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ABSTRACT

An essential step in the task of model selection, such as hyper-parameter opti-
mization (HPO) or neural architecture search (NAS), is the process of estimating a
candidate model’s (hyper-parameter or architecture) performance. Due to the high
computational cost of training models until full convergence, it is necessary to de-
velop efficient methods that can accurately estimate a model’s best performance
using only a small time budget. To this end, we propose a novel performance es-
timation method which uses a history of model features observed during the early
stages of training to obtain an estimate of final performance. Our method is ver-
satile. It can be combined with different search algorithms and applied to various
configuration spaces in HPO and NAS. Using a sampling-based search algorithm
and parallel computing, our method can find an architecture which is better than
DARTS and with an 80% reduction in search time.

1 INTRODUCTION

Identifying the optimal hyperparameters or best architecture is important for maximizing the per-
formance of neural networks. Accordingly, algorithms for hyperparameter optimization (HPO) and
neural architecture search (NAS) have been proposed to automatically select the optimal hyperpa-
rameters and architectures in a data-driven manner. Existing HPO or NAS methods typically require
that many possible configurations of hyperparameters or architectures are evaluated. However, such
evaluation is extremely expensive as fully training one model until convergence may take several
GPU days when the dataset is large. This calls for efficient methods that can accurately predict
model performance with a small time budget.

We propose to leverage feature histories, that is, a sequence of features that describes the evolution
of activations of a particular layer of a neural network during training, to predict what the output of
the network might be at convergence. Our proposed approach is motivated by this key observation
as illustrated in Figure [T} While the overall validation accuracy of a network keeps improving, the
correctness of one particular image can be fluctuating during training. For one image, even it is
eventually classified correctly, it can move back and forth across the decision boundary many times
during training. Therefore, the validation accuracy at the early stage of training is an inaccurate
estimate of the final performance of the model. However, we also observe that, if one image lies on
the correct side of the optimal decision boundaries in most epochs, it will highly likely to be correctly
classified when the model is fully trained. This observation motivates our proposed performance
estimation strategy: (1) save the feature histories during network optimization, (2) find the optimal
linear classifiers for each epoch, and, (3) evaluate the ensemble of these classifiers to approximate
the final performance of the network. This method allows us to quickly reach a high accuracy close
to the fully trained model at the early training stage, without waiting for the model to converge. Our
empirical results show that this applies to different architecture families, including VGG (Simonyan
& Zisserman, [2014), ResNet (He et al.| [2016), MobileNet (Sandler et al., 2018]), and also different
search spaces, including DARTS (Liu et al., 2018) and NASBench-201 (Dong & Yang, 2020).

Our proposed performance estimation strategy has these advantages:

e Accuracy: Our method can accurately predict the final performance of given configura-
tions. Additionally, the relative ranking of configurations is well preserved.
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o Efficiency: The estimation strategy can accurately predict the final performance at the early
stage of training, removing the need to fully train the model.

e Versatility: Our method does not require any pre-training or external data, but only makes
use of the saved features of the network. It can be incorporated into several search algo-
rithms for general purpose, and is applicable to a wide range of tasks in HPO and NAS.

e Simplicity: The implementation of our method only requires a few more lines of code in
the original training loop.
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Figure 1: An illustration of our proposed feature-based performance estimation strategy. Top: The
CNN architecture can be considered as composition of a feature extractor and a linear classifier.
Bottom: Most image features keep moving back and forth the optimal linear boundaries during
network optimization. For example, image 4 is misclassified at the latest epoch 13, but if we use the
feature histories from the past 4 epochs, we can infer that this image might be correctly classified
when the model converges. The classifier ensemble can identify the images which will eventually
be correctly classified, and predict the final performance very early.

2 RELATED WORK

Performance estimation: To accelerate hyperparameter optimization, Domhan et al| (2015) pro-
poses to extrapolate the learning curves based on early training stage and terminate bad configura-
tions accordingly. [Klein et al.| (2016) improves the estimation of the learning curve with a Bayesian
neural network. [Baker et al.| (2017) applies this strategy to NAS, using architectural hyperparame-
ters for the learning curve prediction. Different from these approaches, our method use the feature
histories during network optimization, instead of performance metrics, to predict the final perfor-
mance. Our method does not require training another prediction network, or manually designed
learning curve modeling. We also notice a well-designed learning rate schedule can produce high-
performance models within limited budget 2019), which can be used for estimating achiev-
able performance. However, this type of learning rate schedule is unsustainable in the case where we
need to dynamically increase the budgets for more promising configurations, which is common in
hyperparameter optimization algorithms. Other methods specifically designed for accelerating per-
formance estimation in NAS includes inheriting network weights through network morphisms

2015)), and weight sharing across architectures (Bender et al., [2018; [Pham et al.| 2018).

Hyperparameter optimization: Automated hyperparameter optimization can improve the perfor-
mance of deep learning models while reducing human efforts in various applications. Model-free
methods including random search and grid search, can be considered as the most basic HPO ap-
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proaches. Bayesian optimization, an effective optimization method for computational costly func-
tions, has several variants (Bergstra et al.,|2011;|Snoek et al.,[2012;[2015)) in machine learning appli-
cations. More recently, L1 et al.| (2017) proposes a bandit-based strategy named HyperBand, which
dynamically allocates budgets for configurations based on the evaluation results. BOHB (Falkner
et al., 2018) combines Bayesian optimization and HyperBand to achieve the best of both worlds.
Our experiment results are mostly based on HyperBand and BOHB.

Neural architecture search: Automated architecture design has recently discovered architectures
outperforming manually designed CNNs in computer vision. The search methods include reinforce-
ment learning (Zoph & Lel 2016} |Zoph et al.| 2018} [Tan et al.| 2019), evolutionary algortihm (Real
et al.| 2017; [Xie & Yuille, [2017; Real et al.| 2019)), etc. Gradient-based NAS methods (Liu et al.,
2018j|Chen et al.,[2019; |Xu et al., 2019) greatly reduce the search cost by relaxing the search space
and applying gradient descent. For better evaluation and comparison of different NAS algorithms,
some benchmarks (Ying et al.,[2019; Klein & Hutter] 2019; Dong & Yang] 2020)) are proposed. For
a comprehensive overview of NAS research, one may refer to Elsken et al.| (2018]).

3 METHOD

We first describe our proposed method for efficient performance estimation in Section[3.1] and then
explain how to combine our method with other search algorithms for neural architecture search
(NAS) and hyperparameter optimization (HPO) applications in Section 3.2}

3.1 CLASSIFIER ENSEMBLE VIA FEATURE HISTORIES

A modern CNN designed for image classification (Krizhevsky et al., 2012} |Simonyan & Zisserman,
2014; He et al.| 2016} Xie et al., 2017) can be divided into two parts: the feature extractor and the
linear classifier. The feature extractor part typically consists of multiple convolutional layers, nor-
malization layers, and pooling layers. The learned feature mapping can often be transferred to other
datasets or tasks including object detection (Ren et alJ 2015) and segmentation (He et al.l [2017).
In contrast, the linear classifier is one single fully connected layer, which outputs logits for each
image class and learns the optimal linear boundaries with respect to the loss function. Compared
with the linear classifier, the feature extractor has more parameters, is more computationally expen-
sive and harder to optimize. Formally, we can consider a CNN as the composition of two functions:
fx;wfee we®) = h(g(x;wfe*); ws), where f : X — R®is a CNN which maps the input image
space X to c class logits, g : X — R is the feature extractor with parameters w/“® which maps
images to a d-dim deep feature space, and h : R? — R€ is the linear classifier with parameters w®'*
which maps deep features to c class logits.

The task of the feature extractor is to learn a mapping from images to deep features such that the
features corresponding to different image classes are linearly separable. Given a fixed feature ex-
tractor mapping, it is easy to find the optimal linear boundaries in the feature space. During the
process of CNN optimization, we observe that features corresponding to most images keep moving
back and forth between both sides of the optimal linear boundaries according to the current feature
mapping, but in general more and more features acquire correct positions. Especially, if the feature
of one image lies on the correct side of the optimal linear boundaries most of the time, with high
probability it will be correctly classified at the end of optimization.

Therefore, we can use the classifier ensemble based on the history information of deep features to
approximate the final performance of a CNN at an early training stage. Given saved features at
history epochs, we can obtain the optimal linear classifiers for each checkpoint. Then we can test
the validation images with these classifiers, and decide if their features are correctly positioned most
of the time during training. Thus, we can approximate the set of images which will be correctly
classified at the end of training, and give a more accurate estimation of the final performance. An
illustration of our proposed feature-based classifier ensemble for performance estimation is shown
in Figure 1] More experimental results about this observation are shown in Section

The implementation is straight-forward and simple, as summarized in Algorithm [I] In addition to
a typical CNN training loop, we only need to explicitly save intermediate features (line 3, 5, 6, 10,
11), optimize the linear classifiers based on saved features (line 13, 14, 15), and ensemble them (line
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16, 17) to acquire a performance estimation closer to the final performance that the network can
achieve. More details are discussed in Appendix [A.1]

Algorithm 1: Training loop with our performance estimation

Input: Network with initial weights f(z; w]“®, w§'), training dataset (X r@in Yy train),
validation dataset (X, Yv%), loss function Loss(z, y), evaluation function
Eval(z,y), total epochs N, window size K

Output: Improved network performance estimation £y

fori =11t N do // Optimize linear classifiers
Set w €a7wicls — w{f‘i,w,fl_sl based on saved features
Initialize H_train _ @ B fork=N-K + 1t N do
? . . ST cls __ ,,,cls
for Sampled batch X{70in Y;irein jp 4 | Initialize vj,? = w}
Xtrain Ytrain do ' 15 Optlmlze 'Uk with
? train. ,,cls train
// Save features for Loss(h(H} "™ v°), Y )
training images 16 Compute outputs Z* = h(HP; v{ls)
Compute intermediate features // Ensemble classifiers and
HfT]‘“” = g(XfZ.ai”;wlfea) evaluate

-

7 Ensembleiz}(,“iK_H, o Z3 to get ZRW
s Bvaluate Ey = Eval(Z{, Yval)
9 return Iy

train ; train
Save H;"*"" into H;
Compute outputs
train __ train. ,,,cls
Z;m" = h(Hm- ;W)
Compute loss
Jp— train train
L;;= Loss(Zi_’j Y )

ea

—

—

Update w; ™, w¢l® by optimizing L; ;

// Save features for
validation images
Compute intermediate features

Hp = g(X 5 w]™)

K2
Save features H ™" Hpa!

Save checkpoint w; “*, wg'

One concern may be the computational overhead of this performance estimation strategy. In fact,
compared with the typical training loop, our method usually only requires less than one half epoch
time of training the original network, which is almost negligible since we often need to train the
network for multiple epochs. The computational overhead of our method has two main parts: 1)
Saving the intermediate features. Note the computation of deep features is a part of the original
training process, we only need to slightly modify the network implementation, let it return the inter-
mediate results, and save them in the storage after each epoch. 2) Optimization and ensemble of the
linear classifiers. As discussed above, the linear classifiers are computationally cheaper and easier
to optimize than the feature extraction part. We also have good weight initialization from the saved
checkpoints, so a small number of iterations are adequate for convergence. Therefore, the overhead
only takes up a small fraction of the whole training process.

3.2 COMBINATION WITH SEARCH ALGORITHMS

Our method is able to give accurate performance estimation at an early training stage, thus bet-
ter predict the quality of a configuration with limited computational resources. In order to apply
our method in a search task like NAS and HPO, we need to integrate our performance estimation
into existing search algorithms for general purpose. In the experiments, we mainly focus on three
algorithms: random search, HyperBand (Li et al., [2017)), and BOHB (Falkner et al., 2018).

In random search, we generate a pool of configurations by random sampling from the search space,
evaluate each configuration after training for some fixed budget, and pick the best one based on the
latest performance. HyperBand is a bandit strategy which adaptively allocates training resources
for configurations in the sample pool based on their current performance. BOHB can be considered
as a variant of HyperBand, which includes a Bayesian optimization component to better generate
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the initial configuration pool. These search algorithms do not have assumptions about the search
space, making them applicable to most NAS and HPO tasks. When combined with our method,
these search algorithm make decisions based on the improved performance estimation instead of the
latest performance acquired. In HyperBand and BOHB, this performance metric also determines the
configurations which will be allocated with more budgets.

4 EXPERIMENTS

We first show that our method can efficiently estimate the performance of various CNN architecture
families. Then we combine our method with search algorithms and demonstrate its effectiveness on
neural architecture search (NAS) and hyperparameter optimization (HPO).

4.1 PERFORMANCE ESTIMATION FOR CNNS

We consider the following architecture families: VGG (Simonyan & Zisserman, 2014), ResNet (He
et al., 2016), and MobileNetV2 (Sandler et al., 2018) and use the CIFAR-10 and CIFAR-100
dataset (Krizhevsky et al.,2009). We train each architecture for 200 epochs (see experimental details
in Appendix [A.2). We report the test accuracy every 10 epochs, which is the typical performance
estimate at that epoch. We also apply our performance estimation for checkpoints during training
every 10 epochs, which gives an improved estimation of the final performance. The results for com-
parison are shown in Figure[2] By utilizing the history information during network optimization, our
method produces stable and accurate estimation of the final performance at an early training stage.

VGG-16, CIFAR-10 ResNet-18, CIFAR-10 ResNet-50, CIFAR-10 MobileNetv2, CIFAR-10
100 100 100 100

— original — original — original — original
ours ours ours ours
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Epochs Epochs Epochs Epochs.
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Figure 2: Performance estimation for different architectures including VGG-16, ResNet-18, ResNet-
50, and MobileNetV?2 on CIFAR-10/CIFAR-100 dataset. Original denotes the original test accuracy
at different epochs. Ours denotes the performance estimated by our method using the checkpoints
up to the given epochs. Our method can reach an accuracy closer to the final accuracy at the early
stage of training, which indicates a much more accurate performance estimate than the baseline.

In a resource-limited search setting, one may need to shrink the training budget and adjust the
learning rate schedule accordingly, at the cost of reducing the final performance. We also investigate
the example of ResNet-18 with fewer training epochs, shown in Figure Our method can still
accurately predict the final performance early in this setting.

We can take a closer look at the ResNet-18/CIFAR-100 example to validate our observation stated
in Section We visualize whether an image is classified correctly at each epoch during training
in Figurel] As we can observe, most test image features keep moving between sides of the optimal
linear boundaries, but in general the number of features with correct positions is increasing during
training. If the feature of one image lies on the correct side of the optimal linear boundaries most of
the time, the image will be correctly classified with higher probability after optimization. When we
use the ensemble of the optimal classifiers, we can accurately approximate the set of images which
will eventually be correctly or incorrectly classified, at an earlier training stage like 80 epochs.
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Figure 3: Performance estimation for different training budgets from 25% (50 epochs) to 100% (200
epochs). The linear learning rate schedule is adjusted accordingly.
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Figure 4: Classification results of test images during training ResNet-18 on CIFAR-100. We sample
200 test images to observe if their deep features can be correctly classified by (a) the optimal linear
classifiers, and (b) the classifier ensembles at each epoch. Light gray pixels denotes that image is
correctly classified, and black pixels denotes a wrong classification. The horizontal axis indicates
the image indices, sorted by their accuracy for better visualization. The vertical axis indicates the
training epochs up to 200 at the bottom.

4.2 NEURAL ARCHITECTURE SEARCH

For NAS applications, we conduct experiments in two search spaces: NAS-Bench-201 (Dong &
Yang} 2020) and DARTS (Liu et al., 2018)).

4.2.1 NAS-BENCH-201

NAS-Bench-201 (Dong & Yang, |2020) is a public benchmark for testing NAS algorithms. It defines
a search space consisting of 15, 625 architectures, and includes full training log of all the architec-
tures on CIFAR-10, CIFAR-100 (Krizhevsky et al.|2009), and downsampled ImageNet (Deng et al.,
2009). In the following experiments, we mainly use the information about the “true performance” on
CIFAR-10, which is defined as the average top-1 test accuracy of three independent runs of training
the given architecture for 200 epochs.

It is important for a NAS algorithm to obtain the relative ranking of architectures that is consistent
with the true performance, so that the algorithm can return an architecture among the best ones in
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the search space. Usually we need to train the architectures for some epochs and evaluate on the val-
idation set to acquire a performance estimation, and the longer we train, the relative ranking is closer
to the true performance. Given the true performance and estimated performance, we can measure
the consistency of their relative ranking with the Kendall’s 7 rank correlation coefficient (Kendall,
1938). The 7 coefficient ranges in [—1, 1], and when the two observations have perfectly matched
relative rankings, 7 reaches its maximum value 1.

We first verify that our performance
estimation can produce the relative
ranking which is more consistent
with the true performance, when
08 each architecture is trained for some
fixed budget. We randomly sam-
06 ple 100 architectures from the search
space, train each for 200 epochs
04 and evaluate the consistency of both
the original performance metric and
02 our improved performance estima-
— original tion on the validation dataset every

Ours

00 10 epochs (see experimental details
25 50 75 100 125 150 175 200

Epochs in Appendix [A.3.1). The results are
shown in Figure [5] It is evident

that our method not only predicts
the performance closer to the true
performance, but also leads to bet-
ter relative ranking for distinguish-
ing different architectures. With
our performance estimation strategy,
we can find better architectures with
limited training budgets.

Tau

Figure 5: Relative ranking measured by Kendall’s 7 coeffi-
cient and the true performance. Original denotes the original
accuracy metrics at different epochs. Ours denotes the pre-
dicted performance by our method using the checkpoints up
to the given epochs. For fair comparison, we slightly shift
QOurs rightwards because of the computational overhead.

We also compare several search algorithms with and without our performance estimation, as de-
scribed in Section [3.2] (see experimental details in Appendix [A.3.2). We quantify the performance
of each search algorithm over time by regret, defined as the difference in the true performance
between the best architecture determined by the search algorithm and the best architecture in the
whole search space. The results are shown in Figure [f} Our method can improve all three search
algorithms in terms of the final searched architectures. Especially, the combination of HyperBand
and our method can robustly find an architecture which has < 1% test accuracy gap from the global
optimum within 2 hours.

Hypertand

aaaaaaa E Seconds Seconds

(a) Random search (b) HyperBand (c) BOHB

Figure 6: Regret over time of random search, HyperBand, and BOHB with and without our per-
formance estimation for searching in NAS-Bench-201. We use log scale on both axes for better
visualization.

4.2.2 DARTS

Differentiable ARchiTecture Search (DARTS) (Liu et al.| |2018) is a recent NAS algorithm which
relaxes the search space to be continuous, achieving search speed orders of magnitude faster than
previous methods. Here we directly transfer the method that we use on NAS-Bench-201 to the
DARTS search space, to demonstrate our performance estimation strategy is also helpful in another
NAS setting.
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Table 1: Comparison with state-of-the-art NAS methods which uses the DARTS search space on
CIFAR-10.

Test Error  Params Search Cost Search
Method (%) (M) (GPU days / run) Method
DARTS (first order) 3.00+0.14 3.3 0.4 Gradient
DARTS (second order) | 2.76 + 0.09 3.3 1 Gradient
P-DARTS 2.50 3.4 0.3 Gradient
PC-DARTS 2.57+0.07 3.6 0.1 Gradient

UNAS 2.53 3.3 4.3 Gradient&RL

Ours | 263 3.4 0.2 x 4" HyperBand

* We use 4 parallel workers. The wall-clock time is 0.2 day.

Table 2: Search results for RandAugment hyperparameter optimization on a subset of CIFAR-10.

Test Accuracy (%)
Architecture BOHB BOHB + Ours | HyperBand  HyperBand + Ours
VGG-16 85.35+0.44 85.61+0.38 | 85.38 £0.24 85.60 £ 0.28
ResNet-18 86.04 £1.16 86.53 +0.64 | 85.83 £0.43 86.06 + 0.64
MobileNetV2 | 86.92 +£0.46 86.80 £0.71 | 86.53 + 0.23 86.62 + 0.48

We use the combination of HyperBand and our performance estimation, which performs the best
on NAS-Bench-201, and follow the practice of architecture evaluation in DARTS (see experimental
details in Appendix [A.4). The results are summarized in Table [I] We also list some more recent
DARTS variants which also use the same search space and evaluation configuration, including P-
DARTS (Chen et al.| 2019), PC-DARTS (Xu et al.| |2019), and UNAS (Vahdat et al., 2020). Our
method is able to find better architectures than DARTS with similar search cost. Our result is also
close to more recent state-of-the-art NAS methods. It is notable that our method is the only one that
does not make use of the gradient-based method, so we can easily parallelize the search process. In
fact, we use 4 parallel workers in the experiment, reducing the wall-clock search time to 0.2 day per
run. We expect to further reduce search time with even more parallel workers.

4.3 HYPERPARAMETER OPTIMIZATION

We also test our method in another setting where differentiable search methods do not apply. We
consider the problem of optimizing hyperparameters in data augmentation for CNN training. We
use the search space defined in RandAugment (Cubuk et al.| |2020), which has only two hyperpa-
rameters: N is the number of augmentation transformations to apply, and M is the magnitude for
the transformations. The search space is significantly smaller than previous work such as AutoAug-
ment (Cubuk et al., 2018)), but still computationally expensive for the grid search that|Cubuk et al.
(2020) does for each CNN architecture and dataset.

To compare HyperBand and BOHB with and without our performance estimation, we search the
optimal RandAugment configuration for VGG-16, ResNet-18, and MobileNetV2 on a subset of
CIFAR-10 (see experimental details in Appendix [A.5). The results are summarized in Table 2] In
most cases, our method consistently improves the baseline search algorithms. This task further
demonstrates the effectiveness and versatility of our method.

5 CONCLUSION

We propose a novel performance estimation strategy, which effectively use the saved feature his-
tories during optimization to produce accurate estimation of the final performance. Our method is
simple to implement and applicable to many tasks in NAS and HPO, and leads to improvement
for general search algorithms. For future directions, we think it would be interesting to use the
performance estimation to guide and accelerate CNN training.
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A EXPERIMENTAL DETAILS

A.1 CLASSIFIER ENSEMBLE

The training procedure of the classifier ensemble has the same following configuration across all
experiments. We use the the saved features from the most recent X = 10 epochs. We first obtain K
optimal classifiers by training them on the saved features of images from the training set and their
labels. The weights are initialized from the saved network weights of the corresponding epochs. We
use the cross entropy loss and SGD optimizer with momentum 0.9 and weight decay 5 x 10, The
learning rate starts from 0.05 and decays following a linear schedule (Li et al.,[2019). The batch
size is 1024, and the number of epochs is 5. To build the ensemble, we collect the classification
results of the optimized linear classifiers for the validation image features, and output the mean of
the softmax-ed probability distribution, which is then used for evaluation and estimation. The whole
process introduces little computational cost compared with the original training loop. For example,
in NAS-Bench-201, we observe the overhead of our method is typically 0.5 epoch time for each
architecture.

A.2 PERFORMANCE ESTIMATION FOR CNNSs

In the first part, we train each CNN on CIFAR-10 and CIFAR-100 for 200 epochs with batch size
256. The initial learning rate is set to 0.1 for ResNet and MobileNetV2, 0.01 for VGG, and we use
a linearly decaying learning rate schedule as suggested by |Li et al.| (2019). We use SGD optimizer
with momentum 0.9 and weight decay 5 x 1074,

In the second part, we train ResNet-18 on CIFAR-100 for 50, 100, 150, 200 epochs, corresponding
to 25%, 50%, 75%, 100% budgets. The learning rate still follows the linear schedule, which drops
to zero at the end of each budget. Other settings are the same as the first part.

A.3 NAS-BENCH-201
A.3.1 RELATIVE RANKING

In each run of this experiment, we first randomly sample 100 architectures from NAS-Bench-201,
and train each for 200 epochs with batch size 256. The initial learning rate is set to 0.1 and we use the
linear learning rate schedule. We use SGD optimizer with momentum 0.9 and weight decay 5x 10~
We split the original CIFAR-10 training set into two subsets: 40000 images for training and 10000
images for validation. Then we compare the relative ranking of the original performance metrics
and our performance estimation strategy measured on the validation set, using the true performance
from the benchmark and Kendall’s 7 coefficient. The experiment is repeated 3 times.

A.3.2 ARCHITECTURE SEARCH

For random search, we randomly sample 64 architectures, and train each for 128 epochs with batch
size 256. For HyperBand and BOHB, the training budget for each architecture ranges in [1, 128]
epochs, and the factor for increasing training budget and shrinking sample pool is set as n = 2. We
use 4 parallel workers, each using an NVIDIA GeForce RTX 2080 Ti GPU. The total search time is
about the same for the three algorithms. During search, the initial learning rate is set to 0.1 and we
use the linear learning rate schedule with the maximal budget set to 128. We use SGD optimizer with
momentum 0.9 and weight decay 5 x 10~%. we use a subset from the original CIFAR-10 training set
with 8000 images for training, and 2000 images for validation. After search, we calculate the regret
as the difference in the true performance between the architecture given by each algorithm and the
global optimal architecture, provided by the benchmark. Each experiment is repeated 5 times with
different random seeds.

A.4 DARTS
During search, the search space relaxation is not applicable in our method. We still randomly sample

from the discrete search space defined in DARTS, and select the best architectures using HyperBand
and our performance estimation. We decompose the process of sampling architecture into sampling
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the operations and connections for each node in the cells from the uniform distribution of valid
choices. At search time, we set the batch size to 96, initial number of channels to 32, number of
cells to 12. We also use Cutout (DeVries & Taylor, |2017)), path dropout, and auxiliary towers. The
initial learning rate is 0.025 and we use the linear learning rate schedule with the maximal budget
set to 128. We use SGD optimizer with momentum 0.9 and weight decay 3 x 10~%. Other search
settings are the same as Appendix [A.3.2]

For architecture evaluation, we closely follow the setup of DARTS: We repeat the search process
for 4 times and pick the best architecture for fully train and evaluation. An enlarged architecture
with 36 initial channels is trained for 600 epochs with batch size 96, using Cutout, path dropout, and
auxiliary towers. The only difference in architecture evaluation is we increase the number of cells
from 20 to 22. The reason is that our searched cells have more parameter-free operations like skip
connections and pooling layers compared with DARTS, so we increase the number of cells to match
the number of parameters in DARTS.

A.5 RANDAUGMENT

To better show the influence of data augmentation, we only use a small subset of the original CIFAR-
10 training set with 8000 images for training and 2000 images for validation. Besides RandAugment,
default data augmentation for training images also includes random flips, pad-and-crop and Cutout,
following RandAugment. Other search settings are the same as Appendix Each experiment
is repeated 3 times with different random seeds.
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