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Abstract—This paper proposes a fully-connected network
training architecture called EILE targeting incremental learning
on edge. By using a novel reconfigurable processing element
(PE) architecture, EILE avoids explicit transposition of weight
matrices required for backpropagation to preserve the same
efficient memory access pattern for both the forward (FP) and
backward propagation (BP) phases. Experimental results on a
Zynq XC7Z100 FPGA with 64 PEs show that EILE achieves
19.2 GOp/s peak throughput and maintains nearly 100% PE
utilization efficiency for both FP and BP with batch sizes from
1 to 32. EILE’s small on-chip memory footprint and scalability
to match any available off-chip memory bandwidth makes it an
attractive ASIC architecture for energy-constrained training.

Index Terms—deep neural network, hardware accelerator, on-
chip training, incremental learning, edge computing, FPGA

I. INTRODUCTION

Pretrained neural networks suffer from catastrophic forget-
ting when trained for new classes or tasks [1]. Incremental
learning (IL) algorithms allow a pretrained network to be
trained online for new classes with slow forgetting of the old
classes. IL is useful for edge devices, e.g mobile phones, in
applications such as face adaptation and speech verification
of new users. Because edge platforms have tight arithmetic
and memory constraints, learning on large batch sizes is
not possible. Additionally, [2] showed that using small batch
sizes for training results in better generalization, more robust
convergence, and needs less epochs.

Edge devices can only store a small number of collected
data samples from the user, therefore, IL is best done with very
small batch sizes (even down to 1) and reduced precision [3] to
minimize memory footprint of the training process; however,
small batch sizes reduce opportunities of reusing weights;
thus, making it hard to achieve high utilization of arithmetic
units. An edge IL accelerator must be carefully designed to
ensure efficient off-chip memory access and high arithmetic
unit utilization even with small batch sizes.

Full error backpropagation remains the most accurate train-
ing method. Neural network training with backpropagation
requires a forward propagation (FP) phase to evaluate the loss
function and a backward propagation (BP) phase to compute
the gradient loss with respect to network parameters. The
BP phase requires more arithmetic operations than the FP
phase and has higher memory cost because of the need to
store inter-layer activations and to fetch transposed weights
from off-chip DRAM memory needed when training large
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networks. DRAM access is around 10X-100X more expensive
than arithmetic operations [4] and fetching transposed matrices
reduces DRAM energy efficiency and speed because it cannot
exploit DRAM burst mode access.

Previous IL accelerators [5], [6] do not report the efficiency
for training with small batches. [5] showed an ASIC IL design
with 2 TOp/s/W power efficiency but the reported number is
achieved by buffering all parameters of a small network on the
on-chip SRAM (64 kB). [6] proposed a method to selectively
update network parameters to reduce off-chip memory access;
however, no throughput or power efficiency numbers were
reported. Other implementations that support on-chip training
on the edge include an FPGA design [7] that uses a special
memory management unit to alleviate the impact of irregular
memory accesses but the performance during BP is still below
that of the FP. A recent study [8] exploits a recursive algorithm
for training binary neural networks; however, the processing
element (PE) utilization efficiency of FP and BP phases were
not reported. Other implementations [9], [10], [11] use custom
PE architectures to support on-chip training of different DNN
architectures, but their performance either decreases during
BP [9] or decreases with smaller batch sizes [10], [11].

This work proposes an IL hardware accelerator called
EILE. It uses a novel reconfigurable PE array architecture
that efficiently deals with the transposed matrix problem
of asymmetric DRAM memory access in computations of the
FP and BP phases without an explicit transpose of the weight
matrix (Sec. [1I-B). We demonstrate an FPGA implementation
of EILE that emulates its performance with a commonly used
DRAM memory interface PC4-19200 (Sec. III-D). We show
that it enables consistently highest throughput in both FP and
BP and nearly full utilization of PEs for small batch sizes
down to 1. The architecture is useful in practical edge IL
applications, where a front-end network (e.g. CNN) computes
pre-trained features and the last fully-connected layers are re-
trained for incremental learning classification.

II. BACKGROUND

Training using backpropagation involves three stages: FP,
BP, and parameter update (PU). These stages are defined by
the following equations:

FP: Zy=WiAi_1+ B (1
BP: 0z, =04,_, 0O fl/(Zl) 2)
da,_, =Wz, 3)
dw, =02A]_, )
PU: Wi W, —n x dw, 5
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Fig. 1: EILE architecture and its PE modes.

Zy, Ay, Wy, By are the pre-activation, activation, weight and
bias of layer [ respectively. The operator © denotes the
Hadamard product (element-wise product). f/ is the derivative
of the activation function at layer /. The symbol 0 denotes the
partial derivative of the loss £ with respect to a variable, e.g.,
04, = g—fl, and 7 is the learning rate.

It can be seen from these equations that DNN training
mostly consists of matrix-matrix multiplication (MxM) or
matrix-vector multiplication (MxV) operations when the batch
size is 1. These operations are usually accelerated by dis-
tributing multiply-and-accumulate (MAC) operations across a
number of PEs that compute in parallel. When the network
parameters are stored in DRAM, the matrix transposition
needed in Eqs. (3) and (4) creates the “transposed matrix
problem”. The physical architecture of DRAM means that
memory fetches from DRAM are best carried out in bursts,
along rows of the DRAM chip. Accessing DRAM data in
a transposed manner requires a strided single data reading
pattern, resulting in around 10-100X lower throughput and
longer intervals between fetches. EILE proposes a novel array
architecture which avoids this problem as described next.

III. HARDWARE ARCHITECTURE
A. System Overview

The EILE architecture shown in Fig. la consists of three
main modules: Input Processing Module (IPM), Core Comput-
ing Module (CCM), and Output Processing Module (OPM).
A dedicated controller block interfaces with the host device
and controls the overall training process. Part of the data is
stored in the Intermediate Data Buffer (IDB, composed of on-
chip BRAMs) to reduce DRAM fetches.

To solve the transposed matrix problem, EILE supports two
modes of parallelism, Parallel Mode (PM) for FP and Cascade
Mode (CM) for BP as shown in Fig. 1. We take a batch size
of one as an example. In PM, a column section of weights is
unicast (1—1) and an input activation element is broadcast
(1-N) to PEs, so that the MxV results are obtained by
accumulating weighted sum of weight columns sequentially;
while in CM, a row section of transposed weights and a section
of input errors are unicast to PEs, so that the MxV results
are obtained by accumulating dot products sequentially. When
executing CM in BP, the weight matrix is kept in place in
DRAM without change of footprint and fetched in the same

efficient order as in FP. The transposition is thus virtual,
by changing the PE feed. Our method maintains nearly full
utilization of PEs in both FP and BP stages.

B. PE Architecture

Fig. 1b shows the PE architecture that supports both PM
and CM for computing different steps during training. Each
PE has a multiplexer to select the source for one of the inputs
of the adder in its MAC unit. During runtime, the PEs can
operate in either PM (Fig. 1c) or CM (Fig. 1d).

1) PE Parallel Mode: The PE’s multiplexer accepts an
input from the PE’s own buffer so that partial sums are
accumulated within each PE in parallel.

2) PE Cascade Mode: Each PE’s multiplexer accepts input
from the preceding PE’s adder, so that all PEs together
form a pipelined adder chain along which the dot product
is accumulated towards the final accumulator. This mode is
exclusively used for calculating Eq. 3.

The ReLU activation and its derivative are implemented
with multiplexers.

C. IPM and OPM

To support PM, CM and the different dataflow paths re-
quired by the training process, both IPM and OPM have a
two-mode configuration as listed below:

1) IPM Unicast Mode: Different elements in a vector are
sent to different PEs in parallel.
2) IPM Broadcast Mode: One element in a vector is sent to
all PEs in parallel.
3) OPM Parallel Mode: Outputs from all PEs are stored in
parallel to a set of consecutive addresses in the memory.
4) OPM Reduction Mode: The summation result from the
final accumulator is stored to one address in the memory.
The combination of these two modules and PE’s two modes
enables the system to implement all the training equations
presented in Sec. II.

D. Hardware Implementation

To validate the functionality of the EILE architecture, we
implemented an accelerator in the programmable logic (PL) on
a Zynq XC7Z100 system-on-chip (SoC). The ARM processing
system (PS) core within the SoC is used both as the host
device and for computing the training loss. The Xilinx IP



TABLE I: FPGA resource utilization

TABLE II: Performance of EILE

Resource Utilization ~ Available Percentage Batch size 1 4 8 16 32
LUT 40,492 277,400 15% Power Baseboard” 7.30

FF 46,690 554,800 8% W) Wall plug” [ 14.00 13.20 12.90 12.80 12.70

BRAM ACCC]CI‘atOI'* 167.5 755 22% Effective’ | 6.10 5.30 4.90 4.80 4.70
Parameters 512 68% Throughput FP 18.90  19.09 19.14  19.15 19.16

DSP 64 2020 3% ((;’gi /SI;“ BP 1839  19.00 19.09 19.14 19.16

* Saved if parameters are stored onto DRAM. Total® 13.57 1575 1637 1672 17.27
FP 984% 994% 99.7% 99.8% 99.8%
PE utilization* BP 958% 99.0% 99.4% 99.7% 99.8%
*AXI Datamover’ is used for data transfer between DRAM Total® | 70.7% 82.1% 852% 87.1% 90.0%
and the accelerator. For weight data fetches, to match a widely power NS g(l)(l) ggg g'gé ;gg jgg

. . . ermciency . . . . .
used DDR4 DRAM interface PC4-19200 having bandwidth (GOPp/s/W) Total 29 297 334 343 367

Bpram of 19.2GB/s, we use P = 64 PEs running at
fex = 150MHz, according to Bpram = P X W X fur
where W = 2 bytes stands for the word width. This choice
also matches the maximum data width of 1024 bits (64 words)
provided by AXI Datamover and AXI BRAM Controller IPs,
so that each PE can be fed with data on each clock cycle.
As a workaround to overcome the 4 GB/s DRAM bandwidth
bottleneck of the SoC, we used 512 BRAM blocks (2 MB) to
store network parameters. This way, EILE accesses the BRAM
with the same pattern and data rate as it would for the target
DDR4 DRAM.

Table I lists the FPGA resources. The accelerator itself uses
167.5 BRAM blocks (= 0.65 MB, 22% of the PL). Using our
16-bit datatype and DSP unit’s built-in multiplexer, each PE
is mapped to one DSP unit in the PL. Each PE has a local
accumulation buffer of 2 KB.

IV. EXPERIMENTAL RESULTS

Many IL tasks require retraining of fully-connected classi-
fication layers [12], which usually have the most parameters
in deep convolutional neural networks. We evaluate the per-
formance of EILE by training a fully-connected network with
2 hidden layers (network size: 784-512-256-10, total 1 MB of
parameters) on the full MNIST [13] handwritten digit dataset.
Activations are quantized to fixed-point Q(8, 8) format while
weights and gradients are quantized to Q(2, 14) format for
batch size of 1, where Q(m, n) denotes the quantization using
m bits for the integer part and n bits for the fraction.

A. Throughput and Power

Table II reports the training performance of EILE for differ-
ent batch sizes. The peak numerical performance is 19.2 GOp/s
for P=64 PEs and f.x,=150 MHz. From the ’Throughput’ row,
it is clear that EILE maintains nearly peak performance for FP
and BP. The flexible PE architecture allows burst mode reads
for both directions. Without it, the single stride reads needed
for one pass would reduce the throughput of this pass by an
estimated 8-50X if weights were stored on DRAM. The "PE
utilization’ (i.e. fraction of clock cycles where PEs are active)
is above 95% during both passes for all batch sizes.

For larger batch sizes, the parameters are updated less fre-
quently, resulting in fewer memory fetches and thus less power
consumption. The overall throughput is lower than either FP
or BP throughput alone because the gradient calculation and
parameter update are carried out in separate stages and thus the

* Power consumption is measured by a wall plug power meter.

T “Effective power” = Wall plug power - baseboard and fan power.

# “PE utilization” = measured average throughput / peak throughput.

§ “Total” term includes FP, BP, PU, the training loss calculation in the ARM
processor and everything else including communication overhead.
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Fig. 2: Experimental results from EILE training.

PU has around 50% efficiency. This problem can be resolved
by combining both stages and consuming gradients on-the-fly.

The Xilinx Power Analyzer estimates the EILE SoC FPGA
on-chip power consumption at 2.5W for a signal switching
rate of 50%. Static power is 0.27 W and dynamic power is
2.2W. Most power (1.5W) is consumed by the processing
system (PS). The core power (training accelerator + BRAMs)
is 410mW, so the core power efficiency is about 35 GOp/s/W.

B. Performance Comparison

Fig. 2 compares EILE against training using PyTorch on
a GPU (GeForce GTX 980 Ti) and a CPU (Intel Core i7-
4770K CPU @ 3.50 GHz x 8). The GPU uses 16-bit floating-
point (FP16), while the CPU uses FP32 since FP16 is not
well supported for CPU on PyTorch. The runtime power of
the GPU and CPU are 81 W and 44 W. Fig. 2 shows that
EILE achieves more consistent throughput numbers through
all batch sizes in comparison to the CPU and GPU where
the highest throughput are achieved only at large batch sizes
because of higher parallelism. In addition, EILE has 13-61X
higher power efficiency due to its low power consumption.

V. COMPARISON WITH OTHER WORK

Prior work (Table III) mainly reports peak throughput,
which is usually not achievable because PE utilization is lower
than 100%. Compared to prior work, EILE achieved the largest
PE utilization in both FP and BP phases with batch sizes from



TABLE III: Comparison with other works

Work DeepTrain [9] [10] [11] GANPU [14] | Evolver [15] EILE
Network CNN/RNN/FC CNN/LSTM/FC | CNN/RNN/FC GAN CNN/FC FC
Process ASIC 15nm ASIC 14nm ASIC 65nm ASIC 65nm | ASIC 28nm FPGA ASIC 28nm?*
Area (mm?) 1.17 9 16 32.4 5.64 - 1.48
SRAM (KB) 976 2048 448 676 416 670 148
#MAC 480 500 1024 1344 256 64 256
Frequency (MHz) 2500 1500 200 200 268 150 500
Power (W) 2.64 - 0.196 0.647 0.036 0.41 0.49
Data type FXP16 FXP32 FP16/32 FP16, FXP4/8/16 | FP8 | FP16 FXP2/4/8 FXP16
Peak throughput™ FP | 4300 -
(GOp/s or GFLOp/s) 5P - 5300 1500 204.8 1075 | 538 137 19.2 256
PE utilization FP | 88%-98% - 92%-98% ] ] ] 89.7% 98 %-100 % 99.6 %
BP - 50%-96% 80%-97% 85.1% 96 %-100% 97.5%

Normalized throughput’| FP | 16.9-18.8 - 17.7-18.8 17.2 18.8-19.2 19.1
(GOp/s or GFLOp/s) BP - 9.6-18.4 15.4-18.6 16.3 18.4-19.2 18.7

* Without exploiting sparsity.

T Given by 2 x #MAC x fe X PE_Utilization, normalized to #MAC = 64 and f.;;=150 MHz.

¥ Pre-layout synthesis and simulation results, batch-1 only.
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