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Abstract

Data science aims to extract insights from data to support decision-making processes. Re-
cently, Large Language Models (LLMs) have been increasingly used as assistants for data
science, by suggesting ideas, techniques and small code snippets, or for the interpretation of
results and reporting. Proper automation of some data-science activities is now promised
by the rise of LLM agents, i.e., AI systems powered by an LLM equipped with additional
affordances—such as code execution and knowledge bases—that can perform self-directed
actions and interact with digital environments. In this paper, we survey the evaluation of
LLM assistants and agents for data science. We find (1) a dominant focus on a small subset
of goal-oriented activities, largely ignoring data management and exploratory activities; (2) a
concentration on pure assistance or fully autonomous agents, without considering intermedi-
ate levels of human-AI collaboration; and (3) an emphasis on human substitution, therefore
neglecting the possibility of higher levels of automation thanks to task transformation.

1 Introduction

Large Language Models (LLMs) (Brown et al., 2020) and their multimodal extensions first caught public
prominence by powering capable chatbots that are now widely used as assistants to humans in several tasks,
such as summarising documents (Liu et al., 2023c), performing translations (Zhu et al., 2023), and creating
code snippets (Guo et al., 2023). These LLM assistants take instructions from a human in the form of
a prompt and return an answer, with the human retaining control over planning and decision-making by
determining the sequence of actions to follow and deciding how much to rely on the assistant’s output;
while they can use tools, their usage is generally prescribed at certain steps. Now, attention is increasingly
dedicated to “LLM agents” (Wang et al., 2024) that can autonomously and iteratively decide a sequence
of actions to take and repeatedly interact with an external (digital) environment, being equipped with
affordances and tools such as code execution (Huang et al., 2024b), internet access (Zhou et al., 2024),
knowledge bases (Chen et al., 2024), and operating system control (Liu et al., 2023a), which the agents can
decide to use of autonomously.

In this paper we focus on how assistants and agents for data science applications are being evaluated. Our
aim is to provide an overview of current evaluation set ups, and highlight the gaps in scopes of evaluation,
rather than reviewing the performance of the models themselves. Data science is the process of handling
and analysing data to extract insights that support decision-making in science, business, or other contexts.
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Data science may deal with different modalities of data (tabular, images, audio, etc.) but it always involves
writing and interpreting information represented as text, whether in the form of code or natural language,
and processing images, such as to present information or models. This dominance of textual modalities,
combined with the vast amount of relevant online material that LLMs leverage during both training and
inference, makes data science well-suited for automation by LLMs. Indeed, since the early days of LLMs
(Chandel et al., 2022), LLM assistants and agents have been used in data science applications. In this work,
we survey evaluation tools measuring performance on tasks across the data science pipeline, offering, to our
knowledge, the first comprehensive review of LLM evaluation for core data science tasks1.

Data science is highly multidisciplinary and involves a breadth of activities, combining fields such as
statistics, machine learning, and data engineering with tasks such as understanding business needs, writing
reports, and preliminary research. Therefore, to compare the data science automation evaluation tools in
our survey, we adopt the data science task taxonomy of Martínez-Plumed et al. (2019), which expands the
traditional CRISP-DM framework to include activities related to data management and exploratory analysis
(see Fig. 1, reproducing Fig. 3 from Martínez-Plumed et al. 2019), and classify each evaluation tool by the
activities it requires subjects to perform and explicitly evaluates. Moreover, in our survey we specifically
consider the level of autonomy each evaluation targets—whether the subjects are agents, assistants, or
intermediate forms, such as LLM agents operating under close human supervision that correct their actions
as needed. Further, we also analyse the way in which the tasks are framed and evaluated, to understand if
they measure the ability of AI systems to simply substitute humans or if instead they consider that the AI
system can transform the task in deeper ways, such as by bringing functional improvements (for instance,
LLMs may not need to produce visualisations to perform data exploration; see Sec. 2.1).

It is worth stressing how, in our work, we do not overview developments in state-of-the-art LLM assistants
or agents for data science (referring interested readers to other works, Sun et al., 2024) nor analyse the
current performance of such systems across the various data science activities and autonomy levels. While
such efforts would be valuable and may reveal strong correlations between LLM systems’ performance on
specific tasks, our work addresses a more foundational need: to establish taxonomies across which data
science evaluations can be structured and to identify gaps in the evaluation landscape that must be filled
before a comprehensive evaluation of LLM abilities can be carried out. Therefore, by focusing on activities
and autonomy, we make the following findings:

• Most evaluation works individually target a (small) subset of data science activities (Tables 2 and
3); a few works cover multiple activities (Secs. 4.2 and 4.3), but none cover all of them. Taken to-
gether, the surveyed works cover the landscape of data-science activities in a biased fashion, chiefly
over-representing “goal-oriented” activities, such as data preprocessing, producing plots in specified
formats, or building predictive models for predetermined targets. This prevents the identification
of correlations between AI systems’ performance on different activities. Only a few studies (Cheng
et al., 2023; Sahu et al., 2025; Majumder et al., 2024) give prominence to open-ended, exploratory as-
pects of data science (such as interpreting client needs within a business context, creatively exploring
datasets and proposing potential uses) or data management(Yu et al., 2018; 2019b;a; Lei et al., 2024).

• Most studies focus either on assistants following human-defined actions or fully autonomous agents,
overlooking more realistic scenarios of intermediate LLM–human collaboration (also referred to
as “centaur evaluations”, Haupt & Brynjolfsson, 2025). Exceptions include Li et al. (2025c;b;a)
(agents with simulated human users) and Yu et al. (2019a) (assistants aiding users in clarifying
data tasks). Due to this near-binary focus, we organise the surveyed works according to the focus
on assistants (Sec. 3) and agents (Sec. 4), highlighting when they assess intermediate autonomy.

• More than half of the evaluations we survey implicitly assume that AI will substitute humans
without functionally changing the tasks, either in assuming the steps by which a task is solved
are the same a human would follow (Yu et al., 2019a; Zhang et al., 2024b; Chen et al., 2024) or
by scoring the task referring to human-produced output, despite there not being a single ground

1While many studies assess LLMs on general coding tasks (Jimenez et al., 2024) and planning (Valmeekam et al., 2023), our
survey focuses specifically on evaluations within the data science domain. This includes works that target data science-specific
coding as well as other data science activities that are often overlooked in existing evaluations.
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truth (Song et al., 2025; Huang et al., 2024b; Hu et al., 2024; Jing et al., 2024; Chen et al., 2024).
Examples of works also rewards agents that functionally transform the task to solve it by scoring
the final output are Pietruszka et al. (2024); Cheng et al. (2023); Li et al. (2025b); Chan et al.
(2024); Lei et al. (2024); Majumder et al. (2024); Sahu et al. (2025).

The paper is structured as follows: Sec. 2 discusses some fundamental concepts on technological transforma-
tion, assistance and autonomy, LLM evaluation, and data science automation and its activities. Secs. 3 and
4 dive deep into works evaluating LLM assistants and agents, respectively. Sec. 5 summarises the challenges
in data science evaluation and suggests future directions for more effective and comprehensive evaluation.

2 Background and related work

2.1 Levels of technological transformation

A naive perception of how technology transforms processes and activities is automation by substitution: a
human performing a task is replaced by a machine without functionally transforming the task. To evaluate
this, a sample of tasks representing how humans tackle an activity is collected and the machine is tested
on them (Eriksson et al., 2025). The Substitution-Augmentation-Modification-Redefinition (SAMR) model
(Puentedura, 2006; Hamilton et al., 2016) identifies substitution as the lowest level of transformation and
outlines subsequent levels with progressively greater degrees of transformation: augmentation, where the ma-
chine substitutes the human with some functional improvement; modification, where the task is significantly
redesigned to allow automation; redefinition, in which the whole activity is redesigned, even creating new
tasks. Much of the debate around AI-powered automation focuses on the two bottom levels (augmentation
and substitution), but the real penetration of AI technology is happening at the top levels of modification
and redefinition (Brynjolfsson, 2022; Brynjolfsson et al., 2025), which hold the potential to achieve higher
levels of automation. Indeed, we did not “automate away the jobs of lamplighters by building robots capa-
ble of carrying ladders and climbing lampposts” (Frey & Osborne, 2023). Importantly, activities that have
already been substituted can be iteratively transformed further as technology improves. Evaluating progress
is therefore much more complex than if substitution was the only force at play: a robot substituting human
lamplighters in carrying and climbing ladders would have scored highly in turning on gas lamps, but the
redefinition afforded by electricity led to automating street lights, rendering robotic lamplighter needless.
Similar considerations apply when evaluating AI progress in automating complex processes composed of
many activities, such as data science: for instance, LLMs may not need to produce high quality visualisa-
tions to perform successful data exploration, as they may be able to directly interpret large tables of data. To
effectively evaluate modification and redefinition, AI evaluation should allow AI systems to perform activities
differently from humans by rewarding the achievement of broad objectives.

2.2 Assistance and autonomy

Related yet orthogonal to the SAMR model is the distinction between assistance and autonomy (Shneider-
man, 2020): in an assistive situation, a human uses the technology while retaining control of the process and
only having some well-defined parts automated or improved. Assisted driving or writing are good examples:
the process becomes more efficient and safe because of the use of technology. On the contrary, in an au-
tonomous situation, the technology performs the task independently and has more freedom to choose how. Of
course, autonomy exists on a spectrum: intermediate levels include, for example, technology operating inde-
pendently while a human oversees the sequence of steps and retains the ability to halt operations. In relation
to this, Cihon et al. (2024) defined levels of agent features relevant to autonomy. Their classification assigns
high autonomy to agents acting fully autonomously, whereas the intermediate and lower levels correspond
to agents consulting humans either at termination or at each step. This aligns with our understanding of
autonomy levels, which additionally includes an even lower level where a human assigns a specific task to an
assistant. Hence, holistic AI evaluation should take into account quality of the result and the level of human
labour, which limits the impact of the technology in the long term. Importantly, for all levels of autonomy,
the technology can perform the task in a way that places the automation at any level of the SAMR hierarchy.
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2.3 LLM evaluation

The area of AI evaluation (Burden et al., 2025) mostly relies on tasks encapsulated in input-output bench-
marks with a reference output for each example. For LLMs, these input–output pairs are most often Q&A
examples used to evaluate assistants (Chang et al., 2023; Guo et al., 2023) or autonomously acting agents
(Wang et al., 2024; Yehudai et al., 2025). While the use of natural language gives a perspective of breadth,
recent works highlighted how current evaluation practice fails to measure realistic human-LLM interaction
(Haupt & Brynjolfsson, 2025) and real-world impact (Burden et al., 2025; Reiter, 2025). This agrees with
our findings that evaluations for data science mostly fail to capture intermediate levels of LLM-human col-
laboration and concentrate on evaluating substitution rather than higher levels of transformation (Sec. 2.1).
Indeed, Chang et al. (2023) and Haupt & Brynjolfsson (2025) highlighted human-in-the-loop testing and
evaluations in an open environment as important directions, and Wang et al. (2024) identified a shift to-
wards end-to-end tasks requiring human evaluators and versatile metrics, yet most evaluations today only
consider a subset of tasks in the data science pipeline, with a few exceptions (Sec. 4.3).

A few studies evaluate truly long-horizon scenarios or quantify the human effort they still require. Wang
et al. (2023) and Park et al. (2023) showed that agents can sustain hours-to-days of open-ended play or social
simulation, but both exposed failure modes that need periodic human nudges. Quantitatively, Liu et al.
(2023a) found that commercial models needed a median of 2.4 human corrections per task on a general agent
benchmark, whereas open-source models needed 5–8. Recently, Kwa et al. (2025) showed that autonomous
agents are progressively conquering tasks that take humans longer to complete when considering a fixed
success rate (e.g., 50%), but performance still progressively degrades on tasks requiring more than 10
seconds. Recently, Kwa et al. (2025) stratified tasks according to the mean execution time humans require
to complete them, then measured AI model performance on each subset of tasks within specific time ranges
(e.g., tasks taking around 10 minutes for humans). Plotting human-estimated task completion time against
AI success rate, they demonstrated that AI success rates decrease as human completion time increases.
However, when examining the human time range at which different AI models achieve a 50% success rate,
more recent models consistently reach this threshold on tasks requiring longer human completion times,
indicating progressive improvement in tackling more complex, time-intensive tasks.

2.4 Data science automation

Automating data science was a topic of research even before LLMs became commonplace. Bie et al. (2021)
argued that the technical and domain knowledge required to solve data science tasks motivated efforts to-
ward automation. The authors categorised data science tasks into four main quadrants, defined by two
axes—degree of open-endedness and dependence on domain context—highlighting that model-building ac-
tivities are more easily automated (e.g., through AutoML approaches, Hutter et al. 2019; Gijsbers et al.
2024) due to their lower open-endedness and context dependence. They also identified three forms of au-
tomation: mechanisation, composition, and assistance. Assistance corresponds to our interpretation of the
term while mechanisation and composition can be grouped under our umbrella of automation (Sec. 2.2), but
differ in focusing respectively on small parts of the process or on the overall pipeline; in our work, we do
not make this distinction and instead rely on the activities of Martínez-Plumed et al. (2019) to identify how
many elements of the pipeline each evaluation work covers. After Bie et al. (2021) published their survey,
numerous works built LLM agents to automate data science. Their evolution, capabilities, and applications
across the data science pipeline are reviewed by Sun et al. (2024); the authors, however, did not address
LLM evaluation for data science, which is the focus of our work. More recently, (Hu et al., 2025) proposed a
taxonomy for the data ecosystem: Data Management, which includes data collection, data storage, and data
preprocessing; Data Analysis, which includes model evaluation, data interpretation, and decision making;
and Data Visualisation. This taxonomy partly overlaps with that in Martínez-Plumed et al. (2019) which
we use in our work (Sec. 2.5), but misses some of the most exploratory aspects. Finally, Chintakunta et al.
(2025) conduct a systematic mapping study examining the application of LLMs in data science. Considering
a 5-stage decomposition of data science, they find that most papers apply LLMs in Data Exploration and
Analysis, followed by Model Building and Evaluation, and Data Collection and Preparation, with Deploy-
ment and Problem Definition unexplored – which mostly matches our findings, obtained with a finer task
decomposition. Moreover, from the surveyed papers, a consensus on research gaps emerges, including the
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need to expand to complex, real-world evaluation tasks and to enhance human-AI interaction by creating
more user-friendly interfaces; these echo our findings on the lack of human-AI interaction evaluations and
the artificial nature of many evaluation tools, for instance by the adoption of a “substitution” perspective.
In addition, our survey complements Chintakunta et al. (2025) by providing a deeper analysis of evaluation.

2.5 The activities of data science

Table 1: Data-science activities and brief definition (complete definitions in Appendix A).

Activity (abbr.) Brief definition
Goal-oriented (CRISP-DM)

Business Understanding (BU) Define the problem and draft a plan that meets business requirements
Data Understanding (DU) Collect and explore data to spot useful subsets, insights, or issues
Data Preparation (DP) Build the final analysis dataset via selection, cleaning, and transformation
Modelling (M) Apply modelling techniques, tune their parameters and evaluate models
Evaluation (E) Check that the business objectives are met, with no overlooked issues
Deployment (Dep) Deliver the model’s outputs in a usable form (report, integration, etc.)

Exploratory

Goal Exploration (GE) Identify business goals that could be addressed with data
Data Source Exploration (DSE) Discover new, valuable data sources
Data Value Exploration (DVE) Judge the potential value that can be extracted from the data
Result Exploration (RE) Connect data-science results back to business goals
Narrative Exploration (NE) Craft meaningful (visual or textual) stories from the data
Product Exploration (PE) Devise services or applications that turn extracted value into products

Data-management

Data Acquisition (Acq) Obtain or generate relevant data (e.g., via sensors or apps)
Data Simulation (Sim) Simulate systems to generate data and explore causal “what-if” scenarios
Data Architecting (Arch) Design the logical/physical layout and integration of data sources
Data Release (Rel) Make data accessible through databases, APIs, or visualisations

Many taxonomies of data science activities exist (see Martínez-Plumed et al., 2019, Sec 2). One of the most
popular is CRISP-DM (Cross Industry Standard Process for Data Mining, Chapman, 2000), which considers
projects as goal-oriented, with a pre-defined objective that can be approached by “mining” data through an
approximately sequential process, from problem framing to solution delivery. However, Martínez-Plumed
et al. (2019) argues that this goal-oriented, pre-collected-data perspective ignores many tasks of modern
data science, where exploration is essential and the data takes centre stage rather than serving as a fixed
backdrop. Consequently, Martínez-Plumed et al. (2019) expands this taxonomy by proposing a sequence
of exploratory activities that underscore the less prescriptive nature of data science, re-framing it as an
investigative endeavour; and data management activities that do not assume data is already given and require
to fetch more data from different sources. We provide a list of the activities introduced in Martínez-Plumed
et al. (2019) and a concise definition in Table 1. Note that not all modern data-science projects include
every activity, nor is the order of activities fixed as in the CRISP-DM framework. Instead, each project
follows its own “trajectory” in the space of data-science tasks (Martínez-Plumed et al., 2019). Moreover, the
distinction between activities may be blurred.

3 Evaluating LLM assistants in data science

In this section, we focus on evaluations of LLMs as assistants, namely prompting them in a fixed, pre-
determined manner without letting them independently determine the sequence of steps. Table 2 shows the
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surveyed papers and the activities (Sec. 2.5) they cover; a double tick marks an activity that is explicitly
assessed, whereas a single tick marks an activity that is required for completing the tasks but not directly
assessed.

Table 2: Data science activities covered by the surveyed LLM assistants evaluation works. See Sec. 2.5 for
definition of the acronyms. A double tick refers to an activity explicitly evaluated, while a single tick refers
to an activity necessary for succeeding in the tasks but not explicitly evaluated.

Goal-oriented Exploratory Data Management
Papers BU DU DP M E Dep GE DSE DVE RE NE PE Acq Sim Arch Rel
ARCADE (Yin et al., 2022) - ✓ �� - - - - - ✓ - - - - - - -
AssistedDS (Luo et al., 2025) - ✓ ✓ ✓ - - - - �� - - - - - - -
CERT (Zan et al., 2022) - - �� - - - - ✓ ✓ - - - - - - -
CoSQL (Yu et al., 2019a) - ✓ - - - �� �� - - - - - - - �� -
DS-1000 (Lai et al., 2023) - ✓ �� �� - - - - - - - - - - - -
DS-Bench (Ouyang et al., 2025) - ✓ �� �� - - - - - - - - - - - -
DSP (Chandel et al., 2022) - ✓ �� - - - - - - - - - - - - -
FeatEng (Pietruszka et al., 2024) - �� �� ✓ - - - ✓ ✓ - - - - - - -
GPT4-DA (Cheng et al., 2023) ✓ �� ✓ �� - �� - - �� �� �� - - - - -
HardML (Pricope, 2025) - ✓ ✓ ✓ - - - - ✓ - ✓ - - - - -
LIDA (Dibia, 2023) - �� �� - ✓ - �� ✓ �� - �� - - - ✓ ��
SParC (Yu et al., 2019b) - ✓ - - - - - - - - - - - - �� -
Spider (Yu et al., 2018) - ✓ - - - - - - - - - - - - �� -
Spider 2.0-Lite (Lei et al., 2024) - ✓ - - - - - - - - - - - - �� -
Spider 2.0-Snow (Lei et al., 2024) - ✓ - - - - - - - - - - - - �� -
StatLLM (Song et al., 2025) - ✓ �� �� ✓ - - - - - - - - - - -

First, many works evaluate LLMs used to generate code for specific steps of data science, such as prepro-
cessing data given a template, fixing bugs, or producing visualisations given instructions or prerequisites.
In particular, ARCADE (Yin et al., 2022) and CERT (Zan et al., 2022) focus on Data Preparation and
related activities with specific Python libraries. ARCADE is a benchmark consisting of 1,082 coding prob-
lems involving data wrangling and Exploratory Data Analysis (EDA), defined as Jupyter notebooks, that
require Python’s Pandas library; for example, a problem could involve extracting min and max values from
a dataframe and answer questions such as “In which year was the most played game added?”. CERT instead
introduces two benchmarks (PandasEval and NumpyEval), each consisting of 101 tasks manually reworked
for coherence and consistency from StackOverflow2 problems tagged as relevant to Pandas and NumPy re-
spectively; for problems whose solution is a function, 20 test cases are included, while the correctness of
the predicted variable is checked for the other problems. Relatedly, DSP (Chandel et al., 2022) contains
problems instantiated in 306 pedagogical Jupyter notebooks with 92 associated datasets, covering data ma-
nipulation, cleaning, and wrangling (parts of Data Preparation). Similarly to CERT, the correctness of the
task is automatically graded with test cases. An example problem would be “Show the correlation between
population density in 2023 and 2050, rounded to 2 decimals”. Similarly, DS-1000 (Lai et al., 2023) consists
of 1,000 coding problems extracted from StackOverflow, spanning Python libraries such as NumPy, Pandas,
SciKit-Learn, TensorFlow, matplotlib, SciPy, and PyTorch. The problems are manually perturbed to
circumvent the issue of memorisation in LLMs and cover Data Preparation and Modelling. The problems
are scored through multi-criteria execution-based evaluation metrics that rely on test cases and constraints
to check whether the output relies on specific packages and functions. See Fig. 2 for an example problem
and evaluation set-up. Ouyang et al. (2025) extend DS-1000 to create DS-Bench by adding Seaborn,
Keras and LightGBM. To build the benchmark, they first define a broad task scope and collect Python seed
code from GitHub using DS-1000’s reference code and corresponding StackOverflow answers. An automated
LLM pipeline then transforms each snippet to avoid memorisation. Candidates are filtered by properties
(compilability, stars, API calls) and functionality (must pass at least one LLM-generated test). For each

2https://stackoverflow.com/questions
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surviving candidate, an LLM generates 200 test cases and a problem description—complete with an intro-
duction, function signature, input/output formats and examples. After manual review, 1,000 problems are
selected. Performance is measured with pass@k: a problem is solved if any k generated samples pass the unit
tests. Instead, FeatEng (Pietruszka et al., 2024), evaluates LLMs’ ability to produce a Python function for
engineering data features (thus addressing Data Understanding and Preparation) suitable for downstream
modelling tasks. The authors select datasets based on their popularity on Kaggle and ensuring broad domain
coverage, reaching a total of 101 tasks. Notably, and in contrast to the older works described above, where
questions admitted fixed ground truths, performance is measured in terms of the reduction in error of a model
trained on the extracted features compared to a baseline model trained on the original, untransformed data.
Therefore, this allows AI models to go beyond simply substituting humans and reach higher levels of task
transformation (Sec. 2.1). StatLLM (Song et al., 2025) instead focuses on statistical Modelling, assessing
LLMs’ ability to generate code to solve a dataset of 207 statistical analysis tasks assembled from various
public online resources, including descriptive statistics, hypothesis testing, regression and ANOVA, gener-
alised linear models, survival analysis, model selection, and non-parametric statistics; tasks might require
the LLM to run a specific model on a variable in a given dataset, or to plot a variable. Uniquely, the LLM
has to generate SAS code; evaluation is carried out using Natural Language Processing (NLP) metrics to
compare the generated code against a human gold standard, thus being grounded in substitution (Sec. 2.1).

Considering Data Management activities, Spider (Yu et al., 2018), SParC (Yu et al., 2019b) and CoSQL
(Yu et al., 2019a) (all from the same research group) evaluate conversational database querying systems
translating natural language into SQL queries (part of Data Architecting but also requiring Data Under-
standing). These works build on the same 200 databases from 138 domains: Spider consists of 10,181
manually crafted questions and 5,693 unique SQL reference queries and evaluates the generated queries with
matching of SQL components or the overall query to the reference one, or with the accuracy of the execution.
SParC expands Spider, which contains only single-turn questions, by simulating multi-turn interactions and
therefore introducing context dependence: annotators chained Spider tasks together in a conversational flow
resulting in 4,298 question sequences with 12,726 questions. Performance is evaluated in terms of exact
set match (per turn), and interaction match (full sequence accuracy); however, this does not evaluate the
ability of the AI system to interact with a user successfully. This is done in CoSQL, which also includes
task where the system must identify ambiguous questions needing clarifications and unanswerable queries
(accuracy is evaluated using dialogue act labels). This makes CoSQL unique in addressing intermediate
levels of automation for assistants (Sec. 2.2). The clarifications are then included in the context the system
uses to determine the correct SQL query, scored using exact match or component match. However, despite
being inserted in the context of a conversation, only one system answer at a time is evaluated, therefore
still considering the paradigm of substitution (Sec. 2.1). Natural language summaries of the query output
produced by the system are also evaluated (with the BLEU score). Overall, CoSQL comprises over 30,000
dialogue turns and 10,000 annotated SQL queries, derived from approximately 3,000 dialogues collected by
having users interact with a mock interface controlled by an expert and simulating real-world database query
scenarios. Finally, the same authors recently introduced (Lei et al., 2024), Spider 2.0-Lite, consisting of
547 test instructions mapped to 158 real databases hosted on BigQuery, Snowflake and SQLite and solely
scored based on execution accuracy, and Spider 2.0-Snow, re-hosting the same 547 questions on Snowflake
to spotlight one dialect while keeping identical self-contained evaluation.

Moving to the exploratory aspects of data science, LIDA (Dibia, 2023) introduces a system generating
data visualisation and infographics by prompting LLMs in a structured manner to provide a summary of
the dataset (Data Understanding), formulate data exploration goals (Data Value Exploration), generate
code specifications for the visualisations (Goal Exploration), and generate stylised graphics based on the
previous output (Narrative Exploration). This also covers aspects of Data Release as it involves making data
accessible through visualisations. The system is accompanied by an evaluation tool, based on 57 datasets
sourced from the Vega datasets3 repository; two metrics are used: visualisation error rate, computed as the
percentage of generated visualisations that result in code compilation errors; and visualisation quality, in
which GPT-4 (Achiam et al., 2023) is tasked with assessing the quality of the generated visualisations across
6 dimensions: code accuracy, data transformation, goal compliance, visualisation type, data encoding, and

3https://github.com/vega/vega-datasets
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aesthetics. Instead, AssistedDS (Luo et al. (2025)) is a benchmark designed to evaluate how well LLMs
leverage domain knowledge to improve predictive performance on tabular datasets. It tests the model’s
ability to critically assess, filter, and apply both helpful and harmful external information, using synthetic
datasets with controlled feature-label relationships and Kaggle datasets augmented with high- and low-rated
notebook insights. Evaluation focuses on code quality and predictive accuracy across, and the same task is
evaluated by providing different configurations of domain knowledge. By measuring how effectively models
identify and apply valuable domain insights, AssistedDS directly targets the core of Data Value Exploration.

While the above works focus on single steps of the data science pipeline, Cheng et al. (2023) evaluates GPT-4
as a data analyst on end-to-end data mining problems (excluding several exploratory steps and the entirety of
data management). In particular, they provide GPT-4 with a database schema (Data Understanding) and a
real-world business question (Business Understanding) and tasks it with extracting the relevant data (Data
Preparation, Data Value Exploration), conducting Modelling, generating visualisations and producing an
analysis (Deployment, Narrative Exploration, Result Exploration). GPT-4 is embedded within a framework
(referred to as GPT-4DA), in which it is first prompted to generate code that is executed to produce graphs
and a text file containing the generated data, and then prompted again to generate an analysis comprising five
insights derived from the textual data (excluding the figures). They devise three evaluation metrics for the
generated figures (correctness of data and information, chart type, and aesthetic), and four evaluation metrics
for the generated insights (correctness of data and information, alignment with question, complexity, and flu-
ency). By using these broad metrics, GPT-4 is free to solve the task in ways different from what humans would
do, thus reaching higher levels of transformation (Sec. 2.1). They test this pipeline on the NvBench dataset
(Luo et al., 2021) and employ six human professionals to evaluate GPT-4 (using a rubric detailing the above
metrics) and a professional (human) data analyst as baseline. While involving humans leads to more compre-
hensive understanding of performance, it also makes running the evaluation more costly and less reproducible.

Data science involves additional skills other than coding. For example, domain knowledge in data science is
essential. To evaluate this, Pricope (2025) introduce HardML, a benchmark of 100 multiple-choice questions,
designed to challenge experienced data science professionals, assessing advanced reasoning skills and domain
knowledge. The questions are original, handcrafted, and may include multiple correct answers; they span
various topics such as natural language processing, computer vision, statistics and statistical modelling,
classical machine learning, and cover activities such as Data Understanding and Preparation, Modelling,
Data Value Exploration and Narrative Exploration. An example question is: “An AI company just shipped
a new foundational language model. They claim they have trained it for 2.79M H800 hours on 14.8T tokens.
Upon further research, looking at Nvidia card specs, you find 3,026 TFLOPs/s of FP8 performance with
sparsity, or typically half this (1.513e15 FLOPs/s) without sparsity. Moreover, you find out that they used
FP8 FLOPs without structured sparsity. Given that the model has 37B activated parameters, roughly what
hardware utilization did they achieve? Select the closest.” Importantly, whilst several activities are evaluated
by the benchmark, each question only targets a single activity; moreover, the majority of the questions focus
on reasoning capabilities and coding for machine learning and various aspects of deep learning engineering.

From this overview, it is evident how nearly all LLM assistant evaluation works focus on code generation, and
how there is a concentration on the goal-oriented activities of Data Understanding, Data Preparation and
Modelling (Table 2), with a paucity of evaluation works for exploratory and, even more, data management
activities, except for Data Value Understanding, and a few works touching on Narrative Exploration, Goal
Exploration, Data Source Exploration, Result Exploration, Data Architecting, and Data Release.

4 Evaluating LLM agents in data science

In this section, we consider evaluations of LLM agents, which augment LLMs with a set of affordances and
allow them to determine the sequence of steps they go through by iterative prompting. We also consider
works evaluating agents with (simulated) user interaction. Table 3 shows the papers we overview and the
activities they cover (Sec. 2.5); a double tick marks an activity that is explicitly assessed, whereas a single
tick marks one that is vital for completing the tasks but not directly assessed.
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Table 3: Data science activities covered by the surveyed LLM agent evaluation works. See Sec. 2.5 for
definition of the acronyms. A double tick refers to an activity explicitly evaluated, while a single tick refers
to an activity necessary for succeeding in the tasks but not explicitly evaluated.

Goal-oriented Exploratory Data Management
Papers BU DU DP M E Dep GE DSE DVE RE NE PE Acq Sim Arch Rel
BLADE (Gu et al., 2024) - �� �� �� - ✓ - - ✓ - �� - - - - ✓
BiasBenchmark (Li et al., 2025b) - �� - - - - - - - - - - - - - -
CoTa (Li et al., 2025c) - ✓ �� �� - ✓ ✓ - - - ✓ - - - - -
CSR-Bench (Xiao et al., 2025) - - ✓ ✓ ✓ �� - - - - - - - - - -
Data-Copilot (Zhang et al., 2024a) - ✓ �� ✓ - - - - ✓ - - - - - - -
DA-Code (Huang et al., 2024b) - �� �� �� ✓ - - - ✓ - - - - - - -
DiscoveryBench (Majumder et al., 2024) ✓ ✓ ✓ ✓ - ✓ �� ✓ ✓ - �� - - ✓ - -
DSBench (Jing et al., 2024) - ✓ ✓ �� ✓ ✓ ✓ - ✓ ✓ ✓ - - - - -
DS-Eval (Zhang et al., 2024b) ✓ �� �� �� - �� - - - - �� - - - - -
IDA-Bench (Li et al., 2025a) - ✓ ✓ �� - �� - - - - - - - - - -
InfiAgent-DABench (Hu et al., 2024) - ✓ ✓ �� - - - - ✓ - ✓ - - - - -
InsightBench (Sahu et al., 2025) ✓ ✓ ✓ ✓ ✓ �� ✓ - ✓ �� �� - - - - ��
MLAgentBench (Huang et al., 2024a) - ✓ - �� ✓ ✓ - - - ✓ ✓ - - - - -
MLE-Bench (Chan et al., 2024) - ✓ ✓ �� - ✓ - - ✓ - ✓ - - - - -
MLGym (Nathani et al., 2025) - ✓ ✓ �� ✓ - - - ✓ - - - - - - -
RE-Bench (Wijk et al., 2024) - - - �� - - - - - - - - - - - -
ScienceAgentBench (Chen et al., 2024) - �� �� �� - �� ✓ - ✓ - �� - - - - -
Spider 2.0 (Lei et al., 2024) - �� - - - - �� - - - - - - - �� -
SUPER (Bogin et al., 2024) - - - ✓ ✓ �� - - - - - - - - - -
WebDS (Hsu et al., 2025) ✓ ✓ �� ✓ - �� - ✓ - �� �� - - - - ✓

4.1 Works targeting specific goal-oriented activities

Many works aim to evaluate LLM agents on individual goal-oriented activities of the data science pipeline.
Starting from Data Understanding, Li et al. (2025b) introduce BiasBenchmark, which evaluates the
ability to detect biases in datasets. To build the benchmark, they select 5 datasets from prior bias mitigation
research and 100 demographic-related features or their combinations and craft (using an LLM playing the
role of a user) possible bias detection queries, including intentionally ambiguous questions. Then, during
evaluation, a bias detection query is passed to the evaluated LLM agent to test whether it is able to
effectively detect if the bias exists by analysing the provided data; clarification questions posed by the agent
are automatically answered by the LLM-based user simulator according to the original task specifications,
ensuring consistency and reproducibility. The agent must quantify the bias level according to a 5-level
scale, which is then compared to the ground truth obtained by measuring five widely-used bias detection
metrics. However, scoring the final bias level allows to agent to determine it in potentially novel ways,
therefore going above human substitution (Sec. 2.1). They also evaluate the agent’s intermediate process,
by developing an agent-based automated evaluation system that looks at the evaluated agent’s logs and
produces performance rating levels for five aspects: user communication, task planning, tool invocation,
dynamic plan adjustment and result analysis. Interestingly, the first one (user communication) scores the
ability of the agent to ask clarification questions to the (simulated) user who set the task.

Instead, Data-Copilot (Zhang et al., 2024a) introduces an LLM agent for data wrangling that, given a
dataset schema, independently explores potential user requests and generates modular code to address them,
which is then leveraged in the deployment stage. To benchmark it, the authors release 547 test requests
drawn from 173 human seeds plus a larger 3547-request self-exploration pool. The tasks rely on financial
data and touch upon Data Value Exploration, Data Understanding and Preparation, and Modelling. Each
test case is accompanied by a human-curated answer table and they are jointly (manually) annotated with
four labels for dataset analysis: task difficulty, request rationality, expression ambiguity, answer accuracy.
System performance is measured with GPT-4-based Pass@1 scoring against the gold tables (plus an image
check) and with the number of tokens used.
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Moving towards Modelling, MLE-Bench (Chan et al., 2024) and RE-Bench (Wijk et al., 2024) are both
learning engineering benchmarks, but differ in the complexity of the tasks and scenarios: MLE-Bench encom-
passes 75 tasks sourced from Kaggle4, whose deterministic scoring functions are taken from the corresponding
Kaggle competitions—as they score the final result, this allows agents to solve the task in ways potentially dif-
ferent from humans, going beyond substitution (Sec. 2.1); however, because these functions vary across tasks,
each score is compared against a snapshot of the (human) leaderboard. Instead, RE-Bench includes 7 envi-
ronments each presenting a unique Machine Learning (ML) task focused on optimising either the loss function
or the run-time; the value of these scoring functions is manually inspected for evaluation, and evaluators need
to have access to a reference solution. Relatedly, MLAgentBench (Huang et al., 2024a) comprises 13 tasks
specified by a goal, occasionally constraints or specific instructions, starter files, and an evaluator; the tasks
are collected and adapted from recent Kaggle challenges, CLRS (Veličković et al., 2022), BabyLM5; the starter
files consist of data, description of data and metric, and initial code; each task has its own goal metric to im-
prove on, whose measure is used for automated evaluation. For an overview of MLAgent workflow and evalu-
ation, see Fig. 7. Instead, Nathani et al. (2025) introduce MLGym, an environment to train LLM agents on
ML tasks using reinforcement learning. Given a task description, an initial codebase, and actions and observa-
tions history, the agent generates an action (shell commands executed by the environment) to accomplish re-
search objectives iteratively; the execution feedback can then be used to refine the agent. MLGym is equipped
with a benchmark consisting of 13 tasks spanning data science, game theory, computer vision, NLP, and
reinforcement learning, and selected from sources such as Kaggle’s House Price Prediction6, 3-SAT (Cook,
1971), CIFAR-10’s image classification7, and more; they require the agent to perform Data Understanding,
Modelling and Evaluation. As the various tasks have different performance metric, they score each agent by a
quantity that reflects how closely, on average across a range of tolerance levels, it matches the best performer
on every individual task. MLGym differs from MLAgentBench for the larger complexity of its tasks. Finally,
(Li et al., 2025a) introduce IDA-Bench, which attempts to evaluate LLMs on their ability to perform guided
predictive Modelling tasks; the benchmark includes an LLM-simulated user with domain knowledge and sub-
jective insights who interacts with an agent to provide instructions throughout a multi-turn iterative process;
the agent is then tested on adapting its goal and following instructions. The tasks are obtained from Kaggle;
an LLM distils reference insights in natural language format from an optimal solution. These, together with
information such as hyperparameters, serve as a task-specific template for the simulated user, which requests
the agent to perform certain steps, without offering all insights up-front, and offers clarifications when asked.
Results of the trained model are evaluated against a ground truth using task-specific evaluation functions;
and compared with a human baseline, obtained by running the notebook the simulated user has access to.
They also determine the ability to interact by considering how the prediction accuracy changes by increasing
the number of interactions. Fig. 4 shows an example “trajectory” of the guided data analysis process.

Next, CSR-Bench (Xiao et al., 2025) and SUPER (Bogin et al., 2024) test whether agents can correctly
deploy code from a project repository when given instructions—an important, though not exclusive, part of
the data-science Deployment stage (Sec. 2.5). CSR-Bench and SUPER both transform GitHub repositories
into end-to-end “run-the-code” challenges in which an autonomous LLM agent must parse documentation,
install dependencies, debug failures, and produce a outcomes assessed by an automatic completion metric.
CSR-Bench supplies 100 diverse repositories, each constituting one comprehensive task that typically involves
environment setup, data and model acquisition, model training, inference, and evaluation. In contrast,
SUPER targets reproducibility in machine-learning and NLP research across 801 repositories, organised into
three nested subsets—expert (45 manually authored full-pipeline problems with human gold standards),
masked (152 focused subtasks derived from the expert set), and auto (604 GPT-4-o-generated tasks created
from repository READMEs)—each accompanied by task-specific metrics or expected outputs for evaluation.

Finally, considering agents performing Data Management tasks, Spider 2.0 (Lei et al., 2024), the most
recent iteration of Spider (Yu et al., 2018), is a benchmark of 632 real-world text-to-SQL workflow problems
derived from enterprise-level database use cases; the agent’s answers are evaluated using completion rate,
accuracy, and coherence, therefore allowing agents to solve the task in ways different from pure human

4https://www.kaggle.com/
5https://babylm.github.io/
6https://www.kaggle.com/datasets/zafarali27/house-price-prediction-dataset
7https://www.kaggle.com/code/faressayah/cifar-10-images-classification-using-cnns-88
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substitution (Sec. 2.1). Spider 2.0 differs from previous benchmarks by the same authors (Yu et al., 2018;
2019b;a, discussed in Sec. 3), in its more complex set-up: the tasks do not consist of pre-prepared inputs
(question and database schema) or expected outputs (predicted SQL), but a real project codebase and a
database interface; the agent interacts with the codebase through command scripts, as well as SQL queries.

4.2 Evaluating multiple activities explicitly

Some works target a broader spectrum of data science activities and evaluate each explicitly. To start with,
DA-Code (Huang et al., 2024b), InfiAgent-DABench (Hu et al., 2024) and DSBench (Jing et al.,
2024) all predominantly consider Data Preparation and Modelling, and mostly score the agent-produced
solution by closely comparing it with reference ones, thus being anchored in the “substitution” paradigm
(Sec. 2.1). In particular, DA-Code consists of 500 tasks sourced from Kaggle, GitHub, and other sources,
each primarily covering exploratory data analysis (which roughly includes Data Understanding and Data
Value Exploration), Data Preparation, or Modelling—thus, even though the overall benchmark consider
multiple activities, each task is more narrow. DA-Code includes a variety of data structures and requires
the use of SQL, Python, and Bash. Each task is accompanied by a single canonical artefact (table, chart,
text file or hidden test-set labels) created by experienced annotators except for predictive modelling tasks.
For grading, a solution is stripped down to the elements explicitly constrained by the instructions (such as
required columns, the numeric data underlying a plot, or specified visual metadata) before applying a strict
equality check against the reference artefact. For machine-learning tasks, the grader instead computes the
task-specific metric (e.g. F1, MAE, Silhouette) on the hidden labels and awards partial credit in proportion
to performance above baseline. Relatedly, InfiAgent-DABench introduces DAEval, a dataset of 257 GPT-4
generated closed-form questions, such as “Is there a linear relationship between the GDP per capita and
the life expectancy score in Happiness_rank.csv? Conduct linear regression and use the resulting coefficient
of determination (R-squared) to evaluate the model’s goodness of fit ... [omitted for brevity]”, derived from
csv files sourced from GitHub repositories, with respective gold-standard answers generated by OpenAI’s
Advanced Data Analysis8. The benchmark covers a broad range of tasks, such as feature engineering,
correlation analysis, data preprocessing, distribution analysis, summary statistics (all representing Data
Preparation and Understanding), and machine learning (Modelling). The evaluation relies on calculating
the portion of questions for which all subquestions exactly match the reference solution. Finally, DSBench
obtains tasks from ModelOff9 and Kaggle and split them into two categories: data analysis, 466 tasks
characterised by long text context, various modalities, and a wide scope for solutions, and evaluated in
terms of accuracy by an LLM which compares the responses to a human solution; and data modelling, 74
tasks requiring the LLM to build a predictive model with performance scored by the ability of the agent
to generate and submit a bug-free model. Beyond Data Understanding, Data Preparation and Modelling,
some tasks also cover Evaluation, Deployment, and exploratory activities.

Moving to a broader range of activities, DSEval (Zhang et al., 2024b) contains chains of inter-dependent
problems (based on data from StackOverflow, Pandas-exercises10, LeetCode11, and Kaggle) where each
highlights a different stage of the data-science lifecycle—Data Understanding and Preparation, Modelling,
or interpretation (belonging to Deployment and Narrative Exploration)—while re-using the runtime context
left by the previous problems. By doing so, agents must solve the overall task by following the same
steps that humans would follow; thus, DSEval only evaluates agents’ substitution ability rather than their
potential to transform tasks (Sec. 2.1). For each problem, they employ custom validator modules to check
correctness against the solution or run unit tests. Relatedly, CoTa (Li et al., 2025c) obtains a set of tasks
by simulating (with LLMs) a company setup composed of an administrator and data scientist solving a
client’s problem making use of an AI Chatbot Agent; they then manually filter those interactions where the
Chatbot Agent produced correct code and obtain 1024 interactions where agents are asked to write code
to solve a problem or answer a multiple-choice question. Overall, these tasks cover Data Understanding
and Preparation, Data Value Exploration, Modelling, Deployment, Results and Narrative Exploration (by
converting plots into answers or summarising findings in prose). They test agents both in a “normal” mode,

8https://openai.com/blog/chatgpt-plugins#code-interpreter
9https://corporatefinanceinstitute.com/resources/financial-modeling/modeloff-guide/

10https://github.com/guipsamora/pandas_exercises
11https://leetcode.com/
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where all requirements and details are specified by the user, and in an “action” mode, where the agent has to
perform an action such as asking for clarification, updating code based on user-reported error, and others. For
code updating and normal turns, the agent’s interactivity is disabled, effectively falling back to an assistant
setup, while in the other cases the agent may iteratively call a sandboxed Python executor. Further, for
the “clarification” tasks, the agent has to pose follow-up questions that are answered by a LLM-simulated
user, making this one of a few benchmarks (Li et al., 2025b;a) that evaluate interactivity. An example of
the different interaction modes can be found in Fig. 5. Overall, however, scoring is purely based on the
outcome (thus not judging the quality of the interaction): the agent’s artefact is compared to a gold reference
with task-specific comparators. Finally, ScienceAgentBench (Chen et al., 2024) builds on 102 tasks from
scientific peer-reviewed publications, validated by subject experts; each task includes a data-driven discovery
goal, information on the data, expert-provided knowledge, and a reference Python program. The questions
are challenging, such as “Develop a drug-target interaction model with the DAVIS dataset to repurpose the
antiviral drugs for COVID”, or “Analyze Toronto fire stations and their service coverage to identify coverage
gaps”. The performance of the LLM agent on each task is scored against 3 metrics: Program Evaluation
(itself consisting of: Valid Execution Rate, Success Rate, API Cost and embedding similarity computed
by CodeBERT Zhou et al., 2023); Figure Evaluation (using GPT-4o); and Rubric-Based Evaluation based
on 5 fundamental steps (Data Loading, Data Processing, Modelling or Visualisation, Output Formatting,
and Output Saving). Therefore, this mostly evaluates substitution (Sec. 2.1) both by closely referring to
human-provided solutions and by splitting the task in the same sequence of steps humans would follow.

4.3 End-to-end tasks scored by their final result

A few works instead evaluate agents on end-to-end questions—involving formulating plans, generating code
and plots, and producing coherent results and insights—and score the final output of the task (in contrast to
individual steps as in Sec. 4.2). This naturally allows to reward higher levels of task transformation beyond
mere human substitution (Sec. 2.1). First, InsightBench (Sahu et al., 2025) includes 100 tabular datasets
of 500 synthetically-generated entries each, organised in structures obtained from a real-world enterprise
data management platform. When generating the synthetic data, a set of insights is manually “planted”
in them. The insights (a total of 475) are divided into four families: descriptive, consisting of plots that
describe the data; diagnostic, analysing the cause behind trends; predictive, consisting of visualisations that
summarise model predictions; prescriptive, that explain actionable insights. The LLM agents are evalu-
ated based on how many insights they recover, when provided with the dataset and an open-ended goal
formulated by non-expert users, such as “Analyse incident trends in the data.csv file”. In particular, Llama-
3-Eval, a technique inspired by G-Eval (Liu et al., 2023b) which uses Llama-3 (Dubey et al., 2024), is used
to compare the agent-produced insights with the reference ones, both at a summary level and at a deeper
description level. The tasks require touch upon multiple data science activities—from Goal Exploration to
Data Understanding, Value Exploration and Preparation, and to Modelling and Narrative Exploration—but
only the final insights are directly evaluated (Deployment, Narrative Exploration, and Result Exploration).
Similarly, BLADE (Gu et al., 2024) and DiscoveryBench (Majumder et al., 2024) both challenge LLM
agents to explore a complex dataset with a vaguely defined goal, such as “Are soccer players with a dark
skin tone more likely than those with a light skin tone to receive red cards from referees?” (Gu et al.,
2024). However, differently from InsightBench, they consider scientific datasets and focus on agents’ ability
to integrate statistical knowledge with understanding of data from a broad range of scientific domains. Both
BLADE and DiscoveryBench include end-to-end scientific data-analysis tasks that begin with genuine re-
search questions and necessitate multistep solution workflows. BLADE includes 12 carefully curated datasets
collected from statistical textbooks, research papers, and crowd-sourced studies, while DiscoveryBench offers
264 real-world tasks drawn from published studies plus 903 synthetic tasks spanning 48 domains. Tasks
cover Data Understanding, Preparation, statistical and Machine Learning Modelling, Narrative Exploration,
as well as Deployment, Data Value Exploration and various degrees of domain understanding (Business
Understanding and Data Understanding). Both BLADE and DiscoveryBench grade solutions automatically
with LLMs so that multiple defensible workflows can receive credit. Their emphases, however, diverge:
BLADE checks if each analytical step—conceptual variable selection, admissible transformations, model
family, hyper-parameters—corresponds to one of multiple expert-produced solutions (to account for alter-
natives), which however still limits the amount by which the agent can transform the task; DiscoveryBench
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instead scores at the level of the final context, variables and relationship identified, using GPT-4 to judge the
semantic match between the agent’s claim and the human-produced reference solutions, without considering
how the former was obtained. An overview of BLADE and DiscoveryBench can be found in Figs. 3 and 6.
A recent paper (Hsu et al., 2025) has developed a benchmark, WebDS, to tackle the limitations of current
benchmarks in evaluating LLM agents on their ability to browse and search the internet over multiple, multi-
modal, unstructured websites to identify and collect datasets dynamically and perform the full trajectory of
web data science activities, where they define a web data science task as one that requires navigation within
an environment to acquire new raw information, that is then manipulated. They manually write 870 tasks
based on 29 websites covering 10 data-heavy domains; they evaluate both the end results (using automated
evaluation metrics where ground-truths are available), as well as the intermediate steps (such as subtask
completion, tool usage, data validity, reasoning quality) using an LLM-as-a-judge which gives scores on a
scale from 1 to 5, and then validating the protocol with human studies and stability analysis.

From Table 3, we can see that agents have been evaluated on more data science activities than assistants
(Table 2), particularly considering goal-oriented activities (with the exception of Business Understanding);
however, there is still a lack of evaluations for data management and, to a lesser extent, exploratory activities.
Additionally, of all the surveyed works, only BiasBenchmark (Li et al., 2025b), CoTa (Li et al., 2025c), and
IDA-Bench (Li et al., 2025a) evaluate agents in a collaborative framework with (simulated) users; whilst
simulated users may be an oversimplification of real users interactions, and ignores the employment of
domain experts in real-world scenarios, it is a step in the direction of evaluating interactions and their
impact on performance.

5 Challenges and future directions

Our analysis shows that most evaluation works focus either on assistance, looking at isolated tasks that
require LLMs to provide an answer on a single-turn basis (without access to tools and under human super-
vision) or on full automation, where LLMs are wrapped in agents that act autonomously. A few notable
exceptions exist (Yu et al., 2019a; Li et al., 2025c;b;a), which primarily rely on other LLMs to simulate hu-
man users. While this approach ensures cost-effective evaluation and reproducibility, exploratory tasks may
lead the agent to attempt novel solutions, such that the simulated user may be unable to assist it as the most
suitable answer may not be within its knowledge base. This can be partly addressed by employing humans
to answer such unprecedented queries and progressively enriching the knowledge base. Overall, however, the
evaluation ecosystem should be enriched by more fully-fledged “centaur evaluations” (Haupt & Brynjolfsson,
2025) that directly evaluate human-AI collaborations, reorienting AI development towards augmentation
rather than substitution and allowing researchers to directly measure human-centred desiderata, such as
perceived helpfulness; among the surveyed works, only Li et al. (2025a) goes towards these more complex
metrics, by attempting to quantify trade-off between autonomy and reliability/performance.

We found data management and exploratory activities remain mostly uncovered. This is due to 1) the inher-
ent difficulty of scoring exploratory activities, which lack a fixed ground truth, and 2) the complex real-world
interactions that certain exploratory activities (such as Business Understanding and Goal Exploration) and
data management activities (Acquisition and Simulation) demand. To address this issue, simulated environ-
ments where data management and client interaction can occur should be developed, analogous to related
developments in scientific research evaluation (Jansen et al., 2024; Cerrato et al., 2025). Such environments
would enable the evaluation of agents or assistants that function holistically as data scientists by under-
standing business requirements, facilitating data collection, and adapting customer requests through data
exploration. Simultaneously, realistic evaluation should progress toward end-to-end tasks that do not de-
pend on strict ground truth comparisons or simple activity-specific metrics. Instead, these evaluations should
reward insight generation (such as the works in Sec. 4.3) in potentially original ways, thereby properly in-
centivising systems that fundamentally redefine activities rather than focusing solely on human substitution.

Overall, these gaps in the evaluation landscape make it impossible to obtain a comprehensive characterisation
of the performance of LLM-based systems across data science tasks and activities. This obscures potentially
strong correlations between specific activities, which may better illuminate the underlying capability space
and provide insights on how to best improve these systems going forward, following the traditional path in
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machine learning where better evaluations in particular domains precede better systems. Thus, we propose
the following actions to improve data science evaluation of AI systems:

• More comprehensive benchmarks covering most activities in Table 1, considering intermediate steps
and preparatory activities, for evaluating substitution-focused approaches.

• Greater emphasis on incorporating human assistance (either real or simulated) in the evaluation,
and developing methods to quantify the trade-off between autonomy and reliability.

• Development of comprehensive simulated environments that enable testing AI systems as holistic
data scientists performing data collection and client interaction activities.

• Evaluations incorporating end-to-end tasks and broad objectives that allow and reward systems that
redefine activities and propose original solutions differing from the reference ones.

• Field studies to validate the measurements obtained through these evaluation tools by comparing
them to the real-world impact of human-AI collaborations.

• Once gaps in the evaluation landscape are filled, conduct correlation studies on performance across
the different data science activities.

There has been enormous progress in data science automation, compared to the state of the art just a
few years ago (De Bie et al., 2022). It is in open-ended tasks, the use of domain context and human-AI
collaboration where data science automation is lagging behind, but upcoming tools may be able to conquer
these domains: we must make sure our evaluations allow us to properly track progress.
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A Appendix: definition of data-science activities from Martínez-Plumed et al.
(2019)

We reproduce here for convenience the definition of the data-science activities as used in Martínez-Plumed
et al. (2019).

The original stages of the CRISP-DM (Cross Industry Standard Process for Data Mining, Chapman, 2000)
framework are as follows:

• Business Understanding: Understanding the project objectives and requirements from a business
perspective, then converting this knowledge into a data mining problem definition and a preliminary
plan designed to achieve the objectives.

• Data Understanding: Beginning with an initial data collection and proceeding with activities to
familiarize oneself with the data, identify data quality problems, discover initial insights, and detect
interesting subsets for hypothesis formation.

• Data Preparation: Encompassing all activities required to construct the final dataset from the
initial raw data. This includes selecting tables, records, and attributes, as well as transforming and
cleaning data for modelling.
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• Modelling: Selecting and applying various modelling techniques while calibrating their parameters
to optimal values. Some techniques have specific data requirements, often necessitating a return to
the data preparation phase.

• Evaluation: Evaluating the constructed model(s) to ensure they properly achieve business objec-
tives. The steps taken in the modelling process are reviewed to confirm that no important business
issues have been overlooked.

• Deployment: Applying the model in a way that is useful for the customer, such as generating
a report, implementing a repeatable data mining process, or integrating it into decision-making
systems. While the customer typically executes deployment, the analyst ensures that all necessary
steps are understood.

As argued in Martínez-Plumed et al. (2019), this framework assumes a well-defined business goal and pre-
collected data. Additionally, it follows a fairly linear process, similar to mining metal in a known location.
Thus, it is goal-oriented and process-centric, with data serving as an essential ingredient rather than the
focal point. However, in exploratory data science, data takes centre stage, akin to prospecting rather than
direct mining. Martínez-Plumed et al. (2019) introduces the following additional exploratory activities:

• Goal Exploration: Identifying business goals that can be achieved through data-driven approaches.

• Data Source Exploration: Discovering new and valuable data sources.

• Data Value Exploration: Assessing the potential value that can be extracted from the data.

• Result Exploration: Relating data science results to business goals.

• Narrative Exploration: Extracting meaningful stories, whether visual or textual, from data.

• Product Exploration: Identifying ways to transform extracted data value into services or appli-
cations that provide new and valuable benefits to users and customers.

Furthermore, Martínez-Plumed et al. (2019) critiques the CRISP-DM model for representing data as a static
entity within the process, assuming that data has already been collected and merely needs understanding and
preparation for modelling. However, modern data science projects often involve dynamic data management
activities, including:

• Data Acquisition: Obtaining or generating relevant data, such as through the installation of
sensors or applications.

• Data Simulation: Simulating complex systems to produce useful data and explore causal relation-
ships (e.g., “what-if” scenarios).

• Data Architecting: Designing the logical and physical layout of data and integrating different
data sources.

• Data Release: Making data accessible through databases, interfaces, and visualisations.
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Figure 1: Martínez-Plumed et al. (2019): “The DST map, containing the outer circle of exploratory activities,
inner circle of CRISP-DM (or goal-directed) activities, and at the core the data management activities.”

B Appendix: examples of tasks

result = df.div(1).add_prefix("inv_")

Prompt

Reference Solution

result = df.join(df.apply(lambda x: 1/x).add_prefix(“inv_"))

Test case 1

 df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
ans = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6],

            "inv_A": [1/1, 1/2, 1/3], 

             "inv_B": [1/4, 1/5, 1/6]})

Test case 2
 df,ans = ...[omit for brevity]

 pd.testing.assert_frame_equal(result, ans)

Surface-form constraints
for and while should not appear in Syntax Tree

A:
<code>
import pandas as pd
df = pd.DataFrame({"A": [1, 2, 3],"B": [4, 5, 6]})
</code>
BEGIN SOLUTION
<code>
[insert]
</code>
END SOLUTION
<code>
print(result)
</code>

Here is a sample dataframe:
df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})

I'd like to add inverses of each existing column to the dataframe and name 
them based on existing column names with a prefix, e.g. inv_A is an inverse of 
column A and so on.
The resulting dataframe should look like so:
result = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "inv_A": [1/1, 
1/2, 1/3], "inv_B": [1/4, 1/5, 1/6]})

Obviously there are redundant methods like doing this in a loop, but there 
should exist much more pythonic ways of doing it … [omitted for brevity]

Predict

Correct/wrong?

Language Models (GPT-3 Codex)

Replace [insert] in the code context with 
following predicted code snippets

Problem

Code Context

Execute to evaluate

Multi-criteria Execution-based Evaluation

Figure 2: Lai et al. (2023): “An example problem in DS-1000. The model needs to fill in the code into
[insert]in the prompt on the left; the code will then be executed to pass the multi-criteria automatic evalu-
ation, which includes the test cases and the surface-form constraints; a reference solution is provided at the
bottom left.”
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Research Question/Hypothesis:   

Are soccer players with a dark skin tone more likely than those with a 
light skin tone to receive red cards from referees?

Data Table

Language Model Agent

Domain Knowledge

Statistical Knowledge

Data Understanding

Generated Analysis

def transform

return

 (df: pd.DataFrame)  pd.DataFrame:

    df[ ]  df[[ , ]].mean(axis 1)

    df.dropna(subset [ ], inplace True)

     df

->
= =
= =

'skin_tone' 'rater1' 'rater2'
'skin_tone'

def

return

  (df: pd.DataFrame): 

    formula 
    model  smf.logit(formula, data df).fit() 

     model

model
=

= =
 'redCards ~ skin_tone + position + games'


DV: Red Cards using 'redCards' columns ...

Automatic Evaluation

Convert generated analyses

Ground Truth Decision Space

Data Transforms

Verb: derive 

Input cols: [ , ]

Output col: 

'rater1' 'rater2'
'rater_mean'


df   


  df   df   
[ ]
( [ ] [ ])

'rater_mean'
'rater1' 'rater2'

=
+ / 2

Verb: groupby 

Input cols: [ ]

Output col: none


'club'

df.groupby  as_index False( , )'club' =

Verb: post_groupby 

Input cols: [ ]

Output col: 

'games'
'rater_mean'


dependency

df_grp.agg games_sum( ( , ))
= 'games' 'mean'

Conceptual Variables

Control: Player Physicality 

Control: Player Position 

IV: Player Skin Tone 

DV: Red Cards Received 

...

...

Statistical Models

...

Logistic Regression

Spearman CorrelationSpearman Correlation

Negative binomial 
regression with a log link

Crowd-Sourced Annotations

Value and graph-based matching

transforms

LM-based matching

statistical models conceptual vars

Figure 3: Gu et al. (2024): “Overview of BLADE. Given a research question and dataset, LM agents generate
a full analysis containing the relevant conceptual variables, a data transform function, and a statistical
modeling function (boxes 1-4-5). BLADE automatically evaluates this against the ground truth (box 6).”

Show me the mean age of customers.

Okay, I will computer the mean age
of customers using Python code.

Outputs:
Mean age of customers: 53.3

Answer: 53.3

Okay, they're middle-aged. Then,
let's see what people aged 40-60
bought and how often.

......

mean_age = df['age'].mean()

print(f"Mean age of customers: {mean_age}")

I1

I1 ✓

I2

Figure 4: Li et al. (2025a): “Example task trajectory for Walmart sale prediction, showcasing the iterative
interaction between the simulated user providing instructions and the agent executing code within the
sandbox to achieve the analysis goal.”
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Are there any patterns or trends in the top 10 player’s performance 
on grass courts, such as: common opponents they struggle against? 
Opponents who have won at least 3 matches are common 
opponents. Return me a list of their names.

# Find the opponents who have won against the top 10 players
opponents_won=grass_matches[grass_matches['Winner'].isin(top_10_
player_names) == False]['Winner'].value_counts()

# Filter the opponents who have won at least 3 matches against the 
top 10 players
common_opponents = opponents_won[opponents_won >= 3]
… … … …
Code Generation

Interaction Mode: Normal

Are there any patterns or trends in the top 10 player’s performance 
on grass courts, such as: common opponents they struggle against? 
Return me a list of their names.

To answer these questions, we‘ll analyze the dataset to find common 
opponents the top 10 players struggle against, identify areas of 
improvement for each player, and discuss other factors that may 
impact their performance on grass courts. More Importantly, can you 
make sure what kind of opponents are common?

Under_Specific

Clarification

Interaction Mode: Action (Clarification)

Interaction Mode: Private

Are there any patterns or trends in the top 10 player’s 
performance  on  grass  courts,  such  as:  common 
opponents they struggle against? Opponents who 
have won at least 3 matches are common opponents. 
Return me a list of their names.

from decision_company import read_csv_file, 
count_unique_values, check_elements_in_list, 
reset_index, convert_to_np_array, convert_np_to_list

# Find the opponents who have won against the top 10 
players
opponents_won=count_unique_values(grass_matches[c
heck_elements_in_list(grass_matches['Winner'], 
top_10_player_names) == False]['Winner'])

Interaction Mode: Private Action (Clarification)

Are there any patterns or trends in the top 10 player’s 
performance  on  grass  courts,  such  as:  common 
opponents they struggle against? Return me a list of 
their names.

Under_Specific

… More Importantly, can you make sure what kind of 
opponents are common?

Opponents who have won at least 3 matches are common 
opponents. 

# Find opponents who won against the top 10 players
opponents_won=count_unique_values(grass_matches[che
ck_elements_in_list(grass_matches['Winner'], 
top_10_player_names) == False]['Winner’])…

Clarification

Are there any patterns or trends in the top 10 player’s 
performance  on  grass  courts,  such  as:  common 
opponents they struggle against? Opponents who 
have won at least 3 matches are common opponents. 
Return me a list of their names.

# Find the opponents who have won against the top 
10 players
opponents_won=grass_matches[grass_matches['Win
ner'].isin(top_10_player_names) 
==False]['Winner'].value_counts()

# Filter the opponents who have won at least 3 
matches against the top 10 players
common_opponents = 
opponents_won[opponents_won >= 3]
… … … …

Interaction Mode: Normal

Are there any patterns or trends in the top 10 player’s 
performance on grass courts, such as: common 
opponents they struggle against? Return me a list of 
their names.

To answer these questions, we‘ll analyze the dataset to
find common opponents the top 10 players struggle
against, identify areas of improvement for each player,
and discuss other factors that may impact their
performance on grass courts. More Importantly, can 
you make sure what kind of opponents are common?

Under_Specific

Clarification

Interaction Mode: Action (Clarification)

Private

Are there any patterns or trends in the top 10 player’s 
performance  on  grass  courts,  such  as:  notable 
opponents they struggle against? Opponents who 
have won at least 3 matches are notable opponents. 
Return me a list of their names.

from decision_company import read_csv_file, 
count_unique_values, check_elements_in_list, 
reset_index, convert_to_np_array, convert_np_to_list

# Find the opponents who have won against the top 10 
players
opponents_won=count_unique_values(grass_matches[c
heck_elements_in_list(grass_matches['Winner'], 
top_10_player_names) == False]['Winner'])

Private Action (Clarification)

Are there any patterns or trends in the top 10 player’s 
performance  on  grass  courts,  such  as:  notable 
opponents they struggle against? Return me a list of 
their names.

Under_Specific

… More Importantly, can you make sure what kind of 
opponents are notable?

Opponents who have won at least 3 matches are notable 
opponents. 

# Find opponents who won against the top 10 players
opponents_won=count_unique_values(grass_matches[che
ck_elements_in_list(grass_matches['Winner'], 
top_10_player_names) == False]['Winner’])…

Clarification

Are there any patterns or trends in the top 10 player’s 
performance  on  grass  courts,  such  as:  notable 
opponents they struggle against? Opponents who 
have won at least 3 matches are notable opponents. 
Return me a list of their names.

# Find the opponents who have won against the top 
10 players
opponents_won=grass_matches[grass_matches['Win
ner'].isin(top_10_player_names) 
==False]['Winner'].value_counts()

# Filter the opponents who have won at least 3 
matches against the top 10 players
notable_opponents = 
opponents_won[opponents_won >= 3]
… … … …

Normal

Are there any patterns or trends in the top 10 
player’s performance on grass courts, such as: notable 
opponents they struggle against? Return me a list of 
their names.

To answer these questions, we‘ll analyze the dataset to
find notable opponents the top 10 players struggle
against, identify areas of improvement for each player,
and discuss other factors that may impact their
performance on grass courts. More Importantly, can 
you make sure what kind of opponents are notable?

Under_Specific

Clarification

Action (Clarification)

Interaction Mode: Private

Great,  …,  I will generate the code to identify
categorical variables in the credit_customers dataset
and suggest encoding methods for converting them to
numerical variables.

import pandas as pd

# Identify categorical variables
categorical_columns = 
credit_customers.select_dtypes(include=['object']).columns
…
# Iterate through the categorical columns and append 
them to the nominal_categorical_columns list  
for col in categorical_columns:  

nominal_categorical_columns.append(col) 

Figure 5: Li et al. (2025c): The figure shows the “Normal” mode, with the agent being provided all the
relevant information and tasked with writing code to address the task, and “Action” mode, where the agent
has to take a specific action (in this case, asking for clarification). “Private” refers to tasks requiring the use
of bespoke software libraries to which the agent has access to.

Figure 6: Majumder et al. (2024): “Each DISCOVERYBENCH task consists of a goal and dataset(s) (left).
Solving the task requires both statistical analysis and scientific semantic reasoning, e.g., deciding which
analysis is appropriate for the domain, and mapping goal terms to column names (center). A faceted
evaluation allows open-ended final answers to be rigorously evaluated (right).”
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Let's see how
it does!

   workspace/
     ├── images/ 
     ├── data_description.txt
     ├── evaluation_details.txt
     ├── ...
     └── train.py

Improve the performance of the
current model in train.py ...

   workspace/
     ├── images/
     ├── data_description.txt
     ├── evaluation_details.txt
     ├── ...
     └── train.py

   workspace/
     ├── images/ 
     ├── data_description.txt
     ├── evaluation_details.txt
     ├── ...
     ├── submission.cav
     └── train.py

Edit train.py ...

python train.py
...

Starter Files
Task Description

Task:

Increase the 
learning rate!

Test Accuracy

Evaluator

Edited! Here is
 the diff ....

Training Log
 ....

ot ot+1

St

at

St+1

at+1

rt rt+1

...

Figure 7: Huang et al. (2024a): “Overview of MLAgentBench. Each environment in MLAgentBench includes
a task description, a set of starter files, and an evaluator. An agent can read/write files and execute Python
code repeatedly, eventually producing a final file (e.g., test predictions in submission.csv). The agent is
evaluated based on the quality of this file..”
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