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ABSTRACT

Evaluating large language models (LLMs) on comprehensive benchmarks is a
cornerstone of their development, yet it’s often computationally and financially
prohibitive. While Item Response Theory (IRT) offers a promising path toward
data-efficient evaluation by disentangling model capability from item difficulty,
existing IRT-based methods are hampered by significant limitations. They are typ-
ically restricted to binary correctness metrics, failing to natively handle the con-
tinuous scores used in generative tasks, and they operate on single benchmarks,
ignoring valuable structural knowledge like correlations across different metrics
or benchmarks. To overcome these challenges, we introduce LEGO-IRT, a uni-
fied and flexible framework for data-efficient LLM evaluation. LEGO-IRT’s novel
design natively supports both binary and continuous evaluation metrics. More-
over, it introduces a factorized architecture to explicitly model and leverage struc-
tural knowledge, decomposing model ability estimates into a general component
and structure-specific (e.g., per-metric or per-benchmark) components. Through
extensive experiments involving 70 LLMs across 5 benchmarks, we show that
LEGO-IRT achieves stable capability estimates using just 3% of the total eval-
uation items. We demonstrate that incorporating structural knowledge reduces
estimation error by up to 10% and reveal that the latent abilities estimated by our
framework may align more closely with human preferences.

1 INTRODUCTION

The evaluation of model performance is a critical component in the development process of modern
large language models (LLMs) as well as a building block towards deeper understandings of LLMs.
Currently, the prevailing practice for LLM evaluation is to leverage existing benchmarks (Hendrycks
et al., 2021; Liang et al., 2022; Chang et al., 2024) by first running an inference procedure over all
the evaluation items in the benchmark, followed by a grading step that produces decisions about
the performance of the candidate model over individual benchmark items. The final result is then
computed via simply averaging over individual performance measures, with the majority being a
binary judgment indicating correctness. Despite its simplicity, conducting a thorough evaluation
procedure like HELM (Liang et al., 2022) invorlves hundreds of thousands of items, making the
inferential cost substantial, sometimes prohibitive, both computationally (thousands of GPU hours)
and financially (inference cost for state-of-the-art proprietary models (Jaech et al., 2024; Comanici
et al., 2025)). The challenge is even more evident under the surging development of thinking-
style models that exploit inference-time scaling (Guo et al., 2025), where the models may require a
significant amount of tokens before arriving at the final answer.

Effort has been made toward data-efficient evaluation of LLMs by utilizing subsets of the (full)
benchmarks (Liang et al., 2022; Vivek et al., 2023; Saranathan et al., 2024; 2025). However, directly
comparing models using average scores between (random) subset evaluations is unreliable (Truong
et al., 2025), as the problems’ difficulty may serve as a confounding factor. To alleviate this issue,
recent developments (Polo et al., 2024; Truong et al., 2025; Zhou et al., 2025) utilize ideas from
item response theory (IRT) (Chen et al., 2025) to produce robust performance estimations that are
stable across subsets. In a nutshell, IRT approaches disentangle the influences of model capability
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Method Stability Binary metric Continuous metric Multiple metrics Multiple benchmarks
Mean aggregation low ✓ ✓ ✗ ✓
Polo et al. (2024) high ✓ ✓ ✗ ✗
Truong et al. (2025) high ✓ ✗ ✗ ✗
LEGO-IRT high ✓ ✓ ✓ ✓

Table 1: A comparison among contemporary methods on (data-efficient) LLM evaluation.

and evaluation item difficulty, thereby producing invariant estimates of model capabilities. Despite
its theoretical advantage, contemporary IRT-based solutions still face multiple challenges:
Limited applicability As IRT-based paradigms are model-based, they rely on probabilistic assump-
tions over the evaluation metric, which is either restricted to be binary (Truong et al., 2025) or
binarized from continuous metrics (Polo et al., 2024). As LLMs are inherently generative models,
binary metrics can only serve as a grading mechanism for the correctness of the final answer, but
fail to provide fine-grained evaluation of model generations (Lightman et al., 2023). Moreover, for
sequence-to-sequence (seq2seq) tasks like machine translation or article summarization, the con-
ventional practice is to use continuous metrics such as BLEU (Papineni et al., 2002), ROUGE (Lin,
2004) or BERTScore (Zhang et al., 2019).
Lack of structural knowledge Previous developments on IRT for LLM evaluation operate on a sin-
gle metric, single benchmark scheme. For evaluation tasks where multiple metrics are applicable, it
is often the case that distinct metrics may capture different characteristics of model performance. For
example, in seq2seq task evaluation, BLEU emphasizes precision, ROUGE focuses on recall, while
BERTScore incorporates semantic similarity. Simultaneously evaluating model performance under
multiple metrics suggests a potential improvement in modeling efficacy through properly designed
joint modeling across different metrics. Furthermore, it has been widely recognized that model
performances exhibit a certain sense of correlation among benchmarks (Perlitz et al., 2024b). It is
therefore worthwhile to investigate whether model-based LLM evaluations can further benefit from
a better exploitation of structural knowledge like inter-metric or inter-benchmark correlation that
goes beyond modeling over a fixed metric over a single benchmark. In this paper, we address the
aforementioned challenges by developing a flexible and unified framework for applying IRT-based
modeling frameworks to the evaluation of LLMs, which we termed Language model Evaluation
under General Outcomes based on Item Response Theory (LEGO-IRT), with the following sum-
marized contributions:
Flexible metric types With a novel IRT model design, LEGO-IRT supports modeling both binary
metrics as well as continuous ones in a native fashion, i.e., no discretization is required.
Structural knowledge injection through factorization Inspired by recent developments in IRT
(Fang et al., 2021), LEGO-IRT extends contemporary IRT frameworks by introducing factorized
designs that effectively decompose model ability estimates into a general component plus structure-
specific offsets that properly handle scenarios where multiple metrics or multiple benchmarks are
involved.
Empirical validation Through extensive empirical investigation involving 70 latest state-of-the-art
LLMs as well as 5 benchmarks comprising distinct evaluation types, LEGO-IRT is demonstrated to
obtain stable estimates of model capabilities while requiring only 3% of total items. Moreover, we
validate the advantage of incorporating structural knowledge by showing up to 10% error reduction
in model performance estimation. We also reveal interesting findings that the latent model abilities
estimated through LEGO-IRT might align better with human preferences.

2 RELATED WORKS

2.1 DATA-EFFICIENT EVALUATION OF LARGE LANGUAGE MODELS

The increasing versatility of LLMs has given rise to holistic evaluation benchmarks such as HELM
(Liang et al., 2022) that comprehensively assess a broad range of model capabilities but requires
considerable expenditure 1. Data-efficient evaluation methods have recently emerged (Perlitz et al.,
2024a; Vivek et al., 2023; Saranathan et al., 2025; Li et al., 2025) that aim at reducing the evaluation
cost via shrinking the size of the benchmarks, utilizing techniques such as adaptive sampling (Xu
et al., 2024; Saranathan et al., 2025), coreset identification (Vivek et al., 2023), and active learning
(Li et al., 2025). While these subset-based approaches have empirically shown to achieve reasonable

1As reported in the HELM paper (Liang et al., 2022), it cost $38001 for commercial api and approximately
19500 GPU hours’ compute to evaluate just 30 LLMs across 13 distinct tasks.
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evaluation quality, they are typically derived from experimental observations or heuristics, lacking a
principled methodological foundation.

2.2 ITEM RESPONSE THEORY (IRT) AND LANGUAGE MODEL EVALUATION

The strong theoretical foundations of IRT (Chen et al., 2025) have inspired novel paradigms in lan-
guage model evaluation (Lalor et al., 2016; Zhuang et al., 2025). Polo et al. (2024) used IRT methods
to reduce the evaluation effort over MMLU (Hendrycks et al., 2021) by 99% while leaving the eval-
uation quality almost intact. A recent study Truong et al. (2025) pushed IRT-based LLM evaluation
to HELM scale, and proposed efficient algorithms to speed up IRT modeling. The application of
IRT is also proliferating to other LLM-related tasks, including applications in RAG pipeline design
(Guinet et al., 2024) and improving arena-type LLM comparisons (Liu et al., 2025). A notable
property of the IRT paradigm is that it allows model-based evaluations that could be potentially
facilitated to predict the performance of LLMs on unseen benchmarks without running the actual
inference, which is closely connected to the field of unsupervised risk estimation (Donmez et al.,
2010; Platanios et al., 2016).

3 WARMUP: ITEM RESPONSE THEORY(IRT)
Item response theory (IRT) models, also referred to as latent trait models, play an important role
in educational testing and psychological measurement as well as several other areas of behavioral
and cognitive measurement (Chen et al., 2025). In psychometrics, IRT has been proven to be one
of the most fundamental tools in the construction, evaluation, and scoring of large-scale high-stakes
educational tests (Birdsall, 2011; Robin et al., 2014). IRT models are, in fact, probabilistic models
for individuals’ responses to a set of items, where the responses are typically binary. These models
are latent variable models from a statistical perspective, dating back to Spearman’s factor model
for intelligence. Rasch models, introduced in 1960s (Rasch, 1960), laid the foundation of IRT as
a theory for educational and psychological testing. Later on, the two-parameter (2PL) and three-
parameter logistic (3PL) models (Birnbaum, 1968) were developed that are still widely used in
educational testing these days.

The Rasch model assumes local independence, and it postulates the following form,

Pr(Yij = 1 | θi, bj) = σ(θi − bj), σ(x) =
1

1 + e−x
, (1)

where Yij ∈ {0, 1} indicates whether i-th LLM correctly responsd item j; θi is treated as the i-th
LLM’s latent ability and bj is viewed as the difficulty of item j. In the context of LLM evaluation,
an item stands for a problem or question that belongs to some benchmark. Hereafter, we will refer
to Yij as either response or metric interchangeably with meanings clear from the context. Similarly,
2PL and 3PL have the following model structures,

Pr(Yij = 1 | θi, bj) = σ(ajθi − bj) (2)

and
Pr(Yij = 1 | θi, bj) = cj + (1− cj)σ(θi − bj), (3)

where aj is known as the discriminative parameter and guess parameter of item j.

Given a specified model, evaluation typically proceeds in two stages, calibration and scoring.

Calibration stage In this stage, the test developer collects a response matrix Y ∈ {0, 1}N×J , where
N and J denote the number of LLMs and items, respectively. Each Yij indicates the response of
LLM i to item j. The LLM-specific parameters θi’s and item-specific parameters are then jointly
estimated. The outcome of calibration is a set of calibrated items with estimated difficulties {bj}
and associated uncertainty quantifications, as well as the estimated latent abilities {θi} of LLMs
with their credible intervals.

Scoring stage In this stage, the abilities of new LLMs are estimated while keeping the item parame-
ters fixed at the calibrated values. Note that with fixed item parameters, the corresponding estimation
problem is reduced to simple logistic regression, which is extremely fast to compute.

4 THE LEGO-IRT FRAMEWORK

4.1 ADAPTATION TO CONTINUOUS METRICS

3
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θi

i ∈ [N ]

Yij

∈ [0, 1]

bj

j ∈ [J ]

Figure 1: PGM descrip-
tion of LEGO-CM

Under LLM evaluation scenarios such as seq2seq, most of the widely
adopted metrics, such as BLEU, ROUGE, or BERTScore, take values in
[0, 1]. However, the classical IRT model only handles {0, 1} correctness
and is unable to capture these continuous variations. To address this, we
construct a novel continuous IRT model that effectively accommodates
continuous responses, which serves as the first component in our pro-
posed LEGO-IRT framework termed LEGO-CM (CM as abbreviation
of Continuous Metric). Suppose there are N LLMs and J items. Let
Yij ∈ (0, 1) denote the score of i-th LLM on j-th item. The distribution
of Yij under LEGO-CM postulates the following form,

logit(Yij) ∼ N (ajθi − bj , σ
2
j ). (LEGO-CM)

where logit(y) = log y
1−y , θi denotes the latent ability of LLM i, aj > 0 is the discrimination

parameter, bj is the difficulty parameter, and σj > 0 measures item-specific dispersion or scoring
noise. The density function can be written as

p(yij | θi, aj , bj , σj) =
1√
2πσj

exp

{
− [logit(yij)− (ajθi − bj)]

2

2σ2
j

}
. (4)

We present a probabilistic graphical model (PGM) description of LEGO-CM in figure 1.

Parameter estimation In this paper, we take a Bayesian approach to the estimation procedure across
all LEGO-IRT using Markov chain Monte Carlo (MCMC; (Metropolis et al., 1953)). While previ-
ous works have adopted alternative approaches like expectation-maximization (EM) (Truong et al.,
2025), we found EM to be less flexible than MCMC to apply in a unified modeling context. A more
detailed discussion between EM and MCMC is postponed to appendix D. To implement the MCMC
for LEGO-CM, we choose the following priors,

θi ∼ N (0, 1), aj ∼ LogNormal(µa, σ
2
a), bj ∼ N (µb, σ

2
b ), σj ∼ HalfNormal(τσ).

Relationship to the Binary Rasch Model. The continuous IRT model can be viewed as a natural
extension of the classical Rasch and 2PL models. This continuous formulation assumes that the log-
odds of the observed score follow a normal distribution centered at ajθi−bj , with σj capturing item-
specific scoring noise. As σj → 0, the model collapses to the deterministic form yij = σ(ajθi−bj),
matching the expected probability in the 2PL model. Especially when aj is fixed at 1, the correctness
probability reduces to that of the Rasch model.

4.2 STRUCTURAL KNOWLEDGE INJECTION THROUGH FACTORIZATION TECHNIQUES

ψi

i ∈ [N ]
Yij1 · · · YijM

ζi1 · · · ζiM

bj j ∈ [J ]

Figure 2: PGM description of
LEGO-MM

While LEGO-CM effectively broadened the applicability of IRT-
based solutions. It still operates under a single metric, single bench-
mark setup, which is a simplified situation of real-world LLM ca-
pability assessment where models are tested over a wide range of
benchmarks under (potentially) distinct metrics. We identify the
extra-complexity brought by such more complicated evaluation sce-
narios as structurally more informative, with the following canoni-
cal formulation:

Multiple metrics In text summarization or translation tasks, met-
rics like BLEU, ROUGE, and BERTScore are often used in parallel
to assess the performance of language models. However, for the
same item, the difficulty, discrimination, and noise level can vary
across different metrics.

Multiple benchmarks The ability assessment of LLMs typically requires testing over several
benchmarks (Qwen et al., 2025; Comanici et al., 2025) and aggregating over benchmark-specific
performances using methods like averaging or win-rate (Zheng et al., 2023). However, the a priori
selection of testbed benchmarks may exhibit a bias toward certain types of capabilities, rendering
model evaluation results less robust. For example, for strong reasoning models that got extensively
trained on mathematics and coding problems (Abdin et al., 2025; Xiaomi, 2025), their performance

4
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over reasoning-oriented benchmarks like AIME AIME (2024) or LiveCodeBench (Jain et al., 2024)
might be impressive, but their accuracy over commonsense questions might even deteriorate com-
pared to their non-reasoning counterparts. Therefore, a more principled evaluation should efficiently
decouple the general, or inherent capability of an LLM while accounting for its specificity over cer-
tain types of tasks.

To address the aforementioned challenges, we draw insights from recent developments in IRT theory
(Fang et al., 2021; Chen et al., 2025) by leveraging the factorization technique. Intuitively, we
factorize a model’s ability into an additive combination of general ability and metric-or-benchmark-
specific offset. Specifically, for the multi-metrics setup, we assume there are N LLMs, J items,
and M evaluation metrics, which we assume to take values in [0, 1]. The following construction,
which we called LEGO-MM (MM as an abbreviation for Multiple Metrics), effectively handles
heterogeneity among distinct metrics:

θim = ψi + ζim

logit(Yijm) ∼ N (ajθim − bj , σ
2
j ).

(LEGO-MM)

Here θim is decomposed into two components, the general ability parameter θi and metric-specific
offset parameter ζim. A PGM-style description of LEGO-MM is presented in figure 2. The design
is closely related to the bifactor model (Fang et al., 2021) in psychometrics, where the primary-level
parameter ψi captures the overall ability of LLM i, and the secondary-level parameter ζim captures
the deviation in metric m. The parameter estimation for LEGO-MM is conducted using MCMC
with the following set of priors:

ψi ∼ N (0, 1), ζi ∼ N (0,Σζ), (5)

aj ∼ LogNormal(µa, σ
2
a), bj ∼ N (µb, σ

2
b ), σj ∼ HalfNormal(τσ),

where ζi = (ζi1, . . . , ζiM )⊤ ∼ N (0,Σζ), and Σζ is parameterized via an LKJ-Cholesky prior
(Lewandowski et al., 2009) to learn inter-metric correlations. Due to the existence of prior N (0,Σζ),
the estimator ζ̂im would be pushed towards zero, making the results more interpretable in ad-hoc
analysis and more robust in prediction tasks.

ψi

i ∈ [N ]

Yij

∈ R or {0, 1}

bj

j ∈ [J ]

δi,m(j)

Figure 3: PGM descrip-
tion of LEGO-MB

Next, we propose a solution to the multi-benchmark challenge, which
we call LEGO-MB (MB as an abbreviation for Multiple Benchmarks).
The design principle closely mirrors that of LEGO-MM which the pri-
mary difference being that in LEGO-MM, we factorize the LLM’s la-
tent ability along the metric dimension, while in LEGO-MB, we factor-
ize along the benchmark dimension. Concretely, with slight overload-
ing of notations, we assume there are N LLMs and M benchmarks,
where benchmark m contains Jm items with the total number of items
J =

∑M
m=1 Jm. Let Yij denote the metric of LLM i evaluated at item j

and m(j) indicate the benchmark that j belongs to. We further assume
that, for different items, the response can be either continuous or binary.
Let Jc denote the set of continuous-score items and Jb the set of binary
items, with Jc ∪ Jb = {1, . . . , J} and Jc ∩ Jb = ∅. The following set
of equations characterizes the construction of LEGO-MB:

θi,m = ψi + δi,m, m = 1, . . . ,M.{
logit(Yij) ∼ N

(
ajθi,m(j) − bj , σ

2
j

)
, if j ∈ Jc

Yij ∼ Bernoulli(σ
(
ajθi,m(j) − bj

)
), if j ∈ Jb

.
(LEGO-MB)

The proposed LEGO-MB model can simultaneously handle multiple benchmarks with different
sizes and items with different metric types (i.e., binary or continuous). Note that the latent ability is
both LLM and benchmark-dependent. This model with fine-grained structure is again an extended
version of the multi-dimensional IRT model. The covariance matrix Σδ here explicitly characterizes
relationships across benchmarks. Positive correlations indicate that two benchmarks tend to assess
similar abilities of LLMs, whereas negative correlations reveal intrinsic differences between the
design of benchmarks. We hope that such kinds of principled methods may shed light on optimized
designs of benchmarks. The MCMC estimation of LEGO-MB is similar to that of LEGO-MM, with
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the following priors,

ψi ∼ N (0, 1), δi ∼ N (0,Σδ), (6)

aj ∼ LogNormal(µa, σ
2
a), bj ∼ N (µb, σ

2
b ), σj ∼ HalfNormal(τσ),

where δi = (δi1, . . . , δiM )⊤ ∼ N (0,Σδ), and Σδ is also parameterized via an LKJ-Cholesky prior
to learn inter-benchmark correlations.

5 EXPERIMENTS

In this section, we present empirical investigations showing the effectiveness of the proposed LEGO-
IRT framework, focusing on three aspects:

• Accuracy of ability estimation: We follow approaches from previous work to use LLM per-
formance prediction for measuring ability estimation accuracy in LEGO-IRT. Higher predictive
accuracy shows the IRT model captures LLM ability more precisley.

• Stability and data efficiency: We test LEGO-IRT’s stability using randomly sampled subsets and
examine the smallest portion of items needed for stable scoring, measuring its data efficiency.

• Structural benefits: We investigate more complex scenarios where several distinct metrics are
applied to the same benchmark, as well as scenarios where multiple benchmarks could be modeled
simultaneously for performance improvements.

5.1 EXPERIMENTAL SETUP

We use three comprehension-type benchmarks comprising multiple choice questions (MCQ):
MMLU (Hendrycks et al., 2021), CSQA (Talmor et al., 2019), and Ceval (Huang et al., 2023),
among which MMLU and CSQA are English benchmarks while Ceval focuses on answering ques-
tions using Chinese. We also use two seq2seq-type benchmarks: XSUM (Narayan et al., 2018),
which evaluates text summarization abilities, and WMT20 (Mathur et al., 2020), where we use the
[cs→en] subtask that inspects Chinese-to-English translation capability. For two seq2seq bench-
marks, we consider 7 metrics which all take values in the range [0, 1]: ROUGE-style metrics (Lin,
2004) ROUGE1, ROUGEL, METEOR (Szpektor et al., 2007), BLEU (Papineni et al., 2002), and
three BERTScore family metrics BERTScoreP , BERTScoreR and BERTScoreF1 (Zhang et al.,
2019). As we operate on a tight budget, for all the 5 involved benchmarks, we select subsets of
a reasonable size to allow for an affordable inference cost. A detailed summary of the benchmarks
is listed in Table 4 in Appendix B.1, with a total of 8,918 question items.

We evaluate 70 models (The complete list is reported in table 5) over the selected benchmarks,
ranging from the latest frontier LLMs, which have strong reasoning capabilities (OpenAI, 2025;
Comanici et al., 2025; Anthropic, 2025) to state-of-the-art open weight model series that exhibit a
fine-grained hierarchy of capability scaling (Qwen et al., 2025; Yang et al., 2025). The environments
we used for inference are detailed in appendix B.1. We have found the chosen set of models to cover
a broad spectrum of model capabilities, constituting a suitable pool of test takers.

5.2 ACCURACY AND STABILITY ASSESSMENTS OVER SEQ2SEQ TASKS

In this section, we investigate LEGO-IRT over two benchmarks with seq2seq style: XSUM and
WMT20.

Accuracy assessments To inspect performance prediction accuracy, we first select 10% of all the
problem-specific individual model metrics as a held-out test set, and randomly select r proportion
of the remaining as our training set, where we allow r to vary r ∈ {0.1, . . . , 1.0}. 3 independent
random trials are applied to each training configuration.

We compare LEGO-IRT (using the implementation of LEGO-CM) with three alternative baselines
over the test set: global mean estimation (GME) where we use the average of the entire training set
as the ad-hoc prediction; model mean estimation (MME) where we perform a stratified estimation
divided by specific models and item mean estimation (IME) where the stratification factor is the
items. We use mean square error (MSE) between the predicted metrics and the oracle values as the
comparison criterion under the BLEU metric. The results are shown in figure 4. The results exhibit
that LEGO-IRT dominates the baselines across two benchmarks, especially in the data-abundant
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Figure 4: LLM performance prediction over XSUM and WMT20 under varying training ratios.
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Figure 5: Power comparison between LEGO-IRT and model mean estimation (MME) over XSUM
and WMT20 benchmarks.

regimes where a clear separation is evidenced. Additionally, we further demonstrate that LEGO-
IRT offers stronger statistical power for model comparisons: Specifically, for each training run,
we conduct the following (multiple) hypothesis tests across all LLM-to-LLM pairs:

H0 : θi = θj v.s. H1 : θi < θj , ∀1 ≤ i, j ≤M, (7)

and use the Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995) to select all statisti-
cally significant pairs while controlling the false discovery rate at 0.05. The detailed algorithm is
presented in algorithm 1 in appendix B.2. Upon obtaining the selected pairs, we filter a subset of
models that admits statistically validate rankings, i.e., i(1) ≺ i(2) ≺ · · · ≺ i(M∗), and define distin-
guishability as the ratio M∗

M . Intuitively, distinguishability measures the proportion of models that
could be compared statistically. We compare distinguishabilities at aforementioned training ratios
and plot them in figure 5, where we observe a clear dominance of LEGO-IRT over model mean
estimation across all training configurations, with up to 13% increase in absolute scale, suggesting
that LEGO-IRT offers more statistical power when applied to model comparisons.

Stability assessments We inspect the stability of LEGO-IRT under two perspectives: ability estima-
tion stability and ranking stability. To test the stability of ability estimation, we randomly sampled
50 subsets from XSUM and WMT20, each containing 100 items. The resulting distribution of
estimated capability for model Gemini-2.5-pro is plotted in figure 6a(See also figure ?? for
illustration with more models.), along with estimations produced from the entire benchmark, which
we referred to as global estimations. The results exhibit a much better concentration around its
global estimation for LEGO-IRT than that of MME.

Next, we test the ranking stability of LEGO-IRT over the aforementioned 50 subsets using the
following procedure: For any given subset, we pick five models which are conventionally perceived
to be of different capability levels and treat them as newcomer models, with the rest being referred to
as existing models. The intuition is to compare the ability estimates of newcomer models produced
by two distinct methods: (i) through a scoring procedure after calibration using only the 65 existing
models. (ii) through a joint calibration using all 70 models. The goal of this comparison is to
inspect whether item difficulties calibrated by existing models generalize to newcomers. We
use ranks of newcomer models’ ability estimates among the 70 models as the base for the criterion,
and compute the ranking bias as the absolute deviation of newcomer ranks between those produced
by method (i) and (ii) as mentioned above (regarded as estimation and orcale, respectively). A more
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Figure 6: Stability assessment of Gemini-2.5-pro on XSUM dataset.
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Figure 7: LLM performance prediction comparisons over MMLU, CSQA and Ceval

algorithmic description is presented in algorithm 2 in appendix B.2. The results are presented in
table 2, showing that LEGO-IRT exhibits a smaller ranking bias overall, as well as achieving better
stability as showcased by smaller variations among random subsets.

Data efficiency To investigate the data efficiency during scoring stage, we use the same set of
newcomer models as in the previous section. The item difficulties are fixed at their calibrated levels
using the remaining 65 models’ response metrics. Then we gradually increase the number of items
for scoring the newcomer models’ capabilities, similar to that in (Truong et al., 2025, Section 3). The
estimated model abilities are verified on a hold-out test set using either the MSE or MAE metric. We
report the result in figure 6b. The result suggests that utilizing 50 items—accounting for merely
3% of the total item pool—the test set prediction error stabilizes and the ability estimates converge.
This demonstrates that LEGO-IRT, calibrated on an existing item bank, can reliably project
new models onto a unified ability scale even under extremely sparse response observations.

Table 2: Absolute rank deviations and their standard deviation between MME and LEGO-IRT.

Model XSUM WMT20

MME LEGO-IRT MME LEGO-IRT

Gemini-2.5-pro 8.40±17.58 1.20±2.69 0.85±4.51 0.80±4.08

GPT-4.1-2025-04-14 7.90±17.80 0.10±6.98 1.10±12.44 0.20±10.35

Qwen3-8B 7.60±17.36 1.60±9.58 3.70±10.41 3.15±7.37

Qwen3-1.7B 11.80±20.79 2.65±7.03 1.55±4.14 0.55±2.81

Qwen2.5-0.5B-Instruct 1.95±14.74 5.40±8.79 0.90±10.00 1.80±5.90

5.3 EXPLORATION OF STRUCTURAL BENEFITS

In this section, we inspect the advantage of incorporating additional structural information through
the lens of LLM performance prediction.

Benefits of joint modeling between distinct metrics We investigate the LEGO-MM model devel-
oped in section 4.2 in an analogous model setup in the previous section, where we assess predictive
performance under varying training data ratios. In addition to the single-metric LEGO-CM model,
we fit a multi-metric LEGO-MM model that integrates 7 metrics (presented as LEGO-IRT (7 met-
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MEANMMLU MEANCSQA MEANCeval ψLEGO-IRT

Spearman’s ρ 0.809 0.615 0.812 0.836
Kendall’s τ 0.633 0.447 0.641 0.651

Table 3: Rank correlation measures between estimated ability and the Text section score in
LMArena (Chiang et al., 2024). For example, MEANMMLU stands for the correlation between test
models’ average scores on MMLU and their associating LMArena score.

rics) in figure 4). The results are presented in figure 4, demonstrating that integrating multiple
metrics further enhances the predictive performance of LEGO-CM, suggesting that the correlation
structures between distinct metrics are effectively exploited. Meanwhile, as the model LEGO-MM
also allows explicit modeling and interpretation of metric correlations, we conduct a detailed cor-
relation analysis between all the 7 metrics, which is postponed to appendix C.2. An interesting
finding therein is that after adjusting for confounding factors such as problem difficulty and generic
model ability, there exists a negative correlation (measured in terms of ζ as in the definition of equa-
tion LEGO-MM) between ngram-based metrics like ROUGE and semantic-inspired metrics like
BERTScore.

Benefits of integrating multiple benchmarks We investigate the LEGO-MB model developed in
section 4.2 to two multi-benchmark scenarios. In the first experiment, we use three benchmarks
under binary metric: MMLU, CSQA, and Ceval. We adopt a similar experiment methodology as
in section 5.2 by varying training data ratios from r ∈ {0.2, 0.3, . . . , 1.0}. Under each training
configuration, we use all the training samples from the three benchmarks to train our LEGO-MB
model that exploits the inter-benchmark correlations. We additionally compare with two baselines:
The method used in the tinyBenchmarks paper (Polo et al., 2024), and the standard IRT model used
in (Truong et al., 2025). We use AUC as the criterion for performance prediction. The results are
depicted in figure 7. The results suggest a solid improvement of LEGO-IRT over standard IRT ap-
proaches, illustrating the advantage of incorporating inter-benchmark correlations. Additionally, we
present our findings regarding the detailed correlation structure between the three benchmarks in ap-
pendix C.3, demonstrating the strong dependence among English comprehension tasks and a much
weaker correlation between English comprehension and Chinese comprehension tasks. Addition-
ally, we postpone a report of integrating continuous benchmarks to appendix C.4, where analogous
benefits are observed.

Finally, we explore potential interpretations of the estimated general capability ψ as defined in equa-
tion LEGO-MB. As there are no gold standards for model ability, we use the human-judged, widely
accepted authentic score from the LMArena(Text) leaderboard Chiang et al. (2024) as a reasonable
surrogate. 2Among the 70 test models, 40 of them have voting results in LMArena. We compare all
those corresponding estimated ψ capabilities with mean score aggregation over MMLU, CSQA, and
Ceval, measured by rank correlation with LMArena score, which are detailed in table 3. The results
reveal an interesting finding that by leveraging principled evaluation paradigms like LEGO-IRT,
we obtain (latent) model ability characterizations that might exhibit better alignment with human
judgments.

6 CONCLUSION

We introduced LEGO-IRT, a unified framework for data-efficient LLM evaluation that overcomes
the limitations of prior item response theory (IRT) approaches. Our framework uniquely supports
both binary and continuous metrics natively, eliminating the need for information-losing discretiza-
tion. Through a novel factorized design, LEGO-IRT incorporates structural knowledge by jointly
modeling multiple metrics and benchmarks. Our extensive experiments show that LEGO-IRT pro-
vides stable capability estimates using as little as 3% of the full evaluation data. Furthermore, lever-
aging structural information reduces estimation error by up to 10%. This work marks a significant
step towards more affordable, reliable, and nuanced LLM assessment.

2https://lmarena.ai/leaderboard/text. We pick the data snapshot as of September 18, 2025.
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Appendices of “Toward a Unified Framework for Data- Efficient
Evaluation of Large Language Models”

A DISCLOSURE: USE OF LLMS

LLMs are used as an assistant in this project. Specifically, LLMs are used for

• Polish writing: Refine statements, improve fluency.
• Coding assistance: Help draft prototype codes and alleviate engineering efforts.

B EXPERIMENTAL DETAILS

B.1 BENCHMARKS AND MODELS

A summary for all five datasets we used is reported in table 4

Benchmark MMLU CSQA Ceval XSUM WMT20
Question type MCQ MCQ MCQ NLG NLG
# items 2035 1221 2194 2050 1418

Table 4: Summary statistics for the evaluation benchmarks. MCQ denotes Multiple Choice
Question, NLG denotes Natural Language Generation

We report all 70 models used in our experiments in table 5. While some of the models support
thinking mode, we by default disable the thinking process if it is configurable for the model to save
inferential cost. For open models of small size, i.e., model size smaller than 20B, we use two NVidia
RTX 3090 GPUs to conduct inference using the vLLM Kwon et al. (2023) framework. The inference
time configurations follow the default open-source recipe if available. For models of greater size or
proprietary models, we call official APIs with a final total api cost of $887.

Table 5: The complete list of models used in empirical investigations.

Model Name Model Size (B) Proprietary or Open Requires Thinking

Hunyuan-0.5B-Instruct 0.5 Open Yes
Hunyuan-1.8B-Instruct 1.8 Open Yes
Hunyuan-4B-Instruct 4 Open Yes
Hunyuan-7B-Instruct 7 Open Yes
MiMo-7B-SFT 7 Open Yes
Minimax-m1 456 Open No
MiniMax-Text-01 Unknown Proprietary No
Mistral-7B-Instruct-v0.3 7 Open No
Mixtral-8x7B-Instruct-v0.1 47 Open No
NVIDIA-Nemotron-Nano-12B-v2 12 Open Yes
NVIDIA-Nemotron-Nano-9B-v2 9 Open Yes
Qwen2.5-0.5B-Instruct 0.5 Open No
Qwen2.5-1.5B-Instruct 1.5 Open No
Qwen2.5-3B-Instruct 3 Open No
Qwen2.5-7B-Instruct 7 Open No
Qwen2.5-14B-Instruct 14 Open No
Qwen2.5-72B-Instruct 72 Open No
Qwen3-0.6B 0.6 Open Yes
Qwen3-1.7B 1.7 Open Yes
Qwen3-4B 4 Open Yes

Continued on next page
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Continued from previous page
Model Name Model Size (B) Proprietary or Open Supports Thinking

Qwen3-8B 8 Open Yes
Qwen3-14B 14 Open Yes
Qwen3-32b 32 Open Yes
Qwen3-235b-a22b-thinking-2507 235 Open Yes
Qwen-max-2025-01-25 Unknown Proprietary No
Qwen-plus Unknown Proprietary No
Qwen-turbo Unknown Proprietary No
Claude-opus-4 Unknown Proprietary Yes
Claude-sonnet-4 Unknown Proprietary Yes
Claude-3-5-haiku-20241022 Unknown Proprietary No
Claude-3-5-sonnet-20241022 Unknown Proprietary No
Claude-3-haiku-20240307 Unknown Proprietary No
Claude-3-opus-20240229 Unknown Proprietary No
Deepseek-chat-v3.1 660 Open Yes
Gemma-2-2b-it 2 Open No
Gemma-2-9b-it 9 Open No
Gemma-3-12b-it 12 Open No
Gemma-3-1b-it 1 Open No
Gemma-3-4b-it 4 Open No
Gemma-3-27b-it 27 Open No
Gemini-2.0-flash Unknown Proprietary No
Gemini-2.5-flash Unknown Proprietary Yes
Gemini-2.5-pro Unknown Proprietary Yes
GPT-4o-2024-05-13 Unknown Proprietary Yes
GPT-4o-mini-2024-07-18 Unknown Proprietary Yes
GPT-oss-20B 20 Open Yes
GPT-oss-120b 120 Open Yes
GPT-4.1-2025-04-14 Unknown Proprietary Yes
GPT-4.1-mini-2025-04-14 Unknown Proprietary Yes
GPT-5-2025-08-07 Unknown Proprietary Yes
GPT-5-mini-2025-08-07 Unknown Proprietary Yes
GPT-5-nano-2025-08-07 Unknown Proprietary Yes
Internlm3-8b-instruct 8 Open No
Llama-3.1-8B-Instruct 8 Open No
Llama-3.3-70B-Instruct 70 Open No
Llama-3.1-405B-Instruct 405 Open No
Llama-3.1-70B-Instruct 70 Open No
Llama-4-maverick Unknown Open No
Llama-4-scout Unknown Open No
Kimi-k2-preview Unknown Proprietary No
Phi-3.5-mini-instruct 3.8 Open No
Phi-4 14 Open No
Phi-4-mini-instruct 3.8 Open No
Phi-4-reasoning-plus 14 Open Yes
Grok-3-beta Unknown Proprietary No
Grok-3-mini-beta Unknown Proprietary No
Grok-4-07-09 Unknown Proprietary Yes
GLM-4-9B-0414 9 Open No
GLM-4.5 355 Open Yes
GLM-4.5-air 106 Open Yes

B.2 ALGORITHM DESCRIPTIONS

In this section, we provide the missing details of the main context.
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Algorithm 1 summarizes the complete procedure of computing the model ability discriminability,
where we use the t-test (naive method) or the z-test (our LEGO-IRT) to compute the p-values for
each pair of models and identify those distinguishable pairs via the Benjamini-Hochberg method.
We report the average number of detected pairs as the final score. A larger score indicates better
performance.

Algorithm 1 Model Ability Discriminability Evaluation
Input: A collection of models {M1,M2, . . . ,MN}, two ability estimation procedures: Method 1
(logit mean response approach) and Method 2 (LEGO-IRT estimation), and a significance threshold
α ∈ (0, 1).
Output: Discriminability scoresR(1) andR(2) quantifying the ability of each method to distinguish
models.

1: for i = 1 to N do
2: For each competing model Mj , j ̸= i, compute the pairwise p-values under both methods:
3: Method 1: Apply logit transformation to response values, estimate means and variances,

then perform two-sample t-tests:

p
(1)
i,j = t-test

(
logit(Mi), logit(Mj)

)
4: Method 2: Estimate ability parameters θ̂ and standard errors via LEGO-IRT; compute

standardized z-scores and corresponding two-sided p-values:

zi,j =
θ̂i − θ̂j√
SE2

i + SE2
j

, p
(2)
i,j = 2Φ(−|zi,j |)

5: (Item difficulty parameters are fixed based on response calibration from other models.)
6: Apply the Benjamini-Hochberg (BH) procedure to control the false discovery rate (FDR) for

each set of p-values {p(1)i,j }j ̸=i and {p(2)i,j }j ̸=i:
7: Sort the p-values in ascending order: p(1) ≤ p(2) ≤ · · · ≤ p(m), where m = N − 1.
8: Find the maximal index k satisfying

p(k) ≤
k

m
α

9: Reject all null hypotheses corresponding to p(i) for i ≤ k, indicating significant ability
differences.

10: Compute the number of significantly distinguishable models S(1)
i and S(2)

i post-correction.
11: Calculate the proportion of distinguishable models for each method:

r
(1)
i =

S
(1)
i

N − 1
, r

(2)
i =

S
(2)
i

N − 1

12: end for
13: Aggregate the overall discriminability scores by averaging across all models:

R(1) =
1

N

N∑
i=1

r
(1)
i , R(2) =

1

N

N∑
i=1

r
(2)
i

14: return Discriminability metrics R(1) and R(2).

Algorithm 2 summarizes the detailed procedure of evaluating the new model, where we use the
full responses to estimate the true model ability and bootstrap subsets of responses to examine the
robustness of the estimation ability of the naive method and the proposed LEGO-IRT. We report the
mean and standard deviation of the rank difference. Smaller values indicate better performances.
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Algorithm 2 Ability Estimation and Rank Deviation Analysis for a Novel Model
Input: Existing model set with response data and combined ability estimates, response data of the
novel model, subset size M , number of sampling iterations K
Output: Mean and standard deviation of rank deviations for the novel model under both estimation
methods.

1: Compute the ground truth rank r∗ of the novel model by:
2: Estimating ability using full response data via Method 1 (logit mean response) and Method 2

(LEGO-IRT).
3: Combining the two ranks to define r∗.
4: for k = 1 to K do
5: Randomly sample a subset of items of size M from the full item pool.
6: Estimate the novel model’s ability on the subset using Method 1 and Method 2, yielding θ̂(1)k

and θ̂(2)k .
7: Determine the rank of the novel model among all models based on θ̂(1)k and θ̂(2)k , denoted r(1)k

and r(2)k .
8: end for
9: Calculate rank deviations for each method:

d
(m)
k = r

(m)
k − r∗, m = 1, 2

10: Compute the mean and standard deviation of rank deviations:

d̄(m) =
1

K

K∑
k=1

d
(m)
k , σ(m) =

√√√√ 1

K − 1

K∑
k=1

(
d
(m)
k − d̄(m)

)2
, m = 1, 2

11: return d̄(1), σ(1), d̄(2), σ(2).

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional experimental results that further validate the effectiveness,
stability, and interpretability of the LEGO-CM, LEGO-MM, and LEGO-MB models.

C.1 STATISTICAL STRENGTH OF LEGO-CM

We first examine the statistical power of LEGO-CM in model comparisons. While Figure 5 in
the main text illustrates distinguishability after BH correction, Figure 8 supplements this by show-
ing the uncorrected distinguishability performance across varying training ratios. This comparison
highlights the robustness of LEGO-CM ’s testing power whenever the multiple testing correction
procedure is applied or not.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Train Ratio

40

50

60

70

80

A
v
e
r
a
g
e

D
i
s
t
i
n
g
u
i
s
h
a
b
i
l
i
t
y

(
%
)

WMT Distinguishability vs Train Ratio

MME(Logit) Distinguishability (BH corrected)

LEGO-IRT Distinguishability (BH corrected)

MME(Logit) Distinguishability (uncorrected)

LEGO-IRT Distinguishability (uncorrected)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Train Ratio

0

20

40

60

80

A
v
e
r
a
g
e

D
i
s
t
i
n
g
u
i
s
h
a
b
i
l
i
t
y

(
%
)

XSUM Distinguishability vs Train Ratio

MME(Logit) Distinguishability (BH corrected)

LEGO-IRT Distinguishability (BH corrected)

MME(Logit) Distinguishability (uncorrected)

LEGO-IRT Distinguishability (uncorrected)

Figure 8: Power comparison between LEGO-IRT and model mean estimation (MME) over XSUM
and WMT20 benchmarks, shown before and after BH correction. LEGO-IRT always achieves better
results.
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Figure 9: Stability assessment of LLM models on XSUM dataset.

In addition to the stability analysis of the Gemini-2.5-pro shown in the main text (Figure 6),
we extend this evaluation to four additional models. Figures 9 and 10 show the density of the
estimated LLM’s latent ability and convergence behaviors, respectively. These results demonstrate
that LEGO-CM consistently achieves robust estimates and reliable model rankings across diverse
models, underscoring its general applicability.

Figure 11 shows that, as the training ratio increases, 95% credible intervals of latent ability of five
representative LLMs become non-overlapping. This phenomenon confirms that MCMC success-
fully provides the statistically significant results, validating that the uncertainty of latent ability
estimation can be effectively reduced within the LEGO-CM framework. According to the figure,
the abilities of five models can be reliably ranked with statistically significant differences using only
40% of the training data, which cannot be achieved by using the aggregated mean alone.

C.2 STRONG INTERPRETATION OF LEGO-MM

We further analyze the LEGO-MM ’s ability estimates and metric correlation patterns to deepen
understanding of multi-metric evaluation.

To provide readers with a clearer global picture, Figure 12 displays a heatmap of 70 LLM abilities
across seven metrics, with color intensity reflecting ability magnitude. This visualization facilitates
direct comparison of model strengths on each metric. To be more detailed, Figure 13a shows radar
charts of three representative models, illustrating their overall and metric-specific abilities. Notably,
qwen-turbo and qwen3-235b-a22b-thinking-2507 demonstrate consistent performance across met-
rics, while qwen3-32b1.8 excels particularly on BERTScore-R and METEOR.

To quantify sensitivity, we compute the standard deviation of metric-specific parameter ζim’s for
LLM i and rank the values from the lowest to the highest. Claude-opus-4 and Gemini-2.5-pro
exhibit the lowest sensitivities (1.98 and 1.97), ranking first and fourth in global ability (i.e., ψi),
respectively. This highlights their robust and stable performance in text generation tasks. To be
self-complete, we also provide Figure 13b to show the density of standard deviations of ζim’s of all
70 LLMs.

Figure 14 contains two correlation matrices that illustrate the metric interrelations estimated under
the LEGO-MM framework. Unlike traditional post-hoc Pearson correlation analysis, where metric
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Figure 10: Convergence of estimated ability values and test set MSE for different models during
ability estimation.
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Figure 12: Heatmap of Model Ability Estimates Across Multiple Metrics
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Figure 13: Model Ability Profiles and Stability Analysis in LEGO-MM

correlations are confounded by global model ability and item difficulty effects, often resulting in
uniformly positive correlations. Our approach explicitly models and removes these global factors.
This yields a purified residual correlation matrix revealing more diagnostic patterns: the ROUGE
family and METEOR remain strongly positively correlated, reflecting their shared focus on surface
overlap and extractive consistency. In contrast, BLEU and BERTScore exhibit a negative correlation,
suggesting potential antagonism between n-gram precision and semantic similarity dimensions.

These findings demonstrate that LEGO-MM can effectively capture true relationships among
evaluation metrics, while the naive Pearson correlation often leads to the overestimation! This
insight can guide the design of more discriminative and interpretable multi-dimensional metric sys-
tems, for example, by combining negatively correlated metrics as complementary dimensions to
better capture diverse aspects of text quality.
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Figure 14: Metric Interrelations: Comparison Between Post-hoc and LEGO-MM Modeled Correla-
tions

C.3 BETTER INSIGHTS FROM LEGO-MB

Finally, we examine the LEGO-MB model’s ability estimates and inter-benchmark correlation struc-
tures to better understand multi-benchmark evaluation.

We evaluate the predictive accuracy of the LEGO-MB compared to baseline methods on three binary
benchmarks: MMLU, CSQA, and Ceval. The experimental setup mirrors that of figure 7, varying
training data ratios from r ∈ {0.2, 0.3, . . . , 1.0}. Figure 15 shows that LEGO-MB consistently
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Figure 15: LLM performance prediction comparisons over MMLU, CSQA and Ceval

outperforms baselines, confirming that exploiting inter-benchmark correlations enhances prediction
robustness.

We also visualize the calibrated performances of all 70 LLMs among the three benchmarks (MMLU,
CSQA, and Ceval) in Figure 16, with colors indicating relative ability magnitudes. This facilitates
a clear comparison of LLMs’ strengths on each benchmark. In particular, Figure 17 presents radar
charts for three representative models, showing their overall abilities as well as benchmark-specific
abilities on the same plot. Notably, gemma-3-12b-it stands out on CSQA, while gemini-2.5-pro
exhibits strong performance on MMLU.
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Figure 16: Estimated Model Abilities Across MMLU, CSQA, and Ceval Benchmarks
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Figure 18 contains two correlation matrices that illustrate the inter-benchmark relationships esti-
mated under the mixed-benchmark IRT framework. The left matrix shows a post-hoc Pearson cor-
relation analysis based on model accuracies on each benchmark, revealing high correlations above
0.7 among the three benchmarks. However, these correlations are in fact inflated since the native
Pearson correlation fails to separate the primary factor from the secondary factors. The right matrix
presents the posterior correlation matrix of benchmark-specific residuals estimated by the proposed
LEGO-MB, controlling for global ability and item difficulty. Here, CSQA and MMLU show a weak
positive correlation, while CEVAL and CSQA exhibit a negative correlation. Compared to the in-
direct post-hoc analysis, the modeled correlations better reflect the intrinsic consistency between
benchmarks.

CEVAL and MMLU represent Chinese and English comprehensive language understanding bench-
marks, respectively, with significant differences in language context and task content. MMLU cov-
ers diverse domains and tasks, emphasizing broad language understanding and reasoning abilities,
whereas CEVAL focuses on varied tasks in Chinese contexts. The near absence of correlation be-
tween these two benchmarks indicates that model performance in one language and task environment
does not directly translate to another, highlighting the complexity and challenges of cross-lingual and
cross-task evaluation.

CEVAL CSQA MMLU

CEVAL

CSQA

MMLU

1 0.7 0.78

0.7 1 0.9

0.78 0.9 1

Benchmark Correlation (Response Means)

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(a) Post-hoc Pearson Correlation of Model Accu-
racies Across Benchmarks

CEVAL CSQA MMLU

CEVAL

CSQA

MMLU

1 -0.43 0.0022

-0.43 1 0.18

0.0022 0.18 1

Correlation Matrix of δ Abilities

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(b) Correlation Matrix of Benchmark-specific Ef-
fects Estimated by LEGO-MB

Figure 18: Inter-Benchmark Correlations: Comparison Between Post-hoc and Modeled Correlations
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Figure 19: LLM performance prediction comparisons over XSUM and WMT20

C.4 STRUCTURAL BENEFITS OF INTEGRATING XSUM AND WMT20

In this experiment, we use XSUM and WMT20 to assess whether the predictive performance of
LEGO-IRT could be further improved over benchmarks with continuous metrics. The experimental
setups are analogous to those used in the three binary benchmarks experiment. We compare the
BLEU metric under the test set with MSE as the performance criterion. The results are plotted in
figure 19, suggesting a significant performance gain over the WMT20 dataset.

D DISCUSSIONS BETWEEN MCMC AND EM

Within the IRT literature, both the Expectation–Maximization (EM) algorithm and Markov Chain
Monte Carlo (MCMC) methods are widely used for parameter estimation. While EM remains pop-
ular due to its computational speed, MCMC offers several methodological strengths that are par-
ticularly valuable in our LEGO-IRT framework, requiring flexible inference and robust uncertainty
quantification. In this appendix, we list several advantages of MCMC over EM.

1. Full Posterior Inference
EM produces point estimates by maximizing the likelihood, but it does not directly quantify
uncertainty. Although we can use Louis identity (Louis, 1982) to compute the information
matrix, in most cases, it can be computationally expensive when the number of parameters
is large.
By contrast, the MCMC yields full posterior distributions for item and LLMs’ ability pa-
rameters, allowing for credible interval estimates, posterior predictive checks, and richer
uncertainty quantification.

2. Flexibility with Complex Models
EM can be difficult to extend to models with hierarchical structures, non-standard priors,
or missing data patterns. In most of these cases, the E-step in EM algorithm does not admit
an explicit form, which increases the computational difficulty of the M-step.
MCMC accommodates arbitrary priors, latent variable hierarchies, and non-linear link
functions, making it more suitable for our proposed LGO-IRT models with multiple metrics
and benchmarks.

3. Robustness to Multimodality
As we know, the log-likelihood of IRT model is not convex. EM relies on local optimization
and is prone to converging at local maxima of the likelihood function.
MCMC explores the posterior space stochastically, making it less sensitive to initialization
and better at characterizing multi-modal distributions.

4. Implicit Sparsity
Due to the special decomposition of latent ability under our LEGO-IRT framework, the
secondary level parameters, ζim and δi,m’s are only identifiable up to a location shift. In
the implementation of MCMC, the priors of ζim, δi,m implicitly push the estimates towards
zero, leading to more interpretation results. On the other hand, EM algorithm does not offer
this unless additional regularization terms are imposed on the Q-function.
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