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Abstract

Understanding how the brain constructs statistical models of the sensory world
remains a longstanding challenge for computational neuroscience. Here, we derive
an unsupervised local synaptic plasticity rule that trains neural circuits to infer
latent structure from sensory stimuli via a novel loss function for approximate
online Bayesian inference. The learning algorithm is driven by a local error signal
computed between two factors that jointly contribute to neural activity: stimulus
drive and internal predictions — the network’s ‘impression’ of the stimulus. Physio-
logically, we associate these two components with the basal and apical dendrites of
pyramidal neurons, respectively. We show that learning can be implemented online,
is capable of capturing temporal dependencies in continuous input streams, and
generalizes to hierarchical architectures. Furthermore, we demonstrate both analyt-
ically and empirically that the algorithm is more data-efficient than a three-factor
plasticity alternative, enabling it to learn statistics of high-dimensional, naturalistic
inputs. Overall, the model provides a bridge from mechanistic accounts of synaptic
plasticity to algorithmic descriptions of unsupervised probabilistic learning and
inference.

1 Introduction

Sensory systems are faced with a task analogous to the scientific process itself: given a steady stream
of raw data, they must extract meaningful information about its underlying structure. Because the
true underlying structure of the data is rarely accessible, this “representation learning” must be
largely unsupervised. Framing perception in the language of Bayesian inference has proven fruitful in
perceptual and cognitive science [1–4], but has been difficult to connect to biology, because we still
lack a satisfactory account of how the machinery of Bayesian inference and learning is implemented
in neural circuits [5, 6].

Past work includes several examples of circuits that simultaneously learn a top-down generative
model of incoming stimuli and perform approximate inference with respect to these models. These
differ in the nature of the approximation, from maximum a posteriori estimation [7], to efficient
population codes that embed prior structure [8] to either parametric [9, 10] or sampling-based [11]
variational inference. Learning generally takes the form of optimizing a probabilistic objective, either
by backpropagation [9, 10] or through local parameter updates, which match biological learning more
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closely [11, 7, 12, 13]. While these models are mostly restricted to static stimuli, several instances
also operate over time [14–16].

Developing biologically plausible learning rules that are applicable to temporally-structured data
is hampered by the fact that optimizing a probabilistic objective function in such contexts requires
access to non-local information across space and time. Previous research on local approximations to
credit assignment in BP address spatial credit assignment by ascribing differential functions to the
apical and basal dendrites of pyramidal neurons in cortex, where apical dendrites are hypothesized to
receive top-down learning signals, and basal dendrites receive bottom-up sensory signals [17–25].
Locally implementing temporal credit assignment is a bigger challenge [26, 27].

Our work, which we have dubbed ‘impression learning’ (IL), combines the tradition of probabilistic
learning [11, 14] with these recent developments in local optimization, in order to learn dynamic
stimuli concurrently with perception. We propose a network architecture in which top-down stimulus
predictions arriving at the apical dendrites of neurons influence both network dynamics and synaptic
plasticity, allowing the network to concurrently learn a probabilistic model of the stimuli and an
approximate inference computation. We provide a mathematical derivation of synaptic plasticity rules
that approximate gradient descent on a novel unsupervised loss function, along with detailed analyses
of the biases induced by this approximation. We explore the empirical and mathematical relationships
between IL and three other methods: backpropagation (BP) [28], the Wake-Sleep (WS) algorithm
[29], and a specific form of neural variational inference (NVI∗) [30, 31]. We further demonstrate that
IL scales to naturalistic stimuli and multilayer network architectures 1.

2 Probabilistic inference and local learning in a recurrent circuit

We construct a network of neurons that aims to learn a generative model of the temporal sequence of
stimuli that it receives, pm(r, s) =

∏T
t=0 pm(rt, st|rt−1), in which s represents stimuli in an input

layer.2 The latent variables r are not defined by a physical model of the stimulus environment, but
are learned in an unsupervised manner to provide the best generative explanation of stimuli received.
We assume that stimuli are generated by a true probability distribution p(s|z), where s corresponds
to the first layer of neural activations in an early sensory layer, and vector z ∼ p(z) corresponds to
the environmental factors which jointly caused that activity. Because learning is unsupervised, we
do not enforce explicit correspondence between the internal and true latent features, r and z, only a
correspondence between model predictions and ground truth stimuli. We also assume that the network
performs online inference with respect to its model, inferring the corresponding latent cause r using
Bayes’ rule: pm(r|s) = pm(r, s)/pm(s). Because the network won’t, in general, be able to explicitly
calculate Bayes’ rule, we will assume that the network learns an approximate inference distribution
q(r|s), which it attempts to bring ‘close’ to pm(r|s). This joint process of learning and inference,
known as Bayesian latent feature extraction, provides a general framework for conceptualizing early
sensory processing in the brain [5]. In subsequent sections, we will write a loss function for this
general latent feature extraction objective, and show how local modifications at apical and basal
synapses can perform approximate gradient descent on this loss.

Loss function The loss function that we propose will produce a learning algorithm where neurons
alternate between sampling from the model, pm, and performing approximate inference according to
q in response to real stimuli received from p(s|z). This alternation will allow the network to learn
online in a way that minimally perturbs the continuity of perception. First, consider two families of
hybrid probability distributions, which we denote in shorthand q̃θ and p̃θ:

q̃θ =

T∏
t=0

q̃t(rt, st|zt, λt; θ) =

T∏
t=0

(q(rt|st; θq)p(st|zt))λt pm(rt, st|rt−1, λt; θp)1−λt

p̃θ =

T∏
t=0

p̃t(rt, st|zt, λt; θ) =

T∏
t=0

(q(rt|st; θq)p(st|zt))1−λt pm(rt, st|rt−1, λt; θp)λt , (1)

where a collection of binary random variables λt determines whether, at a given time step, sampling
occurs due to q(rt|st; θq)p(st|zt) or pm(rt, st|rt−1, λt; θp), and the full parameter space is denoted

1Code provided at: https://github.com/colinbredenberg/Impression-Learning-Camera-Ready.
2We use the shorthand notation ‘s’ to refer to the N × T matrix of stimuli across time.
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θ = [θp, θq]. We define an objective of the form:

L = Eλ,z [KL[q̃θ||p̃θ]]

= Eλ,z
[∫

[log q̃θ − log p̃θ] q̃θ drds

]
. (2)

This loss provides a generalization of the widely-used evidence lower bound (ELBO), which
corresponds to the case λt = 1 ∀t. Importantly, we can show that L = 0 if and only if
q(rt|st; θq)p(st|zt) = pm(rt, st|rt−1, λt; θp) ∀t. If this equality were achieved, it would also
imply pm(r, s) = q(r|s)p(s|z). However, this absolute minimum will not be achievable unless zt
is deterministic, because pm(rt, st|rt−1, λt; θp) has no dependency on the latent variables in the
environment. Thus, our goal is inherently unachievable, and different choices of p(λt) and network
architectures may lead to different local minima. However, each choice will incentivize learning a
close correspondence between these distributions, and an approximation to gradient descent with
respect to any choice will lead to local synaptic plasticity rules, making this objective particularly
interesting for the computational neuroscience community.

Update derivation We begin by taking the gradient of our new loss w.r.t. θ = [θq, θp]:

−∇θL =−∇θEλ,z
[∫

[log q̃θ − log p̃θ] q̃θ drds

]
=− Eλ,z

[∫
[∇θ(log q̃θ − log p̃θ)] q̃θ drds +

∫
[log q̃θ − log p̃θ]∇θ q̃θ drds

]
,

where the second equality follows from the product rule. Both integrals are analytically intractable,
but if we can write both as expectations, they can be approximated by averaging over samples of
r and s. To accomplish this, we note that ∇θ q̃θ = ∇θelog q̃θ = [∇θ log q̃θ] q̃θ, which allows us to
rewrite our expression as an expectation over r and s:

−∇θL =− Eλ,z
[∫

[∇θ log q̃θ −∇θ log p̃θ] q̃θ drds +

∫
[log q̃θ − log p̃θ] (∇θ log q̃θ)q̃θ drds

]
.

We also observe that
∫

[∇θ log q̃θ] q̃θ drds = ∇θ
∫
q̃θ drds = ∇θ1 = 0, allowing the elimination of

two terms:

−∇θL = Eλ,z
[∫

[∇θ log p̃θ] q̃θ drds +

∫ [
log

p̃θ
q̃θ

]
(∇θ log q̃θ)q̃θ drds

]
≈ Eλ,z

[∫
[∇θ log p̃θ] q̃θ drds +

∫ [
p̃θ
q̃θ
− 1

]
(∇θ log q̃θ)q̃θ drds

]
= Eλ,z

[∫
[∇θ log p̃θ] q̃θ drds +

∫ [
p̃θ
q̃θ

]
(∇θ log q̃θ)q̃θ drds

]
= Eλ,z

[∫
[∇θ log p̃θ] q̃θ drds +

∫
[∇θ log q̃θ] p̃θ drds

]
. (3)

The approximation in the second line comes from a Taylor expansion of log p̃θ
q̃θ

about 0, i.e. when
p̃θ
q̃θ

= 1 (which introduces a bias to the parameter updates that we examine analytically in Appendix
A). This expansion is the core of our derivation, and not all algorithms take this approach: for this
reason, in Appendix B and C we show how the properties of our algorithm compare to alternatives
(NVI∗, BP, or WS).

At this point, we have not yet defined p(λ). We’ll assume that λ0 ∈ {0, 1}, that p(λ0 = 0) =
p(λ0 = 1) = 0.5, and that the λ values alternate deterministically with a ‘phase duration’ K, i.e.
λk+1 = 1 − λk if mod (k,K) = 0, and λk+1 = λk otherwise. Under these conditions, the two
integrals in Eq. (3) are equivalent, and computing our parameter updates only requires sampling from
q̃. If we define λ′ = 1− λ, then we have p(λ′) = p(λ) and q̃(r, s|z, λ; θ) = p̃(r, s|z, λ′; θ), which
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Figure 1: Network architecture and learning. a. Model schematic. A neural network receives
stimulus inputs at its basal dendrites, and returns lateral and top-down prediction signals via apical
synapses. A gate, λt, determines whether apical or basal influences dominate network activity. b.
Learning schedule: the Wake-Sleep (WS) algorithm (left) trains its synapses by alternating between
prolonged periods where λt = 1 (Wake) or λt = 0 (Sleep). In contrast, our IL algorithm alternates
rapidly between λt = 1 and λt = 0 with phase duration K = 2. c. Network loss on the artificial
stimulus task. Error bars indicate ±1 s.e.m. averaged across 20 network realizations. d. Comparison
between a ground truth stimulus (green) and the network’s prediction (blue) for a particular stimulus
dimension. e. Same comparison across stimulus dimensions. f. The autocorrelation function of
r when the network is performing approximate inference (green; λt = 1), or in generative mode
(orange; λt = 0) compared to the autocorrelation of the data (grey).

we make use of as follows:

−∇θL ≈Ez

[∑
λ

[∫
[∇θ log p̃θ] q̃θ drds +

∫
[∇θ log q̃θ] p̃θ drds

]
p(λ)

]

=Ez

[∑
λ

∫
[∇θ log p̃θ] q̃θ drdsp(λ) +

∑
λ′

∫
[∇θ log p̃θ] q̃θ drds p(λ

′)

]

=2Ez

[∑
λ

∫
[∇θ log p̃θ] q̃θ drds p(λ)

]
. (4)

Using the definitions for q̃θ and p̃θ and the properties of the logarithm gives us the following parameter
update rule:

∆θ ∝ 2Eλ0,z

[∫ [∑
t

(1− λt)∇θ log qt + (λt)∇θ log pmt

]
q̃θ drds

]
. (5)

As we will show below, this parameter update equation produces updates that require only information
locally available to synapses, a necessary condition for any biologically-plausible algorithm.

Basic model To make the above general learning procedure concrete, we need to specify how to
sample from q̃θ, which in turn requires an architecture for performing approximate inference at each
time step, q(rt|st; θq), and a joint model of stimuli and neural activations, pm(rt, st|rt−1, λt; θp). We
map these two model components onto neural circuitry, with their own local variables corresponding
to s and r, and segregated synaptic parameters: the ‘basal’ compartment is dedicated to feedforward
inference (q, index ‘inf’) and the ‘apical’ compartment is dedicated to generative sampling from the
model (pm, index ‘gen’); this segregation allows their influence on neural dynamics to be selectively
gated by λt (Fig. 1a).
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First, the internal generative model of the circuit is implicitly defined by a set of currents to the apical
dendritic compartment corresponding to generated samples for the next latent variable, rgent :

rgent = ((1− kt)Dr + ktI) rt−1 + σgen
r ηt (6)

sgent = f(Dsrt) + σgen
s ξt, (7)

where Dr is a diagonal transition matrix (constraining generated latent-variables to be independent
AR(1) processes), Ds is a linear decoder, I is the identity function, ηt, ξt ∼ N (0, I) are independent
white noise samples, and σgen

r and σgen
s denote respectively the generative standard deviation for

neurons at the stimulus and latent levels. We define kt = (1 − δ(λt − λt−1))λt, with δ(·) the
Dirac delta function; kt is 1 only if λt = 1 and λt−1 = 0. We chose a piecewise model (gated
by kt) for rgent because we observed that the statistics of stimuli st given previous activities rt−1
are different if a transition has just occurred (λt = 1 and λt−1 = 0), which will bias the training
of the generative transition parameters Dr. We chose I for this case, but one could alternatively
have a different parametric model for after transitions have occurred. As we will show, adding this
condition to our model will never affect the dynamics of our network, but will cause learning for
Dr to occur only on time steps when a transition has not just occurred. Nothing in our derivation
requires the transition matrix Dr to be diagonal, but we constrained it in this way to allow for learning
independent latent features. As is, Dr defines the leakiness of the apical dendritic compartment of
the neuron; off-diagonal components of the transition matrix would correspond to recurrent synapses.
These dynamics define a probability distribution: pm(r, s) =

∏T
t=0 pm(rt, st|rt−1, λt; θp).

Second, we define our inference model, a factorized conditional probability distribution q(r|s) =∏T
t=0 q(rt|st; θq), which applies a feedforward nonlinear transformation to incoming stimuli:

rinft = f(Wst) + σinf
r ηt, (8)

where W denotes the feedforward weights, σinf
r is the inference standard deviation for neurons at the

latent level, and the nonlinearity f(·) is the tanh function. During inference mode, the stimulus layer
receives latent-associated inputs from the environment, further corrupted by the same noise as the
internal representation:

sinft = s̄(zt) + σinf
s ξt, (9)

where σinf
s denotes the standard deviation for neurons at the stimulus level, and s̄(zt) is input from

external stimuli. During simulations, samples are determined by a combination of pm and q, given by
q̃θ:

rt = λtr
inf
t + (1− λt)rgent (10)

st = λts
inf
t + (1− λt)sgent . (11)

We interpret these dynamics biologically as network of recurrently connected pyramidal neurons with
two sources of input, one to the apical dendrites (rgent or sgent ) and one to the basal dendrites (rinft or
sinft ). The gating variable λt determines which input source controls the circuit dynamics.

Plasticity rule interpretation Inserting our particular choice of qt and pmt into our approximate
gradient descent derivation, the parameter updates can be interpreted as local synaptic plasticity rules
at the basal (for qt) or apical (for pmt) compartments of our neuron model:

log q(rt|st; θq) =− 1

2 (σinf
r )

2 ‖rt − f(Wst)‖22 + cq (12)

log pm(rt, st|rt−1, λt; θp) =− 1

2(σgen
r )2

‖rt − ((1− kt)Dr + ktI) rt−1‖22

− 1

2(σgen
s )2

‖st − f(Dsrt)‖22 + cp, (13)

where cq = −Nr log(
√

2π(σinf
r )2) and cp = −Nr log(

√
2π(σgen

r )2 − Ns log(
√

2π(σgen
s )2 are

constants that do not depend on network parameters. We can use these equations to evaluate our
weight updates, by using the general formula in Eq. 5 and calculating derivatives. For online parameter
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updates, we assume that weights change stochastically at each time step, based on samples from λ0,
z, r, and s (instead of explicitly calculating the expectation in Eq. 5):

∆W(ij) ∝ 1− λt
(σinf
r )

2 (r
(i)
t − f(Wst)

(i))f ′(Wst)
(i)s

(j)
t (14)

∆D(ii)
r ∝ λt(1− kt)

(σgen
r )

2 (r
(i)
t − (Drrt−1)(i))r

(i)
t−1 (15)

∆D(ij)
s ∝ λt

(σgen
s )

2 (s
(i)
t − f(Dsrt)

(i))f ′(Dsrt)
(i)r

(j)
t . (16)

Each of these updates has the form of a local synaptic plasticity rule, under the following assumptions:
W(ij) is a basal synapse from neuron j to neuron i, r

(i)
t and r

(j)
t correspond to the pre- and post-

synaptic firing rates, respectively, and f(Wst)
(i) corresponds to the local basal current injected

into neuron i. Thus, assuming that a basal synapse has access to both the neuron’s firing rate and
its local basal synaptic current at a particular moment in time, ∆W(ij) is local; the same principle
holds for the apical updates. If λt = 0, then network activity is driven by the generative inputs,
and so the parameter updates for basal synapses depend on apically-driven activity, as has been
observed experimentally [32]; similarly, apical synaptic plasticity should depend on basally-driven
activity. The updates for the generative transition matrix, Dr–determining the leakiness of the apical
dendritic compartments–are gated by 1 − kt, indicating that parameter updates are delayed upon
entering ‘inference’ mode: this could reasonably be implemented biologically by a slow cascade of
biochemical processes that delay changes in neural parameters, as has been proposed by previous
plasticity models [33, 34].

3 Numerical Results

Validation on artificial stimuli To analyze IL performance in an environment where we have
access to and control over the statistics of the latent dynamics zt, we constructed artificial stimuli as
follows:

zt = Λzt−1 + σtrueηt (17)
s̄(zt) = Azt, (18)

where Λ is a Nz × Nz diagonal matrix with Λii < 1 ∀i, A is a Ns × Nz random matrix with
Aij ∼ N (0, 1

Nz
), and ηt ∼ N (0, 1).3 For simplicity, we fix the dimension of the latent space and

the generative noise in the network to the ground truth values, Nr = Nz neurons, and σtrue = σgen
r ,

so that in principle our model
∫
pm(r, s)dr can match the ground truth data distribution

∫
p(s, z)dz

exactly. This also means that we can verify that the network has learned an optimal model by
comparing its second-order statistics to those of the ground truth distribution.

We trained the network using IL, verifying that the online synaptic updates minimize the loss
L (Fig. 1c). We further validate that the network has learned to accurately perform inference,
so that q(r|s) ≈ pm(r|s), and that the network has learned a good model of the data, so that∫
pm(r, s)dr ≈ p(s), as per our original goals. We show that when the network is performing

approximate inference, i.e. λt = 1, ∀t, stimulus reconstructions based on the network’s latent state
are closely matched to the actual stimuli, i.e. st ≈ f(Dsrt), meaning that the network is functioning
as a good autoencoder across time (Fig. 1d), and across all stimulus dimensions (Fig. 1e). To
verify the network’s generative performance, we also show that the temporal autocorrelations for the
network rates rt in generative mode (λt = 0 ∀t) closely overlap with the ground truth autocorrelation
structure of z, suggesting that the learned latent features correspond (modulo a rotation) to the true
latent features. Note that this latent variable match occurs because we have enforced a correspondence
between the true data-generating distribution and our model, and would not necessarily happen if a
different model architecture were used.

Algorithm comparisons Having verified that IL is capable of training the network on simulated
data, we next compared it to alternative algorithms in the literature, including neural variational

3The parameter values and initialization details for all simulations are included in the supplementary code,
which was run on an internal cluster; Ns = 100 and Nz = 20.
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Figure 2: Comparing learning algorithms and effects of dimensionality. a. Loss throughout
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Asymptotic negative ELBO loss for IL (blue), NVI∗ (purple), and BP (gray) as a function of the
stimulus dimensionality. Error bars indicate ±1 s.e.m. averaged across 20 network realizations.

inference (NVI∗), BP, and WS (see Appendix B for detailed mathematical comparisons and deriva-
tions). In particular, NVI∗ provides an alternative candidate model of how the brain could plausibly
learn neural representations through variational inference [31]. Because NVI∗ performs poorly for
high-dimensional stimuli and large numbers of time steps (Appendix C; [35]), we simplified the task
by reducing the dimensionality of the latent space, Nz = 2, and stimulus space, Ns = 4. For twenty
evenly-spaced time points over the course of the learning trajectory, we compared the inference pa-
rameter updates given by IL, ∆θILq , to the inference parameter updates given by NVI∗, ∆θNVI

q , for a 4
time-step stimulus sequence (Fig. 2a). To get good estimates of the mean and variance of these sample
parameter updates, we averaged over 106 different realizations of the network noise, and compared
the samples using two measures. First, we considered the cosine similarity (normalized inner product)
between the two empirical mean updates, ∆θ

IL

q = 1
N

∑N
k=0 ∆θILq and ∆θ

NVI

q = 1
N

∑N
k=0 ∆θNVI

q

(Fig. 2b), where cos(θ) ∈ [−1, 1], and cos(θ) < 0 in this case would indicate that the parameter
updates are anticorrelated. Because the NVI∗ update is unbiased, ie. E[∆θNVI

q ] = − d
dθq
L, as long

as we have averaged over a sufficient number of samples N , a positive cosine similarity across
learning between the IL update and the NVI∗ update (Fig. 2b) indicates that our update is aligned in
expectation to the true gradient of the loss, and hence will improve performance. This is a way of
empirically verifying that the bias we introduce in our derivation does not impair the learning process.

Having verified that the IL update and the true gradient are aligned on average, we next examine
whether the updates given by NVI∗ differ in terms of their signal-to-noise ratio (SNR) from the IL
updates, where we define the SNR as:

SNR(∆θq) =
1

Nθ

Nθ∑
i=0

(
∆θ

(i)

q

)2
S2(∆θ

(i)
q )

, (19)

where S2(·) denotes the sample variance. This measure is an average across individual parameter
updates ∆θ(i), and it increases with

∥∥∆θq
∥∥2
2

and decreases as the estimator variance grows. As Fig.
2c shows, the SNR is many orders of magnitude lower for NVI∗ than for IL over learning, likely
due to the high estimator variance of the NVI∗, which we demonstrate analytically for a simple
example in the Appendix C. The estimator variance has direct implications for the speed of learning
and asymptotic performance, so that even though NVI∗ and IL can have parameter updates that are
aligned in expectation, due to its low variance IL will greatly outperform NVI∗ during training.

We verified the generality of these benefits in the same task, as we variedNs, Nz andNr concurrently,
so that Ns = 2Nz = 2Nr. We optimized learning rates for NVI∗, BP, and IL separately on the lowest
dimensional condition by grid search across orders of magnitude (10−2, 10−3, etc.), and found that
NVI∗ performed worse over the entire range, while IL and BP showed similar performance (using
the negative ELBO loss as a standard). Moreover, while NVI∗ showed worse performance as the
stimulus dimension increased, this was not the case for IL or BP (Fig. 2d).

Phase duration effects The previous numerical results verify that IL is able to effectively learn a
generative model of artificial data, and to perform inference with respect to that model. However, for
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IL to be a valid candidate for online learning in the brain, the learning process should not significantly
interfere with perception. To test this, we explored how the ‘phase duration’ K affects the correlation
between network activity in a simulation where λt = 1, ∀t, and a simulation where λt alternates
phases every K time steps (for a fixed random seed and stimulus sequence). If the learning process
did not interfere with perception at all, this correlation would be 1, and if it completely disrupted
perception it would be 0, or even negative. In Fig. 3c and d, we show two example traces with
K = 2 and K = 32, respectively, comparing the network in inference mode to the network during
learning. While neural trajectories for the shorter phase durations are closely correlated, they deviate
considerably for longer phase durations (Fig. 3c-e). Despite this, the loss profile (negative ELBO) is
identical. Since WS can be viewed as a special case of IL for very long phase durations (Appendix
B.3; see Fig. S1a for an even longer phase duration), this implies that the two methods have similar
performance. However, IL operating in a mode of fast fluctuations between inference and generation
may be more biologically relevant, as this reduces the interference with perception without impairing
learning. Moreover, we found that lengthening the duration of the inference phase alone while
keeping very short bursts of generative activity further reduced perceptual disturbance, while only
slightly increasing the time required to learn (Fig. S1b-d).

Spoken digits task Having verified the performance of IL on artificial stimuli, we next tested its
performance on higher-dimensional and more complex naturalistic stimuli. We used the training and
test sets of the Free Spoken Digits Dataset [36], which provides audio time series of humans speaking
digits 0-9.4 We transformed these time series into log-mel spectrograms as a coarse approximation of
the initial stages of the human auditory system, shifted the inputs by a constant so as to make them
all positive, and divided the result by the across-channel standard deviation. The results of Fig. 4 are
shown in the original log-mel spectrogram input space.

To assess the hierarchical processing capabilities of IL, we added an additional feedforward layer to
the network architecture (Fig. 4a); we provide the details of how this modification affects simulation
and parameter updates in Appendix D. To compare IL to NVI∗, we again optimized learning rates
via grid search across orders of magnitude, and found that IL greatly outperformed NVI∗ when each
was evaluated at its respective optimal learning rate (Fig. 4b). Furthermore, we observed that our

4The FSDD is available at https://github.com/Jakobovski/free-spoken-digit-dataset.
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Figure 4: Learning auditory sequences in a multilayer network. a. Hierarchical network
architecture. b. Test loss across epochs for IL (blue) and NVI∗ (purple). c. Comparison between an
example data input and the corresponding network output in inference mode (λt = 1). d. Sample
network output in generative mode (λt = 0). e. Across-frequency amplitude correlations for the data
(left) and for network-generated samples (right). f. Auto-correlation function of a neuron in inference
and generative modes.

trained network meets the same criteria for success as for our artificial stimuli, namely its stimulus
reconstructions closely match the true stimulus while in inference mode (λt = 1 ∀t; Fig. 4c), and
sample stimuli produced while the network is in generative mode (λt = 0 ∀t) qualitatively correspond
to ground-truth stimuli (Fig. 4d), and quantitatively match the structure of both spatial (Fig. 4e) and
temporal (Fig. 4f) autocorrelation of the input. These results collectively demonstrate that IL is
capable of training neural representations of complex real-world stimuli. They also show that IL
can function when there is a mismatch between its architecture and the structure of environmental
latent variables, which are in this case unknown. In general, learning may fail if the chosen network
architecture is too restrictive.

4 Discussion

Impression learning (IL) provides a potential mechanism for the brain to learn generative models
of its sensory inputs through local synaptic plasticity, while concurrently performing approximate
inference with respect to these models. IL is a direct generalization of the Wake-Sleep algorithm [29],
which replaces lengthy offline ‘Sleep’ phases with brief substitutions of network-generated samples
in place of incoming data, in a way that minimally perturbs natural neural trajectories. Transitions
between ‘inference mode’ and ‘generative mode’ are controlled by a global signal λt, which decides
whether generative signals to the apical synapses or inference signals to the basal synapses dominate
network activity.

Computationally, IL outperforms NVI∗ [30, 31], a particular instance of three-factor plasticity [37],
because its internal model provides explicit ‘credit assignment’ for each individual neuron, rather
than implicitly calculating it via correlations between neural activity and a global reward signal. This
leads to lower-variance gradient estimates and faster learning. Alternative learning algorithms such as
backpropagation (through time) [38] are not intrinsically probabilistic, but can be used for optimizing
probabilistic objectives. Like IL, BP provides explicit credit assignment, but the parameter updates it
provides are nonlocal across both network layers and time. It is worth noting that IL was developed
in a purely unsupervised learning setting, whereas both BP and NVI∗ extend to supervised and
reinforcement learning [39, 40]. In the context of supervised learning, several biologically-plausible
approximations to BP leverage the apical-basal dendritic structure of pyramidal neurons to learn

9



[25, 21], based primarily on target-propagation [41] or its variants [42]. It would be valuable to
explore the combination of such extensions with the continuous online learning capabilities of IL.

Local computations are considered a necessary condition for learning algorithms to be biologically-
plausible. In our framework, locality is enforced through the structure of the internal graphical model
(pm) and the approximate inference distribution (q): any choice of neural network architecture with
independent noise will guarantee local plasticity. Our framework is relatively agnostic to the details:
neurons could be either rate-based with Gaussian intrinsic noise (as in the examples presented here),
or generate spikes with Poisson variability, which would result in synaptic updates analogous to
empirically observed spike-timing-dependent plasticity, as found in generalizations of WS [14]. It
would also be possible to make distinctions between excitatory and inhibitory neurons, by requiring
all outgoing synapses from individual neurons to be either positive or negative, or to include more
complex dendritic arborizations, as have been explored in recent experimental [43] and modeling
[44] efforts. Our current model enforces hard, global phase distinctions (λt ∈ {0, 1} for all neurons),
which could potentially correspond to alternations between activity driven by apical dendritic calcium
events and basal spiking tied to theta oscillations in the hippocampus [32]. However, cortical data
indicate that input to apical and basal dendrites contribute concurrently and constructively to spiking
activity [45]. We are currently working to extend our derivation to these circumstances, by allowing
λt to be non-binary and heterogenous across neurons.

Traditional predictive coding [7] requires steady-state assumptions for learning, meaning that neural
dynamics must occur on a timescale much faster than that of stimuli. In contrast, IL requires a
mechanism by which the relative influence of the apical and basal dendrites of pyramidal neurons
can be rapidly switched, along with learning mechanisms that operate at that timescale. If such a
mechanism could be experimentally identified and controlled, our model makes the specific prediction
that increasing the dominance of apical dendritic input on neural activity (λt ≈ 1) would cause
the network to sample from its generative model, i.e. the manipulation will induce structured
hallucinations that mimic realistic stimuli (and associated neural activity), without being tied to
the sensory world. One candidate gating mechanism is rapid inhibition targeting apical dendrites
specifically [46–49]; but much work remains to explicitly relate this mechanism to learning and
plasticity.

IL predicts that synapses will use an error signal based on the difference between local dendritic
compartmental currents (either apical or basal) and the neuron’s total firing rate to perform learning.
There is some evidence that spiking activity driven by apical inputs to pyramidal neurons can induce
plasticity at basal synapses [32, 50], and several studies have found systematic changes in synaptic
plasticity between apical and basal synapses, in particular the sign changes induced by local dendritic
inputs that IL predicts [51–54]. Hence, IL has the potential to explain the diversity of plasticity
phenomena observed experimentally and inform future experiments.
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