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Abstract

Deep neural networks perform well in many ap-
plications but often fail when exposed to out-
of-distribution (OoD) inputs. We identify a geo-
metric phenomenon in the embedding space: in-
distribution (ID) data show higher variance than
OoD data under stochastic perturbations. Using
high-dimensional geometry and statistics, we ex-
plain this behavior and demonstrate its applica-
tion in improving OoD detection. Unlike tradi-
tional post-hoc methods, our approach integrates
uncertainty-aware tools, such as Bayesian approxi-
mations, directly into the detection process. Then,
we show how considering the unit hypersphere en-
hances the separation of ID and OoD samples. Our
mathematically sound method achieves competi-
tive performance while remaining simple.

1 INTRODUCTION

Machine learning models are widely used in fields such as
healthcare, autonomous systems, and natural language pro-
cessing. Deploying them in real-world applications poses
challenges often overlooked during development. For in-
stance, a key challenge is detecting when models are uncer-
tain or encounter unfamiliar inputs. Despite their strong per-
formance on clean datasets, deep neural networks often over-
estimate confidence on unknown or degraded inputs [Guo
et al., 2017]. This raises reliability concerns, particularly in
sensitive applications where models encounter unexpected
data or distributions not seen during training.

Uncertainty quantification has become crucial for evaluat-
ing model predictions. Early methods, inspired by Bayesian
statistics [Robert, 2005], led to approaches like Deep Ensem-
ble [Lakshminarayanan et al., 2017] and Bayesian Neural
Network approximations. These methods were later adapted
for OoD detection [Malinin and Gales, 2018, Charpentier

et al., 2021]. OoD detection focuses on identifying inputs
that do not fit the statistical features of the training data.
Such inputs may correspond to novel or anomalous situa-
tions where the model’s predictions could be unreliable. Sim-
ple methods based on Softmax confidence scores Hendrycks
and Gimpel [2016] have shown limitations, as Deep Neu-
ral Networks (DNNs) often give overconfident predictions,
even for artificial OoD inputs [Hein et al., 2019].

Recently, several deterministic methods have been pro-
posed to quantify uncertainty [Van Amersfoort et al., 2020,
Mukhoti et al., 2022, Nguyen et al., 2024], often using
distances or local density in the embedding space. These
methods focus on its geometry, which becomes complex in
high-dimensional settings [Nalisnick et al., 2019]. Recent
theoretical advances have examined and exploited the ge-
ometry [Papyan et al., 2020, Pearce et al., 2021, Ammar
et al., 2024] and analytical properties [Tian et al., 2021,
Haas et al., 2023] induced by the Cross-Entropy (CE) loss
function to enhance OoD detection. These insights show
how some structural properties of the basic CE Loss can
provide a fruitful way to enhance separation between ID and
OoD inputs. Concurrently, competitive post-hoc methods
on pre-trained networks [Djurisic et al., 2023, Sun and Li,
2022, Sun et al., 2021] have shown simplicity and strong
OoD detection performance. Some of these methods exploit
embedding geometric properties [Lee et al., 2018, Sun et al.,
2022] and are often more efficient than methods requiring
additional training [Zhang et al., 2023]. Despite these ad-
vances in probabilistic and deterministic methods, detecting
OoD samples accurately while ensuring interpretability and
robustness remains challenging [Yang et al., 2023, Jaeger
et al., 2022]. Our contributions are as follows:

1. Exploration of the variance behavior when injecting
stochasticity into the embedding space: we investigate a
counter-intuitive observation arising from the application of
Monte Carlo (MC) Dropout within the embedding space, in-
stead of the more commonly studied logit space. One would
expect OoD samples to exhibit greater variance across mul-
tiple stochastic forward passes, reflecting higher uncertainty



compared to ID data during inference. However, our empiri-
cal results show the opposite: ID samples consistently ex-
hibit higher variance than OoD samples under MC Dropout.

2. Mathematical explanation: Using high-dimensional
probability theory and differential geometry, we explain this
variance behavior through the geometric properties of the
hypersphere and isotropic random vectors. We show how
this insight improves OoD detection.

3. A simple and effective algorithm: We present an algo-
rithm that delivers excellent performance on standard OoD
benchmarks. It is easy to implement, robust in high dimen-
sions, and supported by solid mathematical foundations.

2 RELATED WORK

2.1 STOCHASTIC UNCERTAINTY
QUANTIFICATION

Uncertainty quantification evaluates how confident a model
is in its predictions by accounting for both the limita-
tions of the model itself and the variability present in
the data [Hullermeier and Waegeman, 2021]. A common
Bayesian-inspired method for estimating uncertainty is
Monte Carlo (MC) Dropout. MC Dropout approximates
Bayesian inference by applying Dropout during inference
and sampling multiple stochastic forward passes through
the network:

P(y|x,Dγ) =
∫

P(y|x, θ)P(θ|Dγ)dθ, (1)

where Dγ denotes the training dataset, x the input and y
the label. Formally, for classification with K classes for an
input x, M stochastic forward passes during the inference
phase yields a set of outputs {P (y|x, θ1), . . . , P (y|x, θM )}
and performs the approximation of Eq.(1) by the following
empirical mean:

∀y ∈ J1,KK,
1

M

M∑
i=1

P (y|x, θi) ≃ P(y|x,Dγ). (2)

Despite its success, Dropout may be limited in capturing
sufficient diversity in predictions because it focuses only
on deactivating neuron outputs. To address this, DropCon-
nect [Wan et al., 2013] provides a more effective mechanism
for inducing diversity by injecting fine-grained noise directly
into the weight matrices, and producing more nuanced per-
turbations in the network’s embeddings.

Let U ∈ MK×D(R) be the weight matrix of a fully con-
nected layer, so that for an input x ∈ RD the output is
z = Ux. DropConnect introduces stochasticity directly into
the weight matrix as follows:

1. Generate a binary mask matrix B ∈ {0, 1}K×D, where
each entry is sampled independently as Bij ∼ Bernoulli(p)
and p = 1− q, with q being the probability of Bij = 1.

2. Compute the effective weight matrix via the Hadamard
product: Ũ = U ⊙ B. For an input x ∈ RD, the layer’s
output becomes z̃ = Ũx = (U ⊙B)x.

2.2 DETERMINISTIC UNCERTAINTY
QUANTIFICATION

2.2.1 Local density, distance and curse of
dimensionality

To detect OoD samples, a simple idea is to measure the un-
certainty of the samples and to classify as OoD those whose
uncertainty exceeds a certain threshold. For instance, prior
deterministic methods such as those proposed in Van Amers-
foort et al. [2020], Mukhoti et al. [2022] define uncertainty
in terms of the distance or local density of an input relative
to training samples in the embedding space. An input x is
assumed to belong to the training distribution if its embed-
ding z = hθ(x) lies near a class-specific centroid µc. Thus,
the uncertainty score is defined as:

Uncertainty(x) ∝ min
c
∥z− µc∥2. (3)

An input is classified as OoD if its minimum distance to
any class centroid exceeds a threshold. This approach links
large distances in the embedding space to higher uncertainty.
However, it can be limited by the curse of dimensional-
ity [Vershynin, 2018].

In high-dimensional embedding spaces, the discriminative
power of distances to class centroids or local density can
diminish, so simple thresholds become less effective at sep-
arating ID and OoD samples. This phenomenon is a well-
documented manifestation of the curse of dimensionality,
where increasing feature dimensions can erode the meaning-
fulness of distance and density metrics, even though the neu-
ral network produces well-separated clusters in the embed-
ding space [Olteanu et al., 2023]. Recent works start taking
this into account explicitly. For instance, SIREN [Du et al.,
2022] projects the embeddings into a smaller-dimensional
space and then normalize them on the hypersphere to fit a
von Mises–Fisher distribution. Nguyen et al. [2024] likewise
use a projection to reduce dimensionality when describing
the embedding’s geometry.

2.2.2 Analytical methods

Recent analytical OoD detection approaches instead inter-
vene directly in the network’s internal representations or
constraining activation patterns to more reliably handle OoD
inputs. Recent works from Sun et al. [2021], Azizmalayeri
et al. [2024] modify the embedding activations through clip-
ping above a high percentile threshold based on ID statistics
to directly suppress the excessive signals often produced
by OoD inputs. Djurisic et al. [2023] similarly, truncate
activations beyond a certain percentile and proportionally



scale the rest to diminish the impact of hypersensitive neu-
ron. Alternatively, works from Haas et al. [2023], Wei et al.
[2022] scale embedding and pre-softmax logits respectively
during training. More precisely, Haas et al. [2023] scale
embedding vectors so that their norms more faithfully re-
flect each input’s difficulty. LogitNorm method [Wei et al.,
2022] by contrast, rescales pre-softmax logits, observing
that even when most training examples are already classified
correctly, the softmax cross-entropy loss keeps driving logit
norm large, leading to overconfidence.

2.3 GEOMETRY OF THE EMBEDDING

Several studies from Pearce et al. [2021], Tian et al. [2021]
have examined the geometric and analytical properties of the
embedding space induced by the CE loss to improve OoD de-
tection. CE loss promotes class separation by creating well-
defined geometric structures within the embedding space,
where samples from the same class are tightly clustered
and different classes are well-separated. This phenomenon,
known as Neural Collapse (NC), described by Papyan et al.
[2020] and illustrated in Fig. 1, occurs in the final stages of
training. NC describes the convergence of class embeddings
to well-separated class means, or centroids, while the within-
class variance decreases. Specifically, the embeddings of
samples within the same class collapse to their respective
class means, and the class means themselves align symmet-
rically in a spatially equi-distributed/repartitioned way that
maximizes inter-class separation. Additionally, the class vec-
tors align with the embeddings, so that each representation
points toward its corresponding class prototype.

3 PRELIMINARIES

This section introduces the notation and background used
throughout the paper. We define key symbols and provide
the mathematical framework underlying our study.

3.1 HYPOTHESES AND BACKGROUND

Let the training set and the testing set be denoted
as DTrain = {(xi, yi), i ∈ J1, NTrainK} and DTest =
{(xi, yi), i ∈ J1, NTestK} respectively. Here xi ∈ Rp rep-
resents an image and yi ∈ J1,KK its associated label
where K stands for the total number of classes. We as-
sume that both datasets are independently and identically
distributed (i.i.d.) according to their respective joint distri-
butions PTrain := PTrain(x, y) and PTest := PTest(x, y).

Out-of-Distribution (OoD): We assume that the training
and test sets follow a common distribution denoted by PID
(ID data). We introduce another test set of OoD samples
{(xi, υi), i ∈ J1, NOoDK} which are drawn i.i.d. from an un-
known distribution denoted by POoD, distinct from PID.

In the context of image classification, the embedding of
an input image x is defined by z = hθ(x) ∈ RD where
D denotes the dimension of the embedding space. Inputs,
embedding related vectors, and class vectors are written in

bold, ∥x∥ =
√∑D

i=1 x
2
i denotes the L2 norm of the vector

x ∈ RD and SD−1 := {x ∈ RD | ∥x∥ = 1} denotes the
unit hypersphere in RD.

The model is divided into two components: the feature ex-
tractor denoted by hθ and a final linear layer gθ acting
as a classifier. Thus, the DNN’s output can be written as
fθ(x) = gθ ◦hθ(x). Since gθ : RD → RK is a linear opera-
tor, it can be expressed as a weight matrixWθ ∈MK,D(R).

To introduce stochasticity during the inference phase, con-
sider a fixed input x. Let

{
z(m),m ∈ J1,MK

}
represent

the collection of embeddings obtained from M stochastic
forward passes through the network. Each embedding is
defined as z(m) := hθ(x;σ

(m)) ∈ RD, where σ(m) denotes
the stochastic perturbation applied during the m-th forward
pass.

If xID ∼ PID(x) (resp. xOoD ∼ POoD(x), we denote by
ZID ∈ MD,M (R) (resp. ZOoD) the matrix whose columns
are the vectors z(1), . . . , z(M), omitting the index M to
simplify the notation.

If DropConnect is applied to produce M vectors, the matrix
with these vectors as its columns is denoted by ZDC or
ADC depending on the context.

To quantify the dispersion of these families of vectors, for
any matrix Z ∈MD,M (R), we define the non-biased esti-
mator:

Var(Z) := Tr

(
1

M − 1

M∑
i=1

(z(i) − µ)(z(i) − µ)T

)
,

(4)
where Tr is the Trace operator of a matrix, i.e., the sum of
its diagonals entries and

µ =
1

M

M∑
i=1

z(i). (5)

3.2 BEHAVIOR OF THE EMBEDDING UNDER
CROSS ENTROPY OPTIMIZATION

3.2.1 Geometrical behavior

Consider a deterministic DNN taking an image x ∈ Rp and
generating an embedding z = hθ(x) ∈ RD. This embed-
ding is then passed through the classification layer, produc-
ing a logit vector ℓ := (ℓ1, ..., ℓK) ∈ RK . The logits are
then normalized using the Softmax function:

∀k ∈ J1,KK,P(y = k|x) = exp ℓk∑K
i=1 exp ℓi

∈ [0, 1]. (6)



For a given sample (x, y) ∈ Rp × J1,KK, the CE loss used
for backpropagation is defined as

LCE(x, y) = E(x,y)∼PTrain [− logP(y|x)]. (7)

The NC phenomenon studied by Papyan et al. [2020] and
shown in Fig. 1, describes how class embeddings converge
to well-separated centroids in the later training stages.

In fact, NC is not something unusual or particular, but rather
a natural phenomenon due to its mathematical basis and em-
pirical consistency in supervised learning. Lu and Steiner-
berger [2022] provide theoretical justification, showing that
NC arises as an optimal configuration under cross-entropy
minimization. Additionally, Graf et al. [2021] extend this
understanding by observing that supervised contrastive loss
also leads to similar geometric configurations, indicating
that this structure emerges naturally and consistently across
different optimization paradigms in deep learning.

Regarding OoD behavior under Neural Collapse, Pearce
et al. [2021] demonstrated that when the data exhibits
low aleatoric uncertainty and the feature extractor is suf-
ficiently deep, the simplex configuration depicted in Fig. 1d
is both achievable and optimal for OoD detection using
MSP [Hendrycks and Gimpel, 2016], as OoD embedding
samples tend to cluster near the origin and around the deci-
sion boundaries. This finding is further supported by Ammar
et al. [2024].
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Figure 1: Illustration of Neural Collapse with the progressive
emergence of a simplex configuration from 1a to 1d.

3.2.2 Analytical behavior

In Eq. (6), ∀k ∈ J1,KK, ℓk can be expressed using co-
sine similarity and the classifier’s weight vectors. Let
wk denote the k-th columns vectors of Wθ and ϕk =

arccos
(

wT
k z

∥wk∥∥z∥

)
, then, the logit is given by:

ℓk = wT
k z = ∥wk∥∥z∥ cos(ϕk). (8)

Substituting this into the Softmax probability expression,
we have:

P(y = k|x) = exp(∥wk∥∥z∥ cos(ϕk))∑K
i=1 exp(∥wi∥∥z∥ cos(ϕi))

. (9)

Tian et al. [2021] hypothesizes that the confidence assigned
to an input’s most likely class is strongly influenced by the
norm of its feature representation. However, because the
norm is unconstrained, it may become less sensitive to the
difficulty of the input.

Algorithm 1 Normalization of Features

function FORWARD(x)
z← hθ(x)
featurenorm← ∥z∥
z← z

∥z∥
y ← gθ(z)
return y, featurenorm

end function

To address this, Haas et al. [2023] propose applying L2

normalization to the embedding features z = hθ(x) trans-
forming them into z

∥z∥ before computing the logits. This
step decouples the feature magnitudes from equinormality
constraints. By normalizing the embeddings only during
training, the method preserves variability in feature norms,
allowing them to better capture input-specific difficulty.

Importantly, doing so ensures that the feature norms of OoD
samples are much lower than ID’s, making them an effective
indicator for OoD detection. This work is the foundation of
our method. To the reader’s convenience, the normalization
is presented in Algorithm 1.

4 STOCHASTIC EMBEDDING
DYNAMICS

As discussed in Section 2, adding stochasticity to the final
layer alone does not directly provide an effective solution
for OoD detection. To explore its potential benefits, we first
examine a DNN trained using the CE loss with Dropout on
the embedding.



0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Variance

0

20

40

60

80

100

120

Fr
eq

ue
nc

y

Variance separation : ViT B16
ID
OoD

Figure 2: Histograms of Var(ZID) (in blue) and Var(ZOoD)
(in red), derived by applying Dropout during the inference
phase to generate ZID for ID inputs (ImageNet) and ZOoD
for OoD inputs (Textures).

A notable observation, shown in Fig. 2, is that applying MC
Dropout to the penultimate layer during inference consis-
tently results in Var(ZOoD) < Var(ZID). This result may
seem counterintuitive, as OoD inputs are usually expected
to exhibit higher variance.

4.1 ASSUMPTIONS

To understand why Var(ZOoD) < Var(ZID) is observed, we
analyze the embedding space under specific assumptions.

Considering our trained DNN, the first step is to introduce
the set of OoD samples detected by MSP during inference:

DMSP
OoD =

{
(x, y) | z = hθ(x), ∥z∥ ≤ τ

}
∪
{
(x, y) | z = hθ(x), ∥z∥ > τ

}
, (10)

for some τ ∈ R∗
+. We focus on OoD samples with low

feature norms:

DMSP
OoD (τ) :=

{
(x, y) | z = hθ(x), ∥z∥ ≤ τ

}
.

Let ε ∈ [εmin, 1], where

εmin = 1−max
x, j

w⊤
j hθ(x)

∥wj∥∥hθ(x)∥
.

Finally, let us partition DMSP
OoD (τ) into

DMSP
OoD (τ) =

{
(x, y) | ∃ j ∈ J1,KK : cos(ϕj) ≥ 1− ε

}
∪
{
(x, y) | ∀ j ∈ J1,KK : cos(ϕj) < 1− ε

}
,

For the sake of theoretical study, if we suppose that:

• The DNN fθ is trained using the regular CE loss,

• Then NC occurs along with the configurations de-
scribed by Pearce et al. [2021],

then we can safely assume that the set defined in the follow-
ing Lemma 4.1 is non-empty.

Lemma 4.1 (See Appendix A). Let xID ∼ PID(x) be an
ID sample that is correctly classified by MSP as ID such as
∃k ∈ J1,KK, cos(ϕk) = 1 , and define zID = hθ(xID). Let
(xOoD, υ) be an OoD sample such that zOoD = hθ(xOoD)
and

(xOoD, υ) ∈
{
(x, y) | ∃ j ∈ J1,KK : cos(ϕj) ≥ 1− ε

}
,

(11)

Then, for a suitably chosen τ , we have

∥zOoD∥ ≤ ∥zID∥. (12)

Proof. We refer the reader to Appendix C.

Now, the next step is to incorporate geometric and proba-
bilistic concepts to model the Dropout effect when applied
to the embedding during inference. as MC Dropout applied
to an embedding z = ∥z∥φ perturbs both its norm and its
direction.

We first analyze the scenario where only the directional
component is affected, as modeled by Theorem 4.2.

4.2 SPHERICAL CAP GEOMETRY AND ITS ROLE
IN EMBEDDING DISPERSION

Theorem 4.2 (see Appendix A). Let z ∈ RD be an embed-
ding vector, and write

z = ∥z∥φ, (13)

for some fixed unit vector φ ∈ SD−1. Let Φ ∈ [0, π] be
given, and define the spherical cap

CΦ(φ) =
{
α ∈ SD−1 : α⊤φ ≥ cosΦ

}
. (14)

The concentration parameter c = E
[
α⊤φ

]
quantifies how

tightly the perturbed directions are distributed around φ.

For M ∈ N∗ we suppose {α(1),α(2), . . . α(M)} is a se-
quence of i.i.d. random vectors on CΦ(φ).

We define the matrix:

ZM := ∥z∥AM := ∥z∥
(
α(1),α(2), . . . ,α(M)

)
, (15)

and we denote Var(ZM ) its variance estimator. Then the
following properties hold:

1. Finite Expectation: For all M ≥ 1,

E
[
Var(ZM )

]
= ∥z∥2

(
1− c2

)
. (16)



2. Almost-Sure Asymptotics: As M →∞,

Var(ZM )
a.s.−→ ∥z∥2

(
1− c2

)
. (17)

Proof. We refer the reader to Appendix C.

To interpret the role of c2, note that when M → +∞ and
c2 = 0, the perturbed directions are uniformly distributed
over the hypersphere. Conversely, if c2 = 1, the perturba-
tions are fully concentrated around φ.

For simplicity, we assumed i.i.d random vectors to be uni-
formly distributed overCΦ(φ), i.e., locally uniform over the
hypersphere. Of course, this assumption may be extended by
adopting any relevant statistical model with a well-defined
variance supported on the hypersphere.

Now, we have all the necessary components to explain the
observation in Fig. 2 .

4.3 HOW FEATURE NORMS AMPLIFY
VARIANCE IN ID DATA

Let xID ∼ PTest(x) and xOoD ∼ POoD(x) be samples whose
original embeddings denoted by zID, orig and zOoD, orig sat-
isfy the conditions of Lemma 4.1, such that ∥zOoD, orig∥ ≤
∥zID, orig∥.

Under the model of Theorem 4.2 where only the direction
is perturbed and the original norm is fixed, we have:

E[Var(ZID)] = ∥zID, orig∥2(1− c2ID), (18)

E[Var(ZOoD)] = ∥zOoD, orig∥2(1− c2OoD). (19)

Assuming comparable angular dispersion i.e., c2ID = c2OoD
due to standard training not differentiating this aspect for
the considered samples, Lemma 4.1 implies

E[Var(ZOoD)] ≤ E[Var(ZID)] (20)

We now extend this to the general case where MC Dropout
perturbs both the norm and direction. Let z′ be an em-
bedding after application of the Dropout mask, such that
z′ = sα∥zorig∥, where s ∈ [0, 1] is a stochastic norm scal-
ing factor and α is the stochastic unit direction. We assume
the following:

1. Independent Norm Scaling: The random variable
S (for sm) is independent of the original norm and
has the same distribution for ID and OoD samples.
Let κ = E[S2], where 0 < κ ≤ 1. Thus, the av-
erage squared post-Dropout norm is Emasks[∥z′∥2] =
E[S2∥zorig∥2] = κ∥zorig∥2.

2. Decoupled uniform Perturbations: While s and α
both arise from the same Dropout mask, we approx-
imate that the variance structure from Theorem 4.2
can be applied by replacing the fixed ∥z∥2 with
Emasks[∥z′∥2].

Under these conditions, the average post-Dropout norms
are:

Emasks[∥z′ID∥2] = κ∥zID, orig∥2 (21)

Emasks[∥z′OoD∥2] = κ∥zOoD, orig∥2 (22)

Since ∥zOoD, orig∥2 ≤ ∥zID, orig∥2 and κ > 0, it follows that
Emasks[∥z′OoD∥2] ≤ Emasks[∥z′ID∥2]. If the angular concen-
tration parameters c2ID and c2OoD remain comparable, i.e.,
c2ID = c2OoD, then:

E[Var(ZID)] = κ∥zID, orig∥2(1− c2ID) (23)

E[Var(ZOoD)] = κ∥zOoD, orig∥2(1− c2OoD) (24)

This leads to E[Var(ZOoD)] ≤ E[Var(ZID)].

While our model, particularly the decoupling approximation,
simplifies the complex interaction of norm and directional
perturbations from Dropout, it provides a rationale for the
observed variance difference. The inherent dual impact of
Dropout nonetheless complicates general ID/OoD separa-
tion, as suggested by phenomena in Fig. 2 and Fig. 6.

In conclusion, our analysis suggest that while MC Dropout
introduces stochasticity into the embeddings, it does so
in an uncontrolled way by perturbing both the norm and
the direction simultaneously. This mixing of effects leads
to the observed higher variance for ID samples primarily
due to their overall larger norms for the class of samples
considered.

5 NORM AND ANGULAR DECOUPLING

It might be tempting to optimize the variance difference i.e.,
to force Var(ZOoD)≪ Var(ZID) as a means to distinguish
between ID and OoD data. Instead, our strategy pursues an
alternative approach that does not rely on enhancing such
variance differences but rather consists of decoupling norm
from the angular component of the embedding vector:

1. We impose some constraints on the angular concentra-
tion, a parameter that remained unconstrained in the
standard Dropout setup described in Sec. 4. To achieve
this, we first add a fully-connected DropConnect layer
after the embedding [Wan et al., 2013], then apply
normalization, thereby leveraging the Central Limit
Theorem and concentration of measure phenomena.

2. A fortunate byproduct of this design is that we naturally
integrate the L2-normalization strategy from Haas et al.
[2023], as detailed in Algorithm 1.

5.1 TRAINING PHASE

During the training step, for each input x passed through
the feature extractor hθ(x), we get an embedding vector z.
To introduce random rotation, a fully-connected stochastic



Algorithm 2 Training Phase

1: Input (Training): Train input x, Feature extractor
hθ(·), DropConnect function DC(·), Classifier gθ(·)

2: for each batch of data x do
3: z← hθ(x)
4: r ← ∥z∥
5: α← z/r
6: αDC ← DC(α)
7: ℓ← gθ(

αDC

∥αDC∥ )

8: Compute loss L using ℓ and labels
9: Back-propagate to update network weights θ

10: end for

linear layer DC(.) utilizing DropConnect and matching the
dimensionality of z is added after the embedding layer.

The normalized embedding is passed through the DropCon-
nect function DC(·), producing a stochastically perturbed
vector αDC . Since the output is not guaranteed to be a unit
vector, we normalize it again. The DC layer, combined with
normalization, stretches, distorts, and projects the vector α
onto the hypersphere.

Using DropConnect means that the fully connected layer
DC : RD → RD outputs each component αi of αDC as
a sum of many independent and uniformly bounded con-
tributions, each multiplied by a Bernoulli random variable.
Consequently, by the Central Limit Theorem through the
Lindeberg’s condition [Lindeberg, 1922], each component
of αDC asymptotically satisfies:

∀i ∈ J1, DK,
√
D (αDC)i

d−→ N (δi, σ
2
i ) (25)

as D → +∞ and d−→ denotes convergence in distribu-
tion. Since the components are independent, the entire ran-
dom vector αDC is asymptotically Gaussian. Consequently,
αDC behaves as a Gaussian random vector with diagonal
covariance matrix, and the normalized version αDC

∥αDC∥ is dis-
tributed over a spherical cap. To simplify the presentation,
we kept assuming that the normalized vector is uniformly
distributed over a spherical cap. A more precise study of
this statistical model with its true distribution is provided in
Appendix D.

Training in this way creates meaningful angular differences
between ID and OoD. Indeed, the exposition of ID data to
angular perturbation during the training refines the network,
making the model invariant to the specific angular perturba-
tions introduced by DropConnect and effectively confining
ID inputs within a smaller spherical cap (i.e., c2ID ≃ 1) as
illustrated in Appendix, Fig. 5 and observed in Fig. 3.

5.2 INFERENCE PHASE

At inference time, we keep the DropConnect stochasticity
active by applying the DC layer immediately after the em-

Algorithm 3 Inference Phase and OoD Detection

1: Input: Test input x, Feature extractor hθ(·), DropCon-
nect function DC(·), Classifier gθ(·), Number of for-
ward passes M

2: z← hθ(x)
3: r ← ∥z∥
4: α← z/r
5: for m = 1 to M do
6: α

(m)
DC ← DC(α)

7: α
(m)
DC ←

α
(m)
DC

∥α(m)
DC ∥

8: end for
9: In a validation set, compute r̄ = 1

IQR×N
∑N
i=1 ri, ri is

the norm of the i-th element and IQR is the Interquar-
tile Range.

10: Define the OoD score as SDC(x) := Var(ADC) +
λ r̄−rr .

11: Output: OoD Score SDC(x)

bedding layer, followed by normalization, using the same
DropConnect rate as during training. This results in M

different perturbations of the angle α
(i)
DC , i ∈ J1,MK, all

associated with the same norm ∥z∥ which is held constant
across perturbations.

After completing the M passes, the variance of the matrix
ADC = (α

(1)
DC , ...,α

(M)
DC ) is calculated. If z = hθ(x) and

r = ∥z∥, we define the score as

SDC(x) := Var(ADC) + λ
r̄ − r
r

, (26)

where r̄ is computed as the mean norm divided by the in-
terquartile range (IQR) of the norms on a validation set with
IQR = Q(0.75)−Q(0.25), and Q(p) is the p-th quantile.

Dividing by the IQR makes the norm score robust to outliers
and provides a consistent scaling factor that reflects both the
central tendency and variability of the validation set.

The hyperparameter λ can be chosen, for instance, as the
90th percentile (or another appropriate quantile) of the score
distribution computed on ID data from the validation set.

Note that using only Var(Z) to separate ID from OoD
led to poor and unstable performance likely due to a mis-
match in the optimization objective. Indeed, Var(ZID) =
r2 Var(AID) and while r2 increases for ID data, Var(AID)
decreases. The opposite occurs for Var(ZOoD).

6 EXPERIMENTS

We applied a high DropConnect rate on the linear DropCon-
nect layer, with empirical results showing that p ∈ [0.8, 0.9]
yields optimal performance.

During the inference phase, we used M = 50 forward
passes to compute Var(Z). While this number may initially



appear low given the size of the embedding space, working
on the unit hypersphere allows us to benefit of the blessing
of dimensionality namely, the concentration of measure in
high-dimensional spaces, which ensure that even a moder-
ate number of passes provides a reliable estimation of the
variance, as shown in Appendix B.2 and D.

6.1 EFFECT OF DROPCONNECT ON THE
HYPERSPHERE
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Figure 3: Evolution of 1− c2 as p→ 1.

To derive Fig. 3, we trained the same model using various
DropConnect rates p ∈ {0.1, . . . , 0.9}. For each fixed p and
for every test input x ∼ PTest(x), we performed M = 50
forward passes without rescaling by the norm, thereby ob-
taining a 1−c2 value per input. We then computed the mean
and standard deviation of these values across the entire test
and OoD datasets. The error bars indicate the standard de-
viation. Finally, we plotted these estimates as a function
of p. As p → 1, the angular component concentration be-
comes clearly separated and statistically significant (e.g., for
p = 0.8 and p = 0.9) between ID and OoD data. We also ob-
serve that all test ID inputs exhibit tightly concentrated c2ID
values, consistent with the concentration of measure in high
dimensions. In contrast, the c2OoD values for OoD inputs
show significantly more dispersion, indicating a weaker
concentration phenomena, suggesting that the angular re-
sponse of the model to OoD data is more variable and less
predictable.

6.2 OOD DETECTION

We built our OoD benchmark around embedding-based,
post-hoc detectors chosen for their ease of integration and
proven effectiveness. These techniques are prevalent in the
OoD community and serve as a solid foundation for our tests,
with several recognized as state-of-the-art on large-scale ar-
chitectures. To evaluate the effectiveness of these methods,
we report three metrics: the area under the ROC curve (AU-

ROC), the area under the precision–recall curve (AUPRC),
and the false positive rate at 95% true positive rate (FPR95).
As shown in Tables 1, 2 and 3, our composite score consis-
tently ranks among the top three across diverse benchmarks,
demonstrating robustness and generality across datasets. It
is worth noting that DeepKNN [Sun et al., 2022] often tops
these benchmarks largely because it normalizes every em-
bedding before performing the k-nearest-neighbours. That
norm–based separation amplifies the gap between ID and
OoD points, probably giving DeepKNN an edge. Indeed,
Sun et al. [2021], Azizmalayeri et al. [2024] observed that
OoD activations tend to be sparser than ID activations, so
normalizing these vectors may make them appear even more
sparse on the unit sphere. The increased sparsity of OoD
activations, once passed through the DC layer, may be re-
sponsible for the observed amplification of angular variance
and may explain why our method naturally amplifies the
angular-variance term for OoD inputs.

Table 1: OOD detection on CIFAR-100 (ID) → SVHN and
CIFAR-10 (OOD) using ResNet-18.

SVHN
Method AUROC AUPRC FPR@95TPR

MSP 84.69 86.67 57.28
MaxLogit 83.57 86.96 76.96
ReAct 83.12 83.33 57.01
Energy Score 86.51 57.79 98.40
ASH B 84.09 83.01 58.00
ASH P 84.22 81.88 56.11
ASH S 88.01 83.10 54.99
DeepKNN 93.61 94.15 52.43
DDU 80.63 57.09 94.57
Norm (Feature) 86.95 91.73 50.69
ViM 92.81 92.66 49.67
Mahalanobis 82.21 83.03 91.01
Naive Sampling 72.33 76.27 60.28
LogitNorm 82.27 59.66 86.45
Ours 94.23 93.85 65.23

CIFAR-10
Method AUROC AUPRC FPR@95TPR

MSP 76.75 81.21 73.87
MaxLogit 73.79 80.14 90.94
Energy Score 75.51 80.44 97.80
ReAct 76.44 82.11 75.44
ASH B 72.20 81.01 74.17
ASH P 77.90 82.84 76.04
ASH S 71.93 82.11 75.14
DeepKNN 77.66 83.15 71.91
Energy Score 75.51 80.44 97.80
DDU 74.74 80.68 97.96
Norm (Feature) 76.37 80.76 70.01
ViM 76.01 82.19 81.33
Mahalanobis 73.92 82.03 85.01
Naive Sampling 69.24 77.44 76.30
LogitNorm 74.78 79.49 73.03
Ours 77.27 82.92 70.46



7 CONCLUSION

We present an exploratory study and a mathematically
grounded method for enhancing OoD detection. This work
focuses on exploratory analysis and modeling to explain the
geometric and probabilistic phenomena observed in embed-
ding spaces. Our exploration revealed that when applying
MC Dropout to the embedding layer, ID samples tended to
exhibit higher variance than OoD samples primarily due to
their larger feature norms. This observation highlighted a
critical limitation: MC Dropout affects both norm and angle
in an uncontrolled manner, which obscures the true uncer-
tainty signal needed to differentiate between ID and OoD
data. By establishing a link between uncertainty and con-
centration of measure, our OoD score integrates controlled
angular variance using DropConnect and a norm-based com-
ponent, leveraging both directional and magnitude informa-
tion in the embeddings. We hope this connection will offer
useful insights and stimulate further interest.

Table 2: OOD detection on CIFAR-10 (ID)→ SVHN and
CIFAR-100 (OoD) using ResNet-18.

SVHN
Method AUROC AUPRC FPR@95TPR

MSP 87.17 92.59 38.02
MaxLogit 90.70 95.41 45.84
Energy Score 90.94 52.46 99.78
ReAct 87.57 92.22 44.02
ASH B 79.44 84.01 63.01
ASH P 83.99 89.12 54.56
ASH S 82.01 92.11 49.03
DeepKNN 95.19 97.26 9.83
DDU 84.09 56.70 87.85
Norm (Feature) 94.89 97.68 24.22
ViM 95.17 98.68 21.05
Mahalanobis 88.45 67.34 79.12
Naive Sampling 81.11 83.55 88.11
LogitNorm 93.05 70.66 80.45
Ours 95.37 98.52 18.60

CIFAR-100
Method AUROC AUPRC FPR@95TPR

MSP 80.62 77.54 72.62
MaxLogit 75.90 76.65 78.34
Energy Score 75.93 64.18 99.47
ReAct 81.77 77.19 72.12
ASH B 74.11 71.01 72.21
ASH P 85.99 86.12 64.56
ASH S 81.01 82.11 66.99
DeepKNN 88.51 86.30 40.33
DDU 83.55 66.49 98.74
Norm (Feature) 87.98 86.09 40.01
ViM 87.52 85.68 50.05
Mahalanobis 84.79 71.44 91.01
Naive Sampling 77.10 68.11 91.43
LogitNorm 82.78 63.49 80.03
Ours 88.01 86.27 47.77

Table 3: OOD detection on ImageNet (ID) vs three OOD
sets (ResNet-50).

NINCO
Method AUROC AUPRC FPR@95TPR

MSP 83.20 58.87 67.79
MaxLogit 86.67 64.52 52.85
Energy Score 81.85 61.01 99.82
ReAct 81.61 48.19 73.11
ASH-P 78.54 55.78 66.54
ASH-B 91.04 74.04 55.67
ASH-S 88.56 79.11 44.11
Norm(Feature) 87.49 69.37 40.87
DeepKNN 93.80 77.12 14.06
ViM 92.14 73.56 25.21
Mahalanobis 85.23 71.83 49.36
DDU 83.12 67.93 41.22
Naive Sampling 79.45 59.74 55.09
LogitNorm 92.22 71.59 22.30
Ours 93.61 76.19 21.03

Textures

Method AUROC AUPRC FPR@95TPR

MSP 69.32 60.59 85.30
MaxLogit 75.81 64.92 83.14
Energy Score 27.11 52.27 99.75
ReAct 74.12 64.91 90.12
ASH-P 83.42 70.32 85.46
ASH-B 65.24 59.73 99.53
ASH-S 79.93 66.98 77.22
Norm(Feature) 80.79 65.72 76.14
DeepKNN 85.06 73.97 62.58
ViM 84.55 72.09 60.12
Mahalanobis 77.02 58.13 93.84
DDU 79.33 71.36 81.22
Naive Sampling 71.74 58.22 65.27
LogitNorm 84.88 69.46 62.00
Ours 84.97 74.10 68.11

Places365
Method AUROC AUPRC FPR@95TPR

MSP 73.58 85.40 79.86
MaxLogit 75.68 86.47 78.67
Energy Score 66.30 82.23 98.46
ReAct 75.11 84.89 91.12
ASH-P 85.08 91.01 79.02
ASH-B 77.10 81.71 85.10
ASH-S 79.56 88.96 81.03
Norm(Feature) 82.46 89.56 76.45
DeepKNN 84.41 89.28 60.33
ViM 85.97 88.56 41.39
Mahalanobis 75.18 84.20 80.70
DDU 73.44 80.36 92.39
Naive Sampling 69.40 79.95 89.32
LogitNorm 84.82 89.28 38.26
Ours 85.10 91.23 64.10
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A VISUALIZATION

Fig. 4 shows respectively the illustrations of the considered setting in Lemma 4.1 and the mathematical spherical cap defined
in Theorem 4.2. In particular, Fig. 4(a) illustrates the embedding’s simplex configuration where the OoD embedding lies
around the origin with high cosine similarity (and where ID data are clustered along the class vector), while Fig. 4(b) depicts
the spherical cap centered around the original embedding direction vector φ, within which sampling is performed uniformly.

In Fig. 5 left (resp. right) blue arrow represents the initial direction φ of the vector z = ∥z∥φ ∈ PTest(x) (resp. POoD(x)) .
During inference, the green (resp. purple) arrows represents the M perturbed vectors, induced by M stochastic forward
passes. Our method computes the variance on all these green vectors. Φ represent the spherical cap limits. Same in the right
picture. As the illustration shows, when stochastically perturbed during inference, ID embeddings exhibit greater stability
under stochastic perturbation than OoD embeddings, i.e., c2OoD ≤ c2ID.

Fig. 6 indicate a high correlation between the norm separation of the embeddings (see Fig. 6a) and the variance separation
(see Fig. 6b) under MC Dropout, as studied in Sec. 4.
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(a) Illustration for Lemma 4.1.
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(b) Illustration of the 2D spherical cap for Theorem 4.2.

Figure 4: (a) Simplex configuration where OoD embedding lies around the origin with high cosine similarity and ID data are
clustered along the class vector. (b) Spherical cap defined in Theorem 4.2.
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Figure 5: Illustration of the post-training behavior: ID data exhibit more concentration as the DNN remains invariant to
stochastic-induced perturbations.

(a) Norm ID (MNIST) vs Norm OoD(CIFAR10).
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Figure 6: Separation of ID/OoD embeddings on toy data. Great norm separation leads to great variance separation.



B ADDITIONAL EXPERIMENTS AND DETAILS

B.1 STOCHASTICITY ON INTERMEDIATE LAYERS

We introduced stochasticity into intermediate layers using Dropout (following Kim et al. [2023]). We evaluated the
performance by comparing AUROC scores, with the injected stochasticity propagating through the feature extractor’s output
during inference. We believe that the results shown in Table 4 are not surprising, as intermediate layers typically capture
lower-level features that are less discriminative for distinguishing between ID and OoD data.

Table 4: ResNet18 : CIFAR10 (Id) vs CIFAR100(OoD).

Modified layer AUROC (%)

layer1 52.3
layer2 53.4
layer3 63.0
layer4 71.1
Embedding 80.1

B.2 DROPCONNECT PARAMETER SENSITIVITY AND COMPUTATIONAL COST

In all of our experiments we use the same DropConnect rate p during both training and inference, to ensure consistency of
the trainable parameters in the stochastic layer. While our main paper does not include a detailed empirical study of how p
affects in–distribution (ID) accuracy, we now present such results for completeness.

Table 5: CIFAR–10 and CIFAR–100 ID accuracy (%) as a function of DropConnect rate p.

DropConnect rate p CIFAR–10 ID Acc. CIFAR–100 ID Acc. ImageNet ID Acc.

0.1 91.83 71.21 76.11
0.2 91.53 72.44 75.99
0.3 91.76 71.98 75.52
0.4 90.96 71.90 75.40
0.5 91.28 71.12 74.83
0.6 91.26 72.35 75.76
0.7 91.32 70.56 75.33
0.8 91.09 71.04 75.11
0.9 91.03 70.12 75.43

ID accuracy vs. DropConnect rate In the main paper we select p = 0.9 to enhance OOD separation on the hypersphere
(see Fig. 3). noting that slightly lower values of p can yield marginal gains in ID accuracy but at the cost of degraded OOD
performance.

Training time overhead Higher DropConnect rates incur slower convergence during training. We measure the relative
increase in wall-clock training time (to reach the same validation loss) as seen in Table 6:

Table 6: Relative training time increase (%) vs. DropConnect rate p.

Drop prob. p Training time ↑ (%)

0.1 0.0%
0.2 6.5%
0.3 12.7%
0.4 6.5%
0.5 12.3%
0.6 19.1%
0.7 26.5%
0.8 28.4%
0.9 36.2%



Inference cost vs. number of passes Unlike standard MC techniques, our multiple stochastic passes can be started from
the embedding layer, reducing cost. Table 7 shows average batch times (128 images) for a full forward-backward pass vs.
our optimized partial-forward strategy:

Table 7: Average inference time per batch for M passes (ResNet-50, 128 images).

M Full pass (s) Optimized (s) Speedup

1 0.0244 0.0241 1.01×
5 0.1203 0.0401 3.00×

10 0.2404 0.0600 4.01×
15 0.3672 0.0804 4.57×
20 0.4829 0.0994 4.86×
30 0.7279 0.1386 5.25×
40 0.9715 0.1781 5.45×
50 1.2144 0.2176 5.58×

Variance concentration vs. number of passes Finally, we report in Table 8 how quickly the empirical variance of an ID
sample converges to the reference value as M increases (averaged over 500 samples):

Table 8: Convergence of average empirical variance vs. M (500 samples).

M Avg. variance on CIFAR10 Avg. variance on ImageNet

10 0.2323 0.3372
15 0.2308 0.3303
20 0.2349 0.3217
25 0.2321 0.3144
30 0.2201 0.3113
35 0.2118 0.3098
40 0.2116 0.3107
45 0.2113 0.3104
50 0.2121 0.3110

B.3 VON-MISES FISHER CONCENTRATION ON THE UNIT HYPERSPHERE

Alternatively, to further validate that during inference ID data exhibit higher concentration on the unit hypersphere, we
characterized this concentration on the unit hypersphere using a Von Mises-Fisher distribution. We trained our model using
DropConnect rate p = 0.5 then applied MC DropConnect during inference as described in Algorithm 3. The density of the
Von Mises–Fisher distribution is defined as follows:

fD(x) := CD(κ) exp(κψx), ∀x ∈ SD−1, (27)

where ∥ψ∥ = 1, κ ≥ 0, and the normalization constant CD(κ) is equal to :

CD(κ) :=
κD/2−1

(2π)D/2ID/2−1(κ)
, (28)

where Iv denotes the modified Bessel function. The greater the value of κ, the higher the distribution is concentrated around
ψ.

We observe in Fig. 7 that ID data is clustering more tightly than OoD data on the unit hypersphere, though this is not optimal
due to the insufficient DropConnect rate. Consequently, the concentration parameter κ may serve as a valuable metric for
further analysis.



Figure 7: Concentration κ is used as OoD Score.

B.4 FINE-TUNING DETAILS

• For toy datasets (MNIST) we used a multi-layer perceptron with a DropConnect layer in its third layer. The architecture
is 784-256-256( DC)-128-10 with ReLU activations. We trained for 40 epochs using SGD with 0.01 learning rate and
1× 10−3 Weight Decay.

• CIFAR10/CIFAR100: we fine-tuned a vanilla ResNet18 model (pretrained in PyTorch) with the first convolutional
layer modified to use a 3 × 3 kernel. We trained for 200 epoch using SGD, 128 batch-size,and momentum of 0.9,
with DropConnect rate of 0.9 on the DC layer which is has the same structure and being fully connected to the
penultimate layer. We used an initial learning rate of 0.1 with a cosine annealing scheduler and we applied standard
data augmentation techniques : cropping, horizontal flipping.

• ImageNet: we fine-tuned a vanilla ResNet50 model (pretrained in PyTorch). We trained for 150 epoch using SGD, 128
batch-size,and momentum of 0.9, with DropConnect rate of 0.9 on the DC layer which is has the same structure and
being fully connected to the penultimate layer. We used an initial learning rate of 0.1 with a cosine annealing scheduler
and we applied standard data augmentation techniques : cropping, horizontal flipping.

• For the ViT visualization, since it was pretrained on ImageNet, we had to fine-tune all layers to achieve high accuracy.
We trained for 30 epochs with a batch size of 64, SGD, used a weight decay of 5× 10−4, set the momentum to 0.9,
and applied Dropout with a probability of 0.5 on the penultimate layer. We used an initial learning rate of 0.01 and we
applied standard data augmentation techniques : cropping, horizontal flipping.

C PROOF OF THEORETICAL RESULTS

Simplified sketch of proof of 4.1. . Let xID (resp. xOoD) such that xID ∼ PID(x) (resp. xOoD ∼ POoD(x)). We suppose
without loss of generality that for both inputs, softmax layer yields yη ∈ J1,KK as a label and same cosine similarity.

Moreover we recall that xOoD is such that xOoD verify (xOoD, yη) ∈ {(x, y)|∃j ∈ 1, ...K, cos(ϕj) ≥ 1− ε}. Because MSP
correctly classified xID as ID and xOoD as OoD, it yields

P(yη|xOoD) ∝ exp(∥wη∥∥zOoD∥ cos(ϕη)) ≤ P(yη|xID) ∝ exp(∥wη∥∥zID∥ cos(ϕη)). (29)

Using that x 7→ log(x) is increasing, it yields ∥zOoD∥ ≤ ∥zID∥.
For a general proof, it should utilize the Neural Collapse (NC) property, which implies that all classification vectors have
the same norm: ∥w1∥ = · · · = ∥wK∥. and should account for its angular property, which arises from the way xOoD is
selected.

Lemma C.1. Let V : Ω→ Rd be a random vector distributed uniformly on the spherical cap

CΦ(φ) =
{
x ∈ Sd−1 : x⊤φ ≥ cosΦ

}
,



where φ ∈ Sd−1 is a fixed unit vector and Φ ∈ [0, π] is a given angle. Then, the first moment of V is given by

E[V ] = cφ,

Proof of 4.2. For all i ∈ J1,MK we set z(i) = ∥z∥α(i). Recall that Var(ZM ) = Tr
(

1
M−1

∑M
i=1(z

(i) − µ)(z(i) − µ)T
)

.
Then :

Var(ZM ) =
1

M − 1

M∑
i=1

∥z(i) − µ∥2. (30)

Expanding the sum knowing that ∀i, ∥zi∥ = ∥z∥ and µ = 1
M

∑M
i=1 zi =

∥z∥
M

∑M
i=1 α

(i) we have:

M∑
i=1

∥z(i) − µ∥2 =

M∑
i=1

(
∥z∥2 − 2∥z∥⟨α(i),µ⟩+ ∥µ∥2

)
=M∥z∥ − 2

∥z∥2

M
⟨
M∑
i=1

α(i),

M∑
j=1

α(j)⟩+M∥µ∥2. (31)

Expanding ∥µ∥2 = ∥z∥2

M2 ∥
∑M
i=1 α

(i)∥2 = ∥z∥2

M2

(∑M
i=1 ∥α(i)∥2 +

∑
i ̸=j⟨α(i),α(j)⟩

)
, same for ⟨

∑M
i=1 α

(i),
∑M
j=1 α

(j)⟩,
we have :

1

M − 1

M∑
i=1

∥z(i) − µ∥2 =
M

M − 1
∥z∥2 − ∥z∥2

M(M − 1)

 M∑
i=1

∥α(i)∥2 +
∑
i ̸=j

⟨α(i),α(j)⟩

 . (32)

As α(i), ...α(M) are i.i.d., uniform on the spherical cap, we have E[α(i)] = cφ, taking expectation, we have :

E

 M∑
i=1

∥α(i)∥2 +
∑
i̸=j

⟨α(i),α(j)⟩

 =M +M(M − 1)c2. (33)

Therefore we have the following expectation equality:

E[Var(ZM )] =
M∥z∥2

M − 1
− ∥z∥

2(1 + (M − 1)c2)

M − 1
= ∥z∥2

(
M − 1

M − 1
− (M − 1)c2

M − 1

)
= (1− c2)∥z∥2. (34)

Taking back Eq. (31) and observing that by the strong law of large numbers,

∥µ∥2 =
∥z∥2

M2
∥
M∑
i=1

α(i)∥2 →a.s c
2∥z∥2, M → +∞. (35)

Therefore, we have the following asymptotic convergence:

Var(ZM )→a.s (1− c2)∥z∥2, M → +∞. (36)

D CONCENTRATION INEQUALITY

In high dimensions, naive Monte Carlo and rejection sampling almost never cover the full geometry because concentration
of measure confines nearly all the volume to a thin shell. This makes estimating uncertainty with a finite sample impractical
and undermines the reliability of traditional measures. Instead, we embrace the curse of dimensionality by adopting a
probabilistic framework that turns it into a blessing: rather than fight measure concentration, we exploit it to build our
method.

To introduce our method—and for pedagogical clarity—we begin with the simplest case of a uniform distribution on the
sphere, develop the necessary subgaussian theory, and discuss the locally uniform case. Only then do we specialize to the
projected Gaussian setting that underlies our estimator. By leveraging measure concentration, we obtain a theoretically



justified and efficient estimator of the true variance rather than attempting to reconstruct any arbitrary high-dimensional
geometry.

Overall, our goal is to derive the general inequality 64, which establishes a rigorous and effective connection between
high-dimensional probability and deep learning. It show how the phenomenon of concentration crucially depends on the
structure of the embedding vector.

D.1 UNIFORM ASSUMPTION

Theorem D.1. Let φ ∈ SD−1 and Φ ∈ [0, π] be given, and define the spherical cap:

CΦ(φ) =
{
α ∈ SD−1 : α⊤φ ≥ cosΦ

}
. (37)

The concentration parameter c = E
[
α⊤φ

]
quantifies how tightly the perturbed directions are distributed around φ.

For M ∈ N∗ we suppose {α(1),α(2), . . . α(M)} is a sequence of i.i.d. random vectors with the uniform distribution on
CΦ(φ). We define the matrix :

AM :=
(
α(1),α(2), . . . ,α(M)

)
, (38)

and we denote Var(AM ) its variance estimator. Then the following hold : As M →∞,

Var(AM )
a.s.−→

(
1− c2

)
. (39)

We are interested in understanding both how quickly Var(AM ) converges to (1− c2) when M → +∞.

For the sake of simplicity, we suppose ∀i,α(i) follow an uniform distribution over all the unit hypersphere SD−1 such that
c2 = 0. We also define the following perturbed estimator in its case :

ṼarAfM := Tr

(
1

M

M∑
i=1

(α(i) − µ)(α(i) − µ)T

)
, (40)

where µ = 1
M

∑M
i=1 α

(i)

Since M
M−1 ≃ 1 for M ≥ 10, this approximation does not affect practical computations and is used solely for convenience.

Theorem D.2. (Uniform on the whole sphere) For all ϵ > 0, we have

P
(
1− ṼarAfM > ϵ

)
≤ exp

(
− c1D ϵM

)
. (41)

where c1 > 0 is an absolute constant.

Theorem D.3. (Locally uniform on spherical cap) For all ϵ > 0, we have

P
(
(1− c2)− ṼarAM > ϵ

)
≤ exp

(
− c1D ϵM

)
. (42)

where c1 > 0 is an absolute constant.

To prove the Theorem.D.2, we first need to explore some key properties of sub-gaussian vectors.

D.1.1 Preliminaries on sub-gaussian vectors

Definition D.1 (Sub-gaussian random variable). We say that real random variable X is sub-gaussian if there is a constant
C > 0 such that for t ≥ 0 :

P(|X| > t) ≤ 2 exp(−t2/C2), (43)



Its subgaussian norm is the quantity

∥X∥ψ2
= inf
λ>0

E
[
exp

(
X2

λ2

)
≤ 2

]
. (44)

Definition D.2 (Sub-gaussian random vector). We say that the random vector X is sub-gaussian if and only if

∥X∥ψ2
:= sup

u∈SD−1

∥uTX∥ψ2
< +∞. (45)

Lemma D.4. If α is a random vector following a uniform distribution on the unit hypersphere SD−1 then α is sub-gaussian
such that ∥α∥ψ2

= O( 1√
d
).

Lemma D.5. Let α(1), . . .α(M) be M random vector i.i.d. following an uniform distribution on the unit hypersphere. Let
S :=

∑M
i=1 α

(i). Then E[S] = 0 and is sub-gaussian with ∥S∥ψ2
= O(

√
M√
D
).

Proof. Let u ∈ SD−1. Then:

∥S∥ψ2
= ∥uT

M∑
i=1

α(i)∥ψ2
= ∥

M∑
i=1

uTα(i)∥ψ2
≤ K

(
M∑
i=1

∥uTα(i)∥ψ2

)1/2

≤ K
√
M√
D
, (46)

where K > 0 is an absolute constant. A complete proof of the penultimate inequality is provided in Vershynin [2018].

Corollary D.5.1. ∀λ > 0 and u ∈ RD,

E[expλuTS] ≤ exp

(
K2M

2D
λ2∥u∥2

)
, (47)

where K > 0 is an absolute constant proportional to the subgaussian norm of S.

The following theorem gives us a concentration inequality on ∥S∥2. We consider it as a "weak" version of the Hanson-Wright
inequality since it does not require the components of the vector to be independent but subgaussian with the cost of A to be
positive- semidefinite. We write the inequality as it is in Hsu et al. [2012].

Theorem D.6 (Weak Hanson-Wright Inequality). Suppose that a random vector X ∈ Rn satisfies

E exp(uT (X − η)) ≤ exp
(σ2∥u∥2

2

)
,∀u ∈ Rn. (48)

Then, for any definite positive matrix A ∈ Rm×n (with Σ = ATA), for all t > 0:

P
(
∥AX∥2 > σ2

(
tr(Σ) + 2

√
tr(Σ2) t+ 2∥Σ∥ t

))
≤ e−t. (49)

where ∥Σ∥ denotes for the spectral (operator) norm of the matrix Σ.

Proof. A complete proof of this theorem is provided in Hsu et al. [2012].

D.1.2 Proof of Theorem. D.2

Proof. Recall (32), then replace M − 1 by M to the denominator, we obtain

ṼarAM = 1− ∥µ∥2 (where ∥z∥ = 1). (50)

Our goal is to bound the deviation ṼarAM − 1 which reduces to control ∥µ∥2. Let S =
∑M
i=1 α

(i). Then :

∥µ∥2 =
∥S∥2

M2
. (51)



Thus, the error in the variance estimation is

|1− ṼarAM | = 1− ṼarAM =
∥S∥2

M2
. (52)

We apply the Weak Hanson-Wright Inequality D.6 and the Corollary. D.5.1 We take η = 0, and A = ID, so that Σ = ID,
with

Tr(ID) = D, Tr(I2D) = D, ∥ID∥ = 1 σ2 = K2 M

D
.

It follows that we have that with probability at least 1− e−t,

∥S∥2 ≤ C2M
(
1 + 2

√
t

D
+ 2

t

D

)
. (53)

and it follows that :

∥µ∥2 ≤ K2

M2
M
(
1 + 2

√
t

D
+ 2

t

D

)
=
K2

M

(
1 + 2

√
t

D
+ 2

t

D

)
. (54)

Thus, for every t ≥ 0 to get,
1− ˜Var(AM ) = ∥µ∥2 ≤ ϵ, (55)

it is sufficient that: (
1 + 2

√
t

D
+ 2

t

D

)
≤ Mϵ

K2
. (56)

Suppose that M is large enough such that the right term is greater than 1, then we have c1 > 0 such that:

t ≥ c1D ϵM, (57)

can be chosen such as ∥µ∥2 ≤ ϵ holds.

Thus, we deduce that:
P
(
1− ˜Var(AM ) > ϵ

)
= P

(
∥µ∥2 > ϵ

)
≤ exp

(
− c1D ϵM

)
.

The general case stated in Theorem D.3 can be proved by combining advanced results on manifolds with convex boundaries,
the log-Sobolev inequality, and the Bakry––Émery criterion. First, one shows that for any ∥f∥Lip-Lipschitz function F and
any random vector X uniformly distributed on a spherical cap, the following concentration estimate holds:

P (|F (X)− E[F (X)]| > r) ≤ exp

(
− CDr

2

∥f∥2Lip

)
(58)

where C is an absolute constant. The proof is beyond the scope of this work and can be found in Kolesnikov and Milman
[2016], Ledoux [2001].

D.2 PROJECTED GAUSSIAN ASSUMPTION

The projected Gaussian assumption covers the general case of measure concentration for Lipschitz functions on RD, relates
precisely to the normalization process in Alg. 2 and Alg. 3. Its behavior is well understood using log-Sobolev and Herbst
inequalities: its rigorous justification is also relying on log–Sobolev Inequality and Herbst arguments, and full proof of the
following results can be found in [Ledoux, 2001].

Theorem D.7. Suppose that for all F : RD → R Lipschitz, the law of the random variable F (X) verify Log-Sobolev
Inequality assumption, in the sense that for all r ≥ 0,

P(|F (X)− E[F (X)]| ≥ r) ≤ c exp

(
− r2

2C∥F∥2Lip

)
, (59)



for some absolute constants c, C > 0. Then for all F : RD → R Lipschitz and r ≥ σ∥F∥Lip,

P
(∣∣∣∣F ( X

|X|

)
− E

[
F

(
X

|X|

)]∣∣∣∣ ≥ r) ≤ 2c exp

(
− η

2

8C

(
r

∥F∥Lip
− σ

)2
)
, (60)

where

η := E[|X|] and σ := E
[∣∣∣∣ |X|η − 1

∣∣∣∣] . (61)

The quantity ∥F∥Lip := supx,y∈RD:x̸=y
|F (x)−F (y)|

|x−y| is the Lipschitz norm of F with respect to the Euclidean norm on RD.

Corollary D.7.1. Consider the Gaussian case X ∼ N (m,Σ), m ∈ RD, Σ ∈ Sym+
D×D(R). Then the sub-Gaussian

concentration of Lipschitz functions holds with

c = 2 and C = ∥Σ∥op. = max
|x|=1
⟨Σx, x⟩. (62)

Moreover, one can show that E∥X∥ = K ′D, leading to a concentration inequality that depends on the dimensionality D:

P
(∣∣∣∣F ( X

∥X∥

)
− E

[
F

(
X

∥X∥

)]∣∣∣∣ ≥ r) ≤ 2c exp

(
− KDr

2

∥F∥Lip

)
, (63)

where K is an absolute constant depending on K ′, σ and C.

D.3 MEASURE TENSORIZATION

Considering Y1, ...YM i.i.d such as ∀i ∈ [|1,M |],Yi follow the same distribution as X
∥X∥ . Because the Log-Sobolev

Inequality is stable by measure tensorization [Chafaï and Lehec, 2024] and because the variance operator is an Lipschitz
function on the unit hypersphere, it follow that if Var (Y1, ...YM ) denotes the empirical variance:

P
(∣∣∣∣Var (Y1, ...YM ))−Var

(
X

∥X∥

)∣∣∣∣ ≥ r) ≤ 2c exp
(
−MKr2D

)
(64)

where K is an absolute constant depending on K ′, σ, C and the Lipchitz constant.

In our method, the normalized output of the DC Layer ∀i ∈ [|1,M |], α
(i)
DC

∥α(i)
DC∥

:= α̃(i)(z) follows a projected Gaussian

distribution and its true variance denoted here by Var(αDC(z)) depends on the embedding z. The absolute constant K
depends on the embedding z, hence we write K = K(z). It follows that:

P
(∣∣Var(α̃(1)(z), . . . , α̃(M)(z))−Var(αDC(z))|) ≤ 2c exp

(
−MK(z)r2D

)
. (65)

This inequality also holds in the uniform case, as this setup also satisfies the Log-Sobolev inequality, which permits a
measure tensorization argument.

In practice, for OoD data, one expects the empirical variance to converges more slowly—both because it has intrinsically
higher variance and because OoD examples can be highly diverse—so the required number of samples M must be only
calibrated on a ID validation set.

Relying on the theoretical observations established by Sun et al. [2021], one can easily show that the constant K(z) is
larger for ID embeddings than for OoD embeddings, reflecting the fact that ID embeddings concentrate more tightly in the
representation space and exhibit lower variance than OoD embeddings. A more precise study of this constant is left for
future work.
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