false negatives through
the dynamic aggregation weights, driving the refined query fea-
tures and false negative features closer in the latent space.

3.3.2 Divergence-based Correction. To enhance the discriminations
when comparing highly similar instances among substantial candi-
date images, the divergence-based correction module is dedicated
to the awareness of the distribution divergences from the neighbor-
hood features. From another perspective, neighborhood features in
high dimensional latent space could be regarded as nearest feature
distributions for the query representations, and precisely depict-
ing the distribution differences could reflect the deviations from
the candidate sample to the query. To preserve the inherent dis-
tribution characteristics of each representation and measure the
intricate distances between high-dimensional representations at a
fine level, we apply the squared Mahalanobis distance to measure
the neighborhood distributions 𝑵 𝑗

𝑖 and query features 𝑸𝑖 as:

𝑢
𝑗
𝑖 = (𝑵 𝑗

𝑖 − 𝑸𝑖 )⊤𝚺−1 (𝑵 𝑗
𝑖 − 𝑸𝑖 ), (7)

𝑑
𝑗
𝑖 =

𝑒𝑥𝑝 (1 − 𝑢 𝑗𝑖 )∑𝐾
𝑗 𝑒𝑥𝑝 (1 − 𝑢

𝑗
𝑖 )
, (8)

where 𝚺 ∈ R𝑑×𝑑 represents the covariance matrix in the high-
dimensional embedding space and is initialized by diag(𝑸𝑖 ). There-
fore, the distance 𝑑 𝑗𝑖 ∈ [0, 1] measures the semantic disparity of
neighbor 𝑗 away from the anchor query 𝑖 .

After distilling the semantic resemblances of the neighborhood
from the target and estimate the distribution divergences of the
neighborhood to the query, we then integrate the two measure-
ments into one indicator as weight parameters for further aggrega-
tion.The adaptiveweight 𝒂𝑖 = {𝑎1𝑖 , 𝑎

2
𝑖 , ..., 𝑎

𝐾
𝑖 } is calculated through:

𝑎
𝑗
𝑖 = 𝛼 ∗ 𝑐 𝑗𝑖 + 𝛽 ∗ 𝑑

𝑗
𝑖 , (9)

where 𝛼 and 𝛽 are learnable parameters.

3.3.3 Adaptive Aggregation. After obtaining the neighborhood dis-
tributions for each query, it is expected to apply the representa-
tions of neighborhood samples to refine the query features. In this
way, the distribution characteristics in the target domain could be
introduced to guide the query features to be close to the target fea-
tures in the embedding space, and generalize the query features
to adapt to the externalization variety of semantics when compar-
ing the distances to the candidate images. Meanwhile, based on
the adaptive weight, the refined query feature could preserve the
primitive semantics and distill the correlated semantics adaptively
on account of the correspondences and distribution divergences,
which could enhance the sensitivities of comparing the true posi-
tive instances and hard negative samples. The computation of the
adaptive aggregation features is shown as follows:

�̂�𝑖 = 𝜙 (𝑎 𝑗𝑖 𝑵
𝑗
𝑖 ), (10)

where 𝜙 represents Sum-pooling to aggregate the 𝐾 neighbor em-
beddings as unified representations. Afterwards, we exploit the
residual connection to integrate the adaptive aggregation features
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Table 1: Experiments results on FashionIQ. Best and second-best results are marked in bold and underlined respectively.

Methods R@10 R@50
Dress Shirt Toptee Mean ↑ Dress Shirt Toptee Mean↑

TIRG (CVPR’19)[38] 14.87 18.26 19.08 17.40 34.66 37.89 39.62 37.39
VAL (CVPR’20)[9] 21.12 21.03 25.64 22.60 42.19 43.44 49.49 45.04
CIRPLANT (ICCV’21)[29] 14.38 13.64 16.44 14.82 34.66 33.56 38.34 35.52
CoSMo (CVPR’21)[24] 21.39 16.90 21.32 19.87 44.45 37.49 46.02 42.65
CLVC-Net (SIGIR’21) [40] 29.85 28.75 33.50 30.70 56.47 54.76 64.00 58.41
ARTEMIS (ICLR’22)[13] 27.16 21.78 29.20 26.05 52.40 43.64 54.83 50.29
MACAM (ACM MM’22)[46] 30.51 33.67 30.73 31.60 57.11 64.48 58.02 59.87
CRN (TIP’23)[44] 30.20 29.17 33.70 31.02 57.15 55.03 63.91 58.70
CSS (Arxiv’23)[48] 33.65 35.96 42.65 37.42 63.16 61.96 70.70 65.27
FashionVLP (CVPR’22 ) [15] 26.77 22.67 28.51 25.98 53.20 46.22 57.47 52.30
CLIP4Cir (CVPR’22)[3] 31.63 36.36 38.19 35.39 56.67 58.00 62.42 59.03
DWC (AAAI’24)[20] 32.67 35.53 40.13 36.11 57.96 60.11 66.09 61.39
MGUR (ICLR’24)[11] 32.61 33.23 41.40 35.75 61.34 62.55 72.51 65.47
SPIRIT (TOMM’24)[12] 39.86 44.11 47.68 43.88 64.30 65.60 71.70 67.20
SADN (Ours) 40.01 43.67 48.04 43.91 65.10 66.05 70.93 67.36

�̂�𝑖 on the query features 𝑸𝑖 , which is formulated as:

�̂�𝑖 = (𝑸𝑖 + FC(�̂�𝑖 ))/2, (11)

where FC is the fully-connected layer to transform the embeddings.

3.4 Similarity Measurement and Training
Objectives

3.4.1 Final Similarity. Accordingly, the refined similarity score is
computed as the cosine-similarity between the updated query fea-
tures �̂�𝑖 and candidate images, as:

𝑠𝑖 𝑗 =
�̂�⊤
𝑖 · 𝑻𝑗

∥�̂�𝑖 ∥∥𝑻𝑗 ∥
. (12)

3.4.2 Training Objectives. Contrastive loss [3, 31, 38] is commonly
used in the composed image retrieval task to enforce the query
features to be close to positives and far away from negatives. How-
ever, the imbalances between positive and negative samples are
severe when dealing with large batch sizes, which may arouse un-
stable convergences during training. Furthermore, models are in-
clined to attend to easy negative samples with comparatively low
similarity scores for the given query, and the appropriate distances
between the query and hard negative instances are not sufficiently
improved in the metric learning. Instead, we adopt the improved
focal loss to enhance the model’s discrimination against hard neg-
ative samples. Specifically, the hard negatives are assigned with
greaterweights to increase the penalty on the high similarity scores
between hard negative samples and the query samples. Hence, we
design the ranking loss as:

L𝑟𝑎𝑛𝑘 =
1
𝑁

𝑁∑
𝑖=1

−(1 − 𝜏 exp(𝑠𝑖𝑖 )∑𝑁
𝑗=1 𝜏 exp(𝑠𝑖 𝑗 )

)𝛾 log( 𝜏 exp(𝑠𝑖𝑖 )∑𝑁
𝑗=1 𝜏 exp(𝑠𝑖 𝑗 )

),

(13)
where 𝜏 is a hyperparameter to allow the similarity score to ad-
just within certain limits. 𝛾 is the modulating factor to adjust the
strength of concentration on the hard negatives.

Finally, the overall optimization objective is the integration of
the adaptation loss L𝑎𝑑𝑎𝑝𝑡 and L𝑟𝑎𝑛𝑘 as follows:

L = L𝑟𝑎𝑛𝑘 + 𝜆L𝑎𝑑𝑎𝑝𝑡 , (14)
where 𝜆 weights the proportion of the adaptation loss L𝑎𝑑𝑎𝑝𝑡 dur-
ing the training process.

4 Experiments
4.1 Experimental Setup
4.1.1 Datasets & Evaluation Metrics. FashionIQ [42] is a fashion-
domain dataset for composed image retrieval task. It contains 77,684
fashion images on three categories: dresses, shirts, and toptees.The
candidate images for training, validating, and testing are divided
into 46,609, 15,537, and 15,538 respectively. The partition ratio of
composed queries in training, validation, and test sets is 3:1:1. We
follow the original protocol for validating. Originating in NLVR2
dataset [35], CIRR [29] includes 21,552 images and 36,554 corre-
lated triplets on natural scenarios, with subsets consisting of vi-
sually similar pictures. The proportions of the triplets in training,
validation, and test sets are 80%, 10%, and 10% respectively.

We utilize the commonly used evaluation metric Recall-rate at
K (R@K) for the two datasets in composed image retrieval. Follow-
ing [9, 13, 20], we set 𝐾 as 10 and 50 within dresses, toptees, and
shirts in FashionIQ. For CIRR, apart from R@1, R@5, R@10, and
R@50, we also report subset ranking results as Recallsubset@𝐾 .

4.1.2 Implementation Details. The visual and textual encoders ini-
tialized in CLIP [32] backbones are implemented as four ResNet-
50 [19] models and Transformer frames respectively. We first fine-
tune the visual and textual encoders for 10 epochs with the learn-
ing rate of 2× 10−6, and then freeze the parameters in encoders to
train the proposed SADNmodels with the learning rate of 2×10−5
and set the batch size as 2048. The default multi-modal compositor
follows the Combiner [3] on the open-source community to obtain
the initial similarities. We set the 𝐾 as 10 in neighbor representa-
tions in Sec. 3.2. The parameters 𝛼 and 𝛽 are initialized as 0.5 and
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Table 2: Experiments results on CIRR. Best and second-best results are marked in bold and underlined respectively.

Methods
Recall@𝐾 Recallsubset@𝐾 (R@5+Recallsubset@1)/2↑K=1 K=5 K=10 K=50 K=1 K=2 K=3

TIRG (CVPR’19)[38] 11.04 35.08 51.27 83.29 23.82 45.65 64.55 29.45
MAAF (Arxiv’20)[14] 10.31 33.03 48.30 80.06 21.05 41.91 61.60 27.04
CIRPLANT (ICCV’21)[29] 15.18 43.36 60.48 87.64 33.81 56.99 75.40 38.59
ARTEMIS (ICLR’22)[13] 16.96 46.10 61.31 87.73 39.99 62.20 75.67 43.05
CLIP4Cir (CVPR’22)[3] 33.59 65.35 77.35 95.21 62.39 81.81 92.02 63.87
Chen et al. (Arxiv’23)[8] 32.24 66.63 79.23 96.43 61.25 81.33 92.02 63.94
BLIP4CIR (WACV’24)[30] 40.17 71.81 83.18 95.69 72.34 88.70 95.23 72.07
SADN (Ours) 44.27 78.10 87.71 97.89 72.71 89.33 95.38 75.41

Table 3: Ablation experiments on model designs.

Models Dress Shirt Toptee Mean
SADN w/o Neighbors 38.37 41.28 45.57 41.74
SADN w/o CIA 39.71 43.81 47.52 43.68
SADN w/o DBC 39.37 43.23 47.73 43.44
SADN w/o Residual Updating 38.02 42.81 45.84 42.22
SADN 40.01 43.67 48.04 43.91

0.5 in Eq. 9. We fix the 𝛾 in Eq. 13 as 2 empirically and 𝜏 as 100
for adjustment. The parameter 𝜆 in Eq. 14 is fixed as 100 and more
analysis would be found in Sec 4.4.1. All experiments are trained
for 100 epochs on a single NVIDIA GeForce RTX 3090 Ti GPU via
Pytorch, and achieve convergences within 5 hours with the mem-
ory cost of 63.12M.

4.2 Quantitative Experimental Results
4.2.1 Results on FashionIQ. The comparison of experimental re-
sults on FashionIQ dataset shown in Table 1 demonstrates the over-
all competitiveness of the proposed SADN. The upper column dis-
plays conventional methods without CLIP, and the middle column
shows methods on the pretrained CLIP. The improvement of the
proposed SADN is ascribed to the incorporation of neighbor rep-
resentations on the query features, which distills semantic align-
ments from the target domain to enhance the salient correlations
in the query. Besides, when comparing our model with MGUR [11]
which is devoted tomodeling the uncertainty learning in this coarse-
grained retrieval task, a consistent recall rate growth could be ob-
served. The growing recall rates implicate the neighborhood con-
struction in SADN could facilitate the generalization and correla-
tion extractions rather than sampling from Gaussian distributions.

4.2.2 Results on CIRR. Table 2 reports quantitative comparison re-
sults with other approaches on CIRR dataset. In comparison with
BLIP4CIR [30] requiring high computation complexity on fine-tuning
BLIP models, our proposed SADN still demonstrates promising re-
trieval results in a concise architecture by the improvement of 4.1%
on the R@1. This comparison implies that the proposed SADN
could effectively capture the latent alignments across the query
and target to avoid the consumption of huge computation resources.
A more remarkable improvement could be seen on R@50 mainly

due to the correspondence-induced adaption to strengthen the cor-
relations from potential false negative samples.The gain on match-
ing results about subsets demonstrates SADN is discriminatory
while ranking visually similar images with subtle distinctions.

Table 4: Ablation experiments on the different compositors.

Models FashionIQ CIRR
R@10 R@50 R@5 Rsub@1

Image Only 6.87 14.09 30.73 20.88
Image Only + SADN 7.12 16.25 31.26 21.41
Text Only 21.59 41.48 54.63 70.70
Text Only + SADN 24.35 45.52 56.59 74.72
Summarization 36.11 61.65 71.86 65.38
Summarization+ SADN 38.83 63.18 74.61 69.50

TIRG† [38] 31.94 57.42 62.11 56.82
TIRG† [38]+ SADN 33.25 58.68 63.88 57.71

Combiner† [3] 37.89 65.95 76.82 71.47
Combiner + SADN 43.91 67.36 78.10 72.71

4.3 Ablation Studies
4.3.1 Ablation Study of Effective Components. To evaluate the im-
pacts of each component in our SADN, Table 3 presents the R@10
results of ablation designs on the testbed of FashionIQ. “CIA” and
“DBC” are the abbreviations for Correction-Induced Adaption and
Divergence-based Correction respectively. We come to the follow-
ing observations from Table 3: (1) Neighborhood construction is
essential for attaining robust retrieval performance, which is con-
firmed by the recall rates decline when comparing the model with-
out neighborhood to SADN. In this case, the unrelated candidate
images prevail and dominate the distilling process when aggregat-
ing on the query features and disturb both the correspondence
learning and the divergence measurement. (2) Both DBC and CIA
could facilitate matching the positive target images and DBC is
more effective than CIA as the improvements on the mean score
shows.Thewhole SADNachieves the optimal retrieval performance,
which suggests the distance measurement is significant to regulat-
ing the semantic distillation from the neighborhoods and suppress-
ing the irrelevant components to aggregate on the query. Note that
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Figure 3: Parameter sensitivity analysis of the neighbor
number 𝐾 , parameters 𝛾 and 𝜆.

the shirt category has more visually similar samples due to nearly
identical outlines of shirts, making model discrimination in DBC
more essential. (3) Residual connection from the neighborhood in
the target domain on the query is effective in assimilating more
distribution characteristics from the target domain into the hybrid-
modal domain, as the comparison between the last two rows show.

4.3.2 Ablation Study of Different Compositors. To test the effec-
tiveness of the proposed architecture, we also report results on
different backbones for the compositor in Table 4, where † means
re-implementation.The proposed SADN could serve as a plug-and-
play design to be integrated into different models for further im-
proving thematching performance.The unsatisfactory performances
on the original “Image Only” and “Text Only” indicate incomplete
query and insufficient fusion for the query compositor would un-
dermine the query-to-targetmatching process.The overall enhance-
ment after aggregation demonstrates the generalization of SADN.

Table 5: Ablation experiments on the training objectives.

Models Dress Shirt Toptee Mean
SADN w/o L𝑎𝑑𝑎𝑝𝑡 39.51 43.82 47.67 43.67
SADN w/o L𝑟𝑎𝑛𝑘 38.37 41.94 45.84 42.15
SADN w L𝐵𝐶𝐸 39.32 43.76 47.53 43.54
SADN w L𝑡𝑟𝑖𝑝𝑙𝑒𝑡 38.02 41.46 45.64 41.71
SADN 40.01 43.67 48.04 43.91

4.3.3 Ablation Study of Losses. To estimate the impacts of the losses
on the retrieval performance, Table 5 shows the ablative experi-
ments with various training objectives on R@10 metric. L𝑎𝑑𝑎𝑝𝑡 is
indispensable for the robustness to guide the correlation learning
under the guidance of the target features. After joining the L𝑟𝑎𝑛𝑘 ,
the recall rates further increase as the reweight factors address the
imbalance partition of the positive and negative samples. The re-
sults from the “SADN w L𝐵𝐶𝐸” and “SADN w L𝑡𝑟𝑖𝑝𝑙𝑒𝑡 ” are in-
ferior to the proposed SADN for the cross-entropy treats all the
negatives equally regardless of false negatives and hard negatives,
and the model equipped with triplet loss might be subjected to the
convergence difficulty and high sensitivity to the noisy samples.

4.4 Further Analysis
4.4.1 Analysis on Parameter Sensitivity. We further investigate the
parameter sensitivity of 𝐾 , 𝛾 , and 𝜆 in neighborhood construction,
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Figure 4: Retrieval results of SADN on FashionIQ and CIRR.

Eq. 13 and Eq. 14 on FashionIQ and CIRR. As shown in Figure 3 (a),
the recall rates first increase and then flow with the growth of the
number of 𝐾 , since the limited neighbor representations restrict
the semantic extraction from the target domain while the excess
neighbors bring redundancy and noise. In terms of the𝛾 to manage
the modulating factor, the optimal results occur at the 𝛾 set as 2 for
FashionIQ and 3 for CIRR. The difference in the optimal settings of
𝛾 may come from the probability of the hard negative samples on
CIRR being higher than FashionIQ, which requires more concen-
tration on these samples during training.The parameter 𝜆 controls
the contribution of the L𝑎𝑑𝑎𝑝𝑡 when optimizing SADN. An obvi-
ous drop could be observed when it is fixed as 0 and the advisable
value ranges from 50 to 150 to cooperate with L𝑟𝑎𝑛𝑘 to promote
the semantic distillation and discrimination.

4.4.2 Visualization Results. Wealso show the visualization retrieval
results with neighbor images and aggregation weights in Figure 4.
The heatmaps generated by GradCAM [34] on the last convolu-
tional layer of the CLIP visual encoders demonstrate that our SADN
could attend to the areas that the modifiers require. The target im-
ages (in red boxes) rank at the top through dynamically aggregat-
ing the neighbor features based on the semantic relations and di-
vergence measurements in SADN.

5 Conclusion
In this paper, we proposed a novel semantic distillation from neigh-
borhood dubbed SADN for composed image retrieval. To mitigate
the heterogeneous gap between the query and target representa-
tions, we first constructed a neighborhood from the target domain
for each query and introduced the semantic aware aggregation to
refine the query features with dynamic weights. Specifically, we
applied correlation-induced adaption to capture shared semantics
from the neighbor features and divergence-based correction to re-
strain the irrelevant integration of noise. Experimental results and
ablation studies verified the overall superiority and generalization
of the proposed SADN. In the future, we would further investi-
gate the feasibility of semantic-aware neighborhood construction
on other multi-modal tasks.
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