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ABSTRACT

Large language models (LLMs) are trained on data crawled over many years from
the web. We investigate how quickly LLMs become outdated as the world evolves
with time and how to best update them with newer data. Specifically, we simulate
a world where the latest dump of Common Crawl (CC), the most prominent public
source of pre-training data, is used every month to continually train an LLM. We
design various dynamic evaluations from the CC data, Wikipedia, StackExchange,
and code documentations to measure continual learning metrics such as forgetting
and forward transfer. Notably, our TIC-CC training data is more than 100× larger
compared with prior continual learning benchmarks for language modeling. We
discover that recent DataComp-LM (Li et al., 2024a) models trained on data before
2023 have already become outdated, incurring up to 45% larger noun-perplexity on
2024 Wikipedia articles compared to pre-2023 articles. Further, we use our setup to
evaluate the effectiveness of several large-scale continual learning methods and find
that replaying older data is most effective for combating forgetting: for previously
seen CC dumps, it can reduce the regret on held-out loss by 60% compared to
other optimizer and loss-based interventions. However, some domains evolve more
quickly than others, favoring different trade-offs between mixing old and new data.

1 INTRODUCTION

Large language models (LLMs) rely on massive amounts of data, a major portion of which comes
from large-scale web-crawls that have been running over the past 10–20 years. Common Crawl (CC),
the most well-known source of such data, has been active since 2007 and continues to release monthly
dumps of data. While typically many (or all) previous dumps are combined together to train LLMs
from scratch (Penedo et al., 2023; Li et al., 2024a), the vast costs and inherent knowledge cutoffs of
LLMs raise natural questions about how they can be most effectively updated as future dumps are
released. In this work, we introduce a benchmark for Time-Continual Learning of Language Models
(TiC-LM) and investigate how to continually train LLMs over many months and years. Taking
inspiration from the recent TiC-CLIP (Garg et al., 2024) work, our goal is to find efficient alternatives
to training LLMs from scratch by reusing and updating prior pre-trained models. Overall, we seek to
answer the following:

• How quickly does a pre-trained LLM become outdated? We observe that Gemini, Gemini-2, and
DCLM models are outdated on 2024 data by 34%, 28%, and 45%, respectively (Fig. 2).

• Can continual pretraining reach the performance of training from scratch when fixing the number
of tokens? We demonstrate a variety of methods that shrink the gap, but this proves to be an open
and challenging problem to be studied in future using our benchmark.

• Do forgetting and forward transfer vary across domains such as Wikipedia, News, etc? Yes.
For example, although data replay methods generally avoid forgetting, they hurt performance on
domains that change rapidly (Fig. 5).

Our contributions in TiC-LM are: (1) introducing a large-scale continual pretraining benchmark
for language modeling, and (2) evaluating continual learning strategies. TiC-LM centers around
TiC-CommonCrawl (TIC-CC), a massive time-stratified set of training and evaluation data created
using 114 CC dumps spanning 2013–2024 including evaluation subsets TIC-CC-WIKI and TIC-
CC-NEWS. TIC-CC contains 2.9T tokens, more than 100× larger than prior continual continual
learning benchmark for LLMs. TiC-LM also contains domain-specific evaluations sourced from
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Figure 1: TiC-LM experiment setup. We simulate a setup where each Common Crawl dump
D0, · · · , DT is revealed one-at-a-time. An LLM f0 is first pre-trained for B tokens on the initial
month D0 and then continually updated for a fixed budget of B/T tokens in each following month
(which may optionally include replaying any older data). The goal is for each monthly model
f1, · · · , fT to perform well on both standard static downstream tasks as well as dynamic evaluations
that evolve over time, requiring the balancing of learning (gray/red) with preventing forgetting (blue).

Table 1: Comparison with continual learning benchmarks for LLMs. CLS: classification, SUM:
Summarization KB: Knowledge Base, QA: Question-Answering, LM: Language Modeling. Acc.:
Accuracy, Ppl.: Perplexity, Tok.: Tokens, Art.: Articles.

Benchmark Domain Task Metric CL Train Time-CL Years Timesteps # CL Train # Eval Samples

Gururangan et al. (2020) Science,News,Reviews CLS micro/macro-F1 ✓ ✗-Task CL — — 0.3M 140k
Luu et al. (2022) Tweet,Science,News,Reviews CLS/SUM F1/Rouge-L ✓ ✓ 2013–2022 4–7 695k 695k
Chrono. Tweet(2022) Science,Tweet CLS micro/macro-F1 ✓ ✓ 2014–2020 4 25M 4M
TempEL (2022) Wikipedia KB EL Acc. ✓ ✓ 2013–2022 10 — 92k
TemporalWiki (2022a) Wikipedia KB Noun Ppl. ✗ ✓ 2021 4 23B Tok. 36k
StreamingQA (2022) News QA Acc. ✓ ✓ 2007–2020 12 99k Art. 46k
EvolvingQA (2024) Wikipedia QA EM/F1 ✓ ✓ 2007–2020 6 — 46k
TIQ (2024) Wikipedia QA Precision/Rank ✓ ✓ 1801–2025 — 6k QA 4k
TAQA (2024) Wikipedia QA F1 ✓ ✓ 2000–2023 — 9k QA 11k

TIC-CC (All/Wiki/News) Generic Web LM Ppl. ✓ ✓ 2013–2024 114 2.9T Tok. 2.7M
TIC-WIKI Wikipedia KB Noun Ppl. ✗ ✓ 2014–2024 62 — 10M
TIC-STACKE Code,Math,English,. . . KB / QA Ppl. ✗ ✓ 2008–2024 187 — 3.65M
TIC-CODEDOCS Code LM Ppl. ✗ ✓ 2017–2024 16 — 6.5k

outside Common Crawl including TiC-Wikipedia (TIC-WIKI), TiC-StackExchange (TIC-STACKE),
and TIC-CODEDOCS spanning 2008–2024. Using our benchmark, we evaluate several continual
learning baselines and find that cyclic learning rate schedules and data replay can be effective for
balancing learning on new data and preventing forgetting. We also find that different domains evolve
at different rates, favoring different methods (e.g., benefiting from more or less replay).

2 RELATED WORK

Learning new capabilities from multiple, sequentially observed, distributions has long been an active
area of ML research (Wang et al., 2024). More recently, several works have studied this setting
for LLMs (Wu et al., 2024), targeting improvements on: (1) general capabilities (via updating
on improved datasets) (Parmar et al., 2024; Ibrahim et al., 2024; Gupta et al., 2023); (2) specific
domains (Jin et al., 2022; Gururangan et al., 2020; Chen et al., 2024); (3) newer data as the world
evolves (Jin et al., 2022; Jang et al., 2022b;a; Lazaridou et al., 2021; Nylund et al., 2024; Loureiro
et al., 2022; Qin et al., 2022; Liška et al., 2022). Works in this third category have demonstrated
that in many domains, the performance of LLMs decay as training and evaluation sets grow farther
apart in time, motivating the need for methods to efficiently and non-distruptively adapt to temporal
distribution shifts. Our work scales up these previous efforts to more closely match current LLM
training practices. While older works typically focus on continual training runs involving individual
sources (e.g., news, Wikipedia, and social media) and <10 timesteps, we consider training on a
generic web-crawl (i.e., Common Crawl) spanning 114 different months. In turn, the generality
of our training data allows us to go beyond single-domain evaluations. We provide an extended
discussion of related works in Appx. E. Table 1 summarizes our proposed datasets compared with the
most related time-continual benchmarks. With 2.9T tokens, TIC-CC is the largest and most diverse
continual learning benchmark for language modeling.
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Figure 2: (Left) Performance of a model trained on DCLM-Baseline, which contained data up to
2022. Notably, the loss increases significantly on TIC-CC-WIKI and TIC-CC-NEWS subsets after
2022 data cutoff. (Right) Performance of the same DCLM-Baseline model as well as two versions of
Gemma (GemmaTeam et al., 2024) on our TIC-WIKI dynamic evaluation. Performance of the DCLM
model is about 45% worse on the latest evaluation data compared to the preceeding data. For the
Gemma series, the older Gemma-7b and newer Gemma-2-9b are 34% and 28% worse, respectively.
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Figure 3: We plot the total number of tokens per month in TIC-CC (left) as well as the proportion of
those tokens coming from our TIC-CC-WIKI and TIC-CC-NEWS subsets (right).

3 TIC-COMMONCRAWL (TIC-CC): MORE THAN A DECADE OF WEB DATA

We create a large time-stratified dataset of 2.9T tokens based upon Common Crawl, a free and open
corpus of web-crawled data that has been online since 2007. CC releases new snapshots of the web
roughly every month. Each dump creates a representative snapshot of the web by sampling a limited
number of pages from each domain. Sampled URLs change from month to month independent
of whether they appeared in the previous dumps. We collect all dumps between May-2013 and
July-2024, resulting in 114 corresponding splits that we refer to by the month of their release date.
For each split, we then apply a pre-processing pipeline based on that of DataComp-LM (Li et al.,
2024a). Notably, we do not perform any operations on a particular month that depend on future
months to retain causality and temporal order.

Data processing. We build upon the existing pipeline from DataComp-LM (Li et al., 2024a),
starting with DCLM-Pool (Li et al., 2024a), which contains all CC dumps between May-2013
and Dec-2022 and parsed to extract plain text from webpages via the open-source resiliparse
library (Bevendorff et al., 2018; 2021). We split this data by month and reuse the same download
and processing scripts to extend DCLM-Pool until July-2024. Next, we follow DCLM-Baseline’s
pipeline by applying heuristic filters from RefinedWeb (Penedo et al., 2023) and a fuzzy-deduplication
step which we modify to run only within each month rather than non-causal global deduplication.
Alternatively, similar to TiC-CLIP, one could deduplicate data globally but keep the earliest occurrence
of each document. We avoid this deduplication for two reasons: (1) fuzzy deduplication across
months may not always be helpful, potentially removing near-duplicates such as Wikipedia pages
where a few key facts have changed but most of the text is the same, (2) it allows for exploring the
benefits/pitfalls of such data-centric interventions as part of method design. Also, we do not use the
final classifier-based filter in DCLM-Baseline, as this classifier was trained on data from all months.

Finally, we leverage the fact that DCLM-Pool was randomly partitioned into ten equally-sized chunks
to construct held-out sets for loss-based evaluations (Sec. 4.1). In Fig. 3, we show the number of
tokens we have for each month of the dataset. In total, the dataset spans 29T tokens, with individual
months ranging between 100B to 500B tokens. We use smaller subset of 220B tokens from a single
global shard with 2.9T for our training while future work can expand to the full 2.9T/29T tokens. For
more details about the data pipeline see Appx. A.
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4 EVALUATIONS

In this section, we will discuss various time-continual evaluations that are designed both with
and independent of CC data. As our focus is on continual pretraining, we focus on evaluations
without instruction-tuning. We introduce three sets of novel evaluations: TIC-CC, TIC-CC-WIKI,
TIC-CC-NEWS, TIC-WIKI, TIC-STACKE, and TIC-CODEDOCS.

Static downstream evaluations. We focus on pre-trained base models without any instruction
fine-tuning and evaluate our models on a variety of suitable downstream zero-shot and few-shot
tasks. Specifically, we use the CORE evaluations from the DCLM benchmark (Li et al., 2024a)
which includes 22 zero-shot and few-shot in-context learning tasks. These evaluations, which include
benchmarks such as ARC-Easy (Clark et al., 2018) and Hellaswag (Zellers et al., 2019), assess general
capabilities of base models via a variety of world knowledge and natural language understanding
tasks. While these evaluations are not designed to be time-dependent, we use them to assess (1)
whether continually trained models match the general capabilities of models trained on all dumps; (2)
if they benefit from different months of Common Crawl.

Perplexity metrics. We employ three distinct perplexity metrics for different evaluations:

ppltoken = exp

(∑
d∈D

∑
t∈Td
− logP (t|c<t)∑

d∈D |Td|

)
, (1)

where D is a set of documents, Td is the set of tokens in document d, and c<t is the context prior to
token t.

pplanswer =
1

|Q|
∑
q∈Q

exp (− logP (aq|cq)) , (2)

where Q is a set of question-answer pairs, aq is the gold answer for question q, and cq is the context.

pplnoun = exp

(∑
d∈D

∑
n∈Nd

− logP (n|c<n)∑
d∈D |Nd|

)
, (3)

where D is the set of documents in a snapshot, Nd is the set of proper noun tokens (tagged as NNP or
NNPS by a POS tagger) in document d, and c<n is the context prior to noun n.

4.1 TIC-COMMONCRAWL (TIC-CC) EVALUATIONS

CC data is a consistent, albeit partial, snapshot of the web over years that does not require special
processing of the history per website. We compute token-perplexity (ppltoken) on three monthly
subsets of our CC data which were held out from training:
• TIC-CC: Held-out documents coming from the full distribution for each month of TIC-CC.
• TIC-CC-WIKI: Pages in TIC-CC from English Wikipedia (i.e., whose URLs contain either the

domain en.wikipedia.org or simple.wikipedia.org).
• TIC-CC-NEWS: Pages in TIC-CC from a set of news sites based on WMT competitions (Barrault

et al., 2020).

4.2 TIC-WIKIPEDIA (TIC-WIKI)

Our TIC-CC-WIKI evaluation in Sec. 4.1 is based on sampled Wikipedia pages existing in each
CC dump which is a representative set of Wikipedia but not all of it. We create TIC-WIKI, a more
comprehensive evaluation from full dumps of Wikipedia while utilizing the knowledge graph from
Wikidata. TIC-WIKI allows us to construct question/answer and factual evaluations as well as split
the performance over changed/unchanged knowledge. We build upon TemporalWiki (Jang et al.,
2022a), which generates evaluations from four consecutive monthly snapshots of English Wikipedia
and Wikidata. Our TIC-WIKI evaluation captures a broader spectrum of knowledge evolution, we
extend the evaluation timespan to a full decade (2014–2024) and improve upon the matching of
Wikipedia/Wikidata (see Appx. B.1 for more details).

To evaluate performance on TIC-WIKI diffsets, we adopt the approach of Lazaridou et al. (2021)
and Jang et al. (2022a), calculating the average perplexity of proper nouns (pplnoun) identified by a
Part-of-Speech tagger (Honnibal & Montani, 2017). This method serves as a proxy for assessing
factual knowledge changes, as proper nouns often contain key factual information.
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4.3 TIC-STACKEXCHANGE (TIC-STACKE)

We design another question/answering evaluation based on the historical data from StackEx-
change.StackExchange has 182 communities that share knowledge by posting questions and answers.
We measure answer-perplexity (pplanswer) on high-quality answers from selected sites by collecting
answers that have been accepted by the question author (using the accepted answer timestamp to
bin examples by month). The resulting evaluation contains examples from 2008–2024. We provide
details of TIC-STACKE data processing in Appx. B.2.

4.4 TIC-CODE DOCUMENTATIONS (TIC-CODEDOCS)

Our TIC-CODEDOCS evaluation is based on code documentations from popular open-source Python
libraries: NumPy (Harris et al., 2020) and PyTorch (Ansel et al., 2024). For NumPy, we use
documentations from 16 major releases, ranging from version 1.13.0 (June 2017) to version 2.1.0
(August 2024). For PyTorch, we use documentations of major releases ranging from version 1.8.0
(March 2021) to version 2.4.0 (July 2024).

We build the documentation directly from each library’s git repository. The process involves the
following steps: (1) Identify the commit tagged for the major release, (2) revert to that specific
commit, (3) install necessary dependencies, (4) build the project from source, (5) generate HTML
documentation from the source. We then convert all HTML pages to raw text by extracting the
main body of the documentation pages. This approach ensures that template-related elements of the
pages such as the index and footer are not included in the final text, focusing solely on the relevant
documentation content. We evaluate the model’s code understanding using perplexity (ppltoken),
calculated across entire snapshots of code docs.

5 CONTINUAL LEARNING BASELINE METHODS

The goal for TiC-LM methods is to match the performance of the Oracle which trains on all data (114
months) starting from random initialization for the full token budget. We consider methods from three
categories: optimization-based, data replay, and regularization. Aside from average metrics across all
timesteps, methods should balance forgetting and forward transfer metrics (defined in Sec. 6).

Optimization-based methods. In non-continual settings, LLMs are often trained with a cosine-
decayed learning rate schedule which requires knowledge of total training steps ahead of time. In
a continual setup, however, the number of total tokens grows over time and we care about the
performance after each month. We benchmark the following optimization approaches in our work:

• Cyclic Cosine is the simplest alternative which applies cosine decay within each training month
using the same maximum learning rate and warmup for each round. This was found to be most
effective in TiC-CLIP (Garg et al., 2024).

• Cyclic Cosine + AR (autoregressive) is similar to cyclic cosine decay except the maximum learning
rate in each cycle decays across months, regressed from a single-cycle cosine decay and shown to
offer improvements by Roth et al. (2024).

• Rsqrt (reciprocal-√ ) are infinite schedules that decay the learning rate slowly in a global training
run and branch off of this trajectory with linear cooldowns (Zhai et al., 2022). To keep training
steps fixed compared to other methods, we follow Roth et al. (2024) and implement a version that
maintains only a single trajectory by re-warming up from the previous cooldown.

• Schedule-Free is an optimizer proposed by Defazio et al. (2024) which aims to circumvent the need
for defining a learning rate schedule by using iterate averaging and has achieved promising results
in i.i.d. non-continual settings.

Data replay methods. Data replay is a classical continual learning strategy to prevent forgetting,
whereby in each training round, the model is fed a mixture of data from both older and the current
timesteps (Lopez-Paz & Ranzato, 2017; Rebuffi et al., 2017; Chaudhry et al., 2018). Defining a replay
method therefore boils down to how the mixture ratios are specified. We consider the following replay
strategies based on the best-performing strategies in TiC-CLIP (Garg et al., 2024):

• For the current timestep t, we allocate a ratio 0 ≤ αt ≤ 1 of the monthly token budget Bt to data
from the current month, seeing αtBt tokens from that month.
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• For previous months, we redistribute the remaining (1− αt)Bt tokens equally, i.e., each month
contributing 1−αt

t−1 Bt tokens to this round’s training set.

In particular, when αt = 1/t, we see an equal number of tokens from all observed months. We also
consider setting αt = 1/2 which always allocates half the token budget to the current month. The
general downside of replay-based methods is the cost of retaining old data. This can be particularly
challenging if old data expires and needs to be removed. Methods with larger values of αt are less
affected by such limitations.

Regularization-based methods. These methods alter the training objective instead of the data,
generally by adding a regularization term which encourages newer model updates to stay close to the
model weights learned after the previous month. Following TiC-CLIP, we try two notable methods:
LwF (Li & Hoiem, 2018) and EWC (Kirkpatrick et al., 2017).

• LwF adds an additional loss term based on KL divergence which penalizes differences in model
outputs between the previous checkpoint and the current model.

• EWC attempts to slow down updates to particular model parameters which are highly influential
for performing well on older months as measured by the (approximate) Fisher information matrix.

Because both LwF and EWC involve extra loss terms and model copies, it is important to note that
they induce larger GPU memory footprints and run-times compared to optimizer and replay-based
methods. That being said, we do not try to adjust the token counts to account for this given that our
re-implementations may not be optimally efficient.

6 EXPERIMENTS

Training details. For all runs, we train 3B parameter language models using OpenLM. Unless
otherwise indicated, each method observes a fixed total number of 220B tokens, equivalent to 4x
the Chinchilla optimal amount. 1 We further assume that current practitioners are (a) likely to have
access to more than enough data to train initial models; (b) unlikely to wait to obtain non-trivial
performance. Hence, we front-load the total token budgets such that half is allocated to training on
the first month, May-2013. Then, the remaining 110B tokens are split equally among the other 113
continual timesteps. For more realistic hyperparameter selection in our continual setup (Cha & Cho,
2024), we only use the first 10 of these timesteps for tuning (see Appx. C for more details).

Evaluation metrics. Each continual run actually produces a Tt × Te matrix of evaluations E where
Tt, Te are the total number of training/evaluation timesteps, Ei,j is the performance of the model
trained after training on data up to month i and evaluated on the month j. To control for inherent
difficulty differences across evaluation months, we measure the regret Ri,j = Ei,j −E∗

j where E∗
j is

the performance of the Oracle trained on all months (May-2013–July-2024) on month j. We subtract
E∗

j instead of Ej,j since if Ej,j is bad it may lead to misleadingly good forward/backward metrics.

Following Garg et al. (2024), we consider the following summary metrics (assuming Tt = Te = T ).

• In-distribution (ID) performance: averages along the matrix diagonal, i.e.,
∑T

i=1 = Ri,i/T .

• Backward transfer: averages the lower triangular of R, i.e.,
∑T

i=1

∑
j<i

Ri,j

T (T−1)/2 .
• Forward transfer: averages the upper triangular of R analogously to backward transfer.

For some downstream evaluations, the train/evaluation periods do not exactly align (Tt ̸= Te), making
the definition of ID more nuanced. For such evaluations, we define ai as the index of the nearest
evaluation timestep that comes before the training timestep i. We then count Ri,ai

towards the ID
average only if no other training timestep is closer to ai (i.e., ai ̸= ai−1). Otherwise, we count Ri,j

towards backward and forward transfer when j < ai and j ≥ ai respectively.

6.1 TIC-CC HELD-OUT EVALUATIONS

Tab. 2 and Fig. 4 show results on our TIC-CC hold-out sets. Overall, we observe the various methods
incur different trade-offs between forgetting and plasticity. We summarize the main findings below:

1Here, following Li et al. (2024a), the token counts are given by 20 × number of parameters × Chinchilla
multiplier with a 1× multiplier being a near-optimal compute allocation found by Hoffmann et al. (2022).
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Figure 4: Cyclic Cosine demonstrates delayed forgetting while replay avoids forgetting in
exchange for lower plasticity. We plot the difference in log-perplexity (log ppltoken) between
continual checkpoints and the Oracle. While we train on all 114 months, we evaluate on a subset
of the months which are roughly annually spaced. Overall, we observe that training sequentially
with the Cyclic Cosine method (top) leads to strong ID performance (along the diagonal) but also
significant forgetting on TIC-CC and TIC-CC-NEWS. Meanwhile, adding replay can reduce this
forgetting by sacrificing ID performance, especially for later model checkpoints.

Table 2: Loss-based evaluations for various methods at the 3B-4x scale. We report log-perplexity
values relative to the Oracle. While various optimizer (top) and regularization-based (bottom) methods
trade-off backward transfer with in-distribution performance, replay (middle) is required to obtain the
least amount of forgetting. Bold values are within one standard deviation of the best in each column,
with standard deviations estimated from three runs of Cyclic Cosine.

Method TIC-CC ↓ TIC-CC-WIKI ↓ TIC-CC-NEWS ↓
Backward ID Forward Backward ID Forward Backward ID Forward

Cyclic Cosine (std)
0.072 0.027 0.161 0.038 0.032 0.074 0.058 0.015 0.109
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Cyclic Cosine + AR 0.058 0.040 0.166 0.032 0.031 0.074 0.041 0.017 0.110
Cyclic Rsqrt 0.065 0.030 0.162 0.033 0.030 0.073 0.049 0.015 0.108

Schedule-Free 0.065 0.036 0.164 0.036 0.033 0.076 0.049 0.017 0.110
Replay (αt = 1/t) 0.023 0.074 0.178 0.020 0.036 0.078 0.005 0.035 0.117
Replay (αt = 1/2) 0.024 0.042 0.167 0.024 0.031 0.074 0.013 0.019 0.111

Replay (αt = 1/t) + AR 0.026 0.083 0.181 0.019 0.037 0.079 0.004 0.039 0.119
Replay (αt = 1/2) + AR 0.025 0.055 0.171 0.022 0.032 0.076 0.009 0.022 0.112

LwF 0.072 0.027 0.161 0.038 0.032 0.074 0.058 0.015 0.109
EWC 0.061 0.032 0.162 0.031 0.029 0.071 0.046 0.014 0.108

Cyclic Cosine offers the best plasticity but also the most forgetting. We find the optimal maximum
learning rate for ID performance to be 30× smaller than what was used for the initialization (see
Tab. 5 in Appx. C). Further, based upon the gaps between Forward and ID metrics, TIC-CC-WIKI
appears to change more slowly than TIC-CC-NEWS, while both evolve less rapidly than TIC-CC.

Alternative LR schedules and EWC can improve Backward at the cost of ID but replay is
required to further reduce forgetting. As shown in the heatmaps in Fig. 12 , all non-replay methods
still result in significant forgetting at later checkpoints, while Replay (αt = 1/t) reaches a Backward
metric of 0.023 on TIC-CC, 60% smaller than the best non-replay approach. Between the two
replays, αt = 1/2 offers slightly less Backward improvement but much better ID, likely because
αt = 1/t decreases the ratio of new data over time, scaling poorly to the >100 timesteps in our setup.
This differs from TiC-CLIP’s findings, where different replays behave more similarly but 10× fewer
rounds are used. However, even while αt = 1/2 can achieve good balance between Backward and ID
for the first few years, plasticity becomes an increasing issue across the larger timescales in TIC-CC,
likely due to later months still being underrepresented as they have been replayed fewer times.
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Table 3: Selected downstream evaluations at 3B-4x scale. For all dynamic evaluations, we report
perplexity values relative to the Oracle with log-scaling. Meanwhile, CORE is an average of the
accuracies of 22 downstream zero/few-shot tasks used in DataComp-LM (Li et al., 2024a), evaluated
only on the final model checkpoint (with score relative to Oracle in parentheses). Bold values are
within one standard deviation (estimated with 3 runs of Cyclic Cosine) of the best in each column.

Method TIC-WIKI-Diff ↓ TIC-STACKOVERFLOW ↓ TIC-STACKE-CAT7↓
Backward ID Forward Backward ID Forward Backward ID Forward

Cyclic Cosine (std)
0.033 0.052 0.085 0.041 0.078 0.156 0.045 0.050 0.071
(0.000) (0.000) (0.000) (0.002) (0.002) (0.003) (0.001) (0.001) (0.000)

Cyclic Cosine + AR 0.033 0.054 0.087 0.032 0.077 0.159 0.035 0.044 0.068
Cyclic Rsqrt 0.031 0.051 0.084 0.034 0.076 0.158 0.039 0.046 0.069

Schedule-Free 0.035 0.055 0.087 0.038 0.079 0.160 0.045 0.050 0.072
Replay (αt = 1/t) 0.038 0.063 0.091 0.075 0.121 0.191 0.036 0.052 0.072
Replay (αt = 1/2) 0.032 0.055 0.086 0.055 0.094 0.170 0.038 0.049 0.070

Replay (αt = 1/t) + AR 0.039 0.063 0.092 0.066 0.119 0.193 0.031 0.050 0.072
Replay (αt = 1/2) + AR 0.033 0.057 0.088 0.047 0.096 0.176 0.032 0.046 0.071

LwF 0.033 0.053 0.085 0.037 0.075 0.155 0.044 0.048 0.070
EWC 0.030 0.051 0.083 0.033 0.077 0.162 0.035 0.043 0.067

Method TIC-CODEDOCS-NUMPY ↓ TIC-CODEDOCS-PYTORCH↓ Static Evals. ↑
Backward ID Forward Backward ID Forward CORE (DCLM)

Cyclic Cosine (std)
0.073 0.096 0.072 0.057 0.025 0.217 48.5 (-2.1)
(0.004) (0.003) (0.002) (0.002) (0.001) (0.002) (0.4)

Cyclic Cosine + AR 0.054 0.074 0.062 0.084 0.052 0.228 48.5 (-2.1)
Cyclic Rsqrt 0.066 0.092 0.071 0.062 0.029 0.220 49.0 (-1.6)

Schedule-Free 0.069 0.100 0.080 0.084 0.051 0.236 48.8 (-1.8)
Replay (αt = 1/t) 0.054 0.046 0.057 0.175 0.138 0.275 48.9 (-1.7)
Replay (αt = 1/2) 0.058 0.066 0.060 0.099 0.069 0.237 49.0 (-1.6)

Replay (αt = 1/t) + AR 0.040 0.045 0.057 0.197 0.169 0.277 49.0 (-1.6)
Replay (αt = 1/2) + AR 0.034 0.050 0.052 0.129 0.098 0.246 49.2 (-1.4)

LwF 0.076 0.104 0.073 0.058 0.028 0.214 48.5 (-2.1)
EWC 0.055 0.081 0.067 0.070 0.040 0.222 48.9 (-1.7)

6.2 DOWNSTREAM EVALUATIONS

Tab. 3 presents results for several of our downstream evaluations, while Fig. 5 and Appx. D show
corresponding evaluation matrices. Here, we observe broadly that methods exhibit trade-offs across
the different evaluations, showcasing the inherent challenges of performing well on a variety of
domains while training on a sequence of generic web-data dumps (in which the coverages of said
domains may also vary over time). We summarize the key findings below:

EWC is the best method for adapting to new knowledge in TIC-WIKI-Diff. This differs from
the results of Garg et al. (2024) and Jin et al. (2022) which found EWC to have little positive impact
in their settings. It also differs from TIC-CC-Wiki, where EWC could not match replay in terms
of Backward performance. One explanation for this is that by isolating new/changed segments of
Wikipedia, TIC-WIKI-Diff places strong pressure on seeing newer data. Indeed, we see in Tab. 8
in Appx. D that measuring performance on the unchanged segments returns replay’s superiority on
Backward, though the improvements are much smaller. To further shed light on this discrepancy, we
also see from Fig. 5 (left) that unlike for TIC-CC-WIKI, peak performance on each TIC-WIKI
month is often years after that month is seen, even when no replay is used in Cyclic Cosine. This
suggests that the knowledge TIC-WIKI captures each month is also successfully learned from CC
dumps that were crawled quite a bit later, which could be due to: (1) delayed alignment between
CC’s crawls of Wikipedia and TIC-WIKI’s more comprehensive coverage of Wikipedia edits; (2)
measuring TIC-CC loss on all tokens versus focusing on specific segments and proper nouns in
TIC-WIKI to capture only factual knowledge rather than irrelevant nuances (e.g., page formatting).

Replay of earlier data tends to benefit more on domains expected to evolve slowly. In Tab. 3, we
show both the performance of different methods on TIC-STACKOVERFLOW as well as an average
over a subset of seven other large StackExchange sites excluding StackOverflow (TIC-STACKE-
CAT7). Earlier CC dumps (i.e., before Feb-2016) are the most useful for TIC-STACKE-MATH
leading to improvements from both replay and AR schedules as observed in Fig. 5. In contrast, for
TIC-STACKOVERFLOW, there not only exists a larger distribution shift over time, but seeing less old
data improves all three summary metrics. Similar to TIC-STACKE, we observe a sharp difference
between two evaluations within TIC-CODEDOCS: TIC-CODEDOCS-NUMPY and TIC-CODEDOCS-
PYTORCH. As shown in Tab. 3, continual runs involving replay perform better on all metrics for the
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Figure 5: Replay helps on TIC-STACKE-MATH but hurts on domains where new data is crucial
(TIC-STACKOVERFLOW). We show heatmaps the Cyclic Cosine (left) and Replay (αt− 1/2) + AR
methods (right) evaluated on TIC-WIKI, TIC-STACKE-MATH, and TIC-STACKOVERFLOW. The
purple dotted lines trace out when the training and evaluation timestamps are closest to one another.

former whereas the opposite is true for latter. This is likely due to NumPy being an older library first
released in 1995 compared to PyTorch in 2016. Based on the corresponding heatmaps in Appx. D,
it appears that models improve on NumPy in earlier years (i.e., 2013-2016) before forgetting this
knowledge when training on the following four to five years. This suggests the bulk of NumPy-related
content appeared in earlier years before decreasing, thereby necessitating replay for models to retain
this knowledge. In contrast for PyTorch, replay harms performance since it shifts more weight to
earlier CC dumps, three years of which were before PyTorch even first released.

Static evaluation of methods with an unbiased initialization matches the Oracle. Table 3 presents
evaluations on the CORE set of tasks from Li et al. (2024a). Initially, we observe that most continual
methods perform similarly and a sizable gap to the Oracle remains. Indeed, the initialization trained on
the May-2013 already achieves an average of 48.5, the same as the final checkpoint of Cyclic Cosine.
Meanwhile, the interventions that mitigate forgetting can somewhat help, closing the remaining gap
to the Oracle by 33%. The two possible explanations for the remaining 67% are that the Oracle
benefits from: (1) having less restricted access to data throughout its training (i.e., the continual
phase of our runs is at fault); (2) being trained from scratch rather than starting from a model biased
towards the oldest data (i.e., the initial training on the May-2013 is at fault). To investigate, we run an
additional oracle variant which starts from the same May-2013 initialization but trains on an equal
mix of the remaining 113 months all at once. This model achieves a performance of only 48.9, below
our best continual runs which suggests that (2) is likely more at fault than (1).

6.3 EFFICIENCY OF CONTINUAL TRAINING

In this section, we perform a case study on the practical utility of current continual methods by
measuring the potential compute savings offered by Replay (αt = 1/2). While the results in previous
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Method Tokens TIC-CC TIC-CC-Wiki TIC-CC-News TIC-WIKI-Diff TIC-WIKI-Unchanged
Replay 220B 0.024 0.019 0.017 0.013 0.017

Replay + AR 220B 0.027 0.017 0.014 0.014 0.016
Replay 330B 0.011 0.009 0.010 0.001 0.006

Replay + AR 330B 0.008 0.003 0.002 -0.001 -0.001
Replay 440B 0.004 0.004 0.007 -0.004 0.000

Replay + AR 440B -0.002 -0.006 -0.005 -0.009 -0.010

Method Tokens TIC-STACKOVERFLOW TIC-STACKE-Cat7 TiC-CD-PyTorch TiC-CD-NumPy
Replay 220B 0.034 0.028 0.052 0.047

Replay + AR 220B 0.027 0.022 0.082 0.023
Replay 330B 0.014 0.020 0.003 0.035

Replay + AR 330B 0.017 0.014 0.040 0.024
Replay 440B 0.007 0.150 -0.025 0.018

Replay + AR 440B 0.015 0.008 0.013 0.025

Table 4: Replay-based approaches are competitive with re-training Oracles while 62% cheaper.
We scale up two methods that use the (αt = 1/2) version of replay by increasing the monthly token
budgets for the continual phase of training. The three scales considered correspond to 220B / 330B
/ 440B total tokens seen during initialization and continual training. We measure sub-optimality
relative to a series of Oracle models trained roughly every two years (requiring 1.16T training tokens
altogether) and report averages of all Backwards and ID elements of the resulting evaluation matrices.

sections indicate that all continual methods under-perform the Oracle, this Oracle is quite strong
for two reasons: (1) for most entries Ei,j in our evaluation matrices, it has seen considerably more
tokens than model checkpoint i; (2) while it is compute matched with continual runs, it would not
actually be obtainable until the last month; if one wanted to consistently re-train new models like the
Oracle over this 11 year span, the costs would increase linearly with the number of desired updates.

Thus, to more practically measure the cost effectiveness of continual training, we now consider an
alternative baseline of a series of Oracle models with different data cutoffs. We then measure the
sub-optimality of any checkpoint relative to the series of Oracles by subtracting the performance
of the most recent Oracle (instead of always the Jul-2024 Oracle). Specifically we consider seven
cutoff dates roughly spaced two years apart (i.e., May-2013, Jan-2015, Jan-2017, Jan-2019, Jan-2021,
Jan-2023, Jul-2024). Each corresponding Oracle is then token matched with the continual checkpoints
corresponding to its cutoff date: e.g., the Jan-2019 Oracle is trained on data coming from all months
up to Jan-2019 and for the number of tokens seen by a 220B continual run’s Jan-2019 checkpoint. In
total all seven oracles together require 1.16T tokens. Given that this now costs more than 5× our
current continual runs, we also consider increasing the compute budget for continual runs by 1.5×
and 2× (by increasing the monthly budget for the continual phase while keeping the initialization the
same). These longer runs still cost considerably less than the Oracle series (seeing 330B and 440B
tokens respectively), while also being able to update models every month instead of every two years.

Matching the Oracles with 62% less compute. In Tab. 4, we report the average of the elements that
would have appeared in the Backwards and ID elements of the corresponding matrix. Overall, we
observe that scaling up Replay (αt = 1/2) + AR to 440B tokens becomes competitive with the series
of Oracles. Despite requiring 62% less compute, it surpasses re-training Oracles on many evaluations
(i.e., all TIC-CC and TIC-WIKI subsets) while closing the gap significantly on most others.

7 CONCLUSION

We introduce a benchmark for continual LLM pretraining spanning more than a decade of times-
tamped data. TiC-CommonCrawl (TIC-CC) consists of training and evaluation data spanning
more than 100 months. We also introduce new TiC evaluations, TiC-Wikipedia (TIC-WIKI), TiC-
StackExchange (TIC-STACKE), and TIC-CODEDOCS. Using these assets, we clearly observe models
need to be continually trained to stay up to date but that the ideal update frequency varies based
upon the domain, motivating the need for methods that prevent forgetting. To this end, we compared
various baseline strategies for continual pretraining, finding that simple cyclic learning rate schedules
and data-replay shrink the gap to an Oracle that trains on all data. However, completely closing the
gap remains an open and challenging problem to be studied by future work on our benchmark.
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A DATASET CONSTRUCTION

We build upon the existing pipeline and assets from DataComp-LM (Li et al., 2024a) to build our
dataset, only altering steps that rely on global operations across months.

Initial pool and temporal splitting. We start with DCLM-Pool (Li et al., 2024a) which contains all
CC dumps between May-2013 and December-2022. The only pre-processing that has been done on
this pool is to parse the HTML (contained in WARC files of CC) into plaintext for each webpage
via the open-source resiliparse library (Bevendorff et al., 2018; 2021) 2. In DCLM-Pool,
documents are naturally grouped together into files based upon the CC dump, which is indicated by
the file prefix 3. To split the data by month, we simply group files that share the same prefix. Since
DCLM-Pool contains data up to December-2022, we also follow their exact download and extraction
scripts to obtain more recent data until July-2024.

Data preprocessing and tokenization. Next, we follow DCLM-Baseline’s filtering procedure
which starts with their implementation of heuristic filters from RefinedWeb. We apply these filters
independently on each page with no change. However, we have to modify deduplication that removes
nearly identical pages given a similarity threshold. Instead of applying deduplication globally as in
DCLM-Baseline, we apply the same deduplication method only within each month. Finally, we also
skip the final classifier-based filtering in DCLM-Baseline, as their classifier was trained on data that
comes from all months, including examples generated by recent LLMs such as GPT-4.

Data sampling and held-out sets. DCLM-Pool was partitioned randomly into 10 equally sized
“global shards”. Within our monthly splits, we also maintain the original global shard assignments.
For our training scales, using just one of these global shards within each month is sufficient. Notably
though, when we construct evaluation sets such as in (Sec. 4.1), we make sure to sample from a
different global shard than the one used for training. This ensures the evaluation data is a sampled
from the same distribution as the training data while also being mostly held out. Notably, since we
do not deduplicate across globals shards or months, there could be overlap between training and
eval sets across months. However, we observe from Fig. 6 that potential data leakages are unlikely
significantly change relative losses values (compared to the Oracle). For each validation set, we
cap the maximum number of tokens to 16.7M which corresponds to 8192 sequences for our context
length of 2048. For some months of TIC-CC-WIKI and TIC-CC-NEWS, we end up with less than
this amount, but the smallest are 5M and 12M respectively.
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Figure 6: Findings from TIC-CC are robust to potential data leakages. We create a decon-
taminated version of our TIC-CC loss-based evaluation by deduplicating each month’s evaluation
set using a Bloom Filter pre-populated by the corresponding training set. Overall, across all the
methods, checkpoints, and evaluation months we observe strong correlations between using the
pre-decontamination (x-axis) and post-decontamination (y-axis) losses (relative to the Oracle).

2We use readability for parsing code documentations in our TIC-CODEDOCS (https://github.
com/mozilla/readability).

3In DCLM-Pool, each file always starts with CC-MAIN-YYYYMMwhere YYYYMM indicates the dump month.
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B DETAILS OF EVALUATIONS

B.1 TIC-WIKI

We construct TIC-WIKI from Wikipedia and Wikidata which are sister projects from the non-profit
Wikimedia Foundation. Wikidata is a structured knowledge graph that stores the structured data of
Wikipedia and other sister projects. Data on Wikidata is represented in the form of statements in
the form of property-value about an item in the simplest form. For example, “Mount Everest is the
highest mountain in the world” is represented as Earth (Q2) (item)→ highest point (P610) (property)
→ Mount Everest (Q513) (value) 4. The triplet (item, property, value) can also be referred to as
(subject, relation, object).

TemporalWiki dataset generation. TemporalWiki constructs evaluations from monthly snapshots
of English Wikipedia and Wikidata through the following steps:

1. Generate TWiki-Diffsets by identifying changes and additions between consecutive snap-
shots of Wikipedia. For new articles, the entire article is added to the Diffset while for
existing articles, only the changed or new paragraphs are added.

2. Construct TWiki-Probes by processing two consecutive snapshots of Wikidata. Statements
are categorized into changed if the property/value has changed or categorized into unchanged
otherwise.

3. Align TWiki-Diffsets with Wikidata by ensuring changed statements exist in TWiki-Diffsets
and unchanged statements exist in Wikipedia.

4. Heuristic filtering by removing statements where the subject or object is a substring of the
other or the object is more than 5 words. Moreover, a single subject is limited to maximum
1% and relation/object is limited to maximum 5% of the total statements.

TIC-WIKI extends TemporalWiki in various ways:

1. Expanding the timespan from four months to a decade (2014-2024), thus capturing a broader
spectrum of knowledge evolution.

2. We improve the matching process of Wikipedia and Wikidata dumps, and enhance the
robustness of data parser to format changes over time.

B.1.1 DATA PREPROCESSING

Wikidata and Wikipedia dumps. Wikimedia releases regular dumps 5,6, but only retains data for
the most recent 4 months. To access historical data, we utilized the Internet Archive 7. The earliest
available dump dates back to November 2014. It is important to note that the archived dumps do not
cover every month, with several months missing from the record. In our study, we made use of all
available monthly dumps. The filenames of the dumps include the specific date of month that has
been collected on, which is typically the 1st or 20th of the month, though this can vary. We include
only one dump per month if multiple dumps are available. We check for the first date if not available
look for 20th and if neither we start from begining the monthh and check for the first availble date in
that month.

Data cleanup. We utilize WikiExtractor 8 to clean up the Wikipedia data. This step extracts the main
content and removes extraneous and non-essential characters.

Wikipedia diffsets. To construct consecutive diffs of Wikipedia, we developed a method comparing
snapshots of articles from consecutive dumps. For comparing two snapshots of an article, we first
remove extraneous whitespace and standardize formatting by preprocessing the text. This involves
removing empty lines, stripping newline characters, and creating a normalized version of each line
where punctuation is removed and text is converted to lowercase.

4https://www.wikidata.org/wiki/Help:About_data
5https://dumps.wikimedia.org/wikidatawiki/
6https://dumps.wikimedia.org/enwiki/
7https://archive.org
8https://github.com/attardi/wikiextractor
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Afterward, we use a two-level comparison: first at the paragraph level, then at the sentence level for
changed paragraphs. We utilize Python’s difflib.SequenceMatcher to compare the normal-
ized versions of paragraphs and sentences. This hierarchical method, coupled with normalization,
captures substantial edits while filtering out minor or stylistic changes.

We extract and store both changed and unchanged content separately. Changed content includes
replaced paragraphs with modified sentences and newly inserted paragraphs. Unchanged content
preserves paragraphs and sentences that remain identical between versions. New articles are treated
as entirely changed content. This approach allows us to focus on meaningful content changes while
maintaining the context of unchanged information, providing a comprehensive view of how Wikipedia
articles evolve over time. Algorithms 1 and 2 describe the process of constructing Wikipedia diffs
and changed/unchanged content.

Wikidata diffsets. Next, we extract changed and unchanged Wikidata statements of the form
(subject, relation, object) from each consecutive dump. Identical triplets in both dumps are marked
as unchanged. Triplets in the new dump not present in the old are categorized as new, with the
exception that if a subject entity has more than 10 triplets, the algorithm randomly samples 10 to
represent it. When a triplet has the same subject and relation as one in the old dump but a different
object and the old and new objects differ only in case (upper/lowercase), the triplet is classified as
unchanged; otherwise, it is categorized as new. Triplets from the old dump not found in the new
one are implicitly considered removed, but importantly, these are not included in the output sets of
changed or unchanged triplets. Throughout this process, the algorithm filters out triplets with overly
long object values (more than 5 words) and ensures no duplicates are added. This approach efficiently
tracks Wikidata evolution, capturing nuanced changes while managing the volume of data for new
entities. Algorithm 3 describes the process of triplet extraction.

Wikipedia historical dumps. It is possible to reconstruct each version of Wikiepdia using the large
history files Wikipeida provide 9. There are more than 200 historical dumps of English Wikipedia,
each sized more than 2GB. Combined together, these files include all revisions and all pages of
Wikipeida.

For Wikidata, Wikimedia does not provide historical diff files as Wikipedia ex-
cept for the last three months 10. Wikidata file names are formatted similar to
wikidatawiki-20190101-pages-articles.xml.bz2 and available at URLs simi-
lar to https://dumps.wikimedia.org/wikidatawiki/20240401/.

Each Wikidata dump is approximately 140GB whereas each Wikipeida dump is less than 22GB.
Therefore, it is possible to make a version of Wikipedia that keeps track of all changes which results
in 200 files of 2GB. But as far as we know there are no such files for Wikidata.

Using the dumps from archive.org has several advantages:

• We are sure that we do not leak information from previous timesteps.
• There exists a Wikidata dump close to each Wikipedia dump to be aligned.
• We can use Wiki-Extractor for filtering and remove Wikipeida editorial discussions.

To illustrate the characteristics of our generated dataset, we present key statistics in the following
figures. Figure 7 shows the number of Wikipedia pages with significant changes between consecutive
database dumps over time. This graph provides insight into the volume and temporal distribution of
our data generation process, highlighting periods of higher and lower content modification as well as
distribution of our dumps.

B.2 TIC-STACKE

B.2.1 DATA PREPROCESSING

TIC-STACKE spans data from July 2008 through April 2024. The data was sourced from archive.
org using the April 2024 dump of StackExchangeEach category in the dump comes with two key

9https://dumps.wikimedia.org/enwiki/latest/ file names containing
pages-meta-history.

10https://dumps.wikimedia.org/wikidatawiki/

19

https://dumps.wikimedia.org/wikidatawiki/20240401/
archive.org
archive.org
archive.org
https://dumps.wikimedia.org/enwiki/latest/
https://dumps.wikimedia.org/wikidatawiki/


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Algorithm 1 Construct Wikipedia Consecutive Diffs

1: Input: oldSnapshot, newSnapshot
2: Output: changedContent, unchangedContent
3: oldArticles← ReadArticles(oldSnapshot)
4: newArticles← ReadArticles(newSnapshot)
5: changedContent← ∅, unchangedContent← ∅
6: for each articleId in newArticles.keys do
7: if articleId in oldArticles then
8: oldText← NormalizeText(oldArticles[articleId].text)
9: newText← NormalizeText(newArticles[articleId].text)

10: changed← ExtractChangedContent(oldText, newText)
11: unchanged← ExtractUnchangedContent(oldText, newText)
12: Add (articleId, changed) to changedContent
13: Add (articleId, unchanged) to unchangedContent
14: else
15: Add (articleId, newArticles[articleId].text) to changedContent
16: return changedContent, unchangedContent

Algorithm 2 Extract Changed Content

1: Input: oldText, newText
2: Output: changedContent
3: oldParagraphs← SplitIntoParagraphs(oldText)
4: newParagraphs← SplitIntoParagraphs(newText)
5: changedContent← ∅
6: for each (oldPara, newPara) in Zip(oldParagraphs, newParagraphs) do
7: if IsDifferent(oldPara, newPara) then
8: oldSentences← SplitIntoSentences(oldPara)
9: newSentences← SplitIntoSentences(newPara)

10: for each (oldSent, newSent) in Zip(oldSentences, newSentences) do
11: if IsDifferent(oldSent, newSent) then
12: Add newSent to changedContent
13: return changedContent

Algorithm 3 Wikidata Triplet Extraction and Categorization

Require: oldDump, newDump
Ensure: unchanged, new

unchanged← {}
new← {}
newEntities← {}
for all triplet ∈ newDump do

if triplet ∈ oldDump then
Add triplet to unchanged

else if hasSameSubjectPredicate(triplet, oldDump) then
oldObject← getObject(triplet.subject, triplet.predicate, oldDump)
if equalsIgnoreCase(triplet.object, oldObject) then

Add triplet to unchanged
else

Add triplet to new
else

if triplet.subject /∈ oldDump then
Add triplet to newEntities[triplet.subject]

else
Add triplet to new

sampleNewEntityTriplets(newEntities, new)
filterLongObjects(unchanged, new)
removeDuplicates(unchanged, new)
return unchanged, new
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Figure 7: Number of Wikipedia pages with significant Changes between consecutive archive.org
dumps.

files: Post.xml and PostHistory.xml. Post.xml contains information on how answers and
questions relate to each other and includes the latest text for each post entry. PostHistory.xml
records the changes to each post, whether it is a question or an answer.

To construct our dataset, we first build the graph of question-answer relationships based on the
Post.xml. We then use PostHistory.xml to reconstruct exact snapshots of posts at specific
timestamps. This allowed us to capture the state of each post at the end of each month, ensuring our
data reflected the actual content available at those points in time.

We construct binary classification tasks from StackExchange content. For each question, we extract
two responses: the solution accepted by the original author and an alternative option. Our goal is to
create clear distinctions in answer quality, so we implement rigorous selection criteria. Specifically,
we requir the accepted solution to have received at least four times the number of upvotes as the
alternative. For the alternative, we choose the response with the lowest upvote count that was posted
before the accepted answer. This strict filtering, while effective in creating distinct quality differentials,
significantly reduced our sample size across most categories. To maintain robust evaluation metrics
while preserving data volume, we introduce an additional metric: the average perplexity of accepted
answers, calculated without applying the strict upvote ratio filter. This approach allows us to include
more samples in our analysis while still capturing meaningful performance trends

We applied this process consistently across all categories of StackExchange, allowing for comprehen-
sive evaluation. In total, we processed 174 out of 182 categories in stackexchange data, of which we
focus on stackoverflow in this work as well as a group of seven categories: apple, codereview,
electronics, english, gaming, math, and worldbuilding. Some categories had insufficient questions
in a single month to provide statistically significant results. In such cases, we combined data from
consecutive months, ensuring that each time frame contains at least 500 questions.

The full set of sites includes:

3dprinting, academia, ai, android, anime, apple, arduino, astronomy, aviation, avp, beer, bicycles,
bioacoustics, bioinformatics, biology, bitcoin, blender, boardgames, bricks, buddhism, cardano,
chemistry, chess, chinese, christianity, civicrm, codegolf, codereview, coffee, cogsci, computer-
graphics, conlang, cooking, craftcms, crafts, crypto, cs, cseducators, cstheory, datascience, dba,
devops, diy, drones, drupal, dsp, earthscience, ebooks, economics, electronics, elementaryos, ell,
emacs, engineering, english, eosio, esperanto, ethereum, expatriates, expressionengine, fitness, free-
lancing, french, gamedev, gaming, gardening, genai, genealogy, german, gis, graphicdesign, ham,
hardwarerecs, health, hermeneutics, hinduism, history, homebrew, hsm, interpersonal, iot, iota, islam,
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italian, japanese, joomla, judaism, korean, langdev, languagelearning, latin, law, lifehacks, linguistics,
literature, magento, martialarts, materials, math, matheducators, mathematica, mechanics, meta,
moderators, monero, money, movies, music, musicfans, mythology, networkengineering, opendata,
opensource, or, outdoors, parenting, patents, pets, philosophy, photo, physics, pm, poker, politics,
portuguese, proofassistants, puzzling, quant, quantumcomputing, raspberrypi, retrocomputing, re-
verseengineering, robotics, rpg, rus, russian, salesforce, scicomp, scifi, security, sharepoint, sitecore,
skeptics, softwareengineering, softwarerecs, solana, sound, space, spanish, sports, sqa, stackoverflow,
stats, stellar, substrate, sustainability, tex, tezos, tor, travel, tridion, ukrainian, unix, ux, vegetarianism,
vi, webapps, webmasters, windowsphone, woodworking, wordpress, workplace, worldbuilding, and
writers.

B.2.2 ANALYSIS OF STACKEXCHANGE DATA

This section presents an analysis of question-answer patterns across the top 20 categories of StackEx-
change, with a focus on StackOverflow, Mathematics, and English Language & Usage.

Overall category distribution. Figure 8 shows the distribution of questions across the top 20
StackExchange categories.
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Figure 8: Number of questions by StackExchange category (log scale).

Temporal trends in question volume. Figure 9 show the number of questions asked per month for
Stack Overflow, Mathematics, and English Language & Usage.
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Figure 9: Number of questions per month in StackOverflow, Mathematics and English Language &
Usage.

Question characteristics. Figure 10 illustrates the distribution of question lengths for StackOverflow,
Mathematics, and English Language & Usage.
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Figure 10: Character Count Distribution in StackOverflow, Mathematics and English Language &
Usage Questions.

Answer patterns. Figure 11 presents the distribution of answer counts per question for StackOverflow,
Mathematics, and English Language & Usage.

2 3 4 5 6 7 8 9 10 11-15 16+
Number of Answers

103

104

105

106

Co
un

t o
f Q

ue
st

io
ns

 (L
og

 S
ca

le
)

2,143,063

530,459

147,111

46,926

16,608

6,422

2,958

1,394

734
1,099

302

Distribution of Answer Counts per Question in Stack Overflow-Stack Exchange

(a) StackOverflow

2 3 4 5 6 7 8 9 10 11-15 16+
Number of Answers

101

102

103

104

105

Co
un

t o
f Q

ue
st

io
ns

 (L
og

 S
ca

le
)

134,293

28,996

6,831

1,707

487

170

63

19
13 15

7

Distribution of Answer Counts per Question in Math-Stack Exchange

(b) Mathematics

2 3 4 5 6 7 8 9 10 11-15 16+
Number of Answers

101

102

103

104

Co
un

t o
f Q

ue
st

io
ns

 (L
og

 S
ca

le
)

13,855

4,682

1,640

637

279

150

87

48

19

47

6

Distribution of Answer Counts per Question in English-Stack Exchange

(c) English Language & Usage

Figure 11: Distribution of Answer Counts per Question in Mathematics and English Language &
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C HYPERPARAMTER TUNING

In general we follow the configurations used in DataComp-LM (Li et al., 2024a) unless further speci-
fied. For our Oracle and initialization trained on May-2013, we exactly follow their hyperparameters
given that these were also standard pre-training runs from scratch.

For our various continual methods, we do perform additional hyperparameter tuning using the first 10
TiC-CC training sets and held-out validation sets. Following Cha & Cho (2024), we limit the tuning
to an early set of months given that it would be impossible for a practitioner to be able to tune based
upon data they have not seen far in the future. We discuss the tuning and hyperparamter choices for
specific methods in more detail below.

Cyclic Cosine. We mainly tuned the maximum learning rate in each cycle, trying values between
1e-3 and 3e-5, as shown in Tab. 5. On our tuning set, the best setting across the board was 1e-4.
When carrying out these tuning runs to completion on all 113 timesteps, we do observe an important
difference in behavior. While 1e-4 continues to offer the best ID performance and strictly dominates
all higher settings, lowering it further can be used to trade-off Backward and ID performance. The
smallest fixed max learning rate, 3e-5 results in a similar yet overall worse performance profile to
using an an AR meta-schedule. This makes sense given the AR schedule roughly can be considered
to decrease the maximum learning rate at a 1/t rate; since our setup involves over 100 months, AR
schedules set the maximum learning rate very close to the minimum of 3e-5 in most rounds. Overall,
we find that learning rates do need to be lowered by at least 30x compared to the the May-2013
initialization (which used 3e-3). This is in contrast to Ibrahim et al. (2024); Gupta et al. (2023) which
both suggest re-warming up to a similar learning rate as the initial pre-training or Parmar et al. (2024)
who start from the minimum learning rate of the pre-trained model. We suspect this is due to the
difference in setup (i.e., these works use only 2 or 3 training rounds of comparable sizes and face
distribution shifts related to data quality and language rather than temporal evolution).

Table 5: Tuning for Cyclic Cosine

Max LR TIC-CC (Tuning Months) (TIC-CC All Months)
Backward ID Forward Backward ID Forward

1e-3 0.103 0.086 0.118 0.197 0.083 0.209
3e-4 0.019 0.016 0.051 0.125 0.041 0.178
1e-4 0.002 0.005 0.039 0.072 0.027 0.161
5e-5 0.002 0.006 0.039 0.062 0.034 0.163
3e-5 0.004 0.009 0.040 0.060 0.042 0.165

AR Schedule 0.002 0.008 0.043 0.058 0.040 0.166

Rsqrt. We tuned both the maximum learning rate within the same range as Cyclic Cosine as well
as the cooldown length, choosing between 50 and 400. Our final run continued to use 1e-4 for the
maximum learning rate and 400 for the cooldown, though there did not appear to be much difference
when compared to smaller values such as 200 or 100 on the tuning months.

Schedule-Free. We continued to use warmup but given that Schedule-Free makes more drastic
changes to optimization (i.e. using a different optimizer versus simply a different learning rate
schedule), we re-tuned both the learning rate and weight decay. Interestingly, 1e-4 as the maximum
learning rate continued to work best for us, though we found it helped slightly to drop the weight
decay from 0.033 to 0.01.

Table 6: Tuning for Schedule-Free

Max LR WD TIC-CC (Tuning Months)
Backward ID Forward

1e-3 0.033 0.1025 0.0856 0.1178
5e-4 0.033 0.0448 0.0373 0.0713
3e-4 0.033 0.0206 0.0183 0.0532
5e-5 0.033 0.0053 0.0105 0.0406
1e-4 0.067 0.0049 0.0080 0.0406
1e-4 0.033 0.0044 0.0077 0.0404
1e-4 0.010 0.0042 0.0075 0.0403
1e-4 0.005 0.0042 0.0075 0.0403
1e-4 0.0001 0.0044 0.0077 0.0404
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LwF. Following the original paper (Li & Hoiem, 2018), we used a temperature parameter of T = 2.
We mainly tuned the regularization weight λ trying values between 0.1 and 1.0 and settling upon 0.3.
However, overall we found using LwF either resulted in little difference (when using a small λ) or
started to decrease all metrics (when using a larger λ).

EWC. We fixed the number of iterations used to estimate the Fisher matrix to 100 and similar to LwF,
we focused on tuning the weight given to the EWC regularization term. Overall, we found that fairly
high values were needed to overcome the small values in the approximate Fisher matrix (coming from
small second order moment terms). We found that λ = 107 performed best when tuning between
101 and 109, as shown in Tab. 7. The only other setting we tried that is not strictly dominated by
this choice was λ = 106, which resulted in slightly better ID performance but significantly worse
backward transfer.

Table 7: Tuning λ for EWC

λ
TIC-CC (Tuning Months)

Backward ID Forward

100 0.0025 0.0050 0.0394
101 0.0025 0.0050 0.0394
104 0.0025 0.0050 0.0394
105 0.0025 0.0049 0.0394
106 0.0021 0.0047 0.0391
107 0.0013 0.0050 0.0389
108 0.0107 0.0178 0.0462
109 0.0286 0.0400 0.0586
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Figure 12: Evaluation matrix heatmaps for selected methods on our TIC-CC evaluations.
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Figure 13: Evaluation matrix heatmaps for various methods on TIC-WIKI.
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Table 8: Comparing TIC-WIKI-Diff versus TIC-WIKI-Unchanged

Method TIC-WIKI-Diff ↓ TIC-WIKI-Unchanged↓
Backward ID Forward Backward ID Forward

Cyclic Cosine (std)
0.033 0.052 0.085 0.039 0.052 0.072
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Cyclic Cosine + AR 0.033 0.054 0.087 0.035 0.051 0.074
Cyclic Rsqrt 0.031 0.051 0.084 0.035 0.050 0.070

Schedule-Free 0.035 0.055 0.087 0.040 0.055 0.074
Replay (αt = 1/t) 0.038 0.063 0.091 0.035 0.056 0.074
Replay (αt = 1/2) 0.032 0.055 0.086 0.034 0.053 0.072

Replay (αt = 1/t) + AR 0.039 0.063 0.092 0.034 0.055 0.077
Replay (αt = 1/2) + AR 0.033 0.057 0.088 0.033 0.052 0.074

LwF 0.033 0.053 0.085 0.039 0.053 0.072
EWC 0.030 0.051 0.083 0.034 0.050 0.069
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Figure 14: Evaluation matrix heatmaps for various methods on the Math site of TIC-STACKE.
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Figure 15: Heatmaps for various methods on the StackOverflow site of TIC-STACKE.
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Table 9: Average over an extended set of TIC-STACKE evaluations that we refer to as TIC-STACKE-
CAT7. This includes the following sites: apple, codereview, electronics, english, gaming, math, and
worldbuilding. Overall, we find that a combination of replay and AR meta-schedules does the most
to reduce forgetting while EWC performs best on ID and Forward evaluations.

Method TIC-STACKE-CAT7↓
Backward ID Forward

Cyclic Cosine (std)
0.045 0.050 0.071
(0.001) (0.001) (0.000)

Cyclic Cosine + AR 0.035 0.044 0.068
Replay (αt = 1/t) 0.036 0.052 0.072
Replay (αt = 1/2) 0.038 0.049 0.070

Replay (αt = 1/t) + AR 0.031 0.050 0.072
Replay (αt = 1/2) + AR 0.032 0.046 0.071

LwF 0.044 0.048 0.070
EWC 0.035 0.043 0.067
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Figure 16: Heatmaps for various methods on TIC-CODEDOCS-PYTORCH
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Figure 17: Heatmaps for various methods on TIC-CODEDOCS-NUMPY
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E EXTENDED RELATED WORK

Temporal knowledge evaluations. Language models are expected to have an understanding of
time to answer questions about specific time periods and generally reason about time. Various
benchmarks have been proposed to evaluate temporal knowledge of LLMs. TemporalWiki (Jang
et al., 2022a) evaluates the capability of models to update factual knowledge. TemporalWiki is
constructed from the difference between four consecutive snapshots of Wikipedia and Wikidata. Our
TIC-WIKI evaluation expands and improves on TemporalWiki in various ways (see Appx. B.1).
StreamingQA (Liška et al., 2022) consists of human written and generated questions from 14 years
of news articles. The evaluation is either open-book where a model receives a collection of news
articles that contain the answer, or closed-book where the model is first fine-tuned on the training
set containing the documents and then tested. We evaluate our TiC checkpoints on StreamingQA
both in open/closed-book setups and find that there is high ambiguity in the questions that evaluates
reasoning more than temporal knowledge understanding. TempEL (Zaporojets et al., 2022) evaluates
entity linking performance across 10 yearly snapshots of Wikipedia. Entity linking is the task of
mapping anchor mentions to target entities that describe them in a knowledge base. In comparison,
our TIC-WIKI evaluates general language and knowledge understanding. TempLAMA (Dhingra
et al., 2022) constructs an evaluation for factual queries from Wikidata. They focus on temporally
sensitive knowledge with known start and end dates in a specific Wikidata snapshot. Notably, they
propose TempoT5 to jointly model text and timestamp which allows a language model to answer
temporal questions that change over time such “Who is the president”. EvolvingQA (Kim et al., 2024)
is also a benchmark for training and evaluating on Wikipedia over time where a LLM automatically
generates question-answers from 6 months of articles in 2023. We avoid using any LLMs for
generating our evaluations to prevent transfer of bias. TIQ (Jia et al., 2024) benchmark consists of
10k questions-answers based on significant events for the years 1801–2025.

Temporal generalization. Beyond understanding the past, LLMs need to be prepared for the future.
Li et al. (2024b) observes performance deterioration of public LLMs on Wikipedia, news, code, and
arXiv papers after their training data cutoff date. They particularly use compression rate achieved by
treating an LLM as a general input compressor using arithmetic coding (Delétang et al., 2024). Our
comprehensive evaluations on CommonCrawl, Wikipedia, news articles, StackExchange, and code
evaluations verifies their results and more comprehensively shows that the rate of deterioration is
domain-specific. DyKnow (Mousavi et al., 2024) evaluations also reaffirm that LLMs private and
open-source LLMs have outdated knowledge by asking them questions constructed using Wikidata.
They also observe LLMs output inconsistent answers in response to prompt variations and current
knowledge editing methods do not reduce outdatedness. TAQA (Zhao et al., 2024) further demonstrate
that pretrained LLMs mostly answer questions using knowledge from years before their pretraining
cutoff. They construct question/answers from Wikipedia for years 2000–2023 and propose three
methods to improve the temporal alignment of models. Similar observations have been made in
RealTimeQA (Kasai et al., 2024) and TempUN (Beniwal et al., 2024). These works further solidify
the need for continuously updating models with continual pretraining.

Temporal understanding. General temporal understanding involves reasoning based on the relation
between existing knowledge. Test of Time (Fatemi et al., 2024) benchmark evaluates temporal
reasoning, logic, and arithmetics by constructing a synthetic dataset. Their goal is to reduce the
chance of factual inconsistency in the evaluation using synthetic data. Our benchmark is designed
to be fully realistic based on real data and timestamps to understand the challenges of large-scale
continual pretraining in practice. Gurnee & Tegmark (2024) find that LLMs learn a representation of
space and time with individual neurons that encode spatial and temporal coordinates. They construct
datasets of named entities and find that linear probing LLMs performs well on predicting spatial
and temporal coordinates. Nylund et al. (2024) proposed time vectors that specify a direction in the
model’s weight space that improve performance on text from a specific time period.

Temporal domain-specific evaluations. We can further analyze the temporal understanding of
a model based on the performance on specific domains with varying rates of change. Luu et al.
(2022) studied temporal misalignment such as quantifying temporal degradation of domain-specific
finetuning in four domains: social media, science, news, and food reviews. They observed significant
temporal degradation in domains such as news, social media, and science but less in food reviews.
Gururangan et al. (2020) studied domain-adaptive pretraining and task-adaptive pretraining on
unlabeled data for four domains in science, news, and reviews. They observe domain/task-adaptive
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pretraining improves performance on the new domain but do not evaluate forgetting on previous
domains. Agarwal & Nenkova (2022) studies the temporal model deterioration on future evaluations.
They find that the deterioration is task-dependent and domain-adaptive pretraining does not help
hypothesizing that limited pretraining data is detrimental in continual pretraining. Jin et al. (2022)
domain-incremental pretraining for four scientific domains as well as temporal pretraining on social
media over 6 years. They focus on the impact on downstream performance after fine-tuning. They
observe distillation-based approaches are the most effective in retaining dowstream performance
for tasks related to earlier domains. Overall, the gap between different continual learning methods
remained small that can be due to the small scale of pretraining. In comparison, our TIC-CC training
is simulating large-scale pretraining.

Domain/task-continual learning for LLMs. In domain/task continual learning, the model is
presented with a sequence of tasks with predefined labels (Hsu et al., 2018; Van de Ven & Tolias,
2019; Zhou et al., 2023). Each task comes with its training and test sets. In contrast with continual
pretraining, the model needs to support a growing set of labels while compared with temporal
continual learning, the order of tasks are often arbitrary (e.g., Split-CIFAR, Perm-MNIST). Prominent
methods in this domain are regularization-based methods (Kirkpatrick et al., 2017; Mirzadeh et al.,
2020a;b; Farajtabar et al., 2020), replay-based methods that often perform superior (Lomonaco et al.,
2022; Balaji et al., 2020; Prabhu et al., 2020), and architecture-based methods that adapt the model
over time (Schwarz et al., 2018; Rusu et al., 2016). Continual learning for language models has
also been dominated by domain/task continual works. Jin et al. (2022) proposed benchmarks for
continually training models on a sequence of research paper domains as well as chronologically-
ordered tweet streams. Razdaibiedina et al. (2023) proposed learning a new soft prompt for each task
and pass soft prompts for all seen tasks to the model which provides adaptability while preventing
catastrophic forgetting. Luo et al. (2023) studied continual learning for instruction tuning and
observed catastrophic forgetting, especially for larger models. Mehta et al. (2023) showed that
generic pretraining implicitly reduces catastrophic forgetting during task incremental finetuning.

Continual pretraining of LLMs. Recent work have studied continual pretraining of foundation
models at large-scale. TiC-CLIP (Garg et al., 2024) proposed a benchmark of training and evaluation
of image-text foundation models and demonstrated the deterioration of existing foundation models
on new data. Lazaridou et al. (2021) studied time-stratified language pretraining on WMT, news, and
arXiv up to 2019 and observed the models become outdated quickly on news data that holds even
for models of various sizes. They study dynamic evaluation as a continual pretraining method that
trains on a stream of chronologically ordered documents and observed that models can be updated.
However, they did not explore the impact on forgetting and scalability of the method to more generic
pretraining data over years. Jang et al. (2022b) proposed continual knowledge learning as a new
problem and suggested that parameter expansion is necessary to retain and learn knowledge. They
focus on one-step continual pretraining where models are pretrained on C4/Wikipedia data up to
2020 and then trained once more on recent news articles. They find adapter methods perform better
than regularization and replay methods. Adapter methods are not directly applicable in our multi-
year continual pretraining setup where we train in more than 100 steps on large-scale data. Gupta
et al. (2023) proposed simple recipes for continual pretraining of LLMs such as utilizing cyclical
learning rate schedules with warmup and ablated on hyperparameters such as warmup duration when
continuing the pretraining on a fixed pair of pretraining datasets.

Time-aware training. Orthogonal to continual pretraining, one can modify the training or fine-tuning
of a model to include explicit information about time. TempLAMA (Dhingra et al., 2022) proposed
prepending a time prefix to each example during training which gives the model the flexibility to
respond to time-sensitive questions. They train models on news articles where the time can be reliably
extracted. Drinkall et al. (2024) proposed training a series of models with sequential data cutoffs
dates to avoid data contamination with benchmark and private data. The observe no difference across
time on static downstream evaluations when training models on news and Wikipedia

Factual editing and retrieval augmented generation (RAG). Another set of works aims to ad-
dress the staleness of pretrained LLMs without further standard pretraining. One approach is to
surgically edit the facts a model “knows” by identifying and updating the relevant weights within a
model (Mitchell et al., 2022a). Another is to store edits in an explicit memory and learn to reason
over them (Mitchell et al., 2022b). Retrieval augmented generation (RAG) pairs an LLM with new
data sources to retrieve the most relevant document for a query. Generally, continual pretraining
and RAG are orthogonal approaches to generate up to date responses. RAG methods increase the
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cost at inference time without changing the model while continual pretraining is the opposite. Fresh-
LLMs (Vu et al., 2024) proposes a QA benchmark and argues that fast-changing knowledge requires
a retrieval-based solution compared with slow-changing knowledge. Continual pretraining can be
crucial in reducing the cost of RAG by utilizing retrieval only on knowledge that changes faster than
the rate of continual pretraining.

F FUTURE WORK

Tokenizer. As the data changes over the years, new words appear in the language that would benefit
from temporal adaptation of the tokenizer (Zheng et al., 2024). In this work, we fixed the tokenizer
and did not change it across models. One important challenge that changing the tokenizer introduces
is that the perplexity of models with different vocabularies will not be directly comparable. Future
work would need to either focus on non-perplexity evaluations (Delétang et al., 2024) or normalize
perplexity by a mapping between vocabularies of a checkpoint to the reference oracle model.

Joint training of text and timestamp. TIC-CC training data has monthly timestamp correspond-
ing to the crawl time that could be passed as context to the LLM during training and evaluation.
TempoT5 (Dhingra et al., 2022) and TempoBERT (Rosin et al., 2022) explored temporal language
modeling for example by prefixing the input with “Year: ” which helps resolve ambiguity in knowl-
edge that has time-dependent answers such as “Who is the president”.
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