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Abstract

Logical reasoning deeply relies on accurate, clearly presented clue forms which1

are usually modeled as entity-like knowledge in existing studies. However, in2

real hierarchical reasoning motivated machine reading comprehension (MRC),3

such one-side modeling are insufficient for those indispensable local complete4

facts or events when only "global" knowledge is really paid attention to. Thus, in5

view of language being a complete knowledge/clue carrier, we propose a general6

formalism to support representing logic units by extracting backbone constituents7

of the sentence such as the subject-verb-object formed "facts", covering both global8

and local knowledge pieces that are necessary as the basis for logical reasoning.9

Beyond building the ad-hoc graphs, we propose a more general and convenient10

fact-driven approach to construct a supergraph on top of our newly defined fact11

units, and enhance the supergraph with further explicit guidance of local question12

and option interactions. Experiments on two challenging logical reasoning MRC13

benchmarks show that our proposed model, FOCAL REASONER, outperforms the14

baseline models dramatically.15

1 Introduction16

Machine reading comprehension (MRC) requires machine to answer question according to given17

passage [1, 2, 2, 3, 4]. Logical reasoning [5] from MRC accounts for human intuition about entailment18

of sentences and reflects the semantic relations between sentential constituents [6]. Recently, there is19

a surging trend of research into logical reasoning ability, among which ReClor [7] and LogiQA [5] are20

two representative datasets introduced to promote the development of logical reasoning, where logical21

reasoning questions are selected from standardized exams such as GMAT1, requiring models to read22

and comprehend the complicated logical relationships. Similar to the standard question-answering23

(QA)-based MRC tasks in form, our concerned logical reasoning QA tasks contain three elements:24

passage, question and the candidate options as examples shown in Figure 1.25

MRC models usually exploit a pre-trained language model (PrLM) as a key encoder for effective26

contextualized representation. Meanwhile, the major challenge of logical reasoning is to uncover27

logical structures, and reasoning with the candidate options and questions to predict the correct28

answer. However, it is difficult for PrLMs to capture the logical structure inherent in the texts since29

logical supervision is rarely available during pre-training. Existing logical reasoning has shown30

serious dependence on knowledge-like clues. This is due to the lengthy, noisy text in human language31

which is though a natural carrier of knowledge but does not provide a clean, exact knowledge form.32

Thus, an increasing interest is using graph networks to model the entity-aware relationships in the33

passages [8, 9, 10, 11]. However, all these methods may insufficiently capture indispensable logical34

units from two perspectives. First, they mostly focus on entity-aware commonsense knowledge, but35

pay little attention to those non-entity, non-commonsense clues [12]. Second, when existing models36

1https://en.wikipedia.org/wiki/Graduate_Management_Admission_Test
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Question Passage Answer

From this we know

Xiao Wang is taller than Xiao Li, 
Xiao Zhao is taller than Xiao Qian, 
Xiao Li is shorter than Xiao Sun, and 
Xiao Sun is shorter than Xiao Qian.

A. Xiao Li is shorter than Xiao Zhao. 
B. Xiao Wang is taller than Xiao Zhao. 
C. Xiao Sun is shorter than Xiao Wang. 
D. Xiao Sun is taller than Xiao Zhao.

Which one of the follow-
ing statements, most seriously 
weakens the argument?

.... A large enough comet colliding 
with Earth could have caused a cloud
of dust that enshrouded the planet 
and cooled the climate long enough 
to result in the dinosaurs’ demise.

A. Many other animal species from same era did not 
become extinct at the same time the dinosaurs did.
B. It cannot be determined from dinosaur skeletons whether 
the animals died from the effects of a dust cloud.
C. The consequences for vegetation and animals of a comet 
colliding with Earth are not fully understood.
D. Various species of animals from the same era and similar
to them in habitat and physiology did not become extinct.

√

√

Example 1

Example 2

Figure 1: Two examples from LogiQA and ReClor respectively are illustrated. There are arguments
and relations between arguments. Both are emphasized by different colors: arguments, relations. Key
words in questions are highlighted in Purple. Key options are highlighted in gray.

extract predicate logic inside language into knowledge, they only exploit quite limited predicates like37

hasA and isA but ignore a broad range of predicates in real language. From either of the perspectives,38

the existing methods actually only concern about those "global" knowledge that keeps valid across39

the entire data, without sufficient "local" perception of complete facts or events in the given specific40

part of MRC task. We argue such insufficient modeling on logic units roots from the ignorance of41

language itself being the complete knowledge/clue carrier. Thus, we propose extracting a kind of42

broad facts according to backbone constituents of a sentence to effectively cover such indispensable43

logic reasoning basis, filling the gap of local, non-commonsense, non-entity, or even non-knowledge44

clues in existing methods as shown in Figure 2. For example, these units may reflect the facts of who45

did what to whom, or who is what in Figure 3. Such groups can be defined as "fact unit" following46

[13] in Definition 1. The fact units are further organized into a supergraph following Definition 2.47

Definition 1 (Fact Unit) Given an triplet T = {E1, P, E2}, where E1 and E2 are arguments48

(including entity and non-entity), P is the predicate between them, a fact unit F is the set of all49

entities in T and their corresponding relations.50

Definition 2 (Supergraph) A supergraph is a structure made of fact units (regarded as subgraphs)51

as the vertices, and the relations between fact units as undirected edges.52

Common-
sense

Non- 
Common-
sense

FACT

SRL

Ours

Existing Works

(syntactic)

(semantic)

Named
Entity

Non- 
Named
Entity

(Logical Structure)

(a) approaches (b) obtained knowledge

global

local

Figure 2: Our "fact" V.S. existing approaches.

As shown in Figure 2, we regard the defined53

fact as the results of syntactic processing, rather54

than those from semantic role labeling (SRL) as55

in previous study, thus the proposed fact also56

extends the processing means in existing work.57

Correspondingly, in this work, we propose58

a fact-driven logical reasoning model, called59

FOCAL REASONER, which builds supergraphs60

on top of fact units as the basis for logical61

reasoning, to capture both global connections62

between facts and the local concepts or actions63

inside the fact. In addition, we strengthen our64

model by the question-option-aware interaction.65

Specifically, we explicitly reformulate questions66

with negation expressions to compensate for the67

insensitiveness of PrLMs, all of which are interacted in our supergraph. Such resulted FOCAL68

REASONER is evaluated on two challenging logical reasoning benchmarks including ReClor, LogiQA,69

and one dialogue reasoning dataset Mutual for generalizability, achieving new state-of-the-art results.70

2 Related Work71

Machine Reading Comprehension Recent years have witnessed massive researches on Machine72

Reading Comprehension, which has become one of the most important areas of NLP [14, 15, 16,73
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17, 18, 19, 20, 21, 22]. Despite the success of MRC models on various datasets such as CNN/Daily74

Mail [1], SQuAD [2], RACE [3] and so on, researchers began to rethink to what extent does the75

problem been solved. Nowadays, there are massive researches into the reasoning ability of machines.76

According to [23, 24, 25], reasoning abilities can be broadly categorized into (1) commonsense77

reasoning [26, 27, 28, 29]; (2) numerical reasoning [30]; (3) multi-hop reasoning [31] and (4) logical78

reasoning [5, 7], among which logical reasoning is essential in human intelligence but has merely79

been delved into. Natural Language Inference (NLI) [32, 33, 34] is a task closely related to logical80

reasoning. However, it has two obvious drawbacks in measuring logical reasoning abilities. One is81

that it only has three logical types which are entailment, contradiction and neutral. The other is its82

limitation on sentence-level reasoning. Hence, it is important to research more comprehensive and83

deeper logical reasoning abilities.84
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Figure 3: An example of constructed supergraph.
In contrast, the dotted vertices and edges are
focused in most existing studies [35, 36, 37].

Logical Reasoning in MRC There are two85

main kinds of features in language data that86

would be the necessary basis for logical87

reasoning: 1) knowledge: global facts that88

keep consistency regardless of the context,89

such as commonsense, mostly derived from90

named entities; 2) non-knowledge: local facts91

or events that may be sensitive to the context,92

mostly derived from detailed language. Existing93

works have made progress in improving logical94

reasoning ability [8, 9, 10, 11, 12, 38]. However,95

these approaches are barely satisfactory as they96

mostly focus on the global facts such as typical97

entity or sentence-level relations, which are98

obviously not sufficient. In this work, we99

strengthen the basis for logical reasoning by100

unifying both types of the features as "facts".101

Different from previous studies that focus on102

the knowledge components, we propose a fact-103

driven logical reasoning framework that builds104

supergraphs on top of fact units to capture both105

global connections between entity-aware facts and the local concepts or events inside the fact.106

3 Approaches107

In this section, we will describe our method in detail. The overall architecture of the model is shown108

in Figure 4 . We first construct a supergraph from the raw text based on the fact units extracted.109

Then we conduct reasoning over the supergraph with question-option guided approaches to learn and110

update the features, which are further incorporated in answer prediction.111

3.1 Supergraph Construction112

Figure 5 illustrates our method for constructing a supergraph from raw text inputs. The first step is113

to obtain triplets that constitute a fact unit. To keep the framework generic, we use a fairly simple114

fact unit extractor based on the syntactic relations. Given a context consisting multiple sentences, we115

first conduct dependency parsing of each sentence. After that, we extract the subject, the predicate,116

and the object tokens to get the "Argument-Predicate-Argument" triplets corresponding to117

each sentence in the context.118

With the obtained triplets, the fact units are organized in the form of Levi graph [39], which turns119

arguments and predicates all into nodes. An original fact unit is in the form of F = (V,E,R),120

where V is the set of the arguments, E is the set of edges connected between arguments, and R is121

the relations of each edge which are predicates here. The corresponding Levi graph is denoted as122

Fl = (VL, EL, RL) where VL = V ∪R, which makes the originally directly connected arguments123

be intermediately connected via relations. As for RL, previous works such as [40, 41] designed three124

types of edges RL = {default, reverse, self} to enhance information flow. Here in our settings,125
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Figure 4: The framework or our model. For supergraph reasoning, in each iteration, each node
selectively receives the message from the neighboring nodes to update its representation. The dashed
circle means zero vector.

we extend it into five types: default-in, default-out, reverse-in, reverse-out, self, corresponding to the126

directions of edges towards the predicates.127

We construct the supergraph by making connections between fact units Fl. In particular, we take128

three strategies according to question-option, identical concept and co-reference information. (1) For129

question-option pair, We initialize a global node Vg with its representation and connect it to all the fact130

unit nodes. The edge type are set as global. The global node ensures that all fact units are connected131

so that information can be exchanged during graph encoding. (2) There can be identical mentions132

in different sentences, resulting in repeated nodes in fact units. We connect nodes corresponding133

to the same non-pronoun arguments by edges with edge type same. (3) We conduct co-reference134

resolution on context using an off-to-shelf model2 in order to identify arguments in fact units that135

refer to the same one. We add edges with type coref between them. The final supergraph is denoted136

as S = (Fl ∪ Vg, E) where E is the set of edges added with the previous three strategies.137

3.2 Encoder138

3.2.1 Context Encoder139

Our context encoder FC(.) is initialized with a pre-trained language model, i.e., RoBERTa-large140

[42]. Question, context and option are concatenated and then fed into the encoder. If the question is141

detected to contain negative meanings, we add a special token <pos> before the question, else we add142

<neg>. In a whole, we get the hidden representation as following:143

{hc,0, ..., hc,lc+1, hq,1, ..., ho,1, ..., ho,lo+1} = FC({xc,0, ..., xc,lc+1, xq,0, ..., xo,1, ..., xo,lo+1}),
(1)

where xc,0 =<s>, xc,lc+1 = xo,lo+1 =</s>, xq,0 =<pos>/<neg> and hi ∈ Rd, d is the hidden size.144

3.2.2 Supegraph Encoder145

Graph Initialization FC(.) encodes each token in nodes VL, and then the averaged hidden state is146

used as the initial representation of the original word of each node, because PrLMs like RoBERTa147

take subwords as input while our triplets extraction performs in word-level. For the global QA-context148

node, we averaged the embeddings of tokens in question and option for initialization. We also use a149

one-hot embedding layer to encode the relations between two nodes.150

2https://github.com/huggingface/neuralcoref.
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A large enough comet colliding with Earth 
could have caused a cloud of dust that en-
shrouded the planet and cooled the climate 
long enough to result in the dinosaurs' demise.

comet colliding → Earth
comet caused → dust
dust enshrouded → planet
dust cooled → climate
comet result → demise

comet
Earth

                                                       Which one of the following ......, most seriously weakens the argument?
Various species of animals from the same era as dinosaurs and similar to them ... did not become extinct when the dinosaurs did.

coreference

global
 self

default-in
default-out

reverse-in
reverse-out

  QA
context

colliding

comet
dust

caused
comet

demise

result

dust
planet

enshrouded

dust
climate

cooled

same entity

subgraph connection coref connection

Figure 5: The process of constructing the fact chain and its corresponding Levi graph form of an
example in Figure 1. Entities and relations are illustrated in its corresponding color.

Graph Attention Network Based on the relational graph convolutional network [43] and given151

the initial representation h0i for every node vi, the feed-forward or the message-passing process with152

information control can be written as:153

h
(l+1)
i = ReLU(

∑
r∈RL

∑
vj∈Nr(vi)

g(l)q
1

ci,r
w(l)
r h

(l)
j ), (2)

whereNr(vi) denotes the neighbors of node vi under relation r and ci,r is the number of those nodes.154

w
(l)
r is the learnable parameters of layer l. g(l)q is a gated value between 0 and 1.155

Through the graph encoder FG(.), we then obtain the hidden representations of nodes in fact units as:156

157

{hF0 , ...hFm} = FG({vL,0, ...vL,m}, EL). (3)

These features are further concatenated to get the final node representation of the supergraph:158

{hS0 , ...hSm} = FG({hF0 , ...hFm}, EC). (4)

For node features on the supergraph, it is fused via the attention and gating mechanisms with the159

original representations of the context encoder. Specifically, denoting the original whole sequence160

representation after context encoder as HC , we apply attention mechanism to append the supergraph161

representation to the original one:162

H̃ = Attn(Hc,Kf , Vf ), (5)

where {Kf , Vf} are packed from the learned representations of the supergraph. We compute163

λ ∈ [0, 1] to weigh the expected importance of supergraph representation of each source word:164

λ1 = σ(WλH̃ + UλH
C), (6)

where Wλ and Uλ are learnable parameters. HC and H̃ are then fused for an effective representation:165

166

H = HC + λH̃ ∈ R4×d. (7)

3.2.3 Question-Option-aware Interaction167

Options have their inherent logical relations, which can be leveraged to aid answer prediction. Inspired168

by [44], we use an attention-based mechanism to gather option correlation information.169

Specifically for an option Oi, the information it get by interaction with option Oj is calculated as:170

O
(j)
i = [Oqi −O

q
iAttn(Oqi , O

q
j ; v);O

q
i ◦O

q
iAttn(Oqi , O

q
j ; v)], (8)

where Oqi is the representation of the concatenation for the i-th option and question after the context171

encoder. Then the option-wise information are gathered to fuse the option correlation information:172

Ôi = tanh(Wc[O
q
i ; {O

(j)
i }i 6=j ] + bc), (9)
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where Wc ∈ Rd×7d and bc ∈ Rd. Finally, a gating mechanism is used to fuse the option features:173

Oqi,:k = gi,:k ◦Oqi,:k + (1− gi,:k) ◦ Ôi,:k, (10)

where the gi,:k = σ(Wg[Oi,:k;
ˆOqi,:k; Q̃] + bg) ∈ Rd is the i-th column of gate g.174

3.3 Hierarchical Decoder175

To better incorporate the information obtained above, apart from getting the original pooled context-176

attended representation hC ∈ R4×d, we combine the attended vectors Of and H from the previous177

encoder through a fusing layer.178

E1 = ReLU(FC([hC , H, hC −H,hC ◦H])),

E2 = ReLU(FC([hC , H, hC −Of , hC ◦Of ])),
P = σ(FC([E1, E2])),

C = P ◦H + (1− P ) ◦Of ∈ R4×d.

(11)

Then another linear layer is applied for final prediction as z =WzC+ bz ∈ R4. We seek to minimize179

the cross entropy loss over the correct decision l by180

Lans = − log softmax(z)l. (12)

Logical Fact Regularization Inspired by [45], the embedding of the tail argument should be close181

to the embedding of the head argument plus a relation-related vector in the hidden representation182

space. Without loss of generality, we assume that in our settings, the summation of the subject vector183

and the relation vector should be close to the object vector as much as possible, i.e.,184

vsubject + vrelation → vobject. (13)

In order to make the logical facts more of factual correctness, we introduce a regularization for the185

extracted logical facts based on the hidden states of the sequence hi where i = 1, . . . , L and L is the186

total length of the sequence. The regularization is defined as:187

Llfr =

m∑
k=1

(1− cos(hsubk + hrelk , hobjk)), (14)

where m is the total number of logical fact triplets extracted from the context as well as the option188

and k indicates the k-th fact triplet.189

Training Objective. During training, the overall loss for answer prediction is:190

L = αLans + βLlfr, (15)
where α and β are two parameters. In our implementation, we set α = 1.0 and β = 0.5.191

4 Experiments192

4.1 Datasets193

We conducted the experiments on three datasets. Two for specialized logical reasoning ability testing:194

ReClor [7] and LogiQA [5] and one for logical reasoning in dialogues: MuTual [46]. For more195

details, one can refer to Appendix A.196

4.2 Implementation Details197

We fine-tune RoBERTa as the backbone PrLM for FOCAL REASONER. The overall model is end-to-198

end trained and updated by Adam [47] optimizer with an overall learning rate 8e-6 for ReClor and199

LogiQA, and 4e-6 for MuTual. The weight decay is 0.01. We set the warm-up proportion during200

training to 0.1. Graph encoders are implemented using DGL, an open-source lib of python. The layer201

number of the graph encoder is 2 for ReClor and 3 for LogiQA. The maximum sequence length is202

256 for LogiQA and MuTual, and 384 for ReClor. The model is trained for 10 epochs with a total203

batch size 16 and an overall dropout rate 0.1 on 4 NVIDIA Tesla V100 GPUs, which takes around 2204

hours for ReClor and 4 hours for LogiQA3.205

3Our code has been submitted along with this submission, which will be open after the blind review period.
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Model ReClor LogiQA

Dev Test Test-E Test-H Dev Test

Human [7] - 63.00 57.10 67.20 - 86.00
BERT-Large [7] 53.80 49.80 72.00 32.30 34.10 31.03
XLNet-Large [7] 62.00 56.00 75.70 40.50 - -
RoBERTa-Large [7] 62.60 55.60 75.50 40.00 35.02 35.33
DAGN [10] 65.20 58.20 76.14 44.11 35.48 38.71
DAGN (Aug) [10] 65.80 58.30 75.91 44.46 36.87 39.32
FOCAL REASONER 66.80 58.90 77.05 44.64 41.01 40.25

Table 1: Experimental results of our model compared with baseline models on ReClor and LogiQA
dataset. Test-E and Test-H denote Test-Easy and Test-Hard respectively. We performed Pitman’s
permutation test [48] and found that our model significantly outperformed the baseline (p<0.05).

Model
MuTual MuTualplus

Dev Set Test Set Dev Set Test Set

R4@1 R4@2 MRR R4@1 R4@2 MRR R4@1 R4@2 MRR R4@1 R4@2 MRR

RoBERTabase [46] 69.5 87.8 82.4 71.3 89.2 83.6 62.2 85.3 78.2 62.6 86.6 78.7
-MC [46] 69.3 88.7 82.5 68.6 88.7 82.2 62.1 83.0 77.8 64.3 84.5 79.2

FOCAL REASONER 73.4 90.3 84.9 72.7 91.0 84.6 63.7 86.1 79.1 65.5 84.3 79.7

Table 2: Experimental results of our model compared with baseline PrLM on MuTual dataset.

4.3 Results206

Tables 1 and 2 show the results on ReClor, LogiQA, and MuTual, respectively. All the best results are207

shown in bold. Based on our implemented baseline models (basically consistent with public results),208

we observe dramatic improvements on both of the logical reasoning benchmarks, e.g., on ReClor test209

set, FOCAL REASONER achieves +4.2% on dev set and +3.3.% on the test set. FOCAL REASONER210

also outperforms the prior best system DAGN4, reaching 77.05% on the EASY subset, and 44.64%211

on the HARD subset. The performance suggests that FOCAL REASONER makes better use of logical212

structure inherent in the given context to perform reasoning than existing methods. On the dialogue213

reasoning dataset MuTual, our model achieves quite a jump compared with the RoBERTa-base LM5.214

This verifies our model’s generalizability on other downstream reasoning task settings.215

In addition, Table 5 lists the accuracy of our model on the dev set of ReClor of different question216

types. Results show that our model can perform well on most of the question types, especially217

"Strengthen" and "Weaken". This means that our model can well interpret the question type from the218

question statement and make the correct choice corresponding to the question.219

5 Analysis220

5.1 Ablation Study221

To dive into the effectiveness of different components in FOCAL REASONER, we conduct an ablation222

study which takes RoBERTa as the backbone on the ReClor dev set. Table 3 summarizes the results.223

Supergraph reasoning: The first key component is the supergraph reasoning. We ablate the global224

atom and erase all the edges connected with it. The results suggest that the global atom indeed betters225

message propagation, leveraging performance from 64.6% to 66.8%. We also find that replacing226

the initial QA pair representation of the global atom with only question representation hurts the227

performance. In addition, without the logical fact regularization, the performance drops from 66.8%228

4For a fair comparison, we only compare to public literatures with the same PrLM RoBERTa-large. The test
results are from the official leaderboard https://eval.ai/web/challenges/challenge-page/
503/leaderboard/1347.

5Since there are no official results on RoBERTa-large LM, we use RoBERTa-base LM instead for consistency.
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Figure 6: Accuracy of models on number of fact units on dev set of ReClor (left) and LogiQA (right).

to 64.2%, indicating its usefulness. For edge analysis, when (1) all edges are regarded as a single229

type rather than the original designed 8 types in total and (2) co-reference edges are removed, the230

accuracy drops to 63.7% and 64.8%, respectively. It is proved that in our supergraph, edges link the231

fact units in reasonable manners, which properly uncovers the logical structures.232

Model Accuracy

FOCAL REASONER 66.8±0.13
Supergraph Reasoning

- global node 64.6±0.32
- co-reference 64.8±0.24
- logical fact regularization 64.2±0.12
- QA context node→ Q node 66.4±0.16
- question reformulation 65.2±0.16
- edge type 63.7±0.19

Fact Unit Variants
- named entity 62.8±0.26
- SRL 62.2±0.32

Interactions
- interactions 65.5±0.52

Table 3: Ablation results on the dev set of ReClor.

Fact Units Variants Apart from our syn-233

tactically constructed fact units, there are234

another two ways in different granularities for235

construction. We replace the fact units with236

named entities which are used in previous works237

like [49]. The statistics of fact units and named238

entities of ReClor and LogiQA are stated in239

Table 4, from which we can infer that there240

are indeed more fact units than named entities.241

Thus using fact units can better incorporate the242

logical information within the context. When243

replacing all the fact units with named entities,244

we can see from Table 3 that it significantly245

decreases the performance. We also explore the246

performance using semantic role labeling the247

similar way as in [50]. We can see that SRL,248

leveraging a much more complex information as249

well as computation complexity, fails to achieve250

a performance as good as our original fact unit.251

Interactions: We further experimented with252

the query-option-interactions setting to see how it affects the performance. The results suggest that253

the features learned from the interaction process enhance the model. Considering that the logical254

relations between different options are a strong indicator of the right answer, this means that the255

model learns from a comparative reasoning strategy.256

5.2 Effects of Fact Units Numbers257

Number
ReClor LogiQA

Train Dev Train Dev

Fact Unit Argument 14,895 1,665 20,676 1,981
Named Entity 9,495 984 12,439 1,515

Table 4: Statistics for fact unit entities and
traditional named entities in datasets.

To inspect the effects of the number of fact258

units, we split the original dev set of ReClor259

and LogiQA into 5 subsets. The statistics of the260

fact unit distribution on the datasets are shown in261

Table 6. Numbers of fact units for most contexts262

in ReClor and LogiQA are in [3, 6) and [0, 3),263

respectively.264

Comparing the accuracies of RoBERTa-large265

baseline, prior SOTA DAGN and our proposed266

FOCAL REASONER in Figure 6, our model outperforms baseline models on all the divided subsets,267

which demonstrates the effectiveness and robustness of our proposed method. Specifically, for ReClor,268

FOCAL REASONER performers better when there are more fact units in the context, while for LogiQA,269

FOCAL REASONER works better when the number of fact units locates in [0, 3) and [9, 12). The270
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Model S W I CMP ER P D R IF MS

RoBERTalarge [7] 61.70 47.79 39.13 63.89 58.33 50.77 50.00 56.25 61.54 56.67
DAGN [10] 63.83 46.02 39.13 69.44 57.14 53 85 46.67 62.50 62.39 56.67
FOCAL REASONER 65.96 51.33 43.48 72.22 67.86 53.85 50.00 62.50 62.39 60.0

Table 5: Accuracy on the dev set of ReClor corresponding to several representative question types. S:
Strengthen, W: Weaken, I: Implication, CMP: Conclusion/Main Point, ER: Explain or Resolve, D:
Dispute, R: Role, IF: Identify a Flaw, MS: Match Structures.

reason may lie in the difference in style of the two datasets. However, all the models include ours271

struggle when the number of fact units is above certain thresholds, i.e., the logical structure is more272

complicated, calling for better mechanisms to cope with.273

5.3 Interpretability: a Case Study274

Dataset [0, 3) [3, 6) [6, 9) [9, 12) [12,∞)

ReClor 37.2% 48.6% 12.6% 0.6% 1.2%
LogiQA 47.5% 37.5% 10.9% 3.5% 0.6%

Table 6: Distribution of fact unit number on dev
set of the training datasets.

We aim to interpret FOCAL REASONER’s275

reasoning process by analyzing the node-276

to-node attention weights induced in the277

supergraph in Figure 7. We can see that278

our FOCAL REASONER can well bridge the279

reasoning process between context, question280

and option. Specifically, in the graph, "students281

rank 30%" attends strongly to "playing improve282

performance". Under the guidance of question283

to select the option that weakens the statement and option interaction, our model is able to tell that284

"students rank 30% can play" mostly undermines the conclusion that "playing improves performance".285

A recent survey in a key middle school showed that high school students in this school have a special preference for playing football, 
and it far surpasses other balls.The survey also found that students who regularly play football are better at academic performance 
than students who do not often play football.This shows that often playing football can improve students' academic performance.

Which of the following can 
weaken the above conclusion 
most?

A. Only high school students who are ranked in the top 30% of grades can often play football.
B. Regular football can exercise and maintain a strong learning energy.
C. Often playing football delays the study time.
D. Research has not proved that playing football can contribute to intellectual development.

√

1. students have preferences
2. preference playing football
3. it surpasses balls
4. who play football
5. students better performance
6. who !play football
7. playing improve performance
8. students rank 30%
9. students play football

Fact Units

1

2

3

4

5

6

7

8

9

QA

① ②

0 1
Edge Weight

③

Option Similarity Matrix 
        after Interaction

A
A B

B

C D

C

D

A: 4.1918            C: -12.3718
B: -5.3050           D: -6.9722 

√

Figure 7: An example of how our model reasons to get the final answer.

6 Conclusion286

For logical reasoning arising from machine reading comprehension, it is well known that clear and287

accurate forms like global knowledge are crucial. In this work, we make a finding that existing288

studies miss focusing on quite a lot of non-knowledge parts which is also indispensable for better289

reasoning. Thus we propose extracting a general form called "fact unit" to cover both global and290

local logical units, hoping to shed light on the basis of structural modeling for logical reasoning.291

Our proposed FOCAL REASONER not only better uncovers the logical structures within the context,292

which can be a general method for other sophisticated reasoning tasks, but also better captures the293

logical interactions between context and options. The experimental results verify the effectiveness of294

our method.295
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