
Under review as submission to TMLR

Measuring Data Science Automation:
A Survey of Evaluation Tools for AI Assistants and Agents

Anonymous authors
Paper under double-blind review

Abstract

Data science aims to extract insights from data to support decision-making processes. Re-
cently, Large Language Models (LLMs) are increasingly used as assistants for data science,
by suggesting ideas, techniques and small code snippets, or for the interpretation of results
and reporting. Proper automation of some data-science activities is now promised by the
rise of LLM agents, i.e., AI systems powered by an LLM equipped with additional affor-
dances—such as code execution and knowledge bases—that can perform self-directed actions
and interact with digital environments. In this paper, we survey the evaluation of LLM as-
sistants and agents for data science. We find (1) a dominant focus on a small subset of
goal-oriented activities, largely ignoring data management and exploratory activities; (2) a
concentration on pure assistance or fully autonomous agents, without considering intermedi-
ate levels of human-AI collaboration; and (3) an emphasis on human substitution, therefore
neglecting the possibility of higher levels of automation thanks to task transformation.

1 Introduction

Large Language Models (LLMs) (Brown et al., 2020) and their multimodal extensions first caught public
prominence by powering capable chatbots that are now widely used as assistants to humans in several tasks,
such as summarising documents (Liu et al., 2023c), performing translations (Zhu et al., 2023), and creating
code snippets (Guo et al., 2023). These LLM assistants take instructions from a human in the form of
a prompt and return an answer, with the human retaining control over planning and decision-making by
determining the sequence of actions to follow and how much to rely on the assistant’s output. Attention
is now increasingly dedicated to “LLM agents” (Wang et al., 2024) that can autonomously and iteratively
decide a sequence of actions to take and repeatedly interact with an external (digital) environment, being
equipped with affordances and tools such as code execution (Huang et al., 2024b), internet access (Zhou
et al., 2024), knowledge bases (Chen et al., 2024), and operating system control (Liu et al., 2023a).

In this paper we focus on how to evaluate assistants and agents for data science applications. Data science
is the process of handling and analysing data to extract insights that support decision-making in science,
business, or other contexts. Data science may deal with different modalities of data (tabular, images, audio,
etc.) but it always involves writing and interpreting information represented as text, whether in the form of
code or natural language, and processing image, such as to present information or models. This dominance
of textual modalities, combined with the vast amount of relevant online material that LLMs leverage during
both training and inference, makes data science well-suited for automation by LLMs. Indeed, since the early
days of LLMs (Chandel et al., 2022), LLM assistants and agents have been used in data science applications.
In this work, we survey evaluation tools measuring performance on tasks across the data science pipeline,
offering, to our knowledge, the first comprehensive review of LLM evaluation for core data science tasks1.
We do not overview the state of the art in developing LLM assistants or agents for data science, referring
interested readers to other works (Sun et al., 2024).

1While many studies assess LLMs on tasks related to data science, such as coding (Jimenez et al., 2024) and planning
(Valmeekam et al., 2023), our focus is on those that explicitly target data science.

1

Under review as submission to TMLR

Data science is highly multidisciplinary and involves a breadth of activities, combining fields such as
statistics, machine learning, and data engineering with tasks such as understanding business needs, writing
reports, and preliminary research. Therefore, to compare the data science automation evaluation tools
in our survey, we adopt the widely used data science task taxonomy of Martínez-Plumed et al. (2019)
and classify each evaluation tool by the activities it requires subjects to perform and explicitly evaluates.
Moreover, in our survey we specifically consider the level of autonomy each evaluation targets—whether
the subjects are agents, assistants, or intermediate forms, such as LLM agents operating under close human
supervision that correct their actions as needed. Further, we also analyse the way in which the tasks are
framed and evaluated, to understand if they measure the ability of AI systems to simply substitute humans
or if instead they consider that the AI system can transform the task in deeper ways, such as by bringing
functional improvements (for instance, LLMs may not need to produce visualisations to perform data
exploration; see Sec. 2.1). By focusing on activities and autonomy, we make the following findings:

• Most evaluation works individually target a (small) subset of data science activities (Tables 2 and
3); a few works cover multiple activities (Secs. 4.2 and 4.3), but none cover all of them. Taken
together, the surveyed works cover the landscape of data-science activities in a biased fashion, chiefly
over-representing “goal-oriented” activities, such as data preprocessing, producing plots in specified
formats, or building predictive models for predetermined targets. Only a few studies (Cheng et al.,
2023; Sahu et al., 2025; Majumder et al., 2024) give prominence to open-ended, exploratory aspects of
data science (such as interpreting client needs within a business context, creatively exploring datasets
and proposing potential uses) or data management(Yu et al., 2018; 2019b;a; Lei et al., 2024).

• Most studies focus either on assistants following human-defined actions or fully autonomous agents,
overlooking more realistic scenarios of intermediate LLM–human collaboration. Exceptions include
Li et al. (2024; 2025b;a) (agents with simulated human users) and Yu et al. (2019a) (assistants
aiding users in clarifying data tasks). Due to this near-binary focus, we organise the surveyed works
according to the focus on assistants (Sec. 3) and agents (Sec. 4), highlighting when they assess
intermediate autonomy.

• Evaluations often implicitly assume that AI will substitute humans without functionally changing
the tasks, either in assuming the steps by which a task is solved are the same a human would
follow (Yu et al., 2019a; Zhang et al., 2024b; Chen et al., 2024) or by scoring the task referring to
human-produced output, despite there not being a single ground truth (Song et al., 2025; Huang
et al., 2024b; Hu et al., 2024; Jing et al., 2024; Chen et al., 2024). Other works instead reward agents
that transform the task to solve it by scoring the final output (Pietruszka et al., 2024; Cheng et al.,
2023; Li et al., 2025b; Chan et al., 2024; Lei et al., 2024; Majumder et al., 2024; Sahu et al., 2025).

The paper is structured as follows: Sec. 2 discusses some fundamental concepts on technological transforma-
tion, assistance and autonomy, LLM evaluation, and data science automation and its activities. Secs. 3 and
4 dive deep into works evaluating LLM assistants and agents, respectively. Sec. 5 summarises the challenges
in data science evaluation and suggests future directions for more effective and comprehensive evaluation.

2 Background and related work

2.1 Levels of technological transformation

A naive perception of how technology transforms processes and activities is automation by substitution: a
human performing a task is replaced by a machine without functionally transforming the task. To evaluate
this, a sample of tasks representing how humans tackle an activity is collected and the machine is tested
on them (Eriksson et al., 2025). The Substitution-Augmentation-Modification-Redefinition (SAMR) model
(Puentedura, 2006; Hamilton et al., 2016) identifies substitution as the lowest level of transformation and
outlines subsequent levels with progressively greater degrees of transformation: augmentation, where the ma-
chine substitutes the human with some functional improvement; modification, where the task is significantly
redesigned to allow automation; redefinition, in which the whole activity is redesigned, even creating new

2

Under review as submission to TMLR

tasks. Much of the debate around AI-powered automation focuses on the two bottom levels (augmentation
and substitution), but the real penetration of AI technology is happening at the top levels of modification
and redefinition (Brynjolfsson, 2022; Brynjolfsson et al., 2025), which hold the potential to achieve higher
levels of automation. Indeed, we did not “automate away the jobs of lamplighters by building robots capa-
ble of carrying ladders and climbing lampposts” (Frey & Osborne, 2023). Importantly, activities that have
already been substituted can be iteratively transformed further as technology improves. Evaluating progress
is therefore much more complex than if substitution was the only force at play: a robot substituting human
lamplighters in carrying and climbing ladders would have scored highly in turning on gas lamps, but the
redefinition afforded by electricity led to automating street lights, rendering robotic lamplighter needless.
Similar considerations apply when evaluating AI progress in automating complex processes composed of
many activities, such as data science: for instance, LLMs may not need to produce high quality visualisa-
tions to perform successful data exploration, as they may be able to directly interpret large tables of data. To
effectively evaluate modification and redefinition, AI evaluation should allow AI systems to perform activities
differently from humans by rewarding the achievement of broad objectives.

2.2 Assistance and autonomy

Related yet orthogonal to the SAMR model is the distinction between assistance and autonomy (Shneider-
man, 2020): in an assistive situation, a human uses the technology while retaining control of the process and
only having some well-defined parts automated or improved. Assisted driving or writing are good examples:
the process becomes more efficient and safe because of the use of technology. On the contrary, in an au-
tonomous situation, the technology performs the task independently and has more freedom to choose how. Of
course, autonomy exists on a spectrum: intermediate levels include, for example, technology operating inde-
pendently while a human oversees the sequence of steps and retains the ability to halt operations. In relation
to this, Cihon et al. (2024) defined levels of agent features relevant to autonomy. Their classification assigns
high autonomy to agents acting fully autonomously, whereas the intermediate and lower levels correspond
to agents consulting humans either at termination or at each step. This aligns with our understanding of
autonomy levels, which additionally includes an even lower level where a human assigns a specific task to an
assistant. Hence, holistic AI evaluation should take into account quality of the result and the level of human
labour, which limits the impact of the technology in the long term. Importantly, for all levels of autonomy,
the technology can perform the task in a way that places the automation at any level of the SAMR hierarchy.

2.3 LLM evaluation

The area of AI evaluation (Burden et al., 2025) mostly relies on tasks encapsulated in input-output bench-
marks with a reference output for each example. For LLMs, these input–output pairs are most often Q&A
examples used to evaluate assistants (Chang et al., 2023; Guo et al., 2023) or autonomously acting agents
(Wang et al., 2024; Yehudai et al., 2025). The use of natural language gives a perspective of breadth, but fails
to measure realistic human-LLM interaction (Guo et al., 2023) and hence real-world impact (Burden et al.,
2025). This agrees with our findings that evaluations for data science mostly fail to capture intermediate
levels of LLM-human collaboration and concentrate on evaluating substitution rather than higher levels of
transformation (Sec. 2.1). Chang et al. (2023) highlighted human-in-the-loop testing and evaluations in an
open environment as future directions, and Wang et al. (2024) identified a shift towards end-to-end tasks
requiring human evaluators and versatile metrics, yet most evaluations today only consider a subset of tasks
in the data science pipeline, with a few exceptions (Sec. 4.3).

A few studies evaluate truly long-horizon scenarios or quantify the human effort they still require. Wang
et al. (2023) and Park et al. (2023) showed that agents can sustain hours-to-days of open-ended play or
social simulation, but both exposed failure modes that need periodic human nudges. Quantitatively, Liu et al.
(2023a) found that commercial models needed a median of 2.4 human corrections per task on a general agent
benchmark, whereas open-source models needed 5–8. Recently, Kwa et al. (2025) showed that autonomous
agents are progressively conquering tasks that take humans longer to complete when considering a fixed
success rate (e.g., 50%), but performance still progressively degrades on tasks requiring more than 10 seconds.

3

Under review as submission to TMLR

2.4 Data science automation

Automating data science was a topic of research even before LLMs became commonplace. Bie et al. (2021)
argued that the technical and domain knowledge required to solve data science tasks motivated efforts to-
ward automation. The authors categorised data science tasks into four main quadrants, defined by two
axes—degree of open-endedness and dependence on domain context—highlighting that model-building ac-
tivities are more easily automated (e.g., through AutoML approaches, Hutter et al. 2019; Gijsbers et al.
2024) due to their lower open-endedness and context dependence. They also identified three forms of au-
tomation: mechanisation, composition, and assistance. Assistance corresponds to our interpretation of the
term while mechanisation and composition can be grouped under our umbrella of automation (Sec. 2.2), but
differ in focusing respectively on small parts of the process or on the overall pipeline; in our work, we do
not make this distinction and instead rely on the activities of Martínez-Plumed et al. (2019) to identify how
many elements of the pipeline each evaluation work covers. After Bie et al. (2021) published their survey,
numerous works built LLM agents to automate data science. Their evolution, capabilities, and applications
across the data science pipeline are reviewed by Sun et al. (2024); the authors, however, did not address
LLM evaluation for data science, which is the focus of our work. More recently, (Hu et al., 2025) proposed a
taxonomy for the data ecosystem: Data Management, which includes data collection, data storage, and data
preprocessing; Data Analysis, which includes model evaluation, data interpretation, and decision making;
and Data Visualisation. This taxonomy partly overlaps with that in Martínez-Plumed et al. (2019) which
we use in our work (Sec. 2.5), but misses some of the most exploratory aspects.

2.5 The activities of data science

Table 1: Data-science activities and brief definition (complete definitions in Appendix A).

Activity (abbr.) Brief definition
Goal-oriented (CRISP-DM)

Business Understanding (BU) Define the problem and draft a plan that meets business requirements
Data Understanding (DU) Collect and explore data to spot useful subsets, insights, or issues
Data Preparation (DP) Build the final analysis dataset via selection, cleaning, and transformation
Modelling (M) Apply modelling techniques, tune their parameters and evaluate models
Evaluation (E) Check that the business objectives are met, with no overlooked issues
Deployment (Dep) Deliver the model’s outputs in a usable form (report, integration, etc.)

Exploratory

Goal Exploration (GE) Identify business goals that could be addressed with data
Data Source Exploration (DSE) Discover new, valuable data sources
Data Value Exploration (DVE) Judge the potential value that can be extracted from the data
Result Exploration (RE) Connect data-science results back to business goals
Narrative Exploration (NE) Craft meaningful (visual or textual) stories from the data
Product Exploration (PE) Devise services or applications that turn extracted value into products

Data-management

Data Acquisition (Acq) Obtain or generate relevant data (e.g., via sensors or apps)
Data Simulation (Sim) Simulate systems to generate data and explore causal “what-if” scenarios
Data Architecting (Arch) Design the logical/physical layout and integration of data sources
Data Release (Rel) Make data accessible through databases, APIs, or visualisations

Many taxonomies of data science activities exist (see Martínez-Plumed et al., 2019, Sec 2). One of the most
popular is CRISP-DM (Cross Industry Standard Process for Data Mining, Chapman, 2000), which considers
projects as goal-oriented, with a pre-defined objective that can be approached by “mining” data through an
approximately sequential process, from problem framing to solution delivery. However, Martínez-Plumed

4

Under review as submission to TMLR

et al. (2019) argues that this goal-oriented, pre-collected-data perspective ignores many tasks of modern data
science, where exploration is essential and the data takes centre stage rather than serving as a fixed backdrop.
Consequently, Martínez-Plumed et al. (2019) proposes a sequence of exploratory activities that underscore
the less prescriptive nature of data science, re-framing it as an investigative endeavour; and data management
activities that treat data as dynamic rather than static. We provide a list of the activities introduced in
Martínez-Plumed et al. (2019) and a concise definition in Table 1. Note that not all modern data-science
projects include every activity, nor is the order of activities fixed as in the CRISP-DM framework. Instead,
each project follows its own “trajectory” in the space of data-science tasks (Martínez-Plumed et al., 2019).

3 Evaluating LLM assistants in data science

In this section, we focus on evaluations of LLMs as assistants, namely prompting them in a fixed, pre-
determined manner without letting them independently determine the sequence of steps. Table 2 shows the
surveyed papers and the activities (Sec. 2.5) they cover; a double tick marks an activity that is explicitly
assessed, whereas a single tick marks one that is vital for completing the tasks but not directly assessed.

Table 2: Data science activities covered by the surveyed LLM assistants evaluation works. See Sec. 2.5 for
definition of the acronyms. A double tick refers to an activity explicitly evaluated, while a single tick refers
to an activity necessary for succeeding in the tasks but not explicitly evaluated.

Goal-oriented Exploratory Data Management
Papers BU DU DP M E Dep GE DSE DVE RE NE PE Acq Sim Arch Rel
ARCADE (Yin et al., 2022) - ✓ �� - - - - - ✓ - - - - - - -
CERT (Zan et al., 2022) - - �� - - - - ✓ ✓ - - - - - - -
CoSQL (Yu et al., 2019a) - ✓ - - - �� �� - - - - - - - �� -
DS-1000 (Lai et al., 2023) - ✓ �� �� - - - - - - - - - - - -
DS-Bench (Ouyang et al., 2025) - ✓ �� �� - - - - - - - - - - - -
DSP (Chandel et al., 2022) - ✓ �� - - - - - - - - - - - - -
FeatEng (Pietruszka et al., 2024) - �� �� ✓ - - - ✓ ✓ - - - - - - -
GPT4-DA (Cheng et al., 2023) ✓ �� ✓ �� - �� - - �� �� �� - - - - -
HardML (Pricope, 2025) - ✓ ✓ ✓ - - - - ✓ - ✓ - - - - -
LIDA (Dibia, 2023) - �� �� - ✓ - �� ✓ �� - �� - - - ✓ ��
SParC (Yu et al., 2019b) - ✓ - - - - - - - - - - - - �� -
Spider (Yu et al., 2018) - ✓ - - - - - - - - - - - - �� -
Spider 2.0-Lite (Lei et al., 2024) - ✓ - - - - - - - - - - - - �� -
Spider 2.0-Snow (Lei et al., 2024) - ✓ - - - - - - - - - - - - �� -
StatLLM (Song et al., 2025) - ✓ �� �� ✓ - - - - - - - - - - -

First, many works evaluate LLMs used to generate code for specific steps of data science, such as prepro-
cessing data given a template, fixing bugs, or producing visualisations given instructions or prerequisites.
In particular, ARCADE (Yin et al., 2022) and CERT (Zan et al., 2022) focus on Data Preparation and
related activities with specific Python libraries. ARCADE is a benchmark consisting of 1,082 coding prob-
lems involving data wrangling and Exploratory Data Analysis (EDA), defined as Jupyter notebooks, that
require Python’s Pandas library; for example, a problem could involve extracting min and max values from
a dataframe and answer questions such as “In which year was the most played game added?”. CERT instead
introduces two benchmarks (PandasEval and NumpyEval), each consisting of 101 tasks manually reworked
for coherence and consistency from StackOverflow2 problems tagged as relevant to Pandas and NumPy re-
spectively; for problems whose solution is a function, 20 test cases are included, while the correctness of
the predicted variable is checked for the other problems. Relatedly, DSP (Chandel et al., 2022) contains
problems instantiated in 306 pedagogical Jupyter notebooks with 92 associated datasets, covering data ma-
nipulation, cleaning, and wrangling (parts of Data Preparation). Similarly to CERT, the correctness of the
task is automatically graded with test cases. An example problem would be “Show the correlation between

2https://stackoverflow.com/questions

5

https://stackoverflow.com/questions

Under review as submission to TMLR

population density in 2023 and 2050, rounded to 2 decimals”. Similarly, DS-1000 (Lai et al., 2023) consists
of 1,000 coding problems extracted from StackOverflow, spanning Python libraries such as NumPy, Pandas,
SciKit-Learn, TensorFlow, matplotlib, SciPy, and PyTorch. The problems are manually perturbed to
circumvent the issue of memorisation in LLMs and cover Data Preparation and Modelling. The problems
are scored through multi-criteria execution-based evaluation metrics that rely on test cases and surface-form
constraints to check for the presence of specific APIs. See Fig. 1 for an example problem and evaluation
set-up. Ouyang et al. (2025) extend DS-1000 to create DS-Bench by adding Seaborn, Keras and LightGBM.
To build the benchmark, they first define a broad task scope and collect Python seed code from GitHub
using DS-1000’s reference code and corresponding StackOverflow answers. An automated LLM pipeline then
transforms each snippet to avoid memorisation. Candidates are filtered by properties (compilability, stars,
API calls) and functionality (must pass at least one LLM-generated test). For each surviving candidate, an
LLM generates 200 test cases and a problem description—complete with an introduction, function signature,
input/output formats and examples. After manual review, 1,000 problems are selected. Performance is mea-
sured with pass@k: a problem is solved if any k generated samples pass the unit tests. Instead, FeatEng
(Pietruszka et al., 2024), evaluates LLMs’ ability to produce a Python function for engineering data features
(thus addressing Data Understanding and Preparation) suitable for downstream modelling tasks. The au-
thors select datasets based on their popularity on Kaggle and ensuring broad domain coverage, reaching a
total of 101 tasks. Notably, and in contrast to the older works described above, where questions admitted
fixed ground truths, performance is measured in terms of the reduction in error of a model trained on the
extracted features compared to a baseline model trained on the original, untransformed data. Therefore,
this allows AI models to go beyond simply substituting humans and reach higher levels of task transfor-
mation (Sec. 2.1). StatLLM (Song et al., 2025) instead focuses on statistical Modelling, assessing LLMs’
ability to generate code to solve a dataset of 207 statistical analysis tasks assembled from various public
online resources, including descriptive statistics, hypothesis testing, regression and ANOVA, generalised lin-
ear models, survival analysis, model selection, and non-parametric statistics; tasks might require the LLM
to run a specific model on a variable in a given dataset, or to plot a variable. Uniquely, the LLM has to
generate SAS code; evaluation is carried out using Natural Language Processing (NLP) metrics to compare
the generated code against a human gold standard, thus being grounded in substitution (Sec. 2.1).

Considering Data Management activities, Spider (Yu et al., 2018), SParC (Yu et al., 2019b) and CoSQL
(Yu et al., 2019a) (all from the same research group) evaluate conversational database querying systems
translating natural language into SQL queries (part of Data Architecting but also requiring Data Under-
standing). These works build on the same 200 databases from 138 domains: Spider consists of 10,181
manually crafted questions and 5,693 unique SQL reference queries and evaluates the generated queries with
matching of SQL components or the overall query to the reference one, or with the accuracy of the execution.
SParC expands Spider, which contains only single-turn questions, by simulating multi-turn interactions and
therefore introducing context dependence: annotators chained Spider tasks together in a conversational flow
resulting in 4,298 question sequences with 12,726 questions. Performance is evaluated in terms of exact
set match (per turn), and interaction match (full sequence accuracy); however, this does not evaluate the
ability of the AI system to interact with a user successfully. This is done in CoSQL, which also includes
task where the system must identify ambiguous questions needing clarifications and unanswerable queries
(accuracy is evaluated using dialogue act labels). This makes CoSQL unique in addressing intermediate
levels of automation for assistants (Sec. 2.2). The clarifications are then included in the context the system
uses to determine the correct SQL query, scored using exact match or component match. However, despite
being inserted in the context of a conversation, only one system answer at a time is evaluated, therefore
still considering the paradigm of substitution (Sec. 2.1). Natural language summaries of the query output
produced by the system are also evaluated (with the BLEU score). Overall, CoSQL comprises over 30,000
dialogue turns and 10,000 annotated SQL queries, derived from approximately 3,000 dialogues collected by
having users interact with a mock interface controlled by an expert and simulating real-world database query
scenarios. Finally, the same authors recently introduced (Lei et al., 2024), Spider 2.0-Lite, consisting of
547 test instructions mapped to 158 real databases hosted on BigQuery, Snowflake and SQLite and solely
scored based on execution accuracy, and Spider 2.0-Snow, re-hosting the same 547 questions on Snowflake
to spotlight one dialect while keeping identical self-contained evaluation.

6

Under review as submission to TMLR

Moving to the exploratory aspects of data science, LIDA (Dibia, 2023) introduces a system generating data
visualisation and infographics by prompting LLMs in a structured manner to provide a summary of the
dataset (Data Understanding), formulate data exploration goals (Data Value Exploration), generate code
specifications for the visualisations (Goal Exploration), and generate stylised graphics based on the previous
output (Narrative Exploration). This also covers aspects of Data Release as it involves making data accessible
through visualisations. The system is accompanied by an evaluation tool, based on 57 datasets sourced from
the Vega datasets3 repository; two metrics are used: visualisation error rate, computed as the percentage
of generated visualisations that result in code compilation errors; and visualisation quality, in which GPT-4
(Achiam et al., 2023) is tasked with assessing the quality of the generated visualisations across 6 dimensions:
code accuracy, data transformation, goal compliance, visualisation type, data encoding, and aesthetics.

While the above works focus on single steps of the data science pipeline, Cheng et al. (2023) evaluates GPT-4
as a data analyst on end-to-end data mining problems (excluding several exploratory steps and the entirety of
data management). In particular, they provide GPT-4 with a database schema (Data Understanding) and a
real-world business question (Business Understanding) and tasks it with extracting the relevant data (Data
Preparation, Data Value Exploration), conducting Modelling, generating visualisations and producing an
analysis (Deployment, Narrative Exploration, Result Exploration). GPT-4 is embedded within a framework
(referred to as GPT-4DA), in which it is first prompted to generate code that is executed to produce graphs
and a text file containing the generated data, and then prompted again to generate an analysis comprising five
insights derived from the textual data (excluding the figures). They devise three evaluation metrics for the
generated figures (correctness of data and information, chart type, and aesthetic), and four evaluation metrics
for the generated insights (correctness of data and information, alignment with question, complexity, and flu-
ency). By using these broad metrics, GPT-4 is free to solve the task in ways different from what humans would
do, thus reaching higher levels of transformation (Sec. 2.1). They test this pipeline on the NvBench dataset
(Luo et al., 2021) and employ six human professionals to evaluate GPT-4 (using a rubric detailing the above
metrics) and a professional (human) data analyst as baseline. While involving humans leads to more compre-
hensive understanding of performance, it also makes running the evaluation more costly and less reproducible.

Data science involves additional skills other than coding. For example, domain knowledge in data science is
essential. To evaluate this, Pricope (2025) introduce HardML, a benchmark of 100 multiple-choice questions,
designed to challenge experienced data science professionals, assessing advanced reasoning skills and domain
knowledge. The questions are original, handcrafted, and may include multiple correct answers; they span
various topics such as natural language processing, computer vision, statistics and statistical modelling,
classical machine learning, and cover activities such as Data Understanding and Preparation, Modelling,
Data Value Exploration and Narrative Exploration. An example question is: “An AI company just shipped
a new foundational language model. They claim they have trained it for 2.79M H800 hours on 14.8T tokens.
Upon further research, looking at Nvidia card specs, you find 3,026 TFLOPs/s of FP8 performance with
sparsity, or typically half this (1.513e15 FLOPs/s) without sparsity. Moreover, you find out that they used
FP8 FLOPs without structured sparsity. Given that the model has 37B activated parameters, roughly what
hardware utilization did they achieve? Select the closest.” Importantly, whilst several activities are evaluated
by the benchmark, each question only targets a single activity; moreover, the majority of the questions focus
on reasoning capabilities and coding for machine learning and various aspects of deep learning engineering.

From this overview, it is evident how nearly all LLM assistant evaluation works focus on code generation,
and how there is a concentration on the goal-oriented activities of Data Understanding, Data Preparation
and Modelling (Table 2), with lack of evaluation works for exploratory and, even more, data management
activities, except for Data Value Understanding, and a few works touching on Narrative Exploration, Goal
Exploration, Data Source Exploration, Result Exploration, Data Architecting, and Data Release.

4 Evaluating LLM agents in data science

In this section, we consider evaluations of LLM agents, which augment LLMs with a set of affordances and
allow them to determine the sequence of steps they go through by iterative prompting. We also consider
works evaluating agents with (simulated) user interaction. Table 3 shows the papers we overview and the

3https://github.com/vega/vega-datasets

7

https://github.com/vega/vega-datasets

Under review as submission to TMLR

Table 3: Data science activities covered by the surveyed LLM agent evaluation works. See Sec. 2.5 for
definition of the acronyms. A double tick refers to an activity explicitly evaluated, while a single tick refers
to an activity necessary for succeeding in the tasks but not explicitly evaluated.

Goal-oriented Exploratory Data Management
Papers BU DU DP M E Dep GE DSE DVE RE NE PE Acq Sim Arch Rel
BLADE (Gu et al., 2024) - �� �� �� - ✓ - - ✓ - �� - - - - ✓
BiasBenchmark (Li et al., 2025b) - �� - - - - - - - - - - - - - -
CSR-Bench (Xiao et al., 2025) - - ✓ ✓ ✓ �� - - - - - - - - - -
Data-Copilot (Zhang et al., 2024a) - ✓ �� ✓ - - - - ✓ - - - - - - -
DA-Code (Huang et al., 2024b) - �� �� �� ✓ - - - ✓ - - - - - - -
DiscoveryBench (Majumder et al., 2024) ✓ ✓ ✓ ✓ - ✓ �� ✓ ✓ - �� - - ✓ - -
DSBench (Jing et al., 2024) - ✓ ✓ �� ✓ ✓ ✓ - ✓ ✓ ✓ - - - - -
DS-Eval (Zhang et al., 2024b) ✓ �� �� �� - �� - - - - �� - - - - -
IDA-Bench (Li et al., 2025a) - ✓ ✓ �� - �� - - - - - - - - - -
InfiAgent-DABench (Hu et al., 2024) - ✓ ✓ �� - - - - ✓ - ✓ - - - - -
InsightBench (Sahu et al., 2025) ✓ ✓ ✓ ✓ ✓ �� ✓ - ✓ �� �� - - - - ��
MLAgentBench (Huang et al., 2024a) - ✓ - �� ✓ ✓ - - - ✓ ✓ - - - - -
MLE-Bench (Chan et al., 2024) - ✓ ✓ �� - ✓ - - ✓ - ✓ - - - - -
MLGym (Nathani et al., 2025) - ✓ ✓ �� ✓ - - - ✓ - - - - - - -
RE-Bench (Wijk et al., 2024) - - - �� - - - - - - - - - - - -
ScienceAgentBench (Chen et al., 2024) - �� �� �� - �� ✓ - ✓ - �� - - - - -
Spider 2.0 (Lei et al., 2024) - �� - - - - �� - - - - - - - �� -
SUPER (Bogin et al., 2024) - - - ✓ ✓ �� - - - - - - - - - -
Tapilot-Crossing (Li et al., 2024) - ✓ �� �� - ✓ ✓ - - - ✓ - - - - -

activities they cover (Sec. 2.5); a double tick marks an activity that is explicitly assessed, whereas a single
tick marks one that is vital for completing the tasks but not directly assessed.

4.1 Works targeting specific goal-oriented activities

Many works aim to evaluate LLM agents on individual goal-oriented activities of the data science pipeline.
Starting from Data Understanding, Li et al. (2025b) introduce BiasBenchmark, which evaluates the ability
to detect biases in datasets. To build the benchmark, they select 5 datasets from prior bias mitigation research
and 100 demographic-related features or their combinations. They then craft (using an LLM playing the role
of a user) possible bias detection queries, including intentionally ambiguous questions. During evaluation,
clarification questions posed by the agent are automatically answered by the LLM-based user simulator ac-
cording to the original task specifications, ensuring consistency and reproducibility. The agent must quantify
the bias level according to a 5-level scale, which is then compared to the ground truth obtained by measuring
five widely-used bias detection metrics. However, scoring the final bias level allows to agent to determine it in
potentially novel ways, therefore going above human substitution (Sec. 2.1). They also evaluate the agent’s
intermediate process, by developing an agent-based automated evaluation system that looks at the evaluated
agent’s logs and produces performance rating levels for five aspects: user communication, task planning, tool
invocation, dynamic plan adjustment and result analysis. Interestingly, the first one (user communication)
scores the ability of the agent to ask clarification questions to the (simulated) user who set the task.

Instead, Data-Copilot (Zhang et al., 2024a) introduces an LLM agent for data wrangling that, given a
dataset schema, independently explores potential user requests and generates modular code to address them,
which is then leveraged in the deployment stage. To benchmark it, the authors release 547 test requests drawn
from 173 human seeds plus a larger 3547-request self-exploration pool. The tasks rely on financial data and
touch upon Data Value Exploration, Data Understanding and Preparation, and Modelling. Each test case
comes with a human-curated answer table and four manual labels for dataset analysis: task difficulty, request
rationality, expression ambiguity, answer accuracy. System performance is measured with GPT-4-based
Pass@1 scoring against the gold tables (plus an image check) and with the number of tokens used.

8

Under review as submission to TMLR

Moving towards Modelling, MLE-Bench (Chan et al., 2024) and RE-Bench (Wijk et al., 2024) are both
learning engineering benchmarks, but differ in the complexity of the tasks and scenarios: MLE-Bench encom-
passes 75 tasks sourced from Kaggle4, whose deterministic scoring functions are taken from the corresponding
Kaggle competitions—as they score the final result, this allows agents to solve the task in ways potentially dif-
ferent from humans, going beyond substitution (Sec. 2.1); however, because these functions vary across tasks,
each score is compared against a snapshot of the (human) leaderboard. Instead, RE-Bench includes 7 envi-
ronments each presenting a unique Machine Learning (ML) task focused on optimising either the loss function
or the run-time; the value of these scoring functions is manually inspected for evaluation, and evaluators need
to have access to a reference solution. Relatedly, MLAgentBench (Huang et al., 2024a) comprises 13 tasks
specified by a goal, occasionally constraints or specific instructions, starter files, and an evaluator; the tasks
are collected and adapted from recent Kaggle challenges, CLRS (Veličković et al., 2022), BabyLM5; the starter
files consist of data, description of data and metric, and initial code; each task has its own goal metric to im-
prove on, whose measure is used for automated evaluation. For an overview of MLAgent workflow and evalu-
ation, see Fig. 6. Instead, Nathani et al. (2025) introduce MLGym, an environment to train LLM agents on
ML tasks using reinforcement learning. Given a task description, an initial codebase, and actions and observa-
tions history, the agent generates an action (shell commands executed by the environment) to accomplish re-
search objectives iteratively; the execution feedback can then be used to refine the agent. MLGym is equipped
with a benchmark consisting of 13 tasks spanning data science, game theory, computer vision, NLP, and
reinforcement learning, and selected from sources such as Kaggle’s House Price Prediction6, 3-SAT (Cook,
1971), CIFAR-10’s image classification7, and more; they require the agent to perform Data Understanding,
Modelling and Evaluation. As the various tasks have different performance metric, they score each agent by a
quantity that reflects how closely, on average across a range of tolerance levels, it matches the best performer
on every individual task. MLGym differs from MLAgentBench for the larger complexity of its tasks. Finally,
(Li et al., 2025a) introduce IDA-Bench, which attempts to evaluate LLMs on their ability to perform guided
predictive Modelling tasks; the benchmark includes an LLM-simulated user with domain knowledge and sub-
jective insights who interacts with an agent to provide instructions throughout a multi-turn iterative process;
the agent is then tested on adapting its goal and following instructions. The tasks are obtained from Kaggle;
an LLM distils reference insights in natural language format from an optimal solution. These, together with
information such as hyperparameters, serve as a task-specific template for the simulated user, which requests
the agent to perform certain steps, without offering all insights up-front, and offers clarifications when asked.
Results of the trained model are evaluated against a ground truth using task-specific evaluation functions;
and compared with a human baseline, obtained by running the notebook the simulated user has access to.
They also determine the ability to interact by considering how the prediction accuracy changes by increasing
the number of interactions. Fig. 3 shows an example “trajectory” of the guided data analysis process.

Next, CSR-Bench (Xiao et al., 2025) and SUPER (Bogin et al., 2024) test whether agents can correctly
deploy code from a project repository when given instructions—an important, though not exclusive, part of
the data-science Deployment stage (Sec. 2.5). CSR-Bench and SUPER both transform GitHub repositories
into end-to-end “run-the-code” challenges in which an autonomous LLM agent must parse documentation,
install dependencies, debug failures, and produce a outcomes assessed by an automatic completion metric.
CSR-Bench supplies 100 diverse repositories, each constituting one comprehensive task that typically involves
environment setup, data and model acquisition, model training, inference, and evaluation. In contrast,
SUPER targets reproducibility in machine-learning and NLP research across 801 repositories, organised into
three nested subsets—expert (45 manually authored full-pipeline problems with human gold standards),
masked (152 focused subtasks derived from the expert set), and auto (604 GPT-4-o-generated tasks created
from repository READMEs)—each accompanied by task-specific metrics or expected outputs for evaluation.

Finally, considering agents performing Data Management tasks, Spider 2.0 (Lei et al., 2024), the most
recent iteration of Spider (Yu et al., 2018), is a benchmark of 632 real-world text-to-SQL workflow problems
derived from enterprise-level database use cases; the agent’s answers are evaluated using completion rate,
accuracy, and coherence, therefore allowing agents to solve the task in ways different from pure human

4https://www.kaggle.com/
5https://babylm.github.io/
6https://www.kaggle.com/datasets/zafarali27/house-price-prediction-dataset
7https://www.kaggle.com/code/faressayah/cifar-10-images-classification-using-cnns-88

9

https://www.kaggle.com/
https://babylm.github.io/
https://www.kaggle.com/datasets/zafarali27/house-price-prediction-dataset
https://www.kaggle.com/code/faressayah/cifar-10-images-classification-using-cnns-88

Under review as submission to TMLR

substitution (Sec. 2.1). Spider 2.0 differs from previous benchmarks by the same authors (Yu et al., 2018;
2019b;a, discussed in Sec. 3), in its more complex set-up: the tasks do not consist of pre-prepared inputs
(question and database schema) or expected outputs (predicted SQL), but a real project codebase and a
database interface; the agent interacts with the codebase through command scripts, as well as SQL queries.

4.2 Evaluating multiple activities explicitly

Some works target a broader spectrum of data science activities and evaluate each explicitly. To start with,
DA-Code (Huang et al., 2024b), InfiAgent-DABench (Hu et al., 2024) and DSBench (Jing et al.,
2024) all predominantly consider Data Preparation and Modelling, and mostly score the agent-produced
solution by closely comparing it with reference ones, thus being anchored in the “substitution” paradigm
(Sec. 2.1). In particular, DA-Code consists of 500 tasks sourced from Kaggle, GitHub, and other sources,
each primarily covering exploratory data analysis (which roughly includes Data Understanding and Data
Value Exploration), Data Preparation, or Modelling—thus, even though the overall benchmark consider
multiple activities, each task is more narrow. DA-Code includes a variety of data structures and requires
the use of SQL, Python, and Bash. Each task is accompanied by a single canonical artefact (table, chart,
text file or hidden test-set labels) created by experienced annotators except for predictive modelling tasks.
For grading, a solution is stripped down to the elements explicitly constrained by the instructions (such as
required columns, the numeric data underlying a plot, or specified visual metadata) before applying a strict
equality check against the reference artefact. For machine-learning tasks, the grader instead computes the
task-specific metric (e.g. F1, MAE, Silhouette) on the hidden labels and awards partial credit in proportion
to performance above baseline. Relatedly, InfiAgent-DABench introduces DAEval, a dataset of 257 GPT-4
generated closed-form questions, such as “Is there a linear relationship between the GDP per capita and
the life expectancy score in Happiness_rank.csv? Conduct linear regression and use the resulting coefficient
of determination (R-squared) to evaluate the model’s goodness of fit ... [omitted for brevity]”, derived from
csv files sourced from GitHub repositories, with respective gold-standard answers generated by OpenAI’s
Advanced Data Analysis8. The benchmark covers a broad range of tasks, such as feature engineering,
correlation analysis, data preprocessing, distribution analysis, summary statistics (all representing Data
Preparation and Understanding), and machine learning (Modelling). The evaluation relies on calculating
the portion of questions for which all subquestions exactly match the reference solution. Finally, DSBench
obtains tasks from ModelOff9 and Kaggle and split them into two categories: data analysis, 466 tasks
characterised by long text context, various modalities, and a wide scope for solutions, and evaluated in
terms of accuracy by an LLM which compares the responses to a human solution; and data modelling, 74
tasks requiring the LLM to build a predictive model with performance scored by the ability of the agent
to generate and submit a bug-free model. Beyond Data Understanding, Data Preparation and Modelling,
some tasks also cover Evaluation, Deployment, and exploratory activities.

Moving to a broader range of activities, DSEval (Zhang et al., 2024b) contains chains of inter-dependent
problems (based on data from StackOverflow, Pandas-exercises10, LeetCode11, and Kaggle) where each
highlights a different stage of the data-science lifecycle—Data Understanding and Preparation, Modelling,
or interpretation (belonging to Deployment and Narrative Exploration)—while re-using the runtime context
left by the previous problems. By doing so, agents must solve the overall task by following the same steps that
humans would follow; thus, DSEval only evaluates agents’ substitution ability rather than their potential to
transform tasks (Sec. 2.1). For each problem, they employ custom validator modules to check correctness
against the solution or run unit tests. Relatedly, Tapilot-Crossing (Li et al., 2024) obtains a set of tasks
by simulating (with LLMs) a company setup composed of an administrator and data scientist solving a
client’s problem making use of an AI Chatbot Agent; they then manually filter those interactions where the
Chatbot Agent produced correct code and obtain 1024 interactions where agents are asked to write code
to solve a problem or answer a multiple-choice question. Overall, these tasks cover Data Understanding
and Preparation, Data Value Exploration, Modelling, Deployment, Results and Narrative Exploration (by
converting plots into answers or summarising findings in prose). They test agents both in a “normal” mode,

8https://openai.com/blog/chatgpt-plugins#code-interpreter
9https://corporatefinanceinstitute.com/resources/financial-modeling/modeloff-guide/

10https://github.com/guipsamora/pandas_exercises
11https://leetcode.com/

10

https://openai.com/blog/chatgpt-plugins#code-interpreter
https://corporatefinanceinstitute.com/resources/financial-modeling/modeloff-guide/
https://github.com/guipsamora/pandas_exercises
https://leetcode.com/

Under review as submission to TMLR

where all requirements and details are specified by the user, and in an “action” mode, where the agent has to
perform an action such as asking for clarification, updating code based on user-reported error, and others. For
code updating and normal turns, the agent’s interactivity is disabled, effectively falling back to an assistant
setup, while in the other cases the agent may iteratively call a sandboxed Python executor. Further, for
the “clarification” tasks, the agent has to pose follow-up questions that are answered by a LLM-simulated
user, making this one of a few benchmarks (Li et al., 2025b;a) that evaluate interactivity. An example of
the different interaction modes can be found in Fig. 4. Overall, however, scoring is purely based on the
outcome (thus not judging the quality of the interaction): the agent’s artefact is compared to a gold reference
with task-specific comparators. Finally, ScienceAgentBench (Chen et al., 2024) builds on 102 tasks from
scientific peer-reviewed publications, validated by subject experts; each task includes a data-driven discovery
goal, information on the data, expert-provided knowledge, and a reference Python program. The questions
are challenging, such as “Develop a drug-target interaction model with the DAVIS dataset to repurpose the
antiviral drugs for COVID”, or “Analyze Toronto fire stations and their service coverage to identify coverage
gaps”. The performance of the LLM agent on each task is scored against 3 metrics: Program Evaluation
(itself consisting of: Valid Execution Rate, Success Rate, API Cost and embedding similarity computed
by CodeBERT Zhou et al., 2023); Figure Evaluation (using GPT-4o); and Rubric-Based Evaluation based
on 5 fundamental steps (Data Loading, Data Processing, Modelling or Visualisation, Output Formatting,
and Output Saving). Therefore, this mostly evaluates substitution (Sec. 2.1) both by closely referring to
human-provided solutions and by splitting the task in the same sequence of steps humans would follow.

4.3 End-to-end tasks scored by their final result

A few works instead evaluate agents on end-to-end questions—involving formulating plans, generating code
and plots, and producing coherent results and insights—and score the final output of the task (in contrast to
individual steps as in Sec. 4.2). This naturally allows to reward higher levels of task transformation beyond
mere human substitution (Sec. 2.1). First, InsightBench (Sahu et al., 2025) includes 100 tabular datasets
of 500 synthetically-generated entries each, organised in structures obtained from a real-world enterprise
data management platform. When generating the synthetic data, a set of insights is manually “planted”
in them. The insights (a total of 475) are divided into four families: descriptive, consisting of plots that
describe the data; diagnostic, analysing the cause behind trends; predictive, consisting of visualisations that
summarise model predictions; prescriptive, that explain actionable insights. The LLM agents are evalu-
ated based on how many insights they recover, when provided with the dataset and an open-ended goal
formulated by non-expert users, such as “Analyse incident trends in the data.csv file”. In particular, Llama-
3-Eval, a technique inspired by G-Eval (Liu et al., 2023b) which uses Llama-3 (Dubey et al., 2024), is used
to compare the agent-produced insights with the reference ones, both at a summary level and at a deeper
description level. The tasks require touch upon multiple data science activities—from Goal Exploration to
Data Understanding, Value Exploration and Preparation, and to Modelling and Narrative Exploration—but
only the final insights are directly evaluated (Deployment, Narrative Exploration, and Result Exploration).
Similarly, BLADE (Gu et al., 2024) and DiscoveryBench (Majumder et al., 2024) both challenge LLM
agents to explore a complex dataset with a vaguely defined goal, such as “Are soccer players with a dark
skin tone more likely than those with a light skin tone to receive red cards from referees?” (Gu et al., 2024).
However, differently from InsightBench, they consider scientific datasets and focuses on agents’ ability to
integrate statistical knowledge with understanding of data from a broad range of scientific domains. Both
BLADE and DiscoveryBench include end-to-end scientific data-analysis tasks that begin with genuine re-
search questions and necessitate multistep solution workflows. BLADE includes 12 carefully curated datasets
collected from statistical textbooks, research papers, and crowd-sourced studies, while DiscoveryBench offers
264 real-world tasks drawn from published studies plus 903 synthetic tasks spanning 48 domains. Tasks
cover Data Understanding, Preparation, statistical and Machine Learning Modelling, Narrative Exploration,
as well as Deployment, Data Value Exploration and various degrees of domain understanding (Business
Understanding and Data Understanding). Both BLADE and DiscoveryBench grade solutions automatically
with LLMs so that multiple defensible workflows can receive credit. Their emphases, however, diverge:
BLADE checks if each analytical step—conceptual variable selection, admissible transformations, model
family, hyper-parameters—corresponds to one of multiple expert-produced solutions (to account for alter-
natives), which however still limits the amount by which the agent can transform the task; DiscoveryBench

11

Under review as submission to TMLR

instead scores at the level of the final context, variables and relationship identified, using GPT-4 to judge
the semantic match between the agent’s claim and without considering how the former was obtained. An
overview of BLADE and DiscoveryBench can be found in Figs. 2 and 5.

From Table 3, we can see that agents have been evaluated on more data science activities than assistants
(Table 2), particularly considering goal-oriented activities (with the exception of Business Understanding);
however, there is still a lack of evaluations for data management and, to a lesser extent, exploratory activities.
Additionally, of all the surveyed works, only BiasBenchmark (Li et al., 2025b), Tapilot-Crossing (Li et al.,
2024), and IDA-Bench (Li et al., 2025a) evaluate agents in a collaborative framework with (simulated) users.

5 Challenges and future directions

Our analysis shows that most evaluation works focus either on assistance, looking at isolated tasks that
require LLMs to provide an answer on a single-turn basis (without access to tools and under human super-
vision) or on full automation, where LLMs are wrapped in agents that act autonomously. A few notable
exceptions exist (Yu et al., 2019a; Li et al., 2024; 2025b;a), which primarily rely on other LLMs to simulate
human users. While this approach ensures cost-effective evaluation and reproducibility, exploratory tasks
may lead the agent to attempt novel solutions, such that the simulated user may be unable to assist it as
the most suitable answer may not be within its knowledge base. This can be partly addressed by employing
humans to answer such unprecedented queries and progressively enriching the knowledge base. Furthermore,
informative evaluations should also quantify the trade-off between autonomy and reliability/performance;
among the surveyed works, only Li et al. (2025a) advances in this direction.

We found data management and exploratory activities remain mostly uncovered. This is due to 1) the inher-
ent difficulty of scoring exploratory activities, which lack a fixed ground truth, and 2) the complex real-world
interactions that certain exploratory activities (such as Business Understanding and Goal Exploration) and
data management activities (Acquisition and Simulation) demand. To address this issue, simulated environ-
ments where data management and client interaction can occur should be developed, analogous to related
developments in scientific research evaluation (Jansen et al., 2024; Cerrato et al., 2024). Such environments
would enable the evaluation of agents or assistants that function holistically as data scientists by under-
standing business requirements, facilitating data collection, and adapting customer requests through data
exploration. Simultaneously, realistic evaluation should progress toward end-to-end tasks that do not de-
pend on strict ground truth comparisons or simple activity-specific metrics. Instead, these evaluations should
reward insight generation (such as the works in Sec. 4.3) in potentially original ways, thereby properly in-
centivising systems that fundamentally redefine activities rather than focusing solely on human substitution.

Thus, we propose the following actions to improve data science evaluation of AI systems:

• More comprehensive benchmarks covering most activities in Table 1, considering intermediate steps
and preparatory activities, for evaluating substitution-focused approaches.

• Greater emphasis on incorporating human assistance (either real or simulated) in the evaluation,
and developing methods to quantify the trade-off between autonomy and reliability.

• Development of comprehensive simulated environments that enable testing AI systems as holistic
data scientists performing data collection and client interaction activities.

• Evaluations incorporating end-to-end tasks and broad objectives that allow and reward systems that
redefine activities and propose original solutions differing from the reference ones.

• Field studies to validate the measurements obtained through these evaluation tools by comparing
them to the real-world impact of human-AI collaborations.

There has been enormous progress in data science automation, compared to the state of the art just a
few years ago (De Bie et al., 2022). It is in open-ended tasks, the use of domain context and human-AI
collaboration where data science automation is lagging behind, but upcoming tools may be able to conquer
these domains: we must make sure our evaluations allow us to properly track progress.

12

Under review as submission to TMLR

References

OpenAI Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim ing Bao, Mo Bavarian, Jeff Belgum, Irwan Bello, Jake
Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Made laine Boyd,
Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie
Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang,
Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Benjamin Chess, Chester
Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dun-
ning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Sim’on Posada
Fishman, Juston Forte, Is abella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun
Gogineni, Gabriel Goh, Raphael Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan
Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He,
Mike Heaton, Jo hannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang,
Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer
Kaftan, Lukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Lo-
gan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Hendrik Kirchner, Jamie Ryan Kiros,
Matthew Knight, Daniel Kokotajlo, Lukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle
Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung,
Daniel Levy, Chak Li, Rachel Lim, Molly Lin, Stephanie Lin, Ma teusz Litwin, Theresa Lopez, Ryan
Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski,
Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Christine McLeavey,
Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko,
Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel P. Mossing, Tong Mu, Mira Murati, Oleg Murk,
David M’ely, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Ouyang Long, Cullen O’Keefe, Jakub W. Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alexandre Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Pondé de Oliveira Pinto, Michael
Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack W. Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rim-
bach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario D. Saltarelli, Ted Sanders, Shibani
Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Selsam, Kyla Shep-
pard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie
Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher,
Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas A. Tezak, Madeleine Thomp-
son, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan
Felipe Cer’on Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll L. Wainwright, Justin Jay
Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welin-
der, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah
Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu,
Qim ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tian-
hao Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. GPT-4 Technical Report. 2023. URL
https://arxiv.org/pdf/2303.08774.

Tijl De Bie, Luc de Raedt, José Hernández-Orallo, Holger H. Hoos, Padhraic Smyth, and Christopher
K. I. Williams. Automating data science. Communications of the ACM, 65:76–87, 2021. URL https:
//dl.acm.org/doi/10.1145/3495256.

Ben Bogin, Kejuan Yang, Shashank Gupta, Kyle Richardson, Erin Bransom, Peter Clark, Ashish Sabhar-
wal, and Tushar Khot. SUPER: Evaluating Agents on Setting Up and Executing Tasks from Research
Repositories. ArXiv, abs/2409.07440, 2024. URL https://arxiv.org/abs/2409.07440.

13

https://arxiv.org/pdf/2303.08774
https://dl.acm.org/doi/10.1145/3495256
https://dl.acm.org/doi/10.1145/3495256
https://arxiv.org/abs/2409.07440

Under review as submission to TMLR

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter,
Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christo-
pher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language Models are
Few-Shot Learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc., 2020. URL
https://proceedings.neurips.cc/paper%5Ffiles/paper/2020/file/1457c0d6bfcb4967418bfb8ac
142f64a-Paper.pdf.

Erik Brynjolfsson. The turing trap: The promise & peril of human-like artificial intelligence. Daedalus, 151
(2):272–287, 2022.

Erik Brynjolfsson, Danielle Li, and Lindsey Raymond. Generative AI at work. The Quarterly Journal of
Economics, pp. qjae044, 2025.

John Burden, Marko Tešić, Lorenzo Pacchiardi, and José Hernández-Orallo. Paradigms of AI Evaluation:
Mapping Goals, Methodologies and Culture. arXiv preprint arXiv:2502.15620, 2025. URL https://doi.
org/10.48550/arXiv.2502.15620.

Mattia Cerrato, Nicholas Schmitt, Lennart Baur, Edward Finkelstein, Selina Jukic, Lars Münzel, Felix Peter
Paul, Pascal Pfannes, Benedikt Rohr, Julius Schellenberg, et al. Science-Gym: A simple testbed for
AI-driven scientific discovery. In International Conference on Discovery Science, pp. 229–243. Springer,
2024.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio Starace,
Kevin Liu, Leon Maksin, Tejal A. Patwardhan, Lilian Weng, and Aleksander Mkadry. MLE-bench: Eval-
uating Machine Learning Agents on Machine Learning Engineering. ArXiv, abs/2410.07095, 2024. URL
https://arxiv.org/abs/2410.07095.

Shubham Chandel, Colin B. Clement, Guillermo Serrato, and Neel Sundaresan. Training and Evaluating
a Jupyter Notebook Data Science Assistant. In Proceedings of the 36th AAAI Conference on Artificial
Intelligence (AAAI), 2022. URL https://github.com/microsoft/DataScienceProblems.

Yu-Chu Chang, Xu Wang, Jindong Wang, Yuanyi Wu, Kaijie Zhu, Hao Chen, Linyi Yang, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, Weirong Ye, Yue Zhang, Yi Chang, Philip S. Yu, Qian Yang, and Xingxu
Xie. A Survey on Evaluation of Large Language Models. ACM Transactions on Intelligent Systems and
Technology, 15:1–45, 2023. URL https://dl.acm.org/doi/10.1145/3641289.

Peter Chapman. CRISP-DM 1.0: Step-by-step data mining guide. 2000. URL https://www.kde.cs.uni-k
assel.de/wp-content/uploads/lehre/ws2012-13/kdd/files/CRISPWP-0800.pdf.

Ziru Chen, Shijie Chen, Yuting Ning, Qianheng Zhang, Boshi Wang, Botao Yu, Yifei Li, Zeyi Liao, Chen Wei,
Zitong Lu, Vishal Dey, Mingyi Xue, Frazier N. Baker, Benjamin Burns, Daniel Adu-Ampratwum, Xuhui
Huang, Xia Ning, Song Gao, Yu Su, and Huan Sun. ScienceAgentBench: Toward Rigorous Assessment
of Language Agents for Data-Driven Scientific Discovery. ArXiv, abs/2410.05080, 2024. URL https:
//arxiv.org/abs/2410.05080.

Liying Cheng, Xingxuan Li, and Lidong Bing. Is GPT-4 a Good Data Analyst? In Findings of the Association
for Computational Linguistics: EMNLP 2023, pp. 9496–9514, 2023. URL https://doi.org/10.48550/a
rXiv.2305.15038.

Peter Cihon, Merlin Stein, Gagan Bansal, Sam Manning, and Kevin Xu. Measuring AI Agent Autonomy:
Towards a Scalable Approach With Code Inspection. In Workshop on Socially Responsible Language
Modelling Research, 2024. URL https://openreview.net/forum?id=VulxpvCNoA.

Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third Annual ACM
Symposium on Theory of Computing, STOC ’71, pp. 151–158, New York, NY, USA, 1971. Association for

14

https://proceedings.neurips.cc/paper%5Ffiles/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper%5Ffiles/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.48550/arXiv.2502.15620
https://doi.org/10.48550/arXiv.2502.15620
https://arxiv.org/abs/2410.07095
https://github.com/microsoft/DataScienceProblems
https://dl.acm.org/doi/10.1145/3641289
https://www.kde.cs.uni-kassel.de/wp-content/uploads/lehre/ws2012-13/kdd/files/CRISPWP-0800.pdf
https://www.kde.cs.uni-kassel.de/wp-content/uploads/lehre/ws2012-13/kdd/files/CRISPWP-0800.pdf
https://arxiv.org/abs/2410.05080
https://arxiv.org/abs/2410.05080
https://doi.org/10.48550/arXiv.2305.15038
https://doi.org/10.48550/arXiv.2305.15038
https://openreview.net/forum?id=VulxpvCNoA

Under review as submission to TMLR

Computing Machinery. ISBN 9781450374644. doi: 10.1145/800157.805047. URL https://doi.org/10.1
145/800157.805047.

Tijl De Bie, Luc De Raedt, José Hernández-Orallo, Holger H. Hoos, Padhraic Smyth, and Christopher K. I.
Williams. Automating data science. Commun. ACM, 65(3):76–87, February 2022. ISSN 0001-0782. doi:
10.1145/3495256. URL https://doi.org/10.1145/3495256.

Victor Dibia. LIDA: A Tool for Automatic Generation of Grammar-Agnostic Visualizations and Info-
graphics using Large Language Models. In Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (ACL), Volume 3: System Demonstrations, pp. 113–126, 2023. URL
https://aclanthology.org/2023.acl-demo.11/.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony S. Hartshorn, Aobo
Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang,
Aur’elien Rodriguez, Austen Gregerson, Ava Spataru, Bap tiste Rozière, Bethany Biron, Binh Tang,
Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Chris-
tian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Cantón Ferrer, Cyrus Nikolaidis,
Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv
Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab A. AlBadawy, Elina
Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriele Synnaeve, Gabrielle
Lee, Georgia Lewis Anderson, Graeme Nail, Grégoire Mialon, Guanglong Pang, Guillem Cucurell, Hai-
ley Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M.
Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park,
Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo
Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Ju-Qing Jia, Kalyan Vasuden Alwala, K. Upasani,
Kate Plawiak, Keqian Li, Ken-591 neth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz
Malik, Kuen ley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen,
Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat,
Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas,
Mathew Oldham, Mathieu Rita, Maya Pavlova, Melissa Hall Melanie Kambadur, Mike Lewis, Min Si,
Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Niko lay Bashlykov, Nikolay Bogoy-
chev, Niladri S. Chatterji, Olivier Duchenne, Onur cCelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei
Li, Petar Vasić, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura,
Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Sil-
veira Cabral, Robert Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit Patel, Ro main Sauvestre, Ron-
nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana
Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan
Narang, Sharath Chandra Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Van-
denhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney
Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ra-
manathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu,
Wenhan Xiong, Wenyin Fu, Whit ney Meers, Xavier Martinet, Xiaodong Wang, Xiaoqing Ellen Tan,
Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yiqian Wen,
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zhengxu Yan, Zhengxing
Chen, Zoe Papakipos, Aaditya K. Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adi
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan,
Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Al-
varado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani,
Annie Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisen-
man, Azadeh Yazdan, Beau James, Ben Maurer, Ben Leonhardi, Po-Yao (Bernie) Huang, Beth Loyd,
Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia,

15

https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/3495256
https://aclanthology.org/2023.acl-demo.11/

Under review as submission to TMLR

Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tin-
dal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Shang-Wen Li, Danny Wyatt,
David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss,
Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora
Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei
Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco Caggioni, Francisco Guzm’an, Frank J. Kanayet,
Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind
Thattai, Grant Herman, Grigory G. Sizov, Guangyi Zhang, Guna Lakshminarayanan, Hamid Shojanaz-
eri, Han Zou, Hannah Wang, Han Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren,
Hunter Goldman, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Ge-
boski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen,
Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon
Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kaixing(Kai) Wu, U KamHou,
Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veer-
araghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang, Lailin
Chen, Lakshya Garg, A Lavender, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron
Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Mar-
tynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya
Lathi, Meghan Keneally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov,
Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Moham-
mad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa,
Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong, Ning Zhang, Nor-
man Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh,
Paul Saab, Pavan Balaji, Pe dro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollár, Polina Zvyag-
ina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub,
Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky
Wang, Rohan Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu, Samyak Datta, Sara Chugh,
Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang
Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen,
Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sung-Bae Cho, Sunny Virk,
Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked,
Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla,
Vlad Ionescu, Vlad Andrei Poenaru, Vlad T. Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wen-
wen Jiang, Wes Bouaziz, Will Constable, Xia Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide
Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang,
Yossi Adi, Youngjin Nam, Yu Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito,
Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The Llama 3 Herd of Models. ArXiv,
abs/2407.21783, 2024. URL https://arxiv.org/abs/2407.21783.

Maria Eriksson, Erasmo Purificato, Arman Noroozian, Joao Vinagre, Guillaume Chaslot, Emilia Gomez,
and David Fernandez-Llorca. Can We Trust AI Benchmarks? An Interdisciplinary Review of Current
Issues in AI Evaluation. arXiv preprint arXiv:2502.06559, 2025. URL https://doi.org/10.48550/arX
iv.2502.06559.

Carl Benedikt Frey and Michael Osborne. Generative AI and the future of work: a reappraisal. Brown J.
World Aff., 30:161, 2023.

Pieter Gijsbers, Marcos LP Bueno, Stefan Coors, Erin LeDell, Sébastien Poirier, Janek Thomas, Bernd
Bischl, and Joaquin Vanschoren. Amlb: an automl benchmark. Journal of Machine Learning Research,
25(101):1–65, 2024. URL https://www.jmlr.org/papers/volume25/22-0493/22-0493.pdf.

Ken Gu, Ruoxi Shang, Ruien Jiang, Keying Kuang, Richard-John Lin, Donghe Lyu, Yue Mao, Youran Pan,
Teng Wu, Jiaqian Yu, Yikun Zhang, Tianmai M. Zhang, Lanyi Zhu, Mike A. Merrill, Jeffrey Heer, and

16

https://arxiv.org/abs/2407.21783
https://doi.org/10.48550/arXiv.2502.06559
https://doi.org/10.48550/arXiv.2502.06559
https://www.jmlr.org/papers/volume25/22-0493/22-0493.pdf

Under review as submission to TMLR

Tim Althoff. BLADE: Benchmarking Language Model Agents for Data-Driven Science. arXiv, 2024. URL
https://arxiv.org/abs/2408.09667v2.

Zishan Guo, Renren Jin, Chuang Liu, Yufei Huang, Dan Shi, Supryadi, Linhao Yu, Yan Liu, Jiaxuan Li,
Bojian Xiong, and Deyi Xiong. Evaluating Large Language Models: A Comprehensive Survey. ArXiv,
abs/2310.19736, 2023. URL https://arxiv.org/abs/2310.19736.

Erica R Hamilton, Joshua M Rosenberg, and Mete Akcaoglu. The substitution augmentation modification
redefinition (SAMR) model: A critical review and suggestions for its use. TechTrends, 60:433–441, 2016.

Chuxuan Hu, Dwip Dalal, and Xiaona Zhou. A Dataset-Centric Survey of LLM-Agents for Data Science.
OpenReview, 2025. URL https://openreview.net/pdf?id=W4hexmqgoN.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Guoyin Wang, Xuwu Wang, Jing Su, Jingjing Xu, Ming
Zhu, Yao Cheng, Jianbo Yuan, Kun Kuang, Yang Yang, Hongxia Yang, and Fei Wu. InfiAgent-DABench:
Evaluating Agents on Data Analysis Tasks. ArXiv, abs/2401.05507, 2024. URL https://arxiv.org/ab
s/2401.05507.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. MLAgentBench: Evaluating Language Agents
on Machine Learning Experimentation. In Proceedings of the 41st International Conference on Machine
Learning (ICML), 2024a. URL https://doi.org/10.48550/arXiv.2310.03302.

Yiming Huang, Jianwen Luo, Yan Yu, Yitong Zhang, Fangyu Lei, Yifan Wei, Shizhu He, Lifu Huang, Xiao
Liu, Jun Zhao, and Kang Liu. DA-Code: Agent Data Science Code Generation Benchmark for Large
Language Models. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 13487–13521, 2024b. URL https://arxiv.org/abs/2410.07331.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine learning: methods, systems,
challenges. Springer Nature, 2019.

Peter Jansen, Marc-Alexandre Côté, Tushar Khot, Erin Bransom, Bhavana Dalvi Mishra, Bod-
hisattwa Prasad Majumder, Oyvind Tafjord, and Peter Clark. Discoveryworld: A virtual environment
for developing and evaluating automated scientific discovery agents. Advances in Neural Information
Processing Systems, 37:10088–10116, 2024.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. SWE-Bench: Can Language Models Resolve Real-World GitHub Issues? In Proceedings
of the International Conference on Learning Representations (ICLR), 2024. URL https://openreview
.net/forum?id=VTF8yNQM66.

Liqiang Jing, Zhehui Huang, Xiaoyang Wang, Wenlin Yao, Wenhao Yu, Kaixin Ma, Hongming Zhang, Xinya
Du, and Dong Yu. DSBench: How Far Are Data Science Agents to Becoming Data Science Experts?
ArXiv, abs/2409.07703, 2024. URL https://arxiv.org/abs/2409.07703.

Thomas Kwa, Ben West, Joel Becker, Amy Deng, Katharyn Garcia, Max Hasin, Sami Jawhar, Megan
Kinniment, Nate Rush, Sydney Von Arx, et al. Measuring AI Ability to Complete Long Tasks. arXiv
preprint arXiv:2503.14499, 2025.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen tau Yih, Daniel
Fried, Sida Wang, and Tao Yu. DS-1000: A Natural and Reliable Benchmark for Data Science Code
Generation. In Proceedings of the 40th International Conference on Machine Learning (ICML), 2023.
URL https://doi.org/10.48550/arXiv.2211.11501.

Fangyu Lei, Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo,
Hongcheng Gao, Hongcheng Gao, Pengcheng Yin, Victor Zhong, Caiming Xiong, Ruoxi Sun, Qian Liu,
Sida Wang, and Tao Yu. Spider 2.0: Evaluating Language Models on Real-World Enterprise Text-to-SQL
Workflows. ArXiv, abs/2411.07763, 2024. URL https://arxiv.org/abs/2411.07763.

17

https://arxiv.org/abs/2408.09667v2
https://arxiv.org/abs/2310.19736
https://openreview.net/pdf?id=W4hexmqgoN
https://arxiv.org/abs/2401.05507
https://arxiv.org/abs/2401.05507
https://doi.org/10.48550/arXiv.2310.03302
https://arxiv.org/abs/2410.07331
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2409.07703
https://doi.org/10.48550/arXiv.2211.11501
https://arxiv.org/abs/2411.07763

Under review as submission to TMLR

Hanyu Li, Haoyu Liu, Tingyu Zhu, Tianyu Guo, Zeyu Zheng, Xiaotie Deng, and Michael I. Jordan. IDA-
Bench: Evaluating LLMs on Interactive Guided Data Analysis. arXiv preprint arXiv:2505.18223, 2025a.
URL https://arxiv.org/abs/2505.18223. Submitted on 23 May 2025.

Haoxuan Li, Mingyu Derek Ma, Jen tse Huang, Zhaotian Weng, Wei Wang, and Jieyu Zhao. BI-
ASINSPECTOR: Detecting Bias in Structured Data through LLM Agents. 2025b. URL https:
//arxiv.org/abs/2504.04855.

Jinyang Li, Nan Huo, Yan Gao, Jiayi Shi, Yingxiu Zhao, Ge Qu, Yurong Wu, Chenhao Ma, Jian-Guang
Lou, and Reynold Cheng. Tapilot-Crossing: Benchmarking and Evolving LLMs Towards Interactive Data
Analysis Agents. ArXiv, abs/2403.05307, 2024. URL https://arxiv.org/abs/2403.05307.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Yuxian Gu, Hangliang
Ding, Kai Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui Zhang,
Shengqi Shen, Tianjun Zhang, Sheng Shen, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
AgentBench: Evaluating LLMs as Agents. ArXiv, abs/2308.03688, 2023a. URL https://arxiv.org/ab
s/2308.03688.

Yang Liu, Dan Iter, Yichong Xu, Shuo Wang, Ruochen Xu, and Chenguang Zhu. G-Eval: NLG Evaluation
using GPT-4 with Better Human Alignment. In Conference on Empirical Methods in Natural Language
Processing, 2023b. URL https://doi.org/10.48550/arXiv.2303.16634.

Yixin Liu, Alexander R. Fabbri, Pengfei Liu, Dragomir R. Radev, and Arman Cohan. On Learning to
Summarize with Large Language Models as References. In North American Chapter of the Association
for Computational Linguistics, 2023c. URL https://doi.org/10.48550/arXiv.2305.14239.

Yuyu Luo, Jiawei Tang, and Guoliang Li. nvBench: A Large-Scale Synthesized Dataset for Cross-Domain
Natural Language to Visualization Task. ArXiv, abs/2112.12926, 2021. URL https://arxiv.org/abs/
2112.12926.

Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Bhavana Dalvi, Abhijeetsingh Meena,
Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sabharwal, and Peter Clark. DiscoveryBench: Towards
Data-Driven Discovery with Large Language Models. ArXiv, abs/2407.01725, 2024. URL https://arxi
v.org/abs/2407.01725.

Fernando Martínez-Plumed, Lidia Contreras-Ochando, Cesar Ferri, José Hernández-Orallo, Meelis Kull,
Nicolas Lachiche, María José Ramírez-Quintana, and Peter Flach. CRISP-DM twenty years later: From
data mining processes to data science trajectories. IEEE transactions on knowledge and data engineering,
33(8):3048–3061, 2019. URL https://ieeexplore.ieee.org/abstract/document/8943998.

Deepak Nathani, Lovish Madaan, Nicholas Roberts, Nikolay Bashlykov, Ajay Menon, Vincent Moens, Amar
Budhiraja, Despoina Magka, Vladislav Vorotilov, Gaurav Chaurasia, Dieuwke Hupkes, Ricardo Silveira
Cabral, Tatiana Shavrina, Jakob Foerster, Yoram Bachrach, William Yang Wang, and Roberta Raileanu.
MLGym: A New Framework and Benchmark for Advancing AI Research Agents. 2025. URL https:
//doi.org/10.48550/arXiv.2502.14499.

Shuyin Ouyang, Dong Huang, Jingwen Guo, Zeyu Sun, Qihao Zhu, and Jie M. Zhang. DS-Bench: A Realistic
Benchmark for Data Science Code Generation. 2025. URL https://doi.org/10.48550/arXiv.2505.15
621.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S.
Bernstein. Generative Agents: Interactive Simulacra of Human Behavior. In Proceedings of the 36th
Annual ACM Symposium on User Interface Software and Technology, UIST ’23, New York, NY, USA,
2023. Association for Computing Machinery. ISBN 9798400701320. doi: 10.1145/3586183.3606763. URL
https://doi.org/10.1145/3586183.3606763.

Michał Pietruszka, Łukasz Borchmann, Aleksander Jędrosz, and Paweł Morawiecki. Can models help us
create better models? Evaluating LLMs as data scientists. arXiv, 2410.23331v1, 2024. URL https:
//arxiv.org/abs/2410.23331v1.

18

https://arxiv.org/abs/2505.18223
https://arxiv.org/abs/2504.04855
https://arxiv.org/abs/2504.04855
https://arxiv.org/abs/2403.05307
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2308.03688
https://doi.org/10.48550/arXiv.2303.16634
https://doi.org/10.48550/arXiv.2305.14239
https://arxiv.org/abs/2112.12926
https://arxiv.org/abs/2112.12926
https://arxiv.org/abs/2407.01725
https://arxiv.org/abs/2407.01725
https://ieeexplore.ieee.org/abstract/document/8943998
https://doi.org/10.48550/arXiv.2502.14499
https://doi.org/10.48550/arXiv.2502.14499
https://doi.org/10.48550/arXiv.2505.15621
https://doi.org/10.48550/arXiv.2505.15621
https://doi.org/10.1145/3586183.3606763
https://arxiv.org/abs/2410.23331v1
https://arxiv.org/abs/2410.23331v1

Under review as submission to TMLR

Tidor-Vlad Pricope. HardML: A Benchmark for Evaluating Data Science and Machine Learning Knowledge
and Reasoning in AI. arXiv, 2025. URL https://arxiv.org/abs/2501.15627v1.

Ruben R Puentedura. Transformation, technology, and education. [Retrieved May],
http://hippasus.com/resources/tte/, 2006.

Gaurav Sahu, Abhay Puri, Juan Rodriguez, Amirhossein Abaskohi, Mohammad Chegini, Alexandre Drouin,
Perouz Taslakian, Valentina Zantedeschi, Alexandre Lacoste, David Vazquez, Nicolas Chapados, Christo-
pher Pal, Sai Rajeswar Mudumba, and Issam Hadj Laradji. InsightBench: Evaluating Business Analytics
Agents Through Multi-Step Insight Generation. arXiv, 2025. URL https://arxiv.org/abs/2407.064
23v3.

Ben Shneiderman. Human-centered artificial intelligence: Reliable, safe & trustworthy. International Journal
of Human–Computer Interaction, 36(6):495–504, 2020. URL https://doi.org/10.1080/10447318.202
0.1741118.

Xinyi Song, Lina Lee, Kexin Xie, Xueying Liu, Xinwei Deng, and Yili Hong. StatLLM: A Dataset for
Evaluating the Performance of Large Language Models in Statistical Analysis. 2025. URL https:
//doi.org/10.48550/arXiv.2502.17657.

Maojun Sun, Ruijian Han, Binyan Jiang, Houduo Qi, Defeng Sun, Yancheng Yuan, and Jian Huang. A
Survey on Large Language Model-based Agents for Statistics and Data Science. ArXiv, abs/2412.14222,
2024. URL https://arxiv.org/abs/2412.14222.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati.
PlanBench: An extensible benchmark for evaluating large language models on planning and reasoning
about change. Advances in Neural Information Processing Systems, 36:38975–38987, 2023. URL https:
//doi.org/10.48550/arXiv.2206.10498.

Petar Veličković, Adrià Puigdomènech Badia, David Budden, Razvan Pascanu, Andrea Banino, Mikhail
Dashevskiy, Raia Hadsell, and Charles Blundell. The CLRS Algorithmic Reasoning Benchmark. In
International Conference on Machine Learning, 2022. URL https://doi.org/10.48550/arXiv.2205.
15659.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi (Jim) Fan, and
Anima Anandkumar. Voyager: An Open-Ended Embodied Agent with Large Language Models. Trans.
Mach. Learn. Res., 2024, 2023. URL https://doi.org/10.48550/arXiv.2305.16291.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents. Frontiers of
Computer Science, 18(6):186345, 2024. URL https://link.springer.com/article/10.1007/s11704
-024-40231-1.

Hjalmar Wijk, Tao R. Lin, Joel Becker, Sami Jawhar, Neev Parikh, Thomas Broadley, Lawrence Chan,
Michael Chen, Josh Clymer, Jai Dhyani, Elena Ericheva, Katharyn Garcia, Brian Goodrich, Nikola
Jurkovic, Megan Kinniment, Aron Lajko, Seraphina Nix, Lucas Jun Koba Sato, William Saunders,
Maksym Taran, Ben West, and Elizabeth Barnes. RE-Bench: Evaluating frontier AI R&D capabil-
ities of language model agents against human experts. ArXiv, abs/2411.15114, 2024. URL https:
//arxiv.org/abs/2411.15114.

Yijia Xiao, Runhui Wang, Luyang Kong, Davor Golac, and Wei Wang. CSR-Bench: Benchmarking LLM
Agents in Deployment of Computer Science Research Repositories. 2025. URL https://doi.org/10.4
8550/arXiv.2502.06111.

Asaf Yehudai, Lilach Eden, Alan Li, Guy Uziel, Yilun Zhao, Roy Bar-Haim, Arman Cohan, and Michal
Shmueli-Scheuer. Survey on Evaluation of LLM-based Agents, 2025. URL https://arxiv.org/abs/25
03.16416.

19

https://arxiv.org/abs/2501.15627v1
https://arxiv.org/abs/2407.06423v3
https://arxiv.org/abs/2407.06423v3
https://doi.org/10.1080/10447318.2020.1741118
https://doi.org/10.1080/10447318.2020.1741118
https://doi.org/10.48550/arXiv.2502.17657
https://doi.org/10.48550/arXiv.2502.17657
https://arxiv.org/abs/2412.14222
https://doi.org/10.48550/arXiv.2206.10498
https://doi.org/10.48550/arXiv.2206.10498
https://doi.org/10.48550/arXiv.2205.15659
https://doi.org/10.48550/arXiv.2205.15659
https://doi.org/10.48550/arXiv.2305.16291
https://link.springer.com/article/10.1007/s11704-024-40231-1
https://link.springer.com/article/10.1007/s11704-024-40231-1
https://arxiv.org/abs/2411.15114
https://arxiv.org/abs/2411.15114
https://doi.org/10.48550/arXiv.2502.06111
https://doi.org/10.48550/arXiv.2502.06111
https://arxiv.org/abs/2503.16416
https://arxiv.org/abs/2503.16416

Under review as submission to TMLR

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, A. Eashaan Rao, Yeming Wen, Kensen Shi, Joshua Howland,
Paige Bailey, Michele Catasta, Henryk Michalewski, Oleksandr Polozov, and Charles Sutton. Natural
Language to Code Generation in Interactive Data Science Notebooks. ArXiv, abs/2212.09248, 2022. URL
https://arxiv.org/abs/2212.09248.

Tao Yu, Rui Zhang, Kai-Chou Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Z
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir R. Radev. Spider: A Large-Scale
Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task. ArXiv,
abs/1809.08887, 2018. URL https://arxiv.org/abs/1809.08887.

Tao Yu, Rui Zhang, He Yang Er, Suyi Li, Eric Xue, Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga, Sungrok Shim, Tao Chen, Alexander R. Fabbri,
Zifan Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vincent Zhang, Caiming Xiong, Richard Socher,
Walter S. Lasecki, and Dragomir R. Radev. CoSQL: A Conversational Text-to-SQL Challenge Towards
Cross-Domain Natural Language Interfaces to Databases. ArXiv, abs/1909.05378, 2019a. URL https:
//arxiv.org/abs/1909.05378.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern Tan, Xi Victoria Lin, Suyi Li, He Yang Er, Irene Z
Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit, David Proctor, Sungrok Shim, Jonathan Kraft, Vincent
Zhang, Caiming Xiong, Richard Socher, and Dragomir R. Radev. SParC: Cross-Domain Semantic Parsing
in Context. ArXiv, abs/1906.02285, 2019b. URL https://arxiv.org/abs/1906.02285.

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu Kim, Bei Guan, Yongji Wang, Weizhu Chen,
and Jian-Guang Lou. CERT: Continual Pre-Training on Sketches for Library-Oriented Code Generation.
In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI), pp.
2369–2375, 2022. URL https://github.com/microsoft/PyCodeGPT.

Wenqi Zhang, Yongliang Shen, Weiming Lu, and Yueting Zhuang. Data-Copilot: Bridging Billions of Data
and Humans with Autonomous Workflow. arXiv, 2024a. URL https://arxiv.org/abs/2306.07209v7.

Yuge Zhang, Qiyang Jiang, Xingyu Han, Nan Chen, Yuqing Yang, and Kan Ren. Benchmarking Data
Science Agents. In Annual Meeting of the Association for Computational Linguistics, 2024b. URL https:
//doi.org/10.48550/arXiv.2402.17168.

Shuyan Zhou, Uri Alon, Sumit Agarwal, and Graham Neubig. CodeBERTscore: Evaluating code generation
with pretrained models of code. arXiv preprint arXiv:2302.05527, 2023.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue Ou,
Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. WebArena: A Realistic Web Environment
for Building Autonomous Agents. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=oKn9c6ytLx.

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu, Lingpeng Kong, Jiajun Chen, Lei Li, and Shujian
Huang. Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis.
ArXiv, abs/2304.04675, 2023. URL https://arxiv.org/abs/2304.04675.

A Appendix: definition of data-science activities from Martínez-Plumed et al.
(2019)

We reproduce here for convenience the definition of the data-science activities as used in Martínez-Plumed
et al. (2019).

The original stages of the CRISP-DM (Cross Industry Standard Process for Data Mining, Chapman, 2000)
framework are as follows:

• Business Understanding: Understanding the project objectives and requirements from a business
perspective, then converting this knowledge into a data mining problem definition and a preliminary
plan designed to achieve the objectives.

20

https://arxiv.org/abs/2212.09248
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1909.05378
https://arxiv.org/abs/1909.05378
https://arxiv.org/abs/1906.02285
https://github.com/microsoft/PyCodeGPT
https://arxiv.org/abs/2306.07209v7
https://doi.org/10.48550/arXiv.2402.17168
https://doi.org/10.48550/arXiv.2402.17168
https://openreview.net/forum?id=oKn9c6ytLx
https://arxiv.org/abs/2304.04675

Under review as submission to TMLR

• Data Understanding: Beginning with an initial data collection and proceeding with activities to
familiarize oneself with the data, identify data quality problems, discover initial insights, and detect
interesting subsets for hypothesis formation.

• Data Preparation: Encompassing all activities required to construct the final dataset from the
initial raw data. This includes selecting tables, records, and attributes, as well as transforming and
cleaning data for modelling.

• Modelling: Selecting and applying various modelling techniques while calibrating their parameters
to optimal values. Some techniques have specific data requirements, often necessitating a return to
the data preparation phase.

• Evaluation: Evaluating the constructed model(s) to ensure they properly achieve business objec-
tives. The steps taken in the modelling process are reviewed to confirm that no important business
issues have been overlooked.

• Deployment: Applying the model in a way that is useful for the customer, such as generating
a report, implementing a repeatable data mining process, or integrating it into decision-making
systems. While the customer typically executes deployment, the analyst ensures that all necessary
steps are understood.

As argued in Martínez-Plumed et al. (2019), this framework assumes a well-defined business goal and pre-
collected data. Additionally, it follows a fairly linear process, similar to mining metal in a known location.
Thus, it is goal-oriented and process-centric, with data serving as an essential ingredient rather than the
focal point. However, in exploratory data science, data takes centre stage, akin to prospecting rather than
direct mining. Martínez-Plumed et al. (2019) introduces the following additional exploratory activities:

• Goal Exploration: Identifying business goals that can be achieved through data-driven approaches.

• Data Source Exploration: Discovering new and valuable data sources.

• Data Value Exploration: Assessing the potential value that can be extracted from the data.

• Result Exploration: Relating data science results to business goals.

• Narrative Exploration: Extracting meaningful stories, whether visual or textual, from data.

• Product Exploration: Identifying ways to transform extracted data value into services or appli-
cations that provide new and valuable benefits to users and customers.

Furthermore, Martínez-Plumed et al. (2019) critiques the CRISP-DM model for representing data as a static
entity within the process, assuming that data has already been collected and merely needs understanding and
preparation for modelling. However, modern data science projects often involve dynamic data management
activities, including:

• Data Acquisition: Obtaining or generating relevant data, such as through the installation of
sensors or applications.

• Data Simulation: Simulating complex systems to produce useful data and explore causal relation-
ships (e.g., “what-if” scenarios).

• Data Architecting: Designing the logical and physical layout of data and integrating different
data sources.

• Data Release: Making data accessible through databases, interfaces, and visualisations.

21

Under review as submission to TMLR

B Appendix: examples of tasks

result = df.div(1).add_prefix("inv_")

Prompt

Reference Solution

result = df.join(df.apply(lambda x: 1/x).add_prefix(“inv_"))

Test case 1

 df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
ans = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6],

 "inv_A": [1/1, 1/2, 1/3],

 "inv_B": [1/4, 1/5, 1/6]})

Test case 2
 df,ans = ...[omit for brevity]

 pd.testing.assert_frame_equal(result, ans)

Surface-form constraints
for and while should not appear in Syntax Tree

A:
<code>
import pandas as pd
df = pd.DataFrame({"A": [1, 2, 3],"B": [4, 5, 6]})
</code>
BEGIN SOLUTION
<code>
[insert]
</code>
END SOLUTION
<code>
print(result)
</code>

Here is a sample dataframe:
df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})

I'd like to add inverses of each existing column to the dataframe and name
them based on existing column names with a prefix, e.g. inv_A is an inverse of
column A and so on.
The resulting dataframe should look like so:
result = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "inv_A": [1/1,
1/2, 1/3], "inv_B": [1/4, 1/5, 1/6]})

Obviously there are redundant methods like doing this in a loop, but there
should exist much more pythonic ways of doing it … [omitted for brevity]

Predict

Correct/wrong?

Language Models (GPT-3 Codex)

Replace [insert] in the code context with
following predicted code snippets

Problem

Code Context

Execute to evaluate

Multi-criteria Execution-based Evaluation

Figure 1: Lai et al. (2023): “An example problem in DS-1000. The model needs to fill in the code into
[insert]in the prompt on the left; the code will then be executed to pass the multi-criteria automatic evalu-
ation, which includes the test cases and the surface-form constraints; a reference solution is provided at the
bottom left.”

Research Question/Hypothesis:   

Are soccer players with a dark skin tone more likely than those with a
light skin tone to receive red cards from referees?

Data Table

Language Model Agent

Domain Knowledge

Statistical Knowledge

Data Understanding

Generated Analysis

def transform

return

 (df: pd.DataFrame) pd.DataFrame:

 df[] df[[,]].mean(axis 1)

 df.dropna(subset [], inplace True)

 df

->
= =
= =

'skin_tone' 'rater1' 'rater2'
'skin_tone'

def

return

 (df: pd.DataFrame):

 formula
 model smf.logit(formula, data df).fit()

 model

model
=

= =
 'redCards ~ skin_tone + position + games'

DV: Red Cards using 'redCards' columns ...

Automatic Evaluation

Convert generated analyses

Ground Truth Decision Space

Data Transforms

Verb: derive

Input cols: [,]

Output col:

'rater1' 'rater2'
'rater_mean'

df

 df df
[]
([] [])

'rater_mean'
'rater1' 'rater2'

=
+ / 2

Verb: groupby

Input cols: []

Output col: none

'club'

df.groupby as_index False(,)'club' =

Verb: post_groupby

Input cols: []

Output col:

'games'
'rater_mean'

dependency

df_grp.agg games_sum((,))
= 'games' 'mean'

Conceptual Variables

Control: Player Physicality

Control: Player Position

IV: Player Skin Tone

DV: Red Cards Received

...

...

Statistical Models

...

Logistic Regression

Spearman CorrelationSpearman Correlation

Negative binomial
regression with a log link

Crowd-Sourced Annotations

Value and graph-based matching

transforms

LM-based matching

statistical models conceptual vars

Figure 2: Gu et al. (2024): “Overview of BLADE. Given a research question and dataset, LM agents generate
a full analysis containing the relevant conceptual variables, a data transform function, and a statistical
modeling function (boxes 1-4-5). BLADE automatically evaluates this against the ground truth (box 6).”

22

Under review as submission to TMLR

Show me the mean age of customers.

Okay, I will computer the mean age
of customers using Python code.

Outputs:
Mean age of customers: 53.3

Answer: 53.3

Okay, they're middle-aged. Then,
let's see what people aged 40-60
bought and how often.

......

mean_age = df['age'].mean()

print(f"Mean age of customers: {mean_age}")

I1

I1 ✓

I2

Figure 3: Li et al. (2025a): “Example task trajectory for Walmart sale prediction, showcasing the iterative
interaction between the simulated user providing instructions and the agent executing code within the
sandbox to achieve the analysis goal.”

23

Under review as submission to TMLR

Are there any patterns or trends in the top 10 player’s performance
on grass courts, such as: common opponents they struggle against?
Opponents who have won at least 3 matches are common
opponents. Return me a list of their names.

Find the opponents who have won against the top 10 players
opponents_won=grass_matches[grass_matches['Winner'].isin(top_10_
player_names) == False]['Winner'].value_counts()

Filter the opponents who have won at least 3 matches against the
top 10 players
common_opponents = opponents_won[opponents_won >= 3]
… … … …
Code Generation

Interaction Mode: Normal

Are there any patterns or trends in the top 10 player’s performance
on grass courts, such as: common opponents they struggle against?
Return me a list of their names.

To answer these questions, we‘ll analyze the dataset to find common
opponents the top 10 players struggle against, identify areas of
improvement for each player, and discuss other factors that may
impact their performance on grass courts. More Importantly, can you
make sure what kind of opponents are common?

Under_Specific

Clarification

Interaction Mode: Action (Clarification)

Interaction Mode: Private

Are there any patterns or trends in the top 10 player’s
performance on grass courts, such as: common
opponents they struggle against? Opponents who
have won at least 3 matches are common opponents.
Return me a list of their names.

from decision_company import read_csv_file,
count_unique_values, check_elements_in_list,
reset_index, convert_to_np_array, convert_np_to_list

Find the opponents who have won against the top 10
players
opponents_won=count_unique_values(grass_matches[c
heck_elements_in_list(grass_matches['Winner'],
top_10_player_names) == False]['Winner'])

Interaction Mode: Private Action (Clarification)

Are there any patterns or trends in the top 10 player’s
performance on grass courts, such as: common
opponents they struggle against? Return me a list of
their names.

Under_Specific

… More Importantly, can you make sure what kind of
opponents are common?

Opponents who have won at least 3 matches are common
opponents.

Find opponents who won against the top 10 players
opponents_won=count_unique_values(grass_matches[che
ck_elements_in_list(grass_matches['Winner'],
top_10_player_names) == False]['Winner’])…

Clarification

Are there any patterns or trends in the top 10 player’s
performance on grass courts, such as: common
opponents they struggle against? Opponents who
have won at least 3 matches are common opponents.
Return me a list of their names.

Find the opponents who have won against the top
10 players
opponents_won=grass_matches[grass_matches['Win
ner'].isin(top_10_player_names)
==False]['Winner'].value_counts()

Filter the opponents who have won at least 3
matches against the top 10 players
common_opponents =
opponents_won[opponents_won >= 3]
… … … …

Interaction Mode: Normal

Are there any patterns or trends in the top 10 player’s
performance on grass courts, such as: common
opponents they struggle against? Return me a list of
their names.

To answer these questions, we‘ll analyze the dataset to
find common opponents the top 10 players struggle
against, identify areas of improvement for each player,
and discuss other factors that may impact their
performance on grass courts. More Importantly, can
you make sure what kind of opponents are common?

Under_Specific

Clarification

Interaction Mode: Action (Clarification)

Private

Are there any patterns or trends in the top 10 player’s
performance on grass courts, such as: notable
opponents they struggle against? Opponents who
have won at least 3 matches are notable opponents.
Return me a list of their names.

from decision_company import read_csv_file,
count_unique_values, check_elements_in_list,
reset_index, convert_to_np_array, convert_np_to_list

Find the opponents who have won against the top 10
players
opponents_won=count_unique_values(grass_matches[c
heck_elements_in_list(grass_matches['Winner'],
top_10_player_names) == False]['Winner'])

Private Action (Clarification)

Are there any patterns or trends in the top 10 player’s
performance on grass courts, such as: notable
opponents they struggle against? Return me a list of
their names.

Under_Specific

… More Importantly, can you make sure what kind of
opponents are notable?

Opponents who have won at least 3 matches are notable
opponents.

Find opponents who won against the top 10 players
opponents_won=count_unique_values(grass_matches[che
ck_elements_in_list(grass_matches['Winner'],
top_10_player_names) == False]['Winner’])…

Clarification

Are there any patterns or trends in the top 10 player’s
performance on grass courts, such as: notable
opponents they struggle against? Opponents who
have won at least 3 matches are notable opponents.
Return me a list of their names.

Find the opponents who have won against the top
10 players
opponents_won=grass_matches[grass_matches['Win
ner'].isin(top_10_player_names)
==False]['Winner'].value_counts()

Filter the opponents who have won at least 3
matches against the top 10 players
notable_opponents =
opponents_won[opponents_won >= 3]
… … … …

Normal

Are there any patterns or trends in the top 10
player’s performance on grass courts, such as: notable
opponents they struggle against? Return me a list of
their names.

To answer these questions, we‘ll analyze the dataset to
find notable opponents the top 10 players struggle
against, identify areas of improvement for each player,
and discuss other factors that may impact their
performance on grass courts. More Importantly, can
you make sure what kind of opponents are notable?

Under_Specific

Clarification

Action (Clarification)

Interaction Mode: Private

Great, …, I will generate the code to identify
categorical variables in the credit_customers dataset
and suggest encoding methods for converting them to
numerical variables.

import pandas as pd

Identify categorical variables
categorical_columns =
credit_customers.select_dtypes(include=['object']).columns
…
Iterate through the categorical columns and append
them to the nominal_categorical_columns list
for col in categorical_columns:

nominal_categorical_columns.append(col)

Figure 4: Li et al. (2024): The figure shows the “Normal” mode, with the agent being provided all the
relevant information and tasked with writing code to address the task, and “Action” mode, where the agent
has to take a specific action (in this case, asking for clarification). “Private” refers to tasks requiring the use
of bespoke software libraries to which the agent has access to.

Figure 5: Majumder et al. (2024): “Each DISCOVERYBENCH task consists of a goal and dataset(s) (left).
Solving the task requires both statistical analysis and scientific semantic reasoning, e.g., deciding which
analysis is appropriate for the domain, and mapping goal terms to column names (center). A faceted
evaluation allows open-ended final answers to be rigorously evaluated (right).”

24

Under review as submission to TMLR

Let's see how
it does!

 workspace/
 ├── images/
 ├── data_description.txt
 ├── evaluation_details.txt
 ├── ...
 └── train.py

Improve the performance of the
current model in train.py ...

 workspace/
 ├── images/
 ├── data_description.txt
 ├── evaluation_details.txt
 ├── ...
 └── train.py

 workspace/
 ├── images/
 ├── data_description.txt
 ├── evaluation_details.txt
 ├── ...
 ├── submission.cav
 └── train.py

Edit train.py ...

python train.py
...

Starter Files
Task Description

Task:

Increase the
learning rate!

Test Accuracy

Evaluator

Edited! Here is
 the diff

Training Log

ot ot+1

St

at

St+1

at+1

rt rt+1

...

Figure 6: Huang et al. (2024a): “Overview of MLAgentBench. Each environment in MLAgentBench includes
a task description, a set of starter files, and an evaluator. An agent can read/write files and execute Python
code repeatedly, eventually producing a final file (e.g., test predictions in submission.csv). The agent is
evaluated based on the quality of this file..”

25

	Introduction
	Background and related work
	Levels of technological transformation
	Assistance and autonomy
	LLM evaluation
	Data science automation
	The activities of data science

	Evaluating LLM assistants in data science
	Evaluating LLM agents in data science
	Works targeting specific goal-oriented activities
	Evaluating multiple activities explicitly
	End-to-end tasks scored by their final result

	Challenges and future directions
	Appendix: definition of data-science activities from martinez2019crisp
	 Appendix: examples of tasks

