
Online Classification with Predictions

Vinod Raman
Department of Statistics
University of Michigan
Ann Arbor, MI 48104
vkraman@umich.edu

Ambuj Tewari
Department of Statistics
University of Michigan
Ann Arbor, MI 48104
tewaria@umich.edu

Abstract

We study online classification when the learner has access to predictions about
future examples. We design an online learner whose expected regret is never worse
than the worst-case regret, gracefully improves with the quality of the predictions,
and can be significantly better than the worst-case regret when the predictions
of future examples are accurate. As a corollary, we show that if the learner is
always guaranteed to observe data where future examples are easily predictable,
then online learning can be as easy as transductive online learning. Our results
complement recent work in online algorithms with predictions and smoothed online
classification, which go beyond a worse-case analysis by using machine-learned
predictions and distributional assumptions respectively.

1 Introduction

In online classification, Nature plays a game with a learner over T ∈ N rounds. In each round
t ∈ [T], Nature selects a labeled example (xt, yt) ∈ X × Y and reveals just the example xt to the
learner. The learner, using the history of the game (x1, y1), ..., (xt−1, yt−1) and the current example
xt, makes a potentially randomized prediction ŷt ∈ Y . Finally, Nature reveals the true label yt and
the learner suffers the loss 1{ŷt ̸= yt}. Given access to a hypothesis class H ⊆ YX consisting of
functions h : X → Y , the goal of the learner is to minimize its regret, the difference between its
cumulative mistake and that of the best fixed hypothesis h ∈ H in hindsight. We say a class H is
online learnable if there exists a learning algorithm that achieves vanishing average regret for any,
potentially adversarial chosen, stream of labeled examples (x1, y1), ..., (xT , yT). Canonically, one
also distinguishes between the realizable and agnostic settings. In the realizable setting, Nature must
choose a stream (x1, y1), ..., (xT , yT) such that there exists a h ∈ H for which h(xt) = yt for all
t ∈ [T]. On the other hand, in the agnostic setting, no such assumptions on the stream are placed.

Due to applications in spam filtering, image recognition, and language modeling, online classification
has had a long, rich history in statistical learning theory. In a seminal work, Littlestone [1987]
provided a sharp quantitative characterization of which binary hypothesis classesH ⊆ {0, 1}X are
online learnable in the realizable setting. This characterization was in terms of the finiteness of a
combinatorial dimension called the Littlestone dimension. Twenty-two years later, Ben-David et al.
[2009] proved that the Littlestone dimension continues to characterize the online learnability of binary
hypothesis classes in the agnostic setting. Later, Daniely et al. [2011] generalized the Littlestone
dimension to multiclass hypothesis classesH ⊆ YX , and showed that it fully characterizes multiclass
online learnability when the label space Y is finite. More recently, Hanneke et al. [2023] extended
this result to show that the multiclass Littlestone dimension continues to characterize multiclass
online learnability even when Y is unbounded.

While elegant, the characterization of online classification in terms of the Littlestone dimension is
often interpreted as an impossibility result [Haghtalab, 2018]. Indeed, due to the restrictive nature
of the Littlestone dimension, even simple classes like the 1-dimensional thresholdsHthresh = {x 7→

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

1{x ≥ a} : a ∈ N} are not online learnable in the realizable setting. This hardness arises mainly
due to a worst-case analysis: the adversary is allowed to choose any sequence of labeled examples,
even possibly adapting to the learner’s strategy. In many situations, however, the sequence of data
is “easy” and a worst-case analysis is too pessimistic. For example, if one were to use the daily
temperatures to predict snowfall, it is unlikely that temperatures will vary rapidly within a given week.
Even so, one might have to access to temperature forecasting models that can accurately predict
future temperatures. This motivates a beyond-worst-case analysis of online classification algorithms
by proving guarantees that adapt to the “easiness” of the example stream.

The push for a beyond-worst-case analysis has its roots in classical algorithm design [Roughgarden,
2021]. Of recent interest is Algorithms with Predictions (AwP), a specific sub-field of beyond-worst-
case analysis of algorithms [Mitzenmacher and Vassilvitskii, 2022]. Here, classical algorithms are
given additional information about the problem instance in the form of machine-learned predictions.
Augmented with these predictions, the algorithm’s goal is to perform optimally on a per-input basis
when the predictions are good (known as consistency), while always ensuring optimal worst-case
guarantees (known as robustness). Ideally, algorithms are also smooth, obtaining performance
guarantees that interpolate between instance and worst-case optimality as a function of prediction
quality. After a successful application to learning index structures [Kraska et al., 2018], there has
been an explosion of work designing algorithms whose guarantees depend on the quality of available,
machine-learned predictions Mitzenmacher and Vassilvitskii [2022]. For example, machine-learned
predictions have been used to achieve more efficient data-structures [Lin et al., 2022], faster runtimes
[Chen et al., 2022, Ergun et al., 2021], better accuracy-space tradeoffs for streaming algorithms [Hsu
et al., 2019], and improved performance bounds for online algorithms [Purohit et al., 2018].

Despite this vast literature, the accuracy benefits of machine-learned predictions for online classifi-
cation are, to the best of our knowledge, unknown. In this work, we bridge the gap between AwP
and online classification. In contrast to previous work, which go beyond a worst-case analysis in
online classification through smoothness or other distributional assumptions [Haghtalab et al., 2020,
Block et al., 2022, Wu et al., 2023], we give the learner access to a Predictor, a forecasting algorithm
that predicts future examples in the data stream. The learner, before predicting a label ŷt, can query
the Predictor and receive predictions x̂t+1, ..., x̂T on the future examples. The learner can then
use the history of the game (x1, y1), ..., (xt−1, yt−1), the current example xt, and the predictions
x̂t+1, ..., x̂T to output a label ŷt. We allow Predictors to be adaptive - they can change their predic-
tions of future examples based on the actual realizations of past examples. From this perspective,
Predictors are also online learners, and we quantify the predictability of example streams through
their mistake-bounds.

In this work, we seek to design online learning algorithms whose expected regret, given black-box
access to a Predictor, degrades gracefully with the quality of the Predictor’s predictions. By doing so,
we are also interested in understanding how access to a Predictor may impact the characterization of
online learnability. In particular, given a Predictor, when can online learnability become easier than
in the standard, worst-case setup? Guided by these objectives, we make the following contributions.

(1) In the realizable and agnostic settings, we design online learners that, using black-box access
to a Predictor, adapt to the “easiness” of the example stream. When the predictions of the
Predictor are good, our learner’s expected mistakes/regret significantly improves upon the
worst-case guarantee. When the Predictor’s predictions are bad, the expected mistakes/regret
of our learner matches the optimal worst-case expected mistake-bound/regret. Finally,
our learner’s expected mistake-bound/regret degrades gracefully with the quality of the
Predictor’s predictions.

(2) We show that having black-box access to a good Predictor can make learning much easier
than the standard, worst-case setting. More precisely, good Predictors allow “offline”
learnable classes to become online learnable. In this paper, we take the “offline” setting to
be transductive online learning [Ben-David et al., 1997, Hanneke et al., 2024] where Nature
reveals the entire sequence of examples x1, ..., xT (but not the labels y1, ..., yT) to the learner
before the game begins. Many “offline” learnable classes are not online learnable. For
example, when Y = {0, 1}, transductive online learnability is characterized by the finiteness
of the VC dimension, the same dimension that characterizes PAC learnability. Thus, our
result is analogous to that in smoothed online classification, where PAC learnability is also
sufficient for online learnability [Haghtalab et al., 2020, Block et al., 2022].

2

A notable property of our realizable and agnostic online learners is their use of black-box access to a
transductive online learner to make predictions. In this sense, our proof strategies involve reducing
online classification with predictions to transductive online learning. For both contributions (1) and
(2), we consider only the realizable setting in the main text. The results and arguments for the agnostic
setting are nearly identical and thus deferred to Appendix F.

1.1 Related Works

Online Algorithms with Predictions. Online Algorithms with Predictions (OAwP) has emerged
as an important paradigm lying at the intersection of classical online algorithm design and machine
learning. Many fundamental online decision-making problems including ski rental [Gollapudi and
Panigrahi, 2019, Wang et al., 2020, Bamas et al., 2020], online scheduling [Lattanzi et al., 2020, Wei
and Zhang, 2020, Scully et al., 2021], online facility location [Almanza et al., 2021, Jiang et al., 2021],
caching [Lykouris and Vassilvitskii, 2021, Elias et al., 2024], and metrical task systems [Antoniadis
et al., 2023], have been analyzed under this framework. Recently, Elias et al. [2024] consider a
model where the predictor is allowed to learn and adapt its predictions based on the observed data.
This is contrast to previous work on learning-augmented online algorithms, where predictions are
made from machine learning models trained on historical data, and thus their predictions are static
and non-adaptive to the current task at hand. Elias et al. [2024] study a number of fundamental
problems, like caching and scheduling, and show how explicitly designed predictors can lead to
improved performance bounds. In this work, we consider a model similar to Elias et al. [2024],
where the predictions available to the learning algorithms are not fixed, but rather adapt to the true
sequence of data processed by the learning algorithm. However, unlike Elias et al. [2024], we do not
hand-craft these predictions, but rather assume our learning algorithms have black-box access to a
machine-learned prediction algorithm.

Transductive Online Learning. In the Transductive Online Learning setting, Nature reveals the
entire sequence of examples x1, ..., xT to the learner before the game begins. The goal of the learner
is to predict the corresponding labels y1, ..., yT in order, receiving the true label yt only after making
the prediction ŷt for example xt. First studied by Ben-David et al. [1997], recent work by Hanneke
et al. [2024] has established the minimax rates on expected mistakes/regret in the realizable/agnostic
settings. In the context of online classification with predictions, one can think of the transductive
online learning setting as a special case where the Predictor never makes mistakes.

Smoothed Online Classification. In addition to AwP, smoothed analysis [Spielman and Teng, 2009]
is another important sub-field of beyond-worst-case analysis of algorithms. By placing distributional
assumptions on the input, one can typically go beyond computational and information-theoretic
bottlenecks due to worst-case inputs. To this end, Rakhlin et al. [2011], Haghtalab [2018], Haghtalab
et al. [2020], Block et al. [2022] consider a smoothed online classification model. Here, the adversary
has to choose and draw examples from sufficiently anti-concentrated distributions. For binary
classification, Haghtalab [2018] and Haghtalab et al. [2020] showed that smoothed online learnability
is as easy as PAC learnability. That is, the finiteness of a smaller combinatorial parameter called
the VC dimension is sufficient for smoothed online classification. In this work, we also go beyond
the worst-case analysis standard in online classification, but consider a different model where the
adversary is constrained to reveal a sequence of examples that are predictable. In this model, we also
show that the VC dimension can be sufficient for online learnability.

2 Preliminaries

Let X denote an example space and Y denote the label space. We make no assumptions about Y ,
so it can be unbounded (e.g., Y = N). Let H ⊆ YX denote a hypothesis class. For a set A, let
A⋆ =

⋃∞
n=0 A

n denote the set of all finite sequences of elements in A. Moreover, we let A≤n

denote the set of all sequences of elements in A of size at most n. Then, X ⋆ denotes the set of all
finite sequences of examples in X and Z ⊆ X ⋆ denotes a particular family of such sequences. We
abbreviate a sequence z1, ..., zT by z1:T . Finally, for a, b, c ∈ R, we let a ∧ b ∧ c = min{a, b, c}.

3

2.1 Online Classification

In online classification, a learner A plays a repeated game against Nature over T ∈ N rounds. In
each round t ∈ [T], Nature picks a labeled example (xt, yt) ∈ X × Y and reveals xt to the learner.
The learner makes a randomized prediction ŷt ∈ Y . Finally, Nature reveals the true label yt and the
learner suffers the 0-1 loss 1{ŷt ̸= yt}. Given a hypothesis classH ⊆ YX , the goal of the learner is
to minimize its expected regret

RA(T,H) := sup
x1:T∈X

sup
y1:T∈YT

(
E

[
T∑

t=1

1{A(xt) ̸= yt}

]
− inf

h∈H

T∑
t=1

1{h(xt) ̸= yt}

)
,

where the expectation is only over the randomness of the learner. A hypothesis class H is said to
be online learnable if there exists an (potentially randomized) online learning algorithm A such
that RA(T,H) = o(T). If it is guaranteed that the learner always observes a sequence of examples
labeled by some hypothesis h ∈ H, then we say we are in the realizable setting and the goal of the
learner is to minimize its expected cumulative mistakes,

MA(T,H) := sup
x1:T∈XT

sup
h∈H

E

[
T∑

t=1

1{A(xt) ̸= h(xt)}

]
,

where again the expectation is taken only with respect to the randomness of the learner. It is well
known that the finiteness of the multiclass extension of the Littlestone dimension (Ldim) characterizes
realizable and agnostic online learnability [Littlestone, 1987, Daniely et al., 2011, Hanneke et al.,
2023]. See Appendix A for complete definitions.

2.2 Online Classification with Predictions

Motivated by the fact that real-world example streams x1:T are far from worst-case, we give our
learner A black-box access to a Predictor P , defined algorithmically in Algorithm 1 and formally in
Definition 1. In the rest of the paper, we abuse notation by not explicitly indicating that P takes its
own past predictions as input. That is, given a sequence x1:T ∈ X T , we will let P(x1:t) denotes its
prediction on the t’th round.

Definition 1 (Predictor). A Predictor P : (X ×X T)⋆ → Π(X T) is a map that takes in a sequence of
instances x1, x2, ..., its own past predictions x̂1

1:T , x̂
2
1:T , ..., and outputs a distribution µ̂ ∈ Π(X T).

The Predictor make its next prediction by sampling x̂1:T ∼ µ̂.

Algorithm 1 Predictor P
Input: Time horizon T

1 for t = 1, ..., T do
2 Nature reveals the true example xt.
3 Observe xt, update, and make a (potentially randomized) prediction x̂t

1:T .
4 end

Remark. We highlight that our Predictors are very general and can also use side information, in
addition to the past examples, to make predictions about future examples. For example, if the
examples are daily average temperatures, then Predictors can also use other covariates, like humidity,
precipitation, and wind speed, to predict future temperatures.

In each round t ∈ [T], the learner A can query the Predictor P to get a sense of what examples it will
observe in the future. Then, the learner A can use the history (x1, y1), .., (xt−1, yt−1), the current
example xt, and the future predicted examples to classify the current example. Protocol 2 makes
explicit the interaction between the learner, the Predictor, and Nature.

Note that, in every round t ∈ [T], the Predictor P makes a prediction about the entire sequence of T
examples, even those that it has observed in the past. This is mainly for notational convenience as we
assume that our Predictors are consistent.

Assumption 1 (Consistency). A Predictor is consistent if for every sequence x1:T ∈ X T and every
time point t ∈ [T], the prediction x̂1:T = P(x1:t) satisfies the property that x̂1:t = x1:t.

4

Algorithm 2 Online Learning with a Predictor
Input: Predictor P , Hypothesis classH, Time horizon T

1 for t = 1, ..., T do
2 Nature reveals the true example xt.
3 The Predictor P observes xt, updates, and reveals its predictions x̂t

1:T .
4 Learner makes a randomized prediction ŷt using x̂t

1:T , xt, and (x1, y1), ..., (xt−1, yt−1).
5 Nature reveals the true label yt to the learner.
6 Learner suffers loss 1{yt ̸= ŷt} and updates itself.
7 end

Although stated as an assumption, it is without loss of generality that Predictors are consistent - any
inconsistent Predictor can be made consistent by hard coding its input into its output. In addition to
consistency, we assume that our Predictors are lazy.
Assumption 2 (Laziness). A Predictor is lazy if for every sequence x1:T ∈ X T and every t ∈ [T], if
P(x1:t−1)t = xt, then P(x1:t) = P(x1:t−1). That is, P does not change its prediction if it is correct.

Since Predictors are also online learners, the assumption of laziness is also mild: non-lazy online
learners can be generically converted into lazy ones [Littlestone, 1987, 1989]. We always assume
that Predictors are consistent and lazy and drop these pronouns for the rest of the paper.

Remark. We highlight that Predictors are adaptive and change their predictions based on the
realizations of past examples. This is contrast to existing literature in OAwP, where machine-learned
predictions are often static. Nevertheless, our framework is more general and captures the setting
where predictions of examples are made once and fixed throughout the game. Indeed, consider the
consistent, lazy Predictor that fixes a sequence z1:T ∈ X T before the game begins, and for every
t ∈ [T], outputs the predictions x̂t

1:T such that x̂t
1:t = x1:t and x̂t

t+1:T = zt+1:T .

Ideally, when given access to a Predictor P , the expected regret of A should degrade gracefully with
the quality of P’s predictions. To this end, we quantify the performance of a Predictor P through

MP(x1:T) := E

[
T∑

t=2

1{P(x1:t−1)t ̸= xt}

]
,

the expected number of mistakes that P makes on a sequence of examples x1:T ∈ X T . In Section 3,
we design an online learner whose expected regret/mistake-bound on a stream (x1, y1), ..., (xT , yT)
can be written in terms of MP(x1:T).

2.3 Predictability

Predictors and their mistake bounds offer us to ability to define and quantify a notion of “easiness” for
example streams x1:T . In particular, we can distinguish between example streams that are predictable
and unpredictable. To do so, let Z ⊆ X ⋆ denote a collection of finite sequences of examples. By
restricting Nature to playing examples streams in Z , we can define analogous notions of minimax
expected regret

RA(T,H,Z) := sup
x1:T∈Z

sup
y1:T∈YT

E

[
T∑

t=1

1{A(xt) ̸= yt} − inf
h∈H

T∑
t=1

1{h(xt) ̸= yt}

]
,

and minimax expected mistakes,

MA(T,H,Z) := sup
x1:T∈Z

sup
h∈H

E

[
T∑

t=1

1{A(xt) ̸= h(xt)}

]
.

As usual, we say that a tuple (H,Z) is online and realizable online learnable if infA RA(T,H,Z) =
o(T) and infA MA(T,H,Z) = o(T) respectively. If Z = X ⋆, then the definitions above recover the
standard, worst-case online classification setup. However, in the more general case where Z⋆ ⊆ X ⋆,
we can use the existence of good Predictors P and their mistake bounds to quantify the “easiness" of
a stream class Z . That is, we say Z is predictable if there exists a consistent, lazy Predictor P such
that MP(T,Z) := supx1:T∈Z MP(x1:T) = o(T).

5

Definition 2 (Predictability). A class Z ⊆ X ⋆ is predictable if and only if infP MP(T,Z) = o(T).

Definition 2 provides a qualitative definition of what it means for a sequence of examples to be
predictable, and therefore “easy”. If Z ⊆ X ⋆ is a predictable class of example streams, then a stream
x1:T ∈ X T is predictable if x1:T ∈ Z. By having access to a good Predictor, sequences of examples
that previously exhibited “worst-case” behavior, now become predictable. One natural predictable
collection of streams are those induced by easy-to-learn discrete-time dynamical systems [Raman
et al., 2024]. That is, let X be the state space for a finite collection G of transition functions. Then,
given an initial state x0 ∈ X , one can consider the stream class Z to be the set of all trajectories
induced by transition functions in G. In Section 3, we show that for such classes of predictable
examples, “offline” learnability is sufficient for online learnability.

2.4 Offline Learnability

In the classical analysis of online algorithms, one competes against the best “offline” solution. In the
context of online classification, this amounts to comparing online learnability to “offline” learnability,
where we interpret the “offline” setting as the case where Nature reveals the sequence of examples
(x1, ..., xT) before the game begins. In particular, compared to the standard online learning setting,
in the “offline" version, the learner knows the sequence of examples x1, ..., xT before the game
begins, and its goal is to predict the corresponding labels y1, ..., yT . This setting was recently named
“Transductive Online Learning" [Hanneke et al., 2024] and the minimax rates in both the realizable
and agnostic setting have been established [Ben-David et al., 1997, Hanneke et al., 2023]. For the
remainder of the paper, we will use offline and transductive online learnability interchangeably.

For a randomized offline learner B, we let

RB(T,H) := sup
x1:T∈XT

sup
y1:T∈YT

E

[
T∑

t=1

1{Bx1:T
(xt) ̸= yt} − inf

h∈H

T∑
t=1

1{h(xt) ̸= yt}

]
denote its minimax expected regret and

MB(T,H) := sup
h∈H

sup
x1:T∈XT

E

[
T∑

t=1

1{Bx1:T
(xt) ̸= h(xt)}

]
.

denote its minimax expected mistakes. We use the notation Bx1:T
to indicate that B was initialized

with the sequence x1:T before the game begins. If MB(T,H) = o(T) or RB(T,H) = o(T), then we
say that B is a no-regret offline learner. It turns out that realizable and agnostic offline learnability are
equivalent [Hanneke et al., 2024]. That is, MB(T,H) = o(T)⇔ RB(T,H) = o(T). Thus, we say a
classH ⊆ YX is offline learnable if and only if there exists a no-regret offline learner forH.

When |Y| = 2, Ben-David et al. [1997] and Hanneke et al. [2023] show that the finiteness of a
combinatorial dimension called the Vapnik–Chervonenkis (VC) dimension (or equivalently PAC
learnability) is sufficient for offline learnability (see Appendix A for complete definitions).
Lemma 2.1 (Ben-David et al. [1997], Hanneke et al. [2024]). For everyH ⊆ {0, 1}X , there exists a
deterministic offline learner B such that

MB(T,H) = O
(
VC(H) log2 T

)
where VC(H) is the VC dimension ofH.

In Section 3, we use this upper bound in Lemma 2.1 to prove that PAC learnability of H implies
(H,Z) online learnability when Z is predictable. Interestingly, Hanneke et al. [2024] also establish a
trichotomy in the minimax expected mistakes for offline learning in the realizable setting. That is, for
anyH ⊆ YX with |Y| <∞, the quantity MB(T,H) can only be Θ(1), Θ(log2 T), or Θ(T). On the
other hand, in the agnostic setting, RB(T,H) can be Θ̃(

√
T) or Θ(T), where Θ̃ hides poly-log terms

in T .

Our main result in Section 3 shows that offline learnability is sufficient for online learnability under
predictable examples. The following technical lemma will be important when proving so.
Lemma 2.2. [Ceccherini-Silberstein et al., 2017, Lemma 5.17] Let g : Z+ 7→ R+ be a positive
sublinear function. Then, g is bounded from above by a concave sublinear function f : R+ 7→ R+.

6

In light of Lemma 2.2, we let f̄ denote the smallest concave sublinear function upper bounding the
positive sublinear function f . For example, our regret bounds in Section 3 will often be in terms of
MB(T,H). Although in full generality MB(T,H) ≤ MB(T,H), in many cases we have equality.
For example, when |Y| = 2, the trichotomy of expected minimax rates established by Theorem 4.1 in
Hanneke et al. [2024] shows that MB(T,H) = MB(T,H).

3 Adaptive Rates in the Realizable Setting

In this section, we design learning algorithms whose expected mistake bounds, given black-box
access to a Predictor P and offline learner B, adapt to the quality of predictions by P and B. Our
main quantitative result is stated below.

Theorem 3.1 (Realizable upper bound). For every H ⊆ YX , Predictor P , and no-regret offline
learner B, there exists an online learnerA such that for every realizable stream (x1, y1), ..., (xT , yT),
A makes at most

3

(
L(H)︸ ︷︷ ︸
(i)

∧ (MP(x1:T) + 1)MB(T,H)︸ ︷︷ ︸
(ii)

∧ 6
(
(MP(x1:T) + 1)MB

(T

MP(x1:T) + 1
+ 1,H

)
+ log2 T

)
︸ ︷︷ ︸

(iii)

)
+5

mistakes in expectation, where L(H) is the Littlestone dimension ofH.

We highlight some important consequences of Theorem 3.1. Firstly, when MP(x1:T) = 0, the
expected mistake bound of A matches (up to constant factors) that of the offline learner B. Thus,
when MP(x1:T) = 0 and B is a minimax optimal offline learner, our learner A performs as well as
the best offline learner. Secondly, the expected mistake bound of A is always at most 3L(H) + 5;
the minimax worst-case mistake bound up to constant factors. Thus, our learner A never does worse
than the worst-case mistake bound. Thirdly, the expected mistake bound of A gracefully interpolates
between the offline and worst-case optimal rates as a function of MP(x1:T). In Section 3.3, we show
that the dependence of A’s mistake bound on MP(x1:T) and MB(T,H) can be tight. Lastly, we
highlight that Theorem 3.1 makes no assumption about the size of Y .

With respect to learnability, Corollary 3.2 shows that offline learnability ofH is sufficient for online
learnability under predictable examples.

Corollary 3.2 (Offline learnability =⇒ Realizable Online learnability with Predictable Examples).
For everyH ⊆ YX and Z ⊆ X ⋆,

Z is predictable andH is offline learnable =⇒ (H,Z) is realizable online learnable.

This follows from a slight modification of the proof of Theorem 3.1 along with the fact that the term
(MP(T,Z) + 1)MB

(
T

MP(T,Z)+1 ,H
)
= o(T) when MB(T,H) = o(T) and MP(T,Z) = o(T). In

addition, we can also establish a quantitative version of Corollary 3.2 for VC classes.

Corollary 3.3. For everyH ⊆ {0, 1}X , Predictor P and Z ⊆ X ⋆, there exists an online learner A
such that

MA(T,H,Z) = O

(
VC(H)(MP(T,Z) + 1) log2

(T

MP(T,Z) + 1

)
+ log2 T

)
.

We prove both Corollary 3.2 and 3.3 in Appendix C. Corollary 3.3 shows that PAC learnability implies
online learnability under predictable examples. Moreover, for VC classes, when MP(x1:T) = 0, the
upper bound in Corollary 3.3 exactly matches that of Lemma 2.1. An analogous corollary in terms of
the Natarajan dimension (see Appendix A for definition) holds when |Y| <∞.

The remainder of this section is dedicated to proving Theorem 3.1. The proof involves constructing
three different online learners, with expected mistake bounds (i), (ii), and (iii) respectively, and then
running the Deterministic Weighted Majority Algorithm (DWMA) using these learners as experts
[Arora et al., 2012]. The following guarantee of DWMA along with upper bounds (i), (ii), and (iii)
gives the upper bound in Theorem 3.1 (see Appendix D for complete proof).

7

Lemma 3.4 (DWMA guarantee [Arora et al., 2012]). The DWMA run with N experts and learning
rate η = 1/2 makes at most 3(mini∈[N] Mi + log2 N) mistakes, where Mi is the number of mistakes
made by expert i ∈ [N].

The online learner obtaining the upper bound L(H) is the celebrated Standard Optimal Algorithm
[Littlestone, 1987, Daniely et al., 2011], and thus we omit the details here. Our second and third
learners are described in Sections 3.1 and 3.2 respectively. Finally, in Section 3.3, we give a lower
bound showing that our upper bound in Theorem 3.1 can be tight.

3.1 Proof of upper bound (ii) in Theorem 3.1

Consider a lazy, consistent predictor P . Given any sequence of examples x1:T ∈ X T , the Predictor
P makes c ∈ N mistakes at some timepoints t1, ..., tc ∈ [T]. Since P may be randomized, both c and
t1, ..., tc are random variables. Crucially, since P is lazy, for every i ∈ {0, ..., c+ 1}, the predictions
made by P on timepoints strictly between ti and ti+1 are correct and remain unchanged, where we
take t0 = 0 and tc+1 = T + 1. This means that on round ti, we have that x̂ti

ti:ti+1−1 = xti:ti+1−1.
Therefore, initializing a fresh copy of an offline learner B with the predictions x̂ti

ti:T
ensures that B

makes at most MB(T −ti+1,H) mistakes on the stream (xti , yti), ..., (xti+1−1, yti+1−1). Repeating
this argument for all adjacent pairs of timepoints in {t1, ..., tc}, gives the following strategy: initialize
a new offline learner B every time P makes a mistakes, and use B to make predictions until the next
time P makes a mistake. Algorithm 3 implements this idea.

Algorithm 3 Online Learner
Input: Hypothesis classH, Offline learner B, Time horizon T

1 Initialize: i = 0
2 for t = 1, ..., T do
3 Receive xt from Nature.
4 Receive predictions x̂t

1:T from Predictor P such that x̂t
1:t = x1:t.

5 if t = 1 or x̂t−1
t ̸= xt (i.e. P made a mistake) then

6 Let Bi be a new copy of B initialized with the sequence x̂t
t:T and set i← i+ 1.

7 Query Bi on example xt and play its returned prediction ŷt.

8 Receive true label yt from Nature and pass it to Bi.
9 end

Lemma 3.5. For every H ⊆ YX , Predictor P , no-regret offline learner B, and realizable stream
(x1, y1), ..., (xT , yT), Algorithm 3 makes at most (MP(x1:T)+1)MB(T,H) mistakes in expectation.

Proof. Let A denote Algorithm 3, (x1, y1), ..., (xT , yT) denote the realizable stream to be observed
by A, and h⋆ ∈ H to be the labeling hypothesis. Let c be the random variable denoting the number
of mistakes made by Predictor P on the stream and t1, ..., tc be the random variables denoting the
time points where P makes these errors (e.g . x̂ti−1

ti ̸= xti). Note that ti ≥ 2 for all i ∈ [c]. We will
show pointwise for every value of c and t1, ..., tc that A makes at most (c+ 1)MB(T,H) mistakes
in expectation over the randomness of B. Taking an outer expectation with respect to the randomness
of P and using the fact that E [c] = MP(x1:T), completes the proof.

First, consider the case where c = 0 (i.e. P makes no mistakes). Then, since P is lazy, we have that
x̂t
1:T = x1:T for every t ∈ [T]. Thus line 5 fires exactly once on round t = 1, A initializes an offline

learner B1 with x1:T , and A uses B1 to make its prediction on all rounds. Thus, A makes at most
MB(T,H) mistakes in expectation.

Now, let c > 0 and t1, ..., tc be the time points where P errs. Partition the sequence 1, ..., T into the
disjoint intervals (1, ..., t1 − 1), (t1, ..., t2 − 1), ..., (tc, ..., T). Define t0 := 1 and tc+1 := T . Fix an
i ∈ {0, ..., c}. Observe that for every j ∈ {ti, ..., ti+1 − 1}, we have that x̂j

1:ti+1−1 = xti+1−1. This
comes from the fact that P does not error on timepoints ti +1, ..., ti+1− 1 and is both consistent and
lazy (see Assumptions 1 and 2). Thus, line 5 fires on round ti, A initializes an offline learner Bi with
the sequence x̂ti

ti:T
= xti:ti+1−1 ◦ x̂ti

ti+1:T
, and A uses Bi it to make predictions for all remaining

timepoints ti, ..., ti+1 − 1. Note that line 5 does not fire on timepoints ti + 1, ..., ti+1 − 1.

8

Consider the hypothetical labeled stream of examples

(x̂ti
ti , h

⋆(x̂ti
ti)), ..., (x̂

ti
T , h

⋆(x̂ti
T)) = (xti , yti), ..., (xti+1−1, yti+1−1), (x̂

ti
ti+1

, h⋆(x̂ti
ti+1

)), ..., (x̂ti
T , h

⋆(x̂ti
T)).

By definition, Bi, after initialized with x̂ti
ti:T

, makes at most MB(T − ti + 1,H) mistakes in
expectation when simulated on the stream (x̂ti

ti , h
⋆(x̂ti

ti)), ..., (x̂
ti
T , h

⋆(x̂ti
T)). Thus, Bi makes at

most MB(T,H) mistakes in expectation on the prefix (x̂ti
ti , h

⋆(x̂ti
ti)), ..., (x̂

ti
ti+1−1, h

⋆(x̂ti
ti+1−1)) =

(xti , yti), ..., (xti+1−1, yti+1−1). Since on the interval timepoint ti, A instantiates Bi with
the sequence x̂ti

ti:T
and proceeds to simulate Bi on the sequence of labeled examples

(xti , yti), ..., (xti+1−1, yti+1−1),Amakes at most MB(T,H) mistakes in expectation on the sequence
(xti , yti), ..., (xti+1−1, yti+1−1). Since the interval i was chosen arbitrarily, the above analysis is true
for every i ∈ {0, ..., c} and therefore A makes at most (c + 1)MB(T,H) mistakes in expectation
over the entire stream.

3.2 Proof sketch of upper bound (iii) in Theorem 3.1

When MB(T,H) is large (i.e. Ω(
√
T)), upper bound (ii) is sub-optimal. Indeed, if t1, ..., tc denotes

the timepoints where P makes mistakes on the stream x1:T , then Algorithm 3 initializes offline
learners with sequences of length T − ti+1. The resulting mistake-bound of these offline learners are
then in the order of T−ti+1, which can be large if t1, ..., tc are evenly spaced across the time horizon.
To overcome this, we construct a family E of online learners, each of which explicitly controls the
length of the sequences offline learners can be initialized with. Finally, we run DWMA using E as its
set of experts. Our family of online learners is parameterized by integers c ∈ {0, ..., T − 1}. Given
an input c ∈ {0, ..., T − 1}, the online learner parameterized by c partitions the stream into c + 1
roughly equally sized parts of size ⌈ T

c+1⌉ and runs a fresh copy of Algorithm 3 on each partition. In
this way, the online learner parameterized by c ensures that offline learners are initialized with time
horizons at most ⌈ T

c+1⌉. Algorithm 4 formalizes this online learner and Lemma 3.6, whose proof is
in Appendix B, bounds its expected number of mistakes.

Algorithm 4 Expert(c)
Input: Copy of Algorithm 3 denoted K, Offline Learner B, Time horizon T

1 Initialize: t̃i = i⌈ T
c+1⌉ for i ∈ {1, ..., c}, t̃0 = 0, and t̃c+1 = T.

2 for t = 1, ..., T do
3 Let i ∈ {0, ..., c} such that t ∈ {t̃i + 1, ..., t̃i+1}.
4 if t = t̃i + 1 then
5 Let Ki be a new copy of K initialized with time horizon t̃i+1 − t̃i and a new copy of B.
6 Receive xt from Nature.
7 Receive predictions x̂t

1:T from Predictor P such that x̂t
1:t = x1:t.

8 Forward xt and x̂t
t̃i+1:t̃i+1

to Ki via Lines 2 and 3 of Algorithm 3 respectively.
9 Receive ŷt from Ki via line 6 in Algorithm 3 and predict ŷt.

10 Receive true label yt and forward it to Ki via line 7 in Algorithm 3.
11 end

Lemma 3.6 (Expert guarantee). For any H ⊆ YX , Predictor P , and no-regret offline learner B,
Algorithm 4, given as input c ∈ {0, ..., T − 1}, makes at most

(MP(x1:T) + c+ 1)MB

(T

c+ 1
+ 1,H

)
mistakes in expectation on any realizable stream (x1, y1), ..., (xT , yT).

Note that when c = 0 and MB(T,H) = MB(T,H), this bound reduces to the one in Lemma 3.5 up
to a constant factor. On the other hand, using c = ⌈MP(x1:T)⌉ gives the upper bound

2(MP(x1:T) + 1)MB

(T

MP(x1:T) + 1
+ 1,H

)
.

Since E contains an Expert parameterized for every c ∈ {0, ..., T − 1}, there always exists an expert
E⌈MP(x1:T)⌉ ∈ E initialized with input c = ⌈MP(x1:T)⌉. Running DWMA using these set of experts

9

Algorithm 5 Online learner
Input: Hypothesis classH, Offline learner B, Time horizon T

1 For every b ∈ {0, ..., T − 1} let Eb denote Algorithm 4 parameterized by input b.
2 Run the DWMA using {Eb}b∈{0,...,T−1} over the stream (x1, y1), ..., (xT , yT).

E on the data stream (x1, y1), ..., (xT , yT) ensures that our learner does not perform too much worse
than E⌈MP(x1:T)⌉. Algorithm 5 formalizes this idea and Lemma 3.7 is proved in Appendix B.

Lemma 3.7. For everyH ⊆ YX , Predictor P , and no-regret offline learner B, Algorithm 5 makes at
most

6

(
(MP(x1:T) + 1)MB

(T

MP(x1:T) + 1
+ 1,H

)
+ log2 T

)
.

mistakes in expectation on any realizable stream (x1, y1), ..., (xT , yT).

3.3 Lower bounds

In light of Theorem 3.1, it is natural ask whether the upper bounds derived in Section 3 are tight. A
notable feature in upper bounds (ii) and (iii) is the product of the two mistake bounds MP(x1:T) and
MB(T,H). Can this product can be replaced by a sum? Unfortunately, Theorem 3.8 shows that the
upper bound in Theorem 3.1 can be tight.
Theorem 3.8. Let X = [0, 1] ∪ {⋆},Y = {0, 1}, and H = {x 7→ 1{x ≤ a}1{x ̸= ⋆}}. Let
T, n ∈ N be such that n + 1 divides T and T

n+1 + 1 = 2k for some k ∈ N. Then, there exists a
Predictor P such that for every online learner A that uses P according to Protocol 2, there exists a
realizable stream (x1, y1), ..., (xT , yT) such that MP(x1:T) = n but

E

[
T∑

t=1

1{A(xt) ̸= yt}

]
≥ (n+ 1)

2
log2

(T

n+ 1

)
.

Theorem 3.8 shows that the upper bound in Theorem 3.1 is tight up to an additive factor in log2 T
because Lemma 2.1 gives that infB MB(T,H) = O(VC(H) log2 T) and VC(H) = 1. The proof
of Theorem 3.8 is technical and provided in Appendix E. Our proof involves four steps. First, we
construct a class of streams Zn ⊆ X ⋆. Then, using Zn, we construct a deterministic, lazy, consistent
Predictor P such that P makes mistakes exactly on timepoints { T

n+1 + 1, ..., nT
n+1 + 1} for every

stream x1:T ∈ Zn. Next, whenever x1:T ∈ Zn, we establish an equivalence between the game defined
by Protocol 2 when given access to Predictor P and Online Classification with Peeks, a different
game where there is no Predictor, but the learner observes the next T

n+1 examples at timepoints
t ∈ {1, T

n+1 + 1, ..., nT
n+1 + 1}. Finally, for Online Classification with Peeks, we give a strategy for

Nature such that it can force any online learner to make
(n+1) log2(

T
n+1)

2 mistakes in expectation while
ensuring that its selected stream satisfies x1:T ∈ Zn and infh∈H

∑T
t=1 1{h(xt) ̸= yt} = 0. A key

component of the fourth step is the stream constructed by [Hanneke et al., 2024, Claim 3.4] to show
that the minimax mistakes for classes with infinite Ldim is at least log2 T in the offline setting.

Remark. Although Theorem 3.8 is stated using the class of one dimensional thresholds, it can be
adapted to hold for any VC class with infinite Ldim as these classes embed thresholds [Alon et al.,
2019, Theorem 3].

4 Discussion

In this paper, we initiated the study of online classification when the learner has access to machine-
learned predictions about future examples. There are many interesting directions for future research
and we list two below. Firstly, we only considered the classification setting, and it would be interested
to extend our results to online scalar-valued regression. Secondly, we measure the performance of a
Predictor through its mistake-bounds. When X is continuous, this might be an unrealistic measure of
performance. Thus, it would be interesting to see whether our results can be generalized to the case
where X is continuous and the guarantee of Predictors is defined in terms of ℓp losses.

10

Acknowledgments and Disclosure of Funding

VR acknowledges the support from the NSF Graduate Research Fellowship Program.

References
Matteo Almanza, Flavio Chierichetti, Silvio Lattanzi, Alessandro Panconesi, and Giuseppe Re.

Online facility location with multiple advice. Advances in Neural Information Processing Systems,
34:4661–4673, 2021.

Noga Alon, Roi Livni, Maryanthe Malliaris, and Shay Moran. Private pac learning implies finite
littlestone dimension. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, pages 852–860, 2019.

Antonios Antoniadis, Christian Coester, Marek Eliáš, Adam Polak, and Bertrand Simon. Online
metric algorithms with untrusted predictions. ACM Transactions on Algorithms, 19(2):1–34, 2023.

Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-
algorithm and applications. Theory of computing, 8(1):121–164, 2012.

Etienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for learning aug-
mented algorithms. Advances in Neural Information Processing Systems, 33:20083–20094, 2020.

Shai Ben-David, Eyal Kushilevitz, and Yishay Mansour. Online learning versus offline learning.
Machine Learning, 29:45–63, 1997.

Shai Ben-David, Dávid Pál, and Shai Shalev-Shwartz. Agnostic online learning. In COLT, volume 3,
page 1, 2009.

Adam Block, Yuval Dagan, Noah Golowich, and Alexander Rakhlin. Smoothed online learning is as
easy as statistical learning. In Conference on Learning Theory, pages 1716–1786. PMLR, 2022.

T. Ceccherini-Silberstein, M. Salvatori, and E. Sava-Huss. Groups, Graphs and Random Walks.
London Mathematical Society Lecture Note Series. Cambridge University Press, 2017. doi:
10.1017/9781316576571.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

Justin Chen, Sandeep Silwal, Ali Vakilian, and Fred Zhang. Faster fundamental graph algorithms via
learned predictions. In International Conference on Machine Learning, pages 3583–3602. PMLR,
2022.

Amit Daniely, Sivan Sabato, Shai Ben-David, and Shai Shalev-Shwartz. Multiclass learnability and
the erm principle. In Sham M. Kakade and Ulrike von Luxburg, editors, Proceedings of the 24th
Annual Conference on Learning Theory, volume 19 of Proceedings of Machine Learning Research,
pages 207–232, Budapest, Hungary, 09–11 Jun 2011. PMLR.

Marek Elias, Haim Kaplan, Yishay Mansour, and Shay Moran. Learning-augmented algorithms with
explicit predictors. arXiv preprint arXiv:2403.07413, 2024.

Jon C Ergun, Zhili Feng, Sandeep Silwal, David P Woodruff, and Samson Zhou. Learning-augmented
k-means clustering. arXiv preprint arXiv:2110.14094, 2021.

Sreenivas Gollapudi and Debmalya Panigrahi. Online algorithms for rent-or-buy with expert advice.
In International Conference on Machine Learning, pages 2319–2327. PMLR, 2019.

Nika Haghtalab. Foundation of Machine Learning, by the People, for the People. PhD thesis, Carnegie
Mellon University, 2018.

Nika Haghtalab, Tim Roughgarden, and Abhishek Shetty. Smoothed analysis of online and differ-
entially private learning. Advances in Neural Information Processing Systems, 33:9203–9215,
2020.

11

Steve Hanneke, Shay Moran, Vinod Raman, Unique Subedi, and Ambuj Tewari. Multiclass online
learning and uniform convergence. Proceedings of the 36th Annual Conference on Learning
Theory (COLT), 2023.

Steve Hanneke, Shay Moran, and Jonathan Shafer. A trichotomy for transductive online learning.
Advances in Neural Information Processing Systems, 36, 2024.

Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency estimation
algorithms. In International Conference on Learning Representations, 2019.

Shaofeng H-C Jiang, Erzhi Liu, You Lyu, Zhihao Gavin Tang, and Yubo Zhang. Online facility
location with predictions. arXiv preprint arXiv:2110.08840, 2021.

Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned index
structures. In Proceedings of the 2018 international conference on management of data, pages
489–504, 2018.

Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online scheduling
via learned weights. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1859–1877. SIAM, 2020.

Honghao Lin, Tian Luo, and David Woodruff. Learning augmented binary search trees. In Interna-
tional Conference on Machine Learning, pages 13431–13440. PMLR, 2022.

Nicholas Littlestone. Mistake bounds and logarithmic linear-threshold learning algorithms. Univer-
sity of California, Santa Cruz, 1989.

Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine Learning, 2:285–318, 1987.

Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.
Journal of the ACM (JACM), 68(4):1–25, 2021.

Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. Communications of
the ACM, 65(7):33–35, 2022.

Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml predictions.
Advances in Neural Information Processing Systems, 31, 2018.

Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Online learning: Stochastic, constrained,
and smoothed adversaries. Advances in neural information processing systems, 24, 2011.

Vinod Raman, Unique Subedi, and Ambuj Tewari. The complexity of sequential prediction in
dynamical systems. arXiv preprint arXiv:2402.06614, 2024.

Tim Roughgarden. Beyond the worst-case analysis of algorithms. Cambridge University Press, 2021.

Ziv Scully, Isaac Grosof, and Michael Mitzenmacher. Uniform bounds for scheduling with job size
estimates. arXiv preprint arXiv:2110.00633, 2021.

Daniel A Spielman and Shang-Hua Teng. Smoothed analysis: an attempt to explain the behavior of
algorithms in practice. Communications of the ACM, 52(10):76–84, 2009.

Shufan Wang, Jian Li, and Shiqiang Wang. Online algorithms for multi-shop ski rental with machine
learned advice. Advances in Neural Information Processing Systems, 33:8150–8160, 2020.

Alexander Wei and Fred Zhang. Optimal robustness-consistency trade-offs for learning-augmented
online algorithms. Advances in Neural Information Processing Systems, 33:8042–8053, 2020.

Changlong Wu, Ananth Grama, and Wojciech Szpankowski. Online learning in dynamically changing
environments. In The Thirty Sixth Annual Conference on Learning Theory, pages 325–358. PMLR,
2023.

12

A Combinatorial dimensions

In this section, we review existing combinatorial dimensions in statistical learning theory. We start
with the VC and Natarajan dimensions which characterize PAC learnability when |Y| = 2 and
|Y| <∞ respectively.
Definition 3 (VC dimension). A set {x1, ..., xn} ∈ X is shattered by H, if ∀y1, ..., yn ∈ {0, 1},
∃h ∈ H, such that ∀i ∈ [n], h(xi) = yi. The VC dimension ofH, denoted VC(H), is defined as the
largest natural number n ∈ N such that there exists a set {x1, ..., xn} ∈ X that is shattered byH.
Definition 4 (Natarajan Dimension). A set S = {x1, . . . , xd} is shattered by a multiclass function
class H ⊆ YX if there exist two witness functions f, g : S → Y such that f(xi) ̸= g(xi) for all
i ∈ [d], and for every σ ∈ {0, 1}d, there exists a function hσ ∈ H such that for all i ∈ [d], we have

hσ(xi) =

{
f(xi) if σi = 1

g(xi) if σi = 0
.

The Natarajan dimension ofH, denoted N(H), is the size of the largest shattered set S ⊆ X . If the
size of the shattered set can be arbitrarily large, we say that N(H) =∞.

We note that N(H) = VC(H) whenever |Y| = 2. Next, we move to the online setting, where the
Littlestone dimension (Ldim) characterizes multiclass online learnability. To define the Ldim, we
first define a Littlestone tree and a notion of shattering.
Definition 5 (Littlestone tree). A Littlestone tree of depth d is a complete binary tree of depth d
where the internal nodes are labeled by examples of X and the left and right outgoing edges from
each internal node are labeled by 0 and 1 respectively.

Given a Littlestone tree T of depth d, a root-to-leaf path down T is a bitstring σ ∈ {0, 1}d indicating
whether to go left (σi = 0) or to go right (σi = 1) at each depth i ∈ [d]. A path σ ∈ {0, 1}d
down T gives a sequence of labeled examples {(xi, σi)}di=1, where xi is the example labeling the
internal node following the prefix (σ1, ..., σi−1) down the tree. A hypothesis hσ ∈ H shatters a path
σ ∈ {0, 1}d, if for every i ∈ [d], we have hσ(xi) = σi. In other words, hσ is consistent with the
labeled examples when following σ. A Littlestone tree T is shattered byH if for every root-to-leaf
path σ down T , there exists a hypothesis hσ ∈ H that shatters it. Using this notion of shattering, we
define the Littlestone dimension of a hypothesis class.
Definition 6 (Littlestone dimension). The Littlestone dimension ofH, denoted L(H), is the largest
d ∈ N such that there exists a Littlestone tree T of depth d shattered byH. If there exists shattered
Littlestone trees T of arbitrary depth, then we say that L(H) =∞.

Finally, the following notion of shattering is useful when proving the lower bound in Appendix E.
Definition 7 (Threshold shattering). A sequence (x1, ..., xk) ∈ X k is threshold-shattered by H ⊆
{0, 1}X if there exists (h1, ..., hk) ∈ Hk such that hi(xj) = 1{j ≤ i} for all i, j ∈ [k].

B Proof of Lemmas 3.6 and 3.7

Proof. (of Lemma 3.6) Let (x1, y1), ..., (xT , yT) be the realizable stream to be observed by the
Expert. For every i ∈ {0, ..., c}, let mi be the random variable denoting the number of mistakes
made by P in rounds {t̃i + 1, ..., t̃i+1}. Recall that t̃0 = 0 and t̃c+1 = T . Let M =

∑c
i=0 mi be the

random variable denoting the total number of mistakes made by P on the realizable stream. Finally,
let A denote Algorithm 4. Observe that,

E

[
T∑

t=1

1{A(xt) ̸= yt}

]
= E

 c∑
i=0

t̃i+1∑
t=t̃i+1

1{A(xt) ̸= yt}


= E

 c∑
i=0

t̃i+1∑
t=t̃i+1

1{Ki(xt) ̸= yt}


≤ E

[
c∑

i=0

(mi + 1)MB(t̃i+1 − t̃i,H)

]

13

where the first inequality follows from the guarantee of K and Lemma 2.2. Using Jensen’s inequality,
we get that

E

[
c∑

i=0

(mi + 1)MB(t̃i+1 − t̃i,H)

]
≤ E

[(
c∑

i=0

(mi + 1)

)
MB

(∑c
i=0(mi + 1)(t̃i+1 − t̃i)∑c

i=0(mi + 1)
,H

)]

= E

[(
M + c+ 1

)
MB

(∑c
i=0(mi + 1)(t̃i+1 − t̃i)

M + c+ 1
,H

)]

= E

[(
M + c+ 1

)
MB

(∑c
i=0 mi(t̃i+1 − t̃i) + T

M + c+ 1
,H

)]

= E

[(
M + c+ 1

)
MB

(
⌈ T
c+1⌉

∑c
i=0 mi(i+ 1− i) + T

M + c+ 1
,H

)]

= E

[(
M + c+ 1

)
MB

(
⌈ T
c+1⌉M + T

M + c+ 1
,H

)]
.

Using the fact that ⌈ T
c+1⌉ ≤

T
c+1 + 1, we have

E

 c∑
i=0

mi∑
j=0

MB(t̃i+1 − t̃i,H)

 ≤ E[(M + c+ 1
)
MB

(
MT
c+1 +M + T

M + c+ 1
,H

)]

≤ E

[(
M + c+ 1

)
MB

(
T

c+ 1
+ 1,H

)]

=
(
MP(x1:T) + c+ 1

)
MB

(
T

c+ 1
+ 1,H

)
,

which completes the proof.

Proof. (of Lemma 3.7) Let (x1, y1), ..., (xT , yT) be the realizable stream to be observed by the
learner. Let A denote the online learner in Algorithm 5. By the guarantees of the DWMA, we have

E

[
T∑

t=1

1{A(xt) ̸= yt}

]
≤ 3E

[
inf

b∈{0,...,T−1}

T∑
t=1

1{Eb(xt) ̸= yt}

]
+ 3 log2 T

≤ 3E

[
T∑

t=1

1{E⌈MP(x1:T)⌉(xt) ̸= yt}

]
+ 3 log2 T

≤ 3(MP(x1:T) + ⌈MP(x1:T)⌉+ 1)MB

(T

⌈MP(x1:T)⌉+ 1
+ 1,H

)
+3 log2 T

≤ 6(MP(x1:T) + 1)MB

(T

MP(x1:T) + 1
+ 1,H

)
+6 log2 T,

where the last inequality follows from Lemma 3.6 and the fact that MP(x1:T) ≤ ⌈MP(x1:T)⌉ ≤
MP(x1:T) + 1.

C Proof of Corollary 3.2 and 3.3

Using Theorem 3.1, we first show that for every H ⊆ YX , Predictor P , Z ⊆ X ⋆, and no-regret
offline learner B, we have that

inf
A

MA(T,H,Z) = O

(
L(H)∧ (MP(T,Z)+1)MB(T,H)∧

(
(MP(T,Z)+1)MB

(T

MP(T,Z) + 1
,H
)
+ log2 T

))
.

14

Proof. It suffices to show that Algorithms 3 and 5 have mistake bounds O((MP(T,Z) +

1)MB(T,H)) and O

(
(MP(T,Z) + 1)MB

(
T

MP(T,Z)+1 ,H
)
+ log2 T

)
respectively. To see that

Algorithm 3’s mistake bounds is O((MP(T,Z) + 1)MB(T,H)), note that MP(x1:T) ≤ MP(T,Z)

for every x1:T ∈ Z. To see that Algorithm 5’s expected mistake bound is O

(
(MP(T,Z) +

1)MB

(
T

MP(T,Z)+1 ,H
)
+ log2 T

)
, we follow the exact same proof strategy as in the proof of Lemma

3.7, but picking a different expert when upper bounding the expected number of mistakes. Namely,
following the same steps as in the proof of Lemma 3.7, we have that

E

[
T∑

t=1

1{A(xt) ̸= yt}

]
≤ 3E

[
inf

b∈{0,...,T−1}

T∑
t=1

1{Eb(xt) ̸= yt}

]
+ 3 log2 T

where A denotes Algorithm 5. Picking b = ⌈MP(T,Z)⌉, using Lemma 3.6, and the fact that
MP(x1:T) ≤ MP(T,Z) gives the desired upper bound on E

[∑T
t=1 1{A(xt) ̸= yt}

]
of

O

(
(MP(T,Z) + 1)MB

(T

MP(T,Z) + 1
,H
)
+ log2 T

)
, (1)

completing the proof.

Corollary 3.2 follows from the fact that the upper bound on infA MA(T,H,Z) is sublinear whenever
MP(T,Z) = o(T) and MB(T,H) = o(T). To get Corollary 3.3, recall that by Lemma 2.1, there
exists an offline learner B such that

MB(T,H) = O
(
VC(H) log2 T

)
.

Plugging this bound into upper bound (1) completes the proof.

D Proof of Theorem 3.1

Let A denote the DWMA using the Standard Optimal Algorithm (SOA), Algorithm 3 and Algorithm
5 as experts. Then, for any realizable stream (x1, y1), ..., (xT , yT), Lemma 3.4 gives that

E

[
T∑

t=1

1{A(xt) ̸= yt}

]
≤ 3E

[
min
i∈[3]

Mi + log2 3

]
≤ 3min

i∈[3]
E [Mi] + 5,

where we take M1,M2 and M3 to be the number of mistakes made by the SOA, Algorithm 3,
and Algorithm 5 respectively. Note that M2 and M3 are random variables since B and P may be
randomized algorithms. Finally, using Lemma 3.5, Lemma 3.7 and the fact that the SOA makes at
most L(H) mistakes on any realizable stream [Littlestone, 1987] completes the proof of Theorem
3.1.

E Proof of Theorem 3.8

Let X = R ∪ {⋆} and H = {x 7→ 1{x ≤ a}1{x ̸= ⋆}}. Let T, n ∈ N be chosen such that T is a
multiple of n+1 and T

n+1 +1 = 2k for some k ∈ N. Our proof of Theorem 3.8 will be in four steps,
as described below.

(1) We construct a class of streams Zn ⊆ X ⋆.
(2) Using Zn, we construct a deterministic, lazy, consistent Predictor P such that P makes

mistakes exactly on timepoints { T
n+1 + 1, ..., nT

n+1 + 1} for every stream x1:T ∈ Zn.

15

(3) When x1:T ∈ Zn, we establish an equivalence between the game defined by Protocol 2
when given access to Predictor P and Online Classification with Peeks, a different game
where there is no Predictor, but the learner observes the next T

n+1 examples at timepoints
t ∈ {1, T

n+1 + 1, ..., nT
n+1 + 1}.

(4) For Online Classification with Peeks, we give a strategy for Nature such that it can force

any online learner to make
(n+1) log2(

T
n+1)

2 mistakes in expectation while ensuring that
the stream of labeled examples it picks (x1, y1), ..., (xT , yT) satisfies the constraint that
x1:T ∈ Zn and infh∈H

∑T
t=1 1{h(xt) ̸= yt} = 0.

Composing steps 1-4 shows the existence of a Predictor P such that for any learner A playing
Protocol 2 using P , there exists a realizable stream whereAmakes at least (n+1)

2 log2(
T

n+1) mistakes
in expectation.

Step 1: Construction of Zn

Let S be the set of all strictly increasing sequences of real numbers in (0, 1) of size T
n+1 . Fix a

function f : R2 → S which, given a < b ∈ R, outputs an element of S that lies strictly in between a
and b. For example, given a < b ∈ R, the function f can output evenly spaced real numbers of size
T

n+1 . Let Dyd : S → X
T

n+1 be a function that reorders the input S ∈ S in Dyadic order. Namely, if
S = (x1, ..., xN) where N + 1 = 2k for some k ∈ N, then Dyd(S) is

xN
2
, xN

4
, x 3N

4
, xN

8
, x 3N

8
, x 5N

8
, x 7N

8
, ..., x (2k−1)N

2k

.

See the Proof of Claim 3.4 in Hanneke et al. [2024] for a more detailed description of a Dyadic order.
On the other hand, let Sort : X

T
n+1 → S be a function that reorders its input in increasing order. Let

J := {1, ..., T
n+1 + 1}≤n be the set of all sequences of indices of length at most n taking values

in {1, ..., T
n+1 + 1}. For the remainder of this section, we will use Si to denote the ith element in a

sequence S ∈ S . Moreover, for any two sequences S1, S2 ∈ S , we say S1 < S2 if S1
|S1| < S2

1 . That
is, S1 < S2, if S1 lies strictly to the left of S2.

Algorithm 6 Stream Generator (SG)
Input: S0 ∈ S, j1:m ∈ J

1 Initialize: a0 = 0, b0 = 1
2 for i = 1, ...,m do
3 if ji = 1 then
4 Si ← f(ai−1, S

i−1
1)

5 ai ← ai−1

6 bi ← Si−1
1

7 else if ji = T
n+1 + 1 then

8 Si ← f(Si−1
T

n+1

, bi−1)

9 ai ← Si−1
T

n+1

10 bi ← bi−1

11 else
12 Si ← f(Si−1

j−1, S
i−1
j)

13 ai ← Si−1
j−1

14 bi ← Si−1
j

15 end
16 end
17 Return: Dyd(S0) ◦ ... ◦Dyd(Sm)

We will construct a stream for every sequence j1:m ∈ J , m ≤ n, algorithmically as follows. Fix
S0 := f(0, 1) ∈ S and let SG denote Algorithm 6. Let

Zn =
{
SG(S0, j1:m) : j1:m ∈ J ,m ∈ {1, ..., n}

}
16

denote the stream class generated by applying SG to inputs S0 and j1:m for every j1:m ∈ J , m ≤ n.
We make four important observations about Zn, which we will use to construct a Predictor that can
reconstruct Si given S0 and the first example of the block Si−1.
Observation 1. For every sequence x1:T ∈ Z , we have that x1: T

n+1
= Dyd(S0).

The first observation follows from the fact that the same initial sequence S0 is used to generate every
stream in Zn.
Observation 2. For any pair j11:n, j

2
1:n ∈ J and m ≤ n, if j11:m = j21:m, then SG(S0, j11:m) =

SG(S0, j21:m).

The second observation follows from the fact that SG is deterministic.
Observation 3. For every x1:T ∈ Zn such that x1:T := SG(S0, j1:n) = Dyd(S0) ◦ ... ◦Dyd(Sn),
the index ji can be computed exactly using only Si−1 and Si

1 for every i ∈ [n].

To see the third observation, fix some x1:T ∈ Zn. Then, there exists a sequence S1, ..., Sn ∈ S such
that x1:T = Dyd(S0) ◦ ... ◦Dyd(Sn) as well as a sequence (a0, b0), ..., (an, bn). In addition, there
exists a j1:n ∈ J such that x1:T = SG(S0, j1;n). Fix i ∈ [n] and consider Si−1 and Si. By definition
of Algorithm 6, there exists an index q ∈ {1, ..., T

n+1 + 1} such that Si = f(Si−1
q−1, S

i−1
q) where we

take Si−1
0 = ai−1 and Si−1

T
n+1+1

= bi−1. We claim that the index q is unique. This follows from the

fact that the collection {f(Si−1
j , Si−1

j+1)}
T

n+1

j=0 is pairwise disjoint since ai−1 = Si−1
0 < Si−1

1 < ... <

Si−1
T

n+1

< Si−1
T

n+1+1
= bi−1. Finally, we claim that Si−1 and the element Si

1 identifies the index q. This

follows because f(ai−1, S
i−1
1) < f(Si−1

1 , Si−1
2) < ... < f(Si−1

T
n+1−1

, Si−1
T

n+1

) < f(Si−1
T

n+1

, bi−1) and

thus q is the smallest index p ∈ {1, ..., T
n+1} such that Si

1 < Si−1
p and T

n+1 + 1 if such a p does not
exist.
Observation 4. Fix a sequence j1:n ∈ J and let Dyd(S0) ◦ ... ◦ Dyd(Sn) = SG(S0, j1:n). For
every i, p ∈ [n] such that i < p, we have that:

(i) Sp < Si if ji = 1;

(ii) Si
ji−1 < Sp < Si

ji
if 2 ≤ ji ≤ T

n+1 ;

(iii) Si < Sp if ji = T
n+1 + 1.

The fourth observation follows from the fact that for every i ∈ [n] and index ji ∈ {1, ..., T
n+1 + 1},

the remaining sequence of sets Si+1, ..., Sn all lie in the interval (Si
ji−1, S

i
ji
) by design of Algorithm

6, where again we take Si−1
0 = ai−1 < Si−1

1 and Si−1
T

n+1+1
= bi−1 > Si−1

T
n+1

.

Step 2: Constructing a Predictor for Zn

We now show that Algorithm 7 is a lazy, consistent Predictor for Zn that only makes mistakes at
timepoints { T

n+1 + 1, ..., nT
n+1 + 1}.

Lemma E.1. For any sequence x1:T ∈ Zn, Algorithm 7 is a lazy, consistent Predictor for Zn that
only makes mistakes at timepoints { T

n+1 + 1, ..., nT
n+1 + 1}.

Proof. Let P denote Algorithm 7 and x1:T ∈ Zn. Then, there exists S1, ..., Sn ∈ S and a sequence
of indices j1:n ∈ J such that x1:T = Dyd(S0) ◦Dyd(S1) ◦ ... ◦Dyd(Sn) = SG(S0, j1:n).

We now prove that P makes mistakes only on timepoints { T
n+1 + 1, ..., nT

n+1 + 1} and no where else.
Our proof is by induction using the following inductive hypothesis. For every i ∈ {1, ..., n}, we have
that P:

(i) sets J1:i = j1:i on round iT
n+1 + 1;

(ii) makes mistakes on rounds { T
n+1 + 1, 2T

n+1 + 1, ..., iT
n+1 + 1} and no where in between.

17

Algorithm 7 Predictor for Zn

Input: Zn

1 Initialize: J = ()
2 for t = 1, .., T do
3 Receive xt

4 if t = 1 then
5 Set x̂t

1:T = Dyd(S0) ◦ x̂ T
n+1+1:T where x̂ T

n+1+1:T = (⋆, ..., ⋆).

6 else if t = iT
n+1 + 1 for some i ∈ {1, ..., n} then

7 Let S = Sort(xt− T
n+1 :t−1) be the last T

n+1 examples sorted in increasing order.

8 Find the smallest j ∈ {1, ..., T
n+1} such that xt < Sj . If no such j exists, set j = T

n+1 + 1.
9 Update J ← J ◦ j.

10 Set x̂t
1:T = SG(S0, J) ◦ x̂t+ T

n+1 :T
where x̂t+ T

n+1 :T
= (⋆, ..., ⋆).

11 else
12 Set x̂t

1:T ← x̂t−1
1:T .

13 end
14 Predict x̂t

1:T .
15 end

For the base case, let i = 1. P does not make any mistakes in {1, 2, ..., T
n+1} since it knows S0 using

Zn, computes x1: T
n+1

= Dyd(S0) in line 5, and does not change its prediction until round iT
n+1 + 1

based on line 6. At time point t1 = T
n+1 + 1, P makes a mistake since x̂t1−1

t1 = ⋆ ̸= xt1 . Moreover,
using Observation 3, the index j ∈ {1, ..., T

n+1} computed in round t1 on line 8 matches j1. Thus,
we have that J1 = j1. This completes the base case.

Now for the induction step, let i ∈ {2, ..., n}. Suppose that the induction step is true for i− 1. This
means that P:

(i) sets J1:i−1 = j1:i−1 on round (i−1)T
n+1 + 1;

(ii) makes mistakes on rounds { T
n+1 + 1, 2T

n+1 + 1, ..., (i−1)T
n+1 + 1} and no where in between.

We need to show that P sets Ji = ji on round iT
n+1 + 1, P makes no mistakes between (i−1)T

n+1 + 2

and iT
n+1 , but makes a mistake at iT

n+1 +1. At timepoint ti−1 = (i−1)T
n+1 +1, P computes Ji−1 = ji−1

(by assumption) and thus sets x̂
ti−1

1:T = SG(S0, J1:i−1) = SG(S0, (j1, ..., ji−1)) = Dyd(S0) ◦
... ◦ Dyd(Si−1) using Observation 2. Therefore, P predicts on round ti−1 the sequence x̂

ti−1

1:T =

x1: iT
n+1
◦ (⋆, ..., ⋆), implying that P makes no mistakes for rounds (i−1)T

n+1 + 2, ..., iT
n+1 since it does

not change its prediction until round iT
n+1 + 1 by line 12. However, since x̂ti−1

ti = ⋆, P makes a
mistake on round ti = iT

n+1 + 1. Finally, by Observation 3, the example xti and the previously
observed sequence xti−1:ti−1 gives away ji, thus P sets Ji = ji on line 8 in round t = iT

n+1 +1. This
completes the induction step and the proof of the claim that P only makes mistakes on timepoints
{ T
n+1 +1, ..., nT

n+1 +1}. To see that P is lazy, observe that by line 12, P does not update its prediction
on rounds in between those in { T

n+1 + 1, ..., nT
n+1 + 1}. To see that P is consistent, note that P uses

prefixes of j1, ..., jn, S0, and SG to compute its predictions in line 10. Thus, consistency follows
from Observation 2.

Step 3: Equivalence to Online Classification with Peeks

For any stream x1:T ∈ Zn, having access to the Predictor specified by Algorithm 7 implies that at
every t ∈ {1, T

n+1 + 1, ..., nT
n+1 + 1}, the learner observes predictions x̂t

1:T where x̂t
1:t−1 = x1:t−1,

x̂t
t:t+ T

n+1

= xt:t+ T
n+1

, and x̂t
t+ T

n+1+1:T
= (⋆, ..., ⋆). Accordingly, at the timepoints t ∈ {1, T

n+1 +

1, ..., nT
n+1 + 1}, the learner observes the next T

n+1 − 1 examples xt:t+ T
n+1

in the stream, but learns

18

nothing about the future examples xt+ T
n+1+1:T . In addition, for timepoints in between those in

{1, T
n+1 +1, ..., nT

n+1 +1}, the learner does not observe any new information from P since by line 12
in Algorithm 7, x̂i

1:T = x̂i+r
1:T for every i ∈ {1, T

n+1 + 1, ..., nT
n+1 + 1} and r ∈ {1, ..., T

n+1 − 1}. As
a result, whenever x1:T ∈ Zn, Protocol 2 with the Predictor specified by Algorithm 7 is equivalent
to the setting we call Online Classification with Peeks where there is no Predictor, but the learner
observes the next T

n+1 − 1 examples exactly at timepoints t ∈ {1, T
n+1 + 1, ..., nT

n+1 + 1}. Indeed, by
having knowledge of the next T

n+1 − 1 examples exactly at timepoints t ∈ {1, T
n+1 +1, ..., nT

n+1 +1},
a learner for Online Classification with Peeks can simulate a Predictor that acts like Algorithm 7.
Likewise, a learner for Online Classification with Predictions can use Algorithm 7 to simulate an
adversary that reveals the next T

n+1 −1 examples exactly at timepoints t ∈ {1, T
n+1 +1, ..., nT

n+1 +1}.
Accordingly, we consider Online Classification with Peeks for the rest of the proof and show how
Nature can force the lower bound in Theorem 3.8 under this new setting.

Step 4: Nature’s Strategy for Online Classification with Peeks

Let A be any online learner and consider the game where the learner A observes the next T
n+1 − 1

examples at timepoints {1, T
n+1 + 1, ..., nT

n+1 + 1}. We construct a hard stream for A in this setting.
We first describe a minimax optimal offline strategy for Nature when it is forced to play a sequence of
examples S ∈ S sorted in Dyadic order.

Algorithm 8 Nature’s Minimax Offline Strategy

Input: S̃ = Dyd(S) for some S ∈ S, Version space V ⊆ {0, 1}X
Initialize: V1 = V
Reveal S̃ to the learner A.
for t = 1, ..., T

n+1 do
Observe the probability p̂t of A predicting label 1.
if p̂t ≥ 1/2 then

If there exists h ∈ Vt such that h(xt) = 0, reveal true label yt = 0. Else, reveal yt = 1.
else

If there exists h ∈ Vt such that h(xt) = 1, reveal true label yt = 1. Else, reveal yt = 0.
Update Vt+1 = {h ∈ Vt : h(xt) = yt}.

end
Return: True labels y1, ...y T

n+1
, Version space V T

n+1+1

Lemma E.2. For any learner A, S̃ = Dyd(S), and Version space V ⊆ {0, 1}X , Algorithm 8 forces
A to make at least 1

2 log2(
T

n+1) mistakes in expectation if S is threshold-shattered (Definition 7) by
V .

Proof. The lemma follows directly from Theorem 3.4 in Hanneke et al. [2024].

For the definition of threshold-shattering, see Appendix A. Note that for every input S̃ = Dyd(S) and
V ⊆ {0, 1}X to Algorithm 8, its output version space V|S̃|+1 is non-empty and consistent with the
sequence (S̃1, y1), ..., (S̃ T

n+1
, y T

n+1
) as long as |V | > 0. This property will be crucial when proving

Lemma E.4. We are now ready to describe Nature’s strategy for Online Classification with Peeks.
The pseudocode is provided in Algorithm 9.

We establish a series of important lemmas.
Lemma E.3. For every learner A, if (x1, y1), ..., (xT , yT) is the stream the output of Algorithm 9
when playing against A, then x1:T ∈ Zn.

Proof. Fix a learnerA and let (x1, y1), ..., (xT , yT) denote the output of Algorithm 9 playing against
A. Let j1:n denote the sequences of indices output by Algorithm 9. Then, since SG is deterministic,
by line 6-7 in Algorithm 9, we have that x1:T = SG(S0, (j1, ..., jn)) ∈ Zn.

Lemma E.4. For every learner A, if (x1, y1), ..., (xT , yT) is the stream the output of Algorithm 9
when playing against A, then (x1, y1), ..., (xT , yT) is realizable byH.

19

Algorithm 9 Nature’s Strategy for Online Classification with Peeks
Input: Learner A, Hypothesis classH

1 Initialize: V1 = H
2 for i = 1, .., n+ 1 do
3 if i = 1 then
4 Set x1: T

n+1
= Dyd(S0) and reveal it to the learner A.

5 else
6 Compute S = SG(S0, (j1, ..., ji−1)).
7 Let x (i−1)T

n+1 +1: iT
n+1

be the last T
n+1 examples in S and reveal it to the learner A.

8 Play against A according to Algorithm 8 using x (i−1)T
n+1 +1: iT

n+1
and version space Vi.

9 Let y (i−1)T
n+1 +1

, ..., y iT
n+1

be the returned labels and Vi+1 ⊆ Vi be the returned version space.

10 Let ỹ (i−1)T
n+1 +1

, ..., ỹ iT
n+1

be the sequence of true labels after sorting

(x (i−1)T
n+1 +1

, y (i−1)T
n+1 +1

), ..., (x iT
n+1

, y iT
n+1

)

11 in increasing order with respect to the examples.
12 if ỹ iT

n+1
= 1 then

13 Set ji = T
n+1 + 1.

14 else
15 Set ji to be the smallest p ∈ {1, ..., T

n+1} such that ỹ (i−1)T
n+1 +p

= 0.

16 end
17 Return: Stream (x1, y1), ..., (xT , yT), indices j1:n, and version spaces V1, ..., Vn+2.

Proof. Fix a learner A and let (x1, y1), ..., (xT , yT) be the output of Algorithm 9 when playing
against A. Let V2, ..., Vn+2 be the sequence of version spaces output by Algorithm 9. It suffices
to show that Vn+2 is not empty and is consistent with (x1, y1), ..., (xT , yT). Our proof will be
by induction using the following hypothesis: Vi+1 is non-empty and consistent with the sequence
(x1, y1), ..., (x iT

n+1
, y iT

n+1
). For the base case, let i = 1. Then, by Algorithm 8, line 8 in Algo-

rithm 9, and the fact that |V1| = |H| > 0, we have that |V2| > 0 and V2 is consistent with
(x1, y1), ..., (x T

n+1
, y T

n+1
). Now consider some i ≥ 2 and suppose the induction hypothesis is true

for i − 1, Then, we know that |Vi| > 0 and Vi is consistent with (x1, y1), ..., (x (i−1)T
n+1

, y (i−1)T
n+1

).

Again, by design of Algorithm 8 and line 9 in Algorithm 9, it follows that |Vi+1| > 0 and Vi+1

is consistent with (x (i−1)T
n+1 +1

, y (i−1)T
n+1 +1

), ..., (x iT
n+1

, y iT
n+1

). Since Vi+1 ⊆ Vi, and Vi is consistent

with (x1, y1), ..., (x (i−1)T
n+1

, y (i−1)T
n+1

), we get that Vi+1 is consistent with (x1, y1), ..., (x iT
n+1

, y iT
n+1

),
completing the induction step.

Lemma E.5. For every learner A, if (x1, y1), ..., (xT , yT) and V1, ..., Vn+2 are stream and version
spaces output by Algorithm 9 when playing against A, then for every i ∈ {1, ..., n+ 1}, the version
space Vi threshold-shatters x (i−1)T

n+1 +1: iT
n+1

.

Proof. Fix a learnerA and let (x1, y1), ..., (xT , yT) denote the output of Algorithm 9 playing against
A. Let j1:n and V1, ..., Vn+2 denote the sequences of indices and version spaces output by Algorithm
9 respectively. Note that x1:T = SG(S0, j1:n). Moreover, for every i ∈ {2, ..., n}, we have that
x1: iT

n+1
= SG(S0, (j1, ..., ji−1)) by lines 6-7.

Fix an i ∈ {1, ..., n + 1}. It suffices to show that the hypotheses parameterized by x (i−1)T
n+1 +1: iT

n+1

belong in Vi. Our proof will be by induction. For the base case, since V1 = H, it trivially follows
that the hypothesis parameterized by x (i−1)T

n+1 +1: iT
n+1

belong to V1. Now, suppose that x (i−1)T
n+1 +1: iT

n+1

belong to Vm for some m < i. We show that Vm+1 also contains the hypothesis parameterized by
x (i−1)T

n+1 +1: iT
n+1

. Recall that Vm+1 ⊆ Vm is the subset of Vm that is consistent with the labeled data

(x (m−1)T
n+1 +1

, y (m−1)T
n+1 +1

), ..., (x mT
n+1

, y mT
n+1

)

20

and is the result of running Algorithm 8 with input version space Vm and sequence x (m−1)T
n+1 +1: mT

n+1
.

It suffices to show that the hypotheses parameterized by x (i−1)T
n+1 +1: iT

n+1
are also consistent with

(x (m−1)T
n+1 +1

, y (m−1)T
n+1 +1

), ..., (x mT
n+1

, y mT
n+1

).

To show this, recall that jm is the index computed in Lines 11-14 of Algorithm 9 on round m. Let

(x̃ (m−1)T
n+1 +1

, ỹ (m−1)T
n+1 +1

), ..., (x̃ mT
n+1

, ỹ mT
n+1

).

be the sample sorted in increasing order by examples. There are three cases to consider. Suppose jm =
1, then ỹ (m−1)T

n+1 +1
= 0, and it must be the case that ỹ (m−1)T

n+1 +p
= 0 for all p ∈ {2, ..., T

n+1}. Since

x1: mT
n+1

= SG(S0, (j1, ..., jm−1)), by definition of Algorithm 6, we have that the last T
n+1 entries of

SG(S0, (j1, ..., jm)) all lie strictly to the left of x̃ (m−1)T
n+1 +1

. Moreover, by Observation 4, this is true of

the last T
n+1 entries of SG(S0, (j1, ..., jm, qm+1, ..., qi−1) for any qm+1, ..., qi−1 ∈ {1,, T

n+1+1}.
Therefore, we must have that x (i−1)T

n+1 +1: iT
n+1

, which are the last T
n+1 entries of SG(S0, (j1, ..., ji−1)),

lies strictly to the left of x̃ (m−1)T
n+1 +1

, implying that their associated hypotheses output 0 on all of

(x (m−1)T
n+1 +1

, y (m−1)T
n+1 +1

), ..., (x mT
n+1

, y mT
n+1

) as needed. By symmetry, when jm = T
n+1 + 1, we have

that x (i−1)T
n+1 +1: iT

n+1
lies strictly to the right of x̃ mT

n+1
, implying that their associated hypotheses output

1 on all of (x (m−1)T
n+1 +1

, y (m−1)T
n+1 +1

), ..., (x mT
n+1

, y mT
n+1

) as needed. Now, consider the case where

jm ∈ {2, ..., T
n+1}. Then, by Algorithm 6 and Observation 4, for any qm+1, ..., qi ∈ {1,, T

n+1+1},
the last T

n+1 entries of SG(S0, (j1, ..., jm, qm+1, ..., qi−1) lie strictly in between x̃ (m−1)T
n+1 +jm−1

and x̃ (m−1)T
n+1 +jm

. Thus, the hypotheses parameterized by x (i−1)T
n+1 +1: iT

n+1
output 1 on examples

x̃ (m−1)T
n+1 +1:

(m−1)T
n+1 +jm−1

and 0 on examples x̃ (m−1)T
n+1 +jm: mT

n+1
. Finally, note that by definition of

jm, it must be the case that ỹ (m−1)T
n+1 +1:

(m−1)T
n+1 +jm−1

= (1, ..., 1) and ỹ (m−1)T
n+1 +jm: mT

n+1
= (0, ..., 0).

Thus, once again the hypotheses parameterized by x (i−1)T
n+1 +1: iT

n+1
are consistent with the sample

(x (m−1)T
n+1 +1

, y (m−1)T
n+1 +1

), ..., (x mT
n+1

, y mT
n+1

).

This shows that these hypotheses are contained in Vm+1, completing the induction step.

Step 5: Completing the proof of Theorem 3.8

We are now ready to complete the proof of Theorem 3.8, which follows from composing E.1, E.2, E.3,
E.4, and E.5. Namely, Lemma E.1 and the discussion in Section 15 show that there exists a Predictor
P such that for any learnerA playing according to Protocol 2, Online Classification with Predictions is
equivalent to Online Classification with Peeks whenever the stream (x1, y1), ..., (xT , yT) selected by
the adversary satisfies the constraint that x1:T ∈ Zn. Lemmas E.3 and E.4 show that for any learnerA,
Nature playing according to Algorithm 9 guarantees that the resulting sequence (x1, y1), ..., (xT , yT)
satisfies the constraint that x1:T ∈ Zn and realizability byH. Thus, for the Predictor P specified by
Algorithm 7 and Nature playing according to Algorithm 9, Online Classification with Predictions
is equivalent to Online Classification with Peeks. Finally, for Online Classification with Peeks,
combining Lemmas E.2 and E.5 shows that for any learner A, Nature, by playing according to

Algorithm 9, guarantees that A makes at least
log2(

T
n+1)

2 mistakes in expectation every T
n+1 rounds.

Thus, Nature forces A to make at least (n+1)
2 log2(

T
n+1) mistakes in expectation by the end of the

game, completing the proof.

F Adaptive Rates in the Agnostic Setting

In this section, we consider the harder agnostic setting and prove analogous results as in Section 3.
Our main quantitative result is the agnostic analog of Theorem 3.1.

21

Theorem F.1 (Agnostic upper bound). For everyH ⊆ YX , Predictor P , and no-regret offline learner
B, there exists an online learner A such that for every stream (x1, y1), ..., (xT , yT), A’s expected
regret is at most(√

L(H)T log2(eT)︸ ︷︷ ︸
(i)

∧
(
2(MP(x1:T) + 1)RB

(T

MP(x1:T) + 1
+ 1,H

)
+
√
T log2 T︸ ︷︷ ︸

(ii)

)
+
√
T .

With respect to learnability, Corollary F.2 shows that offline learnability ofH is sufficient for online
learnability under predictable examples.
Corollary F.2 (Offline learnability =⇒ Agnostic Online learnability with Predictable Examples).
For everyH ⊆ YX and Z ⊆ X ⋆,

Z is predictable andH is offline learnable =⇒ (H,Z) is agnostic online learnable.

In addition, we can also establish a quantitative version of Corollary F.2 for VC classes.
Corollary F.3. For everyH ⊆ {0, 1}X , Predictor P , Z ⊆ X ⋆, and no-regret offline learner B, there
exists an online learner A such that

RA(T,H,Z) = O

(
(MP(T,Z) + 1)

√
VC(H)T

MP(T,Z) + 1
log2

(T

MP(T,Z) + 1

)
+
√

T log2 T

)
.

The proof of Corollary F.3 is in Section F.4. The remainder of this section is dedicated to proving
Theorem 3.1 and Corollary F.3. The proof is similar to the realizable case. It involves constructing two
online learners with expected regret bounds (i) and (ii) respectively, and then running the celebrated
Randomized Exponential Weights Algorithm (REWA) using these learners as experts [Cesa-Bianchi
and Lugosi, 2006]. The following guarantee of REWA along with upper bound (i) and (ii) gives the
upper bound in Theorem F.1.
Lemma F.4 (REWA guarantee [Cesa-Bianchi and Lugosi, 2006]). The expected regret of REWA

when run with N experts and learning rate η =
√

8 lnN
T is at most mini∈[N] Mi +

√
T log2 N ,

where Mi is the number of mistakes made by expert i ∈ [N].

The online learner obtaining the regret bound
√

L(H)T log2(eT) is the generic agnostic online
learner from Hanneke et al. [2023], thus we omit the details here. Our second learner is described
in Section F.2 and uses Algorithm 3 as a subroutine. The following lemma, bounding the expected
regret of Algorithm 3 in the agnostic setting, will be crucial.
Lemma F.5. For every H ⊆ YX , Predictor P , no-regret offline learner B, and stream
(x1, y1), ..., (xT , yT), the expected regret of Algorithm 3 is at most (MP(x1:T) + 1)RB(T,H).

F.1 Proof of Lemma F.5

The proof closely follows that of Lemma 3.5.

Proof. Let A denote Algorithm 3 and (x1, y1), ..., (xT , yT) denote the stream to be observed by
A. Let c be the random variable denoting the number of mistakes made by Predictor P on the
stream and t1, ..., tc be the random variables denoting the time points where P makes these errors
(e.g . x̂ti−1

ti ̸= xti). Note that ti ≥ 2 for all i ∈ [c]. We will show pointwise for every value of c
and t1, ..., tc that A makes at most (c+ 1)RB(T,H) mistakes in expectation over the randomness
of B. Taking an outer expectation with respect to the randomness of P and using the fact that
E [c] = MP(x1:T), completes the proof.

First, consider the case where c = 0 (i.e. P makes no mistakes). Then, since P is lazy, we have that
x̂t
1:T = x1:T for every t ∈ [T]. Thus line 5 fires exactly once on round t = 1, A initializes an offline

learner B1 with x1:T , and A uses B1 to make its prediction on all rounds. Thus, A makes at most
RB(T,H) mistakes in expectation.

Now, let c > 0 and t1, ..., tc be the time points where P errs. Partition the sequence 1, ..., T into the
disjoint intervals (1, ..., t1 − 1), (t1, ..., t2 − 1), ..., (tc, ..., T). Define t0 := 1 and tc+1 := T . Fix an

22

i ∈ {0, ..., c}. Then, for every j ∈ {ti, ..., ti+1 − 1}, we have that x̂j
1:ti+1−1 = xti+1−1. This comes

from the fact that P does not error on timepoints ti + 1, ..., ti+1 − 1 and is both consistent and lazy
(see Assumptions 1 and 2). Thus, line 5 fires on round ti, A initializes an offline learner Bi with
the sequence x̂ti

ti:T
= xti:ti+1−1 ◦ x̂ti

ti+1:T
, and A uses Bi it to make predictions for all remaining

timepoints ti, ..., ti+1 − 1. Note that line 5 does not fire on timepoints ti + 1, ..., ti+1 − 1.

Let hi ∈ argminh∈H
∑ti+1−1

t=ti
1{h(xt) ̸= yt} be an optimal hypothesis for the partition

(ti, ..., ti+1 − 1). Let yit = yt for ti ≤ t ≤ ti+1 − 1 and yit = hi(x̂ti
t) for all t ≥ ti+1. Then,

note that

inf
h∈H

T∑
t=ti

1{h(x̂ti
t) ̸= yit} = inf

h∈H

ti+1−1∑
t=ti

1{h(xt) ̸= yt}.

Now, consider the hypothetical labeled stream

(x̂ti
ti , y

i
ti), ..., (x̂

ti
T , y

i
T) = (xti , yti), ..., (xti+1−1, yti+1−1), (x̂

ti
ti+1

, yiti+1
), ..., (x̂ti

T , y
i
T).

By definition, Bi, after initialized with x̂ti
ti:T

, makes at most

inf
h∈H

T∑
t=ti

1{h(x̂ti
t) ̸= yit}+RB(T − ti,H) = inf

h∈H

ti+1−1∑
t=ti

1{h(xt) ̸= yt}+RB(T − ti,H)

mistakes in expectation when simulated on the stream (x̂ti
ti , y

i
ti), ..., (x̂

ti
T , y

i
T). Thus, Bi makes

at most infh∈H
∑ti+1−1

t=ti
1{h(xt) ̸= yt} + RB(T − ti + 1,H) mistakes in expectation on the

prefix (x̂ti
ti , y

i
ti), ..., (x̂

ti
ti+1−1, y

i
ti+1−1) = (xti , yti), ..., (xti+1−1, yti+1−1). Since on timepoint ti, A

instantiates Bi with the sequence x̂ti
ti:T

and proceeds to simulate Bi on the sequences of labeled
examples (xti , yti), ..., (xti+1−1, yti+1−1), A makes at most infh∈H

∑ti+1−1
t=ti

1{h(xt) ̸= yt} +
RB(T − ti + 1,H) mistakes in expectation on the sequence (xti , yti), ..., (xti+1−1, yti+1−1). Since
the interval i was chosen arbitrarily, this is true for every i ∈ {0, ..., c} and

E

[
T∑

t=1

1{A(xt) ̸= yt}

]
= E

[
c∑

i=0

ti+1−1∑
t=ti

1{A(xt) ̸= yt}

]

≤
c∑

i=0

(
inf
h∈H

ti+1−1∑
t=ti

1{h(xt) ̸= yt}+RB(T − ti + 1,H)
)

≤ inf
h∈H

T∑
t=1

1{h(xt) ̸= yt}+ (c+ 1)RB(T,H),

as needed.

F.2 Proof of upper bound (ii) in Theorem F.1

The proof of upper bound (ii) in Theorem F.1 closely follows the proof of upper bound (iii) in
Theorem 3.1 from the realizable setting. The main idea is to run REWA using the same experts
defined in Algorithm 4 and bounding the expected regret in terms of the expected regret of K from
Lemma F.5.

We show that Algorithm 5 using REWA in line 3 and the experts in Algorithm 4 with their guarantee
in Lemma F.5 achieves upper bound (ii) in Theorem F.1. Let (x1, y1), ..., (xT , yT) be the stream to
be observed by the learner. Let A denote the online learner in Algorithm 5 using REWA in line 3 of

23

Algorithm 5. By the guarantees of the REWA, we have that

E

[
T∑

t=1

1{A(xt) ̸= yt}

]
≤ E

[
inf

b∈{0,...,T−1}

T∑
t=1

1{Eb(xt) ̸= yt}

]
+
√
T log2 T

≤ E

[
T∑

t=1

1{E⌈MP(x1:T)⌉(xt) ̸= yt}

]
+
√
T log2 T

≤ E

⌈MP(x1:T)⌉∑
i=0

t̃i+1∑
t=t̃i+1

1{Ki(xt) ̸= yt}

+
√
T log2 T

≤ E

⌈MP(x1:T)⌉∑
i=0

(mi + 1)RB(t̃i+1 − t̃i,H) + inf
h∈H

t̃i+1∑
t=t̃i+1

1{h(xt) ̸= yt}

+
√
T log2 T

≤ E

⌈MP(x1:T)⌉∑
i=0

(mi + 1)RB(t̃i+1 − t̃i,H)

+ inf
h∈H

T∑
t=1

1{h(xt) ̸= yt}+
√
T log2 T

≤ inf
h∈H

T∑
t=1

1{h(xt) ̸= yt}+ 2(MP(x1:T) + 1)RB

(T

MP(x1:T) + 1
+ 1,H

)
+
√
T log2 T ,

where the fourth inequality uses the guarantee of K from Lemma F.5 and the last inequality follows
using an identical argument as in the proof of Lemma 3.6 since RB(T,H) is a concave, sublinear
function of T .

F.3 Proof of Theorem F.1

Let A denote the REWA using the generic agnostic online learner from Hanneke et al. [2023] and the
algorithm described in Section F.2 as experts. Then, for any stream (x1, y1), ..., (xT , yT), Lemma
F.4 gives that

E

[
T∑

t=1

1{A(xt) ̸= yt}

]
≤ E

[
min
i∈[2]

Mi

]
+
√
T ≤ min

i∈[2]
E [Mi] +

√
T ,

where we take M1 and M2 to be the number of mistakes made by the generic agnostic online learner
from Hanneke et al. [2023] and the algorithm described in Section F.2 respectively. Note that M1 and
M2 are random variables. Finally, using [Hanneke et al., 2023, Theorem 4] as well as upper bound
(ii) completes the proof of Theorem F.1.

F.4 Proof of Corollaries F.2 and F.3

The proof of the generic upper bound on MA(T,H,Z) follows by using the same learner A as in the
proof of upper bound (ii) in Theorem F.1. However, this time we bound

E

[
inf

b∈{0,...,T−1}

T∑
t=1

1{Eb(xt) ̸= yt}

]
≤ E

[
T∑

t=1

1{E⌈MP(T,Z)⌉(xt) ̸= yt}

]
and use an identical analysis as in the proof of upper bound (ii) and Lemma 3.6 to get

RA(T,H,Z) = O

(√
L(H)T log2 T ∧

(
(MP(T,Z)+1)RB

(T

MP(T,Z) + 1
,H
)
+
√
T log2 T

))
.

Corollary F.2 follows from the fact that RA(T,H,Z) = o(T) if MP(T,Z) = o(T) and RB(T,H) =
o(T). To get the upper bound in Corollary F.3, it suffices to plug in the upper bound RB(T,H) =
O
(√

VC(H)T log2 T
)

, given by Theorem 6.1 from Hanneke et al. [2024], into the above upper
bound on RA(T,H,Z).

24

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction are proven in Section 3 and
Appendix F. In particular, Theorem 3.1, Corollary 3.2, and Corollary 3.3 in the main text
cover the main claims made about the realizable setting. The results in Appendix F cover
the main claims made about the agnostic setting.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The assumptions about Predictors are explicitly stated in Section 2. Section 4
discusses limitations and future work. One example of a limitation is the fact that measuring
the performance of the Predictor using the 0-1 loss may be restrictive if X is continuous.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

25

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All theoretical results are numbered and cross-referenced. Assumptions are
are made clear in the theorem statements. All new theoretical results have a complete,
detailed proof either in the main-text of the appendix. Theorem 3.1 follows immediately
from Lemma 3.4, Lemma 3.5, Lemma 3.6, and Lemma 3.7. Lemma 3.4 is a well-known
result. Lemma 3.5 is proven in the detail in the main text. Lemma 3.6 and 3.7 are proven
in Appendix B. Theorem 3.8 is proven in Appendix E. Corollary 3.2 and 3.3 are proved in
Appendix C. All theoretical results for the agnostic setting are stated and proven in Appendix
F.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This paper has no experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

26

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification:This paper has no experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: This paper has no experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This paper has no experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This paper has no experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read and made sure that our paper conforms to the NeurIPS Code of
Ethics. We have also made sure to preserve anonymity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

28

https://neurips.cc/public/EthicsGuidelines

Justification: Our work is theoretical and contributes to our understanding of machine learn-
ing algorithms. Beyond theoretical insights that can be used to develop better algorithms,
our work does not have direct societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper has no experiments and therefore poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

29

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

30

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

31

	Introduction
	Related Works

	Preliminaries
	Online Classification
	Online Classification with Predictions
	Predictability
	Offline Learnability

	Adaptive Rates in the Realizable Setting
	Proof of upper bound (ii) in Theorem 3.1
	Proof sketch of upper bound (iii) in Theorem 3.1
	Lower bounds

	Discussion
	Combinatorial dimensions
	Proof of Lemmas 3.6 and 3.7
	Proof of Corollary 3.2 and 3.3
	Proof of Theorem 3.1
	Proof of Theorem 3.8
	Adaptive Rates in the Agnostic Setting
	Proof of Lemma F.5
	Proof of upper bound (ii) in Theorem F.1
	Proof of Theorem F.1
	Proof of Corollaries F.2 and F.3

