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Abstract

Deep learning has been recently successfully applied to an ever larger number of problems,
ranging from pattern recognition to complex decision making. However, several concerns
have been raised, including guarantees of good generalization, which is of foremost im-
portance. Despite numerous attempts, conventional statistical learning approaches fall
short of providing a satisfactory explanation on why deep learning works. In a competi-
tion hosted at the Thirty-Fourth Conference on Neural Information Processing Systems
(NeurIPS 2020), we invited the community to design robust and general complexity mea-
sures that can accurately predict the generalization of models. In this paper, we describe
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the competition design, the protocols, and the solutions of the top-three teams at the
competition in details. In addition, we discuss the outcomes, common failure modes, and
potential future directions for the competition.

Keywords: Generalization, Deep Learning, Learning Theory

1. Introduction

Over the past decade, deep learning has indubitably transformed machine learning. For the
first time, we have both the computing hardware and the algorithms to extract information
from enormous amount of high-dimensional data such as images and text (Krizhevsky et al.,
2012). Extensive research brought to fruition powerful neural network architectures that
can learn from hundreds of millions images (Sun et al., 2017) and optimization algorithms
that can optimize these models (Kingma and Ba, 2014). However, notwithstanding the large
body of research, a clear understanding of underlying root causes that control generalization
of neural networks is still elusive (Neyshabur et al., 2019; Zhang et al., 2016; Recht et al.,
2019). Instead of deriving a generalization bound, a recent empirical study (Jiang* et al.,
2020) looked into many popular complexity measures. By a carefully controlled analysis on
hyperparameter choices on a large number of models, the study came to surprising findings
about which complexity measures worked well and which did not. The observations suggest
that conventional methods of evaluating generalization theories may not be sufficient. Since
many measures do not formally measure the size of the hypothesis space, we refer to them as
generalization measures. Studying what generalization measures work well in practice
can grant us theoretical insights about why certain models generalize better (which cross-
validation cannot), and ultimately help us design better models. Beyond the theoretical
interests and usage in model selections, these complexity measures can also be instrumental
in Neural Architecture Search (NAS) by alleviating the need of having a validation dataset.

Rigorously evaluating these complexity measures required training a large number of
neural networks, computing the complexity measures on them, and analyzing statistics that
condition over all variations in hyperparameters. The cumbersome process is painstaking,
error-prone, and computationally expensive. Consequently, this procedure is not accessible
to members of the wider machine learning community who do not have access to larger
compute power. Based on the framework of Jiang* et al. (2020) which compares different
generalization by ranking, we introduced the Predicting Generalization in Deep Learning
(PGDL) competition (Jiang et al., 2020) at NeurIPS 2020, where competition participants
can test their generalization measures on a large and unified benchmark without the burden
of setting up the complex pipeline and acquiring necessary computational resources. This
competition accomplishes several goals:

1. Providing Standardized Benchmarks for Generalization. Most generalization
bounds are tested on a small number of selected models. Recent works (Jiang* et al.,
2020; Dziugaite et al., 2020) find that many generalization bounds are not predictive
of the generalization observed in practice. Large-scale competitions (Bennett et al.,
2007; Russakovsky et al., 2015) have been instrumental in advancing machine learning
research; in a similar spirit, we believe that constructing a large, diverse, and unified
benchmark for generalization prediction can help us discover generalization measures
that can explain generalization of deep learning in practice.
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2. Making Large-scale Compute Accessible. Unlike solutions to traditional ma-
chine learning competitions, the generalization measures are functions that are eval-
uated on a trained neural network and its training data. In addition to preparing the
data, evaluating every complexity measure on all the models also incurs a non-trivial
computational cost, as many generalization measures require inference over the train-
ing dataset. As the results, computing one complexity measure over all models in the
competition could take as much as ten hours. In the competition, the participants
can submit several generalization measures to be evaluated in parallel. This reduces
the turnaround time for testing hypothesis and accelerates the research cycles.

3. Preventing Potential Exploits. The format helps keep the models in private – if
the models and their training data were public, it would be easy to reverse engineer the
identity of the actual dataset without the test data. Centralized solution processing
prevents such potential exploits.

2. Background

In this section, we will describe the tasks and evaluation metric of the competition. To
facilitate exposition, the description will be simplified to convey the high-level goals and
the philosophy behind the design choices. The full details of the tasks and metric used can
be found in the competition proposal Jiang et al. (2020).

2.1. Tasks

We seek a generalization measure that is robust to changes in different model architectures
and training data distributions, and can be computed in a short amount of time (compared
to training the models). To avoid the confusion between the datasets consisted of trained
neural networks and the more conventional datasets consisted of labeled data points, we
will refer to a set of neural networks trained on the same dataset as a task. Every task
contains models from a fixed archetype (e.g. different connectivity patterns) with different
tunable hyperparameters (e.g. depth and width). The definition of different tasks allows us
to cover a wide range of different models and datasets, while keeping the number of models
tractable.

All the 8 tasks we considered in the competition are image recognition tasks with dif-
ferent variations of convolutional neural networks. The tasks combined contain 454 models
(largest task contains 96 models and the smallest task contains 32 models). Each task
is trained on one of the six following datasets: CIFAR-10 (Krizhevsky et al., 2009),
SVHN (Netzer et al., 2011), Fashion MNIST (Xiao et al., 2017), CINIC-10 (Darlow et al.,
2018), Oxford Flowers (Nilsback and Zisserman, 2006), and Oxford Pets (Parkhi et al.,
2012). We did not provide the same model trained from different initialization since this
would increase computational cost, and Jiang* et al. (2020) observed that randomness does
not affect the results significantly. To our knowledge, the variation in architecture and
dataset is the largest compared to the variations any generalization measures in the litera-
ture have been tested on. The competition is split into two stages: Phase 1 which features 2
tasks, and Phase 2 which features 4 tasks. The remaining tasks were made available to the
participants for developing and debugging solutions. Over the course of the competition,
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we observed that many existing generalization measures are not robust over all the tasks
and are thus not as reliable, which corroborates our motivation for using diverse tasks for
evaluation. Details of the tasks and the time limit for the solutions are described in Section
1.3 of Jiang et al. (2020). Furthermore, we provide several baseline solutions. These solu-
tions range from classical approaches such as the VC-Dimension (Vapnik and Chervonenkis,
2015) to more modern approaches geared towards deep learning such as Neyshabur et al.
(2017). The purposes of these baselines are twofold – they show what can be expected
from the existing methods, and also demonstrate how the competitors can interact with the
competition’s API.

2.2. Metric
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Figure 1: Graphical models of different scenarios. (a) Dashed lines represent two possible
causal graph structure. (b) µ is causal of g so an arrow exist. (c) µ is not causal
of g and θi is their confounder.

We use the same mutual information metric used in Jiang* et al. (2020) to measure a
complexity measure’s performance on every task, and use the average mutual information
metric across all tasks as the final score for a generalization measure. We describe the high-
level idea of the evaluation metric here. The full description of the metric can be found in
Section 1.5.2 of Jiang et al. (2020).

Given a set of conditioning hyperparameters θi (e.g., learning rate and depth of the
model), for any ordered pair of models that share the values for parameters in the condi-
tioning set, we can define g as a random variable that indicates whether the first model
generalizes better than the second model; likewise, for any generalization measure, we can
define µ as a random variable that indicates whether the generalization measures predicts
the first model generalizes better than the second model. The mutual information between
µ and g conditioned on the hyperparameter sets θi represents the amount of inherent de-
pendence between the two random variables. In other words, the mutual information metric
represents how well a generalization measure can predict the actual generalization difference
between any pair of models.
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An effective metric should indicate whether µ contains all the information about g
such that knowing the hyperparameters does not provide additional information – this is
precisely the notion that conditional mutual information is designed to capture. We compute
conditional mutual information for all possible conditioning sets and use the minimum as
the final score. This procedure can also be seen as determining whether an edge exists
between the generalization measure and the true generalization, in a particular form of
causal Bayesian network (Figure 1).

3. Solutions

Throughout the competition, we received a multitude of creative solutions to the challenge.
Overall, the solutions can be clustered into three large categories:

1. Principled complexity measures: In statistical learning theory, the generalization
behavior of a model is often described by PAC bounds of the following form:

E(x,y)∼D [`(f(x), y)] ≤ 1

n

n∑
i=1

`(f(xi), yi) +

√
µ

n
+O

(√
log(1/δ)

n

)
(1)

where (x, y) is a pair of labeled data, D is the true data distribution, f is the model,
` is the loss, and µ is a complexity measure which can depend on the model and data.
Generalization measures derived from generalization bounds have favorable theoretical
properties since they provide an upper-bound on the generalization error (Dziugaite
and Roy, 2017; Neyshabur et al., 2017; Bartlett et al., 2017; Neyshabur et al., 2014;
Nagarajan and Kolter, 2019).

2. Data augmentation: Data augmentation is an important technique for improving
generalization performance of machine learning models (Cubuk et al., 2018). Al-
though the exact mechanics by which data augmentation improves generalization are
still under active research (Dao et al., 2019), one popular hypothesis is that data aug-
mentation can synthesize more data from the data distribution. Subscribing to this
hypothesis, one could estimate the generalization error of a trained model by comput-
ing its accuracy on data synthesized by appropriate data augmentation procedures.

3. Intermediate Representation Analysis: Deep learning relies on composition of
non-linear operations to achieve complex mapping from the input space to the label
space. Composition of operations gives rise to intermediate representations between
different layers. There is a long line of research on visualizing the intermediate repre-
sentation of deep neural networks to understand how they perform classification (Olah
et al., 2017; Zeiler and Fergus, 2014); recently, several works use the geometry and
statistics of the intermediate representation to study generalization (Morcos et al.,
2018; Jiang et al., 2018), and demonstrate that these methods have many unusual
properties compared to more traditional methods.

Next, we present the detailed solutions of the top three teams. Many participants have
written reports that detail their solutions. The reports can be found at: https://sites.
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google.com/view/pgdl2020. Each team presents a very unique approach to the prob-
lem, which suggests that there may be much more generalization measures waiting to be
discovered!

3.1. First Place: interpex

The first place solution from Team Interpex borrows on ideas from Neuroscience and uses
metrics that capture quality of hidden representation of a model to predict generalization.
The final winning solution uses the Davies-Bouldin Index to quantify consistency of rep-
resentations and Mixup to quantify robustness of representations. This solution can be
categorized as an Intermediate Representation Analysis.

3.1.1. Motivation

The ability of the human visual system to create invariant and consistent feature represen-
tations irrespective of controlled naturalistic variations of objects is thought to be a major
reason for humans’ ability to generalize (Karimi-Rouzbahani et al., 2017; Nielsen et al.,
2008). One key aspect of invariant object detection is the ability of the visual hierarchy
to create easily separable representation manifolds (DiCarlo and Cox, 2007). Robustness is
another well-known quality of human vision that helps in invariant object detection. Human
vision has been shown to be more robust than deep neural networks on image manipulations
like contrast reduction, additive noise or eidolon-distortions (Geirhos et al., 2017).

From a representation learning perspective, the success of deep learning has been at-
tributed, much like humans, to the ability of deep neural networks to create intermediate
representations that are consistent, invariant to nuisances in the input, and are well sepa-
rated (Achille and Soatto, 2018; Cohen et al., 2020). Bengio et al. (2013) discuss, broadly,
the properties of good feature representations and discuss how general priors about the world
around us can be reflected through these. On a high level, it makes sense that deep models
which build “better” feature representations are more likely to generalize better. However,
there have been limited studies which explicitly try to understand the relationship between
quality of intermediate representations and generalization ability.

Drawing on the parallels between neuroscientific ideas detailed earlier and perspectives
from representation learning, three metrics based on the quality of intermediate representa-
tions are proposed that have the potential to predict generalization in a post-hoc diagnostic
setting like that which the competition provides. These are: (i) Consistency, (ii) Robustness
(to controlled variations), and (iii) Separability. The next sections detail the methods used
to quantify these properties of intermediate representations and the corresponding results
on the competition tasks.

3.1.2. Methods

Notation: We denote a feedforward neural network by fw : X → Rκ and its weight pa-
rameters by w. The weight tensor of the ith layer of the network is denoted by Wi, so
that w =vec(W1, ...,Wd) where d is the network depth, and vec represents the vectorization
operator. A = (A1, ...,Ad) are the corresponding feature maps of the network at each layer,
and fw,k : Ak → Rκ is the intermediate model that maps representations at layer k to the
network output. Let D be the data distribution over inputs and outputs. Let S = {X, y}
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be the training set, where X = {Xi}Ni=1 are the data points and y = {yi}Ni=1 ∈ {1, ..., κ}
are the corresponding training labels sampled randomly from D. We denote by fw(X)[j]
be the jth output of the network. The empirical 0-1 classification loss L is defined as
L̂ = 1

m

∑m
i=1 I

(
fw(X̃i)[yi] ≤ maxj 6=ỹi fw(X̃i)[j]

)
.

Consistency of Representations: To measure consistency of intermediate representa-
tions, we use the Davies-Bouldin Index (DB Index), a well known metric to determine
clustering quality, which measures the ratio of within-cluster scatter to between cluster
separation (Davies and Bouldin, 1979). We compute the DB index of intermediate repre-
sentations with class labels as cluster indices. This tells us how consistent representations
are within a class and how different they are from other classes. Models where representa-
tions at an intermediate layer for each class lie in their own cluster and are distinct from
other class clusters are likely to have similar representations at subsequent layers, and hence
are likely to generalize better. Mathematically, for a given layer Lk and its activations Ak,

Ãk = Φ(Ak) Si =
( 1

ni

ni∑
1

|Ãik − µÃi
k
|p
)1/p

Mi,j = ||µÃi
k
− µÃj

k
||p (2)

Where, Φ indicates a dimensionality reduction operation, i and j are two different classes,
Aik are the feature representations of samples belonging to class i, µÃi

k
is the cluster centroid

of the representations of class i, Si is a measure of scatter within representations of class i,
and Mi,j is a measure of separation between representations of classes i and j. Then, the
complexity measure based on the DB Index for representations at layer k is defined as:

Ck =
1

κ

κ∑
i=1

max
i 6=j

Si + Si
Mi,j

(3)

Robustness of Representations: Robustness of intermediate representations can be de-
termined by evaluating model performance on perturbed samples. However, in a post-hoc
diagnostic setting that the competition provides, perturbations in the input or representa-
tion space need to be data-agnostic, non-stochastic, and controlled (i.e. they should not
take the model into a region of the representation manifold that it has never seen before).
Mixup (Zhang et al., 2018) and manifold mixup (Verma et al., 2019) provide a potential
solution here. Mixup is data agnostic, and perturbs representations in directions that our
model has already seen, i.e. towards another training sample. We use a label-wise version
of mixup where we check performance on linear combinations of training samples restricted
to a class. Mathematically, we create mixed-up representations Ãk at layer k for each class
i such that,

Ãik = λAik,1 + (1− λ)Aik,2 (4)

ỹi = yi (5)

Where Aik,j indicates the representation at layer k for sample j of class i, and inputs
X can be denoted by A0. Computing model performance on mixed-up representations
can then tell us about its generalization ability. The mixup complexity measure based on
representations at layer k is then defined as:
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Ck =

κ∑
i=1

1

Ni

Ni∑
n=1

I
(
fw,k(Ãik,n)[yi] ≤ max

j 6=ỹn
fw,k(Ãik,n)[j]

)
=

κ∑
i=1

L̂
(
fw,k(Ãik)

)
(6)

where fw,k(Ã) is the model mapping intermediate representations to the output.

Separability of Representations: We use the margin distribution to quantify separabil-
ity of representations. The margin distribution on perturbed samples is found to be more
predictive of generalizing than the vanilla margin. We find simply summarizing the margin
distribution with a measure of central tendancy serves our purpose well. Let D(i,j) be the
decision boundary between two classes i and j, and X ′ be a perturbed input sample. Let
A′k be the corresponding intermediate layer representation. Then, the margin is defined as:

D(i,j),k = {A′k | fw,k(A′k)[i] = fw,k(A
′
k)[j]} (7)

And the margin distance is approximated as:

dfw,k,(i,j)(A
′
k) =

fw,k(A′k)[i]− fw,k(A′k)[j]
||∇A′

k
fw,k(A′k)[i]−∇A′

k
fw,k(A′k)[j]||2

(8)

The margin complexity measure at layer k is then:

Ck = −θ(dfw,k,(i,j)(A
′
k)) (9)

Where θ is a distribution summary measure.

3.1.3. Results and Discussion

As opposed to theoretical measures which give bounds on capacity, simple and intuitive
complexity measures are introduced based on quality of intermediate representations that
can be predictive of generalization in a post-hoc setting. These are inspired by neuroscien-
tific theories on the ability of the human visual system to create invariant and untangled
object representations. Our winning solution involves quantifying both consistency and
robustness of intermediate representations by combining the DB Index and Mixup. This
gives us an average score of 22.92 on the final set of tasks. Our other two solutions, based
on the perturbed margin distribution, achieve scores of 13.93 and 9.29, which rank 1st and
3rd on the private leaderboard respectively. Detailed scores on the final tasks are in Table 1.

Our results indicate that complexity measures based on quality of internal represen-
tations may be uniquely qualified to probe generalization ability of models across a wide
range of hyperparameters and model architectures. Independent experiments on the pub-
lic tasks as well as competition results on the private tasks indicate that the proposed
measures are more predictive of generalization ability of deep neural networks than com-
plexity measures based on statistical capacity, weight norms, smoothness of the manifold,
data augmentation, and other empirical measures. Detailed results and discussions are pro-
vided in Natekar and Sharma (2020). An implementation of our solution is available at
https://github.com/parthnatekar/pgdl.
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Complexity Measure Task 6 Task 7 Task 8 Task 9 Task Average

DBI * Label-Wise Mixup 43.99 12.59 9.24 25.86 22.92
Augment Margin Summary 8.67 11.97 1.28 15.25 9.29

Mixup Margin Summary 11.46 21.98 1.48 20.78 13.93

Table 1: Mutual Information scores of our final complexity measures on final tasks of PGDL

3.2. Second Place: Always Generalize

The second place solution by Team Always Generalize features a generalization measure
that aims to quantify the resilience of a classifier to different type of data augmentation.
A sophisticated augmentation procedure makes the solution much more robust than other
solutions based on data augmentation.

3.2.1. Motivation

It has been shown in Azulay and Weiss (2019) that convolutional neural networks are
sensitive to small geometric transformations that are imperceptible to humans. Geirhos
et al. (2018) showed that training on augmented input helps improve the performance of
the model on the particular augmentations but still the model fails to generalize to unseen
augmentations.

The proposed method is based on a simple hypothesis that a model capable of gen-
eralizing must be robust to augmentations. The output of the model should not change
much when certain augmentations are applied on the input in a way that key features of
the input is still retained. In this work, the generalization metric is viewed from the point
of corruption robustness of the model.

Recent works Geirhos et al. (2019) have shown that ImageNet trained models are texture
biased unlike humans who predominantly classify based on shape. Augmentations that
perform changes to the texture would be a suitable test of a model’s generalizability.

3.2.2. Proposed Metric

Algorithm 1 describes the proposed metric. For every sample in a randomly sampled subset
of the training set, the input is augmented with a collection of augmentations and the class
prediction of each output is compared to that of the original image.

On a successful match between the original and augmented input’s predicted label, a
penalty equal to the absolute value of the difference between the confidence of the label is
added. If there is a mismatch between the prediction of the original and the augmented
image’s predicted class label, there is a penalty applied to the score based on the strength
of the augmentation on which the model misclassified.

The strength is determined by the ability of the augmentation to change the texture of
the input. Augmentations that do not alter texture, but alter shape, are considered weak.
A model that misclassifies samples on weak augmentations are considered to generalize
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Algorithm 1 Measure calculation

Input: Consider a model θ; x is the input; λ is the penalty for an augmentation.
Result: Generalization metric φ
φ = 0 ;
forall (x, y) ∈ D do

x′ = Augment(x) ;
if arg maxŷ Pθ(ŷ|x) = arg maxŷ Pθ(ŷ|x′) then

φ = φ − | maxŷ Pθ(ŷ|x)− Pθ(ŷ|x′) |
else

φ = φ− λ
end

end

poorly and are punished for it. The generalization metric reflects the penalty that has been
incurred over an augmented subset of the training data. Thus, models that accumulate a
large penalty have a higher negative score and tend to generalize poorly. Figure 2 is a visual
depiction of some of the augmentations we have used.

(a) Original Image (b) Center Crop (c) Flip Left Right

(d) Random Saturation (e) Random Erasing (f ) Sobel Filter

Figure 2: Illustration of experimented augmentations. (Original image cc-by: Von.grzanka)

The list of augmentations used were Flip, Random Saturation, Crop and Resize, Bright-
ness, Random Erasing (Zhong et al.), Sobel filter (Kanopoulos et al., 1988) and Virtual
Adversarial Perturbation (Miyato et al., 2018).

Table 2 contains the detailed results of all our submissions. The details of each sub-
mission along with their associated penalty terms are described in Appendix B below. We
had experimented with individual augmentations and compound augmentation with rel-
ative penalties. The penalties for each augmentation were empirically calculated. More
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Task 6 Task 7 Task 8 Task 9 Model Average

Submission 1 8.38 6.93 11.37 9.98 9.16
Submission 2 7.97 6.47 11.27 11.30 9.25
Submission 3 7.63 10.16 13.79 9.07 10.16
Task Average 7.99 7.85 12.14 10.12 -

Table 2: Phase 2 scores

details on the solution can be found in K et al. (2021) with the code for implementation at
: https://github.com/sumukhaithal6/pgdl.

3.3. Third Place: BrAIn

The third place solution from Team BrAIn constructs a graph in the hidden representation of
the model with different data points as the nodes and the representation similarity between
different data points as the entries in the adjacency matrices. A notion of consistency
between the labels and the induced graph is used as the final generalization measure. This
approach may also be categorized as an intermediate representation analysis.

3.3.1. Motivation

The solution builds upon recent advances of using graphs to represent the latent space of
DNNs. Such graphs are called Latent Geometry Graphs (LGGs) (Lassance et al., 2021) and
are obtained by connecting samples of a batch depending on how similar their corresponding
representations are. In this way, one can represent the latent space by the relations between
training set samples and focus on their geometry, instead of the absolute position of each
sample.

Label variation is used to derive the complexity measure, which evaluates the separa-
tion of classes in the latent space. Indeed, the obtained score indicates how well the latent
space is aligned with the classification task to solve and a score of zero can be seen as per-
fectly separating all (training) samples of distinct classes. Label variation (also called label
smoothness) has been demonstrated to correlate well with DNN generalization in (Gripon
et al., 2018). Note that such score could be tricked by a DNN that is extremely overfitted
(i.e.,the neural network perfectly separates training examples, but performs randomly on
test ones). In order to mitigate the overfitting scenario and allow for exploring the interpo-
lation between different samples, we add mixup augmentation (Zhang et al., 2018) to the
training examples.

3.3.2. Background

In order to measure label variation, one needs to first construct LGGs. In such a graph,
Vertices (v ∈ V) are data samples and the edge weight between two vertices is a function of
the similarity between the intermediate representations of samples at a given layer. In the
following paragraphs we detail in three steps how we construct these LGGs:
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1. Generate a symmetric matrix A ∈ R|V|×|V| using a similarity measure between inter-
mediate representations, at a given depth `, of a batch of data samples X. For the
competition, we used an RBF kernel.

2. Threshold A so that each vertex is only connected to its k-nearest neighbors and
binarize the output. We used only the closest neighbor for the PGDL competition.

3. Normalize A using its degree diagonal matrix D: Â = D−
1
2AD−

1
2 .

Now that the LGG from a given layer ` is constructed, we measure the aligment between
the representations and the classification task. To do this, we opt to use label variation,
a measure derived from the framework of Graph Signal Processing (GSP) (Shuman et al.,
2013). This measure corresponds to the sum of all edge weights connecting samples of
distinct classes. In the case of mixup augmented data a scaling term is added based on
the difference in the label space. Let us define the needed concepts of label signal, mixup
augmentation and label variation:

Definition 1 (Label signal) The label signal is defined as the class indicator matrix
(one-hot encoding) of each sample Y ∈ {0, 1}|V|×|C|, where C is the set of class labels.

Definition 2 (Mixup augmentation)
The mixup augmentation strategy simply consists in interpolating pairs of examples

in the input space (Xi,Xj) and in the label space (Yi,Yj) using an interpolation factor
λ ∼ Beta(α, α).

Definition 3 (Label variation) Consider a LGG with adjacency matrix A and the label
signal Y. Label variation is defined as:

σ` = tr(Y>L`Y) =
∑
i∈V

∑
j∈V
A`i,j

∑
c∈C

(Yi,c −Yj,c)
2 , (10)

where L` = D` − A` is the combinatorial Laplacian of the LGG from layer ` and D` its
degree matrix.

Note that a small value of σ indicates that the graph structure is well aligned with the
classification task. However, there is a caveat that highly overfitted scenarios may also lead
to small values of σ.

3.3.3. Methodology

In order to produce the final scores, |G| graphs are generated and the median label variation
over these graphs is used as the final score. To construct each graph, max(1, 500C ) training
samples per class are used so that each graph has |V| = max(500, C) vertices. A large
number of combinations of LGGs, label variation, mixup and hyperparameters were tested
for the PGDL competition, but for brevity we present only the parameters used in phase
2. More details and code to reproduce the results can be found at: https://github.com/
cadurosar/pgdl.
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In summary, the label Variation of the Penultimate layer (σ2) with Mixup (VPM) was
used as the complexity metric for phase 2. We note that the graph formalism could also
allow us to represent other commonly used metrics. For example, if we used fully connected
graphs without mixup, the metric (VP) would be equivalent to the sum of similarities of
samples in distinct classes. In the case of our submission, where we use non-symmetric
normalized graphs, with k = 1, the metric is equivalent to the sum of euclidean label
distances between each sample and its closest neighbor in latent space.

3.3.4. Phase 2 results

In the final evaluation (phase 2), competitors could only send their solutions and be informed
if they had finished in time or not. Due to these constraints, only one graph was used,
which increases the variance of the results reflected by the high variance across different
tasks. Nonetheless, the results were pretty consistent with the ones we had on the public
tasks and the proposed solution was one of the few solutions whose scores improve from
phase 1 to phase 2. In Table 3 the per task results are presented on the final set. As
previously noted, the fact that there is a high variability on the results shows that a more
in-depth trade-off analysis between computational complexity and performance could have
led to improved results. More analysis of the results can be found in Appendix A.

Measure Mean on final set Task 6 Task 7 Task 8 Task 9

Third Place - VPM 9.99 13.90 7.56 16.23 2.28

Table 3: VPM results on phase two

4. Results and Observations of the Competition

In this section, we describe the overall outcome of the competition and discuss some impor-
tant observations we made. In total, more than 200 participants signed for the competition
and more than 100 participants made at least one submission. Each team is allowed to
submit at most 200 times and the actually maximum number a team made was 197. The
participants formed 47 teams1, of which 35 teams made at least one submission. In total,
we received 1105 submissions over the course of the entire competition, which took more
than 20000 GPU hours to compute. In phase 2 of the competition, 24 teams submitted 72
solutions and the highest scoring solution is used for determining the final winners. The
participation exceeds our original estimation of 50 participants, which suggests that there
is potentially a large interest in competitions of this format. One of the most notable
observations is how much the performance changed between phase 1 and phase 2 of the
competition. In a machine learning or data science competition, besides providing training
data, it is common to separate the competition into two phases, each featuring a different
datasets. In phase 1, the participants are given a set of unlabeled data and are asked to
submit the predicted label. This phase usually lasts for an extended period of time, and the
participants are allowed to submit many times and receive feedback (e.g. accuracy) from
the submissions. Phase 2 features a different set of unlabeled data and participants are

1. Not every participant is in a team.
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Rank Team Phase 2 Score Phase 1 Score Change Percent Change

1 interpex 22.92 38.73 -15.81 -40.82%

2
Always-

Generalize 10.16 41.79 -31.63 -75.69%
3 BrAIn 9.99 9.27 +0.72 +7.77%
4 spn 7.99 40.33 -32.34 -80.19%
5 Vashisht 6.51 9.38 -2.87 -30.60%
6 Tuebingen 6.39 6.55 +0.16 +2.44%
7 samiul 5.98 4.21 +1.77 +42.04%
8 smeznar 5.94 1.51 +4.53 +300.0%
9 FZL 5.60 3.75 +1.85 +49.33%
10 IBM-NTUST 4.92 15.21 -10.29 -67.65%

Table 4: Phase 1 score, Phase 2 score and score change of highest ranking 10 teams. The
theoretical maximum score is 100.

only allowed to submit a small number of solutions for the final evaluation2. The purpose
of the setup is to ensure that winning solution does not overfit to the data of phase 1; it
is common for performance to drop slightly from phase 1 to phase 2 due to overfitting.
However, we observed a significant performance drop in PGDL competition (Table 4). In
particular, performance of many solutions with high scores in phase 1 dropped significantly
in phase 2; in extreme cases, the performance dropped by more than 70%, suggesting that
the solutions have overfit to the phase 1 data severely.

Although overfitting occurs in many different solutions, we found that data augmenta-
tion based approaches were particularly vulnerable to severe overfitting. This is perhaps
not surprising since data augmentation that can simulate new data for datasets in phase
1 (e.g. CINIC 10) is not guaranteed to simulate data accurately for the datasets found in
phase 2 (e.g. Fashion-MNIST). This observation confirms the hypothesis that robustness to
changes in architecture and datasets is a desideratum for a reliable generalization measure
with effective explanatory power of generalization. In addition, it is noteworthy that repre-
sentation analysis (Natekar and Sharma, 2020; Lassance et al., 2021) may be particularly
well-suited for studying generalization in deep learning as many solutions based on repre-
sentation of the intermediate activation are robust to changes in architectures and data;
however, these approaches that leverage representation analysis are currently under-studied
and their theoretical properties of these methods are not well understood.

5. Conclusion

Overall, the PGDL competition demonstrated the effectiveness of our evaluation protocol
on large scale experiments and that it is hard to measure progress in understanding gener-
alization without a standardized benchmark. We also saw many interesting generalization
measures (e.g., intermediate representation analysis) that work well in practice but are not

2. On Kaggle, these two phases are usually called Public Leaderboard and Private Leaderboard
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well understood theoretically; we hope future works would shed light on the theoretical
properties of these generalization measures, and ultimately establish theoretical foundation
of generalization that accurately reflects the reality.

Moreover, while the competition covered a wide range of architectures and datasets,
all of the architectures were sequential models without any skip connections (Srivastava
et al., 2015; He et al., 2016). Future versions of the competition should support models
of arbitrary computation graphs, which would open up possibility for graph theoretical
analysis (You et al., 2020). Another shortcoming of this competition is that all tasks are
image recognition tasks. Future iterations should include tasks from other modality such
as sentiment analysis with language models or graph classification. Overall, we believe that
the PGDL competition has fulfilled our original vision of the competition. We hope that the
competition will instigate research in these newly discovered generalization measure, and
promote the importance of incorporating rigorous experimental procedures as a standard
tool in studying deep learning theory.
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Appendix A. Analysis on graph based methods (Third place solution)

In the third place solution, graph-based metrics are used to compute the complexity of the
network. While VPM (c.f. Section 3.3.3) was used for phase 2, other graph constructions
and metrics were investigated during phase 1. The two most promising methods were:

We detail the other two metrics below:

• Variation Rate (VR): The average rate of change in label variation between the

last three layers: |σ3−σ2|+|σ2−σ1|2 , where σi refers to the i-th layer in the architectures
starting from the end. This score comes from the experiments described in Gripon
et al. (2018). A handful of neighbors are kept for each sample (k = 20) and the graph
is symmetrized, but not normalized, so that each sample has the same amount of
outgoing and incoming connections, but not the same degree.

• Worst Case Variation (WCV): The maximum value of label variation (σ) over
the last 3 layers. Only the closest sample is kept (k = 1). The graphs are normalized
and symmetrized so that every node has the same degree and all nodes have the same
amount of incoming and outgoing connections.

Note that both of these solutions differ vastly from the one we finally used VPM, and
that none of these solutions used augmented data. Before the start of the competition, we
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were invested in the first solution (VR), as it is the one that most closely mimics the work
that motivated our interest in this analysis.

The results for phase 1 are depicted in Table 5. We noticed that reducing the amount of
edges gave better results in the public datasets, but we were unable to obtain a reasonable
score on the development sets (less than 1). It took our team a while to understand that
data augmentation, such as mixup, would be paramount to harder tasks such as the one in
the development and final sets. We can see that WCV and VR give better results than VPM
on the easier public datasets, but are unable to perform reasonably on the development ones.
Another interesting result is that the metric we used for phase 2, VPM (|G| = 1), actually
performed better in the ”final” set (phase 2) than on both datasets of phase 1. Finally,
understanding the drawbacks of VR and WCV is an interesting future work that could lead
to improvements in the technique.

Measure Public Development Task1 Public Task 2 Public Task 4 Dev Task 5 Dev

VR(|G| = 11) 14.45 0.72 9.31 19.58 0.44 1.00
WCV(|G| = 1) 32.6 0.37 27.74 37.44 0.21 0.55

VPM (|G| = 80) 11.22 13.04 5.61 16.82 15.42 10.66

VPM (|G| = 1) 6.26 8.35 6.07 6.44 6.32 10.39

Table 5: Results on the public and development sets (phase 1) for graph-based methods.
Note that the solution used for phase two is the one indicated in the last row. |G|
refers to the amount of graphs used.

Finally, as we have previously mentioned in Section 3.3, we used only one graph (VPM
|G| = 1 as we were not sure that the one with more graphs would run in the given time
constraints. For completeness we display the results obtained with this more computation-
ally complex solution in Table 6. As expected, increasing the amount of graphs leads to a
better mean result and a better score in almost all tasks, but has the drawback of taking
more time (as we need to compute more forward passes to generate our graphs).

Measure Mean on final set Task 6 Task 7 Task 8 Task 9

VPM (|G| = 80) 12.27 20.99 8.39 14.77 4.93
Third Place - VPM (|G| = 1) 9.99 13.90 7.56 16.23 2.28

Table 6: VPM comparison on phase two for 1 and 80 graphs. |G| refers to the amount of
graphs used.

Appendix B. Analysis of Augmentation Robustness(Second place
Solution)

Table 7 shows the penalties for each of the augmentations and the respective scores on
both the public and private datasets. λ indicates the penalty value for the respective
augmentation and λv indicates the penalty for the virtual adversarial perturbation.
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Submission λflip λsaturation λcrop resize λsobel λbrightness λflip+saturation λcutout λv Public Score Private Score

Submission 1 6 1 3 2 1 12 0 3 33.67 9.16
Submission 2 6 1 2 3 1 9 0 0 40.9 9.25
Submission 3 6 1 2 3 1 12 2 0 41.8 10.16

Table 7: Penalties for misclassification on each augmentation and scores obtained on 3
submissions

Task 4 Task 5 Model Average

Submission 1 43.99 23.35 33.67
Submission 2 57.07 24.72 40.90
Submission 3 59.37 24.19 41.78
Task Average 53.48 24.09 -

Table 8: Phase 1 scores

Table 8 contains the results for the first phase of the competition.
The proposed metric performs very well on VGG like models (Task 8) and fully con-

volutional models (Task 4 and Task 5) compared to other proposed solutions. There is a
huge drop in the score from phase 1 to phase 2. It is interesting to note that for Task 6 and
task 7, though the models are trained with augmentations from the AutoAugment (Cubuk
et al. (2018)) policy, the proposed metric gives a reasonably good score.

In all of the submissions, we only sample 12,800 samples from each dataset. This was
done to handle the time constraint of 5 minutes per model defined by the competition or-
ganizers.
We had experimented with Neural Style transfer as an augmentation technique. Neural
Style transfer can be used to generate images with texture-shape conflict as in Geirhos
et al. (2019). This was based on the hypothesis that more generalizable models are more
shape biased, similar to humans. Surprisingly, this did not give us a good score. We suspect
this may be because most models are texture biased, and most models fail to classify the
augmented image correctly.
We also noticed that a simple penalty misclassification term works better than comparing
KL divergence of the logits before and after applying the augmentation. We also exper-
imented using the difference of cross entropy of the sample before and after applying the
augmentations as the penalty.
Some of the future directions of the proposed method is to develop a standard framework
of applying multiple data augmentations. It would also be useful to understand how much
the model will improve in terms of generalization capacity when trained with such augmen-
tations.
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