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Figure 1: Enabling features learned by sparse autoencoders results in interpretable changes
in SDXL Turbo’s, SDXL’s, and Flux-schnell’s image generation processes. The image captions
correspond to feature codes comprised of transformer block name and feature index.

Abstract

For large language models (LLMs), sparse autoencoders (SAEs) have been shown
to decompose intermediate representations that often are not interpretable directly
into sparse sums of interpretable features, facilitating better control and subsequent
analysis. However, similar analyses and approaches have been lacking for text-to-
image models. We investigate the possibility of using SAEs to learn interpretable
features for SDXL Turbo, a few-step text-to-image diffusion model. To this end,
we train SAEs on the updates performed by transformer blocks within SDXL
Turbo’s denoising U-net in its 1-step setting. Interestingly, we find that they
generalize to 4-step SDXL Turbo and even to the multi-step SDXL base model
(i.e., a different model) without additional training. In addition, we show that
their learned features are interpretable, causally influence the generation process,
and reveal specialization among the blocks. We do so by creating RIEBench, a
representation-based image editing benchmark, for editing images while they are
generated by turning on and off individual SAE features. This allows us to track
which transformer blocks’ features are the most impactful depending on the edit
category. Our work is the first investigation of SAEs for interpretability in text-to-
image diffusion models and our results establish SAEs as a promising approach for
understanding and manipulating the internal mechanisms of text-to-image models.
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1 Introduction

Text-to-image generation is a rapidly evolving field. The DALL-E model first captured public interest
[46], combining learned visual vocabularies with sequence modeling to produce high-quality images
based on user input prompts. Today’s best text-to-image models are largely based on text-conditioned
diffusion models [50, 51, 43, 52, 3, 42]. This can be partially attributed to the stable training dynamics
of diffusion models, which makes them easier to scale than previous approaches such as generative
adversarial neural networks [16]. As a result, they can be trained on internet scale image-text datasets
like LAION-5B [53] and learn to generate photorealistic images from text.

However, the underlying logic of the neural networks that enable the text-to-image pipelines we have
today, due to their black-box nature, is not well understood. Unfortunately, this lack of interpretability
is typical in the deep learning field. For example, advances in image recognition [28] and language
modeling [15, 6] come mainly from scaling models [21], rather than from an improved understanding
of their internals. Recently, the emerging field of mechanistic interpretability has sought to alleviate
this limitation by reverse engineering visual models [37] and transformer-based LLMs [45]. At the
same time, diffusion models have remained underexplored.

This work focuses on SDXL Turbo, a recent open-source few-step text-to-image diffusion model. We
import methods from a toolbox originally developed for language models, which allows inspection of
the intermediate results of the forward pass [8, 20, 11, 5]. Moreover, some of these methods even
enable reverse engineering of the entire task-specific subnets [35]. In particular, sparse autoencoders

(SAEs) [62, 11, 5] are considered a breakthrough in interpretability for LLMs. They have been shown
to decompose intermediate representations of the LLM forward pass – often difficult to interpret due
to polysemanticity

1 – into sparse sums of interpretable and monosemantic features. These features
are learned in an unsupervised way, can be automatically annotated using LLMs [7], and facilitate
subsequent analysis, for example, circuit extraction [35].

1.1 Contributions

In this work, we investigate whether we can use SAEs to localize semantics to vector representations
at specific layers of SDXL Turbo, a recent open-source few-step text-to-image diffusion model.

SDLens. To facilitate our analysis, we developed a library called SDLens that allows us to cache
and manipulate intermediate results of SDXL Turbo’s forward pass. We use our library to create
a dataset of SDXL Turbo’s intermediate feature maps of several transformer blocks inside SDXL
Turbo’s U-net on 1.5M LAION-COCO prompts [53, 54]. We then use these feature maps to train
multiple SAEs for each transformer block. We open-source the code of SDLens.2

SAEPaint. To qualitatively assess the role and the impact of features learned at different transformer
blocks in SDXL Turbo we create feature visualization techniques based on examples in which the
features are highly active and on various interventions. To interactively perform interventions, e.g.,
adding a feature on a spatial region (at a specific transformer block) or subtracting it while generating
an image, we build an app SAEPaint (Appendix A). Our qualitative analysis (Appendix G and
Appendix H) suggests that the blocks specialize into a “composition,” a “detail,” and a “style” block.3

RIEBench. In order to quantify the strong causal effects that we qualitatively observe when inter-
acting with SDXL Turbo and SDXL via SAEPaint, we create a new representation-based image

editing benchmark (RIEBench), for our setting of turning on and off features as we generate new
images. We do so by leveraging the nine edit categories including prompts from PIEBench [26] and
combining them with grounded SAM2 [49] to compute semantic segmentations, which allows for
the selection of the constituting features. We find that SAE features allow for fine-grained transfer
of visual features across different denoising processes matching neuron baselines while requiring
multiple orders of magnitudes less features.

By analyzing the features selected with regard to the edit category we quantify the specialization of
SDXL Turbo’s transformer blocks that we also observe when interacting with SDXL through SAE-

1A phenomenon where a single neuron or feature encodes multiple, unrelated concepts [17].
2https://github.com/surkovv/sdxl-unbox
3Our “composition” and “style” blocks have been already known in the community [57]. However, in this

paper we provide the first thorough and fine-grained investigation of them.
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Paint. In particular, the “detail” block was most effective for adding/deleting/changing objects/details
and the “style” block for changing color/background and style.

Generalization across steps and architectures. Despite training on the one-step process we find
that our learned features – without requiring additional training – generalize to the SDXL Turbo’s
four-step process and even vanilla SDXL’s multi-step process. We find that one-step denoising is
enough for training meaningful SAE features applicable to multi-step denoising. Our one-step SAEs
not only retain much of their reconstruction quality but also their learned features retain their semantic
meaning and causal influence on the multi-step generation (see Fig. 1 or Appendix E). We quantify
this by analyzing reconstruction performance and feature overlap across multiple denoising steps.

Additionally, we train SAEs that can be used to manipulate the generative process of FLUX
Schnell [30] (also Fig. 1). Again we observe that training on the one step generation process
is enough. We consider this a crucial result because it demonstrates that meaningful, interpretable
features can be extracted with significantly lower computational resources by training on the distilled
model and then effectively deployed to understand and edit more powerful, multi-step models.

Thus, we show that SAEs learn interpretable features that causally the image generation process. By
open-sourcing our library and SAEs, we lay the foundation for further research in this area.

2 Background

2.1 Sparse Autoencoders

Let h(x) → Rd be an intermediate result during a forward pass of a neural network on input x.
In a fully connected neural network, h(x) could correspond to a vector of neuron activations. In
transformers, which are neural network architectures that combine attention with fully connected
layers and residual connections, h(x) could either refer to the content of the residual stream after
a layer, an update to the residual stream by a layer, or a vector of neuron activations within a fully
connected layer.

It has been shown [62, 11, 5] that in many neural networks, especially LLMs, intermediate represen-
tations can be well approximated by sparse sums of nf → N learned feature vectors, i.e.,

h(x) ↑
nf∑

ω=1

sω(x)fω, (1)

where sω(x) are the input-dependent coefficients, most of which are equal to zero and f1, . . . , fnf →
Rd is a learned dictionary of feature vectors. Importantly, the features are usually interpretable.

Sparse autoencoders. To implement the sparse decomposition from equation 1, the vector s
containing the nf coefficients of the sparse sum, is parameterized by a single linear layer followed by
an activation function, called the encoder,

s = ENC(h) = ω(W ENC(h↓ bpre) + bact), (2)

in which h → Rd is the latent that we aim to decompose, ω(·) is an activation function, W ENC → Rnf↑d

is a learnable weight matrix and bpre and bact are learnable bias terms. We omitted the dependencies
h = h(x) and s = s(h), which are clear from the context.

Similarly, the learnable features are parametrized by a single linear layer called decoder,
h↓ = DEC(s) = W DECs+ bpre, (3)

in which W DEC = (f1| · · · |fnf ) → Rd↑nf is a learnable matrix. Its columns take the role of learnable
features and bpre is a learnable bias term. 4

2.2 Few-Step Diffusion Models: SDXL Turbo

SDXL Turbo [52] is a distilled version of Stable Diffusion XL [43], a powerful latent diffusion model.
SDXL Turbo allows high-quality sampling in as few as 1-4 steps. It employs a denoising network
implemented using a U-net similar to [50]. For an architecture diagram consult Appendix D Fig. 10.

4An extended version of this section, including training details, is in Appendix K and Appendix L.
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The U-net consists of a down-sampling path, a bottleneck, and an up-sampling path, each comprising
one or more U-net blocks connected via up- and down-samplers. U-net blocks are built from residual
networks, and some blocks incorporate multiple cross-attention transformer blocks while others do
not. We refer to these transformer blocks by their short names (e.g., down.2.1). Each transformer
block is composed of several basic transformer layers, including self-attention, cross-attention, and
MLP layers. Importantly, the text conditioning is achieved via cross-attention to text embeddings
performed by 11 transformer blocks embedded in the down-, up-sampling paths, and the bottleneck.
An architecture diagram displaying the relevant blocks can be found in additional material.

3 Sparse Autoencoders for SDXL Turbo

With the necessary definitions at hand, in this section we show a way to apply SAEs to SDXL Turbo.

Where to apply the SAEs. Since we want to localize blocks’ responsibilities, we apply SAEs to
the updates performed by the transformer blocks containing the cross-attention layers responsible
for incorporating the text prompt (for details consider Appendix D). Each of these blocks consists
of multiple transformer layers, which attend to all spatial locations (self-attention) and to the text
prompt embeddings (cross-attention).

Formally, the εth cross-attention transformer block updates its inputs in the following way

D[ε]outij = D[ε]inij + T [ε](D[ε]in, c)ij , (4)

in which D[ε]in, D[ε]out → Rh↑w↑d denote the residual stream before and after application of
the ε-th cross-attention transformer block respectively. The transformer block itself calculates the
function T [ε] : Rh↑w↑d ↔ Rh↑w↑d. Note that we omitted the dependence on input noise zt and
text embedding c for both D[ε]in(zt, c) and D[ε]out(zt, c).

We train SAEs on the residual updates T [ε](D[ε]in, c)ij → Rd denoted by

!D[ε]ij := T [ε](D[ε]in, c)ij = D[ε]outij ↓D[ε]inij . (5)

That is, we jointly train one encoder ENC[ε] and decoder DEC[ε] pair per transformer block ε and share
it over all spatial locations i, j. We do this for the 4 (out of 11) transformer blocks5 that we found
have the highest impact on the generation, namely, down.2.1, mid.0, up.0.0 and up.0.1.

For the sake of simplicity, we omit the transformer block index ε in the remainder of the paper.

Feature maps. We refer to !D → Rh↑w↑d as dense feature map and applying ENC to all image
locations results in the sparse feature map S → Rh↑w↑nf with entries Sij = ENC(!Dij).

We refer to the feature map of the ϑth learned feature using Sω → Rh↑w. This feature map Sω

contains the spatial activations of the ϑth learned feature. Its associated feature vector fω → Rd is a
column in the decoder matrix W DEC = (f1| · · · |fnf ) → Rd↑nf . Using this notation, we can represent
each element of the dense feature map as a sparse sum

!Dij ↑
nf∑

ω=1

Sω
ijfω, with Sω

ij = 0 for most ϑ → {1, . . . , nf}. (6)

Training. In order to train an SAE for a transformer block, we collected dense feature maps !Dij

from SDXL Turbo one-step generations on 1.5M prompts from the LAION-COCO [54]. Each feature
map has dimensions of 16 ↗ 16, resulting in a training dataset of 384M dense feature vectors per
transformer block. For the SAE training process, we followed the methodology described in [19],
using the TopK activation function and an auxiliary loss to handle dead features. For more details
on the SAE training and for training metrics, consider the supplementary material. In order to find
good hyperparameters, we perform a line search for an optimal sparsity parameter k while keeping
nf fixed to 5120 (expansion factor 4) and a line search for for nf where we keep k fixed at 10. As
can be seen in Fig. 2, the explained variance strictly increases when increasing k and a similar trend
holds for the expansion factor, proportional to the number of features nf .

5We provide an architecture diagram in Appendix D Fig. 10.
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Figure 2: The explained variance increases with both the expansion factor and k. The left shows
the dynamics of explained variance for SAEs with varying expansion factors and a fixed k = 10,
while the right panel illustrates the same for varying k values with a fixed expansion factor of 4.

Generalization study. We trained the SAEs on the 1-step generation process of SDXL Turbo.
However, most diffusion models (including SDXL Turbo) require multiple denoising steps to create
high quality images. To assess our SAEs’ potential for application across multiple denoising steps,
we compute their explained variance across the 100 randomly generated images for SDXL Turbo’s
4-step setting and the vanilla SDXL base model’s multi-step setting (see Fig. 3 left).6 One can see
that the explained variance remains high across the entire denoising process, which suggests that our
SAEs are also applicable for the 4-step generation process and even the base model’s 20-step process.

This suggests that our feature intervention (formal definition below) should causally influence the
generated image in multi-step diffusion in the same way as it does in the 1-step process where it
was trained. This is visualized in the first three rows of Fig. 1: for example, adding the 2301st
feature vector to the forward pass consistently makes the output look more “evil.” The 4th row
of Fig. 1 shows steering examples for Flux-schnell [30] as well, using features obtained with an
SAE trained on 1-step activations of layer 18. This shows the generalizability of our approach to
recent diffusion-transformers [41]. Additional examples of FLUX interventions are presented in
Appendix C. Further examples of vanilla SDXL interventions and the effect of intervening only on
subsets of the denoising steps are shown in Appendix E.

On the right of Fig. 3 we visualize how the SAE features change across denoising steps. We do so by
computing the cosine similarity between the SAE coefficients of adjacent timesteps. Interestingly, the
set of features stabilizes rapidly and subsequent denoising steps’ features stay highly overlapping for
most of the denoising process. We therefore proceed by using SDXL Turbo’s 4-step process from now.

Feature interventions. We design interventions to turn on and off the ϑ-th feature. Specifically, we
achieve this by adding or subtracting it across spatial locations i, j weighted by A → Rh↑w.

!D↓
ij = !Dij +Aijfω, (7)

in which !Dij is the update performed by the transformer block before the intervention and !D↓
ij–

after the intervention, and fω is the ϑ-th learned feature vector. Our examples in Fig. 1 are obtained by
drawing binary masks in SAEPaint and multiplying them with an scalar specifying the intervention
strength, i.e. A = ϖM in which ϖ → R and M → {0, 1}h↑w.

Note that naive application of equation 7 is sufficient when using SDXL Turbo with default settings,
that is without classifier-free guidance. However, with classifier-free guidance (which is enabled
in the SDXL base model), we add the features only during the text-conditioned forward pass and
subtract the same features during the unconditional one. When adding the same features during both
forward passes, the features’ effects inhibit each other (see Appendix B Fig. 7).

4 Analysis of SDXL Turbo

In this section we leverage our SAEs to better understand how SDXL Turbo generates images.
6This results in 25600 latents for SDXL Turbo and 102400 latents for SDXL.
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Figure 3: For our best SAEs k = 160, nf = 5120, we compute how their explained variance changes
across denoising steps in the multi-step setting (for which they were not specifically trained) on the
left. On the right, we compute SAE feature overlap by computing cosine similarities of the sparse nf

dimensional SAE feature vectors. The SAE feature overlap is remarkably high across timesteps.
The plot ends early because we compute overlaps between t and t↓ 1 respectively.

4.1 RIEBench: Representation-Based Image Editing Benchmark

Figure 4: We perform a feature transfer experiment, computing semantic image segmentation
masks using grounded SAM2 [49] for a source and a target image. We collect features inside the
mask of the source image at SDXL Turbo’s intermediate layers and insert them (via addition) during
a new forward pass with the same prompt as the target one. We also subtract features collected in the
target forward pass. The resulting image is a blend of the two forward passes.

In order to quantify the causal impact of SAE features on SDXL Turbo’s generation, we introduce
RIEBench, a representation-based image editing benchmark. To generate RIEBench samples, we first
create two parallel forward passes (source and target forward pass) that receive the same random
input noise and mostly parallel prompts except that they are differing in one visual aspect. Next, we
transfer features from the source forward pass into the target forward pass. E.g., in Fig. 4 the prompts
are “a leopard standing on top of a rock” and “a bird standing on top of a rock.” In order to do so, we
select spatial locations using grounded SAM2 [49] masks, obtained by prompting grounded SAM2
with “leopard” and “bird.” Finally, we select a subset of the features that fall inside these masks in
our four blocks and create a new forward pass with the target prompt in which we subtract some of
the target features and add some of the source features. This results in the new image on the right that
depicts visual features of both the leopard and the bird.

We sample our source and target prompts from PIEBench [26], a prompt-based image editing
benchmark for diffusion inversion methods. PIEBench contains the “original prompts” (target of the
transfer) and the “edit prompts” (source of the transfer) for 10 different edit categories. We omit
the examples from the random category and implement specialized interventions for the other edit
categories (Appendix F). For each edit category, we manually create grounded SAM2 prompts for
the first 50 examples. For each of these examples, we fix a random seed, generate images for source
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Figure 5: LPIPS with original image (x-axis) versus increase in CLIP similarity with the
edit prompt (y-axis) from feature-transfer interventions using SAE features, neurons, and
activations across nine edit categories from PIEBench [26]. Features from the edit prompt (within
SAM2 segmentation mask) are transferred into the original prompt’s forward pass. SAE experiments
are blue, neurons red, and steering green. We plotted one line per number of features/neurons
transported with increasing opacity proportional to the number. For SAEs we transport 40, 80, 160,
320, 640 features at a time and for neurons 12,800 25,600 51,200 102,400 204,800. For SAEs/neurons
we use strengths 0.5, 1.0, 1.5 and for steering 0.25, 0.5, 1.0, 1.5, 2.0.

and target prompt, and manually inspect whether all relevant visual features are present and whether
they are selected by the grounded SAM2 masks and only those.7

Metrics. From an interpretability standpoint, our benchmark jointly measures features’ sensitivity,
specificity, and causality. Visual features of the source forward pass can only be detected if their
corresponding representations (e.g., SAE features) are sensitive. On the other hand, editing the gener-
ated image to be closer to the source image via interpretable visual changes requires both specificity
and causality of the features. When a feature is active during the generation, it should ideally result
in a corresponding interpretable visual feature and minimally interfere with the remaining ones. We
quantify this aspect by transferring varying numbers of features between two parallel forward passes
and measuring the LPIPS [64] distance between the intervened image and the original image and
the increase in CLIP [44] similarity of the resulting intervened image with the edit prompt. Ideally,
by transporting a varying number of features and increasing/decreasing their strength, it should be
possible to smoothly interpolate between the relevant aspects of the source and the target image.

7After filtering, the edit categories and the corresponding numbers of selected examples were: change object
(36), add object (27), delete object (43), change content (21), change pose (20), change color (30), change
material (26), change background (46), change style (47).
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Methods. We compare our best SAEs (k = 160 and nf = 5120) with neurons of their corresponding
transformer blocks. Since there are 10 MLP layers within each block that we decompose, there are
51200 neurons per block in total. Additionally, we create a simple method similar to activation steer-
ing [39], which adds the !D within the mask from the source forward pass to the target forward pass
and subtracts the !D within the target forward pass’ mask from the target forward pass. To mimic
interventions that can be performed in SAEPaint we aggregate feature values/neurons/activations
over spatial locations before adding them to masked area. Furthermore, all of our interventions are
timestep step specific, i.e., the updates performed to the masked areas vary across denoising steps.

Feature selection. To determine which features / neurons to transport, we aggregate them across
timesteps by taking the mean and rank them. The feature vectors associated with each SAE feature
are unit norm, so we simply concatenate all features of all layers and rank them by their contribution
towards increasing the difference (similar to Cywiński and Deja [12]):

ϱω =
ssrc
ω∑nf

ω→=1 s
src
ω→

↓ stgt
ω∑nf

ω→=1 s
tgt
ω→
,where ssrc

ω =
1

|M src|
∑

i,j↔Msrc
Sω
ij and stgt

ω =
1

|M tgt|
∑

i,j↔M tgt

Sω
ij . (8)

For the neurons, we perform a similar ranking, but since their ranges vary across layers, we normalize
them to have unit L2 norm before concatenating them. Also, because GEGLU [56] neurons can take
both positive and negative values, we rank them by their absolute normalized difference.

Results. We show the results in Fig. 5. Quantitatively, in most categories there are no significant
differences between the considered intervention types. Given an LPIPS budget, they all achieve
similar increases in CLIP similarity (top left is better) in all categories except change object in which
neurons dominate for higher LPIPS values, and, change content, change color, change material and

change style in which both steering and SAEs are significantly more effective than neurons. While
neurons also cover a good range of LPIPS distances / CLIP similarities, SAEs come with the benefit
of requiring several orders of magnitude fewer features to do so. Interestingly, the simple steering
baseline that works directly with the activations is highly effective as well. It’s worth noting that
when sufficiently increasing the number of transported features the SAE intervention approaches
the steering intervention up to the reconstruction error introduced by the SAE. On the change pose

task none of the considered methods works well. The change pose tasks is hard to achieve using our
current RIEBench setup that in essence consists of adding constant update vectors to a masked areas.

We also provide qualitative examples and the same evaluation for FLUX Schnell in Appendix F.

4.2 Specialization Among Blocks

Thanks to our automated feature extraction with grounded SAM2 and our importance ranking, we
can investigate which transformer blocks were relevant in terms of the number of features selected
from that block depending on the task (see Fig. 6). It stands out that mid.0 does not have a high
causal impact on the generation. Similarly, down.2.1 does not seem to get selected much for the
edits considered. This is surprising given its strong impact in our qualitative experiments using
our app (e.g., Fig. 1 #2301, #4998, #3912). The up.0.1 block is most relevant for changing color,
material, background, and style editing categories. For the other categories, up.0.0 is the most
impactful. We also observed qualitatively that up.0.0 is good for editing local details as long as
the context is relevant (e.g., Fig. 1 #1941), which we think happens in this setting due to the paired
prompts. We have an extended analysis of the roles of the blocks in Appendix G and Appendix I.

5 Related Work

Layer specialization in diffusion models. Similar to our findings on the roles of SDXL Turbo’s
transformer blocks, [59, 1, 65] observe specializations among the layers and denoising steps of
text-to-image diffusion models as well. Voynov et al. [59] introduce layer-specific embeddings for the
text conditioning and find that different sets of layers are more effective for influencing the generation
of specific concepts such as styles or objects. For a selected set of image attributes (e.g., color, object,
layout, style), Agarwal et al. [1] analyze which attributes are captured in which timestamp and layer.
They also find that a subset of these attributes is often captured in the same layer and across the same
denoising step. Zhang et al. [65] observe that during the denoising process of diffusion models first
the layout forms (in early timestamps), then the content, and finally the material and style.
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Figure 6: We count how often a feature of a block is selected for each task category.

In contrast to these prior works, our approach takes a fundamentally different perspective and does not
rely on either handcrafted attributes or prompts. Instead, we introduce a new lens for analyzing SDXL
Turbo’s transformer blocks, which reveals specialization among the blocks as well. Interestingly, our
findings on SDXL Turbo, which is a distilled, few-step diffusion model parallel [65]’s observations,
which identify that composition precede material and style. In SDXL Turbo, this progression occurs
across the layers instead of the denoising timestamps.

Analyzing the latent space of diffusion models. Kwon et al. [29] show that diffusion models have a
semantically meaningful latent space. Park et al. [40] analyze the latent space of diffusion models
using Riemannian geometry. Li et al. [31] and Dalva and Yanardag [13] present self-supervised
methods for finding semantic directions. Similarly, Gandikota et al. [18] show that the attribute
variations lie in a low-rank space by learning LoRA adapters [23] on top of pre-trained diffusion
models. Brack et al. [4] and Wang et al. [60] demonstrate effective semantic vector algebraic
operations in the latent space of DMs, as observed by Mikolov et al. [36]. However, none of those
works train SAEs to interpret and control the latent space.

Mechanistic interpretability. Sparse autoencoders have recently been popularized by [5], in which
they show that it is possible to learn interpretable features by decomposing neuron activations in
MLPs in 2-layer transformer language models. At the same time, a parallel work decomposed the
elements of the residual stream [11], which followed up on [55]. To our knowledge, the first work
that applied sparse autoencoders to transformer-based LLM was [62], which learned a joint dictionary
for features of all layers. Recently, sparse autoencoders have gained much traction, and many have
been trained even on state-of-the-art LLMs [19, 58, 32]. In addition, great tools are available for
inspection [33] and automatic interpretation [7] of learned features. [35] have shown how to use SAE
features to facilitate automatic circuit discovery.

The studies most closely related to our work are [2], [24] and [14]. Ismail et al. [24] apply concept
bottleneck methods [27] that decompose latent concepts into vectors of interpretable concepts to
generative image models, including diffusion models. Unlike the SAEs that we train, this method
requires labeled concept data. Daujotas [14] decomposes CLIP [44, 9] vision embeddings using
SAEs and use them for conditional image generation with a diffusion model called Kandinsky [47].
Importantly, using SAE features, they are able to manipulate the image generation process in
interpretable ways. In contrast, in our work, we train SAEs on intermediate representations of the
forward pass of SDXL Turbo. Consequently, we can interpret and manipulate SDXL Turbo’s forward
pass on a finer granularity, e.g., by intervening on specific transformer blocks and spatial positions.
Another closely related work to ours is [2], in which neurons in generative adversarial neural networks
are interpreted and manipulated. The interventions in [2] are similar to ours, but on neurons instead of
sparse features. To identify neurons for a semantic concept, [2] require semantic segmentation maps.

9



6 Conclusion and Discussion

We trained SAEs on SDXL Turbo’s opaque intermediate representations. This study is the first in
the academic literature to mechanistically interpret the intermediate representations of a modern
text-to-image model. Our findings demonstrate that SAEs can extract interpretable features and
have a significant causal effect on the generated images. Importantly, the learned features provide
insights into SDXL Turbo’s forward pass, revealing that transformer blocks fulfill specific and varying
roles in the generation process. In particular, our results clarify the functions of down.2.1, up.0.0,
and up.0.1. However, the role of mid.0 remains less defined; it seems to encode more abstract
information and interventions are less effective.

We follow up with a discussion of the results and their implications for future research. Based on
our observations, we suggest a preliminary hypothesis about SDXL Turbo’s generation process:
down.2.1 decides on top-level composition, mid.0 encodes low-level semantics, up.0.0 adds
details based on the two above, and up.0.1 fills in color, texture, and style.

Our work focuses on analyzing SDXL Turbo’s intermediate representations. As a relatively compact,
few-step diffusion model with a small number of naturally partitioned components, SDXL Turbo
turned out to be convenient to analyze with SAEs. However, the application of the proposed techniques
to larger and more complex text-to-image diffusion models with alternative architectures represents a
promising direction for further research. We provide some motivational results on Flux-schnell [30]
in the supplementary material. Additionally, we observe that SAE features learned on SDXL Turbo’s
one-step generation are applicable to 4-step and to vanilla SDXL multi-steps generations. We observe
that for FLUX training on one step is enough as well.

This fact suggests that our SDXL SAEs are also applicable to most of the 8,700 SDXL adaptations
available on huggingface8. The same should hold for our FLUX SAEs, which should generalize to
most of the 36,148 FLUX adaptations of on huggingface9. This type of generalization is similar to
what has been observed in the classic model merging literature [61], where averaging the weights
of finetunes of the same base model has been found to improve model performance. Recently, this
compatibility between different finetunes of the same base model has been rediscovered and expanded
in weight-space learning, where probes that take model weights as inputs are trainable and generalize
within a collection of finetunes of the same base model (but not across different seeds) [22].

Future directions. Analyzing larger diffusion models with higher number of diffusion steps would
benefit from advanced interpretability techniques capable of capturing connections between its
components and across denoising steps. For example, such techniques are explored in [35, 34].
Marks et al. [35] compute circuits showing how different layers and attention heads wire together
and Lindsey et al. [34] introduce cross-coders, a variation of SAEs that allows to learn a shared set of
features over latents corresponding to different layers.

Broader impact. This work explores the applicability of SAEs on text-to-image models to en-
courages disentangled and human-interpretable feature representations. As such models become
increasingly powerful and widely adopted for image synthesis, they may be misused for generating
deceptive content (e.g., deepfakes). Thus, understanding their internal representations is critical and
improving interpretability can help mitigate such misuse by enabling researchers to detect manipula-
tion or unintended behaviors within these models. Overall, our work advances the development of
interpretable, responsible, and human-centered AI systems.

Limitations. Our current method focuses on individual blocks and may miss features that require
combinations of multiple transformer blocks. The success rate and disentanglement quality of
edits varies depending on the feature type and target image content. While we demonstrate local
changes effectively (like skin color modifications), the identification and control of more global and
compositional features remains challenging. We focused on SDXL and FLUX, thus, generalization
to other models requires further validation. The hyperparameter choices for SAE training impact the
types and granularity of discovered features, requiring tuning.

8Based on https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0 as of 7th of October 2025.
9Based on https://huggingface.co/black-forest-labs/FLUX.1-dev as of 7th of October 2025.
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A SAEPaint: Our Feature Editor Application

We host our SAE-based feature editing app for you to try adding and subtracting SAE features during
a forward pass. To find interesting features to try, you can read the rest of the supplementary material
or you can try some of the ones of the ones we list on the app landing page. Alternatively, what works
best if you want to explore the features yourself is to generate images for which you believe your
features of interest should be on and have a look at their activation masks in the “Generate” tab. For

SDXL Turbo App: https://huggingface.co/spaces/surokpro2/Unboxing_SDXL_with_
SAEs

SDXL Base App: https://huggingface.co/spaces/surokpro2/sdxl-sae-multistep
Flux App: https://huggingface.co/spaces/surokpro2/sae_flux

Notice that while we trained on SDXL Turbo 1-step mode the same features without additional
training also work for 4 steps and even for the base model with, e.g., 25 steps.

B SDXL Base

SDXL’s default setting leverages classifier-free guidance to condition the generated image on a text
prompt. We found that in this setting turning on SAE features works best, when adding them to the
text-conditioned forward pass and subtracting them from the unconditional forward pass, see Fig. 7.

(a) reference (b) add to both (c) add to cond. (d) ours

Figure 7: When using SDXL with classifier-free guidance and adding the #4977 “tiger texture”
feature naively during both the conditional and unconditional forward pass its effects inhibit each
other, see (b). In (b) we used twice the intervention strength as in (c) and (d), yet the tiger texture
corresponding to feature #4977 is not visible. In (c) we add it only to the conditional forward pass,
which works. In (d) we add the feature to the conditional forward pass and subtract it from the
unconditional one, which we found works best.

C Flux

Training settings We train a SAE on layer 18 activations of Flux-schnell 1-step. We choose layer
18 because we empirically find that its activations have higher norms than other layers. Additionally,
all other exploratory experiments that we tried on FLUX, e.g., ablating layers, patching activations,
simple activation steering, all consistently showed that layer 18 is a high impact layer. To train the
SAE, we sample 1 million prompts from LAION-5B [53] and input them to Flux-schnell, then we
randomly sample 10% of the activations (output - input) in the image stream of layer 18 (so for each
prompt we get ↘64↗ 64↗ 0.1≃ 3072-dimensional vectors).

The trained SAE has an expansion factor of 4 (thus its hidden dimension is 12288) and k = 20. All
other hyperparameters and the training loss are detailed in K.

Features injection Features learned on Flux-schnell 1-step can be used on Flux-schnell 4-steps
as well as Flux-dev (we report examples with 25 steps). To inject a feature in a new generation, we
simply rescale it by a strength factor and add it to the output of every layer starting from layer 18,
finding that this way we can achieve high-quality results. Figures 8 and 9 show some examples of
feature injections with varying strengths.
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Figure 8: Feature injections on Flux-schnell 4-steps generations.

D Finding Causally Influential Transformer Blocks

We narrow down design space of the 11 cross-attention transformer blocks (see Fig. 10) to those
with the highest causal impact on the output. In order to assess their causal impact on the output we
qualitatively study the effect of individually ablating each of them (see Fig. 11). As can be seen in
Fig. 11 each of the middle blocks down.2.1, mid.0, up.0.0, up.0.1 have a relatively high impact
on the output respectively. In particular, the blocks down.2.1 and up.0.1 stand out. It seems like
most colors and textures are added in up.0.1, which in the community is already known as “style”
block [57]. Ablating down.2.1, which is also already known in the community as “composition”
block, impacts the entire image composition, including object sizes, orientations and framing. The
effects of ablating other blocks such as mid.0 and up.0.0 are more subtle. For mid.0 it is difficult
to describe in words and up.0.0 seems to add local details to the image while leaving the overall
composition mostly intact.

We also provide a quantitative version of this experiment in Tab. 1. As can be seen some of the resnet
blocks also exhibit similarly strong effects. We added this experiment during our NeurIPS rebuttal
and think it is a promising future direction to investigate these blocks as well.
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Figure 9: Feature injections on Flux-dev 25-steps generations.

E Interventions in the Multi-Step Setting

In addition to our quantitative analysis from the main paper showing that features stabilize fast and
are relatively shared across timesteps, here, we performed a series of experiments to also qualitatively
assess the impact of performing interventions across multiple timesteps and also on subsets of
timesteps. See Fig. 12, 19, 20, 21, 22, 23, 24, and 25.

Broadly, these results are aligned with what one would expect. Intervening from the beginning
to the end leads to big perturbations of the original generation. Starting the interventions at later
denoising steps keeps more of the original generated image intact. Interestingly, the sliding window
of interventions shows that the different transformer blocks can have different effective ranges, e.g.,
up.0.1 features start working later than down.2.1 features.

F RIEBench: Representation-based Image Editing Benchmark

For each of our PIEBench adaptation’s edit categories, we implement corresponding feature transport
interventions. When selecting feature indices in SDXL Turbo, we aggregate them across spatial
positions and timesteps by taking the mean across these dimensions. In FLUX Schnell, we only
considered the one-step setting and thus only have to aggregate over spatial locations. The different
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Figure 10: Cross-attention transformer blocks in SDXL’s U-net.

Figure 11: We generate images for the prompts “A dog playing with a ball cartoon.”, “A photo of
a colorful model.”, “An astronaut riding on a pig on the moon.”, “A photograph of the inside of a
subway train. There are frogs sitting on the seats. One of them is reading a newspaper. The window
shows the river in the background.” and “A cinematic shot of a professor sloth wearing a tuxedo at a
BBQ party.” while ablating the updates performed by different cross-attention layers (indicated by
the titles). The title “baseline” corresponds to the generation without interventions.
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Table 1: Causal impact of individual resnet and attention blocks. Each block is ablated indepen-
dently, and the resulting image is compared to the unperturbed output using the LPIPS distance. We
report the mean over 20 randomly generated prompts. Higher values indicate greater causal influence.

Block Type Block Name LPIPS Score
ResNet down_blocks.0.resnets.0 0.733
ResNet down_blocks.0.resnets.1 0.415
Attention down_blocks.1.attentions.0 0.185
Attention down_blocks.1.attentions.1 0.161
ResNet down_blocks.1.resnets.0 0.457
ResNet down_blocks.1.resnets.1 0.306
Attention down_blocks.2.attentions.0 0.194
Attention down_blocks.2.attentions.1 0.512
ResNet down_blocks.2.resnets.0 0.523
ResNet down_blocks.2.resnets.1 0.270
Attention mid_block.attentions.0 0.345
ResNet mid_block.resnets.0 0.240
ResNet mid_block.resnets.1 0.132
Attention up_blocks.0.attentions.0 0.395
Attention up_blocks.0.attentions.1 0.521
Attention up_blocks.0.attentions.2 0.281
ResNet up_blocks.0.resnets.0 0.348
ResNet up_blocks.0.resnets.1 0.170
ResNet up_blocks.0.resnets.2 0.157
Attention up_blocks.1.attentions.0 0.252
Attention up_blocks.1.attentions.1 0.217
Attention up_blocks.1.attentions.2 0.254
ResNet up_blocks.1.resnets.0 0.199
ResNet up_blocks.1.resnets.1 0.168
ResNet up_blocks.1.resnets.2 0.201
ResNet up_blocks.2.resnets.0 0.275
ResNet up_blocks.2.resnets.1 0.703
ResNet up_blocks.2.resnets.2 0.851

interventions for the different categories mainly differ in where the features are collected and whether
they are inserted using the target mask or the source mask. We don’t preserve spatial information
when adding and subtracting feature coefficients / neuron activations / block activations, i.e., at each
location within the respective mask the same update is performed. We refer to the mask computed on
the target forward pass as target mask and the one computed on the source forward pass as source
mask. We split the interventions into three different types:

1. Change interventions: We add the top features with coefficients obtained from the source forward
pass using also the source mask and we subtract the bottom features with coefficients from
the target forward pass using the target mask. Change object (SDXL Turbo Fig. 26 and
Fig. 13; FLUX Fig. 35), content (SDXL Turbo Fig. 29; FLUX Fig. 38), pose (SDXL Turbo
Fig. 30; FLUX Fig. 39), color (SDXL Turbo Fig. 31; FLUX Fig. 40), material (SDXL Turbo
Fig. 32; FLUX Fig. 41), background (SDXL Turbo Fig. 33; FLUX Fig. 42), style (SDXL
Turbo Fig. 34; FLUX Fig. 43) fall within this category.

2. Add object: The add object intervention (SDXL Turbo Fig. 27; FLUX Fig. 36) requires spe-
cial treatment. Here we use the source mask in both forward passes both to select and
subsequently add the top and subtract the bottom features.

3. Delete object: The delete object intervention (SDXL Turbo Fig. 28; FLUX Fig. 37) also requires
special treatment. Here we use the target mask in both forward passes both to select and
subsequently add the top and subtract the bottom features.

FLUX. As mentioned in App. C for FLUX we found that interventions are more effective when
performing the same update across multiple layers. Thus, in the FLUX figures Fig. 35–Fig. 43 we
always have multi-layer interventions (top rows with y-label “multi”) and single-layer interventions
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Figure 12: Performing interventions across different time intervals. For each prompt there are two
rows, the first row contains ranges 0-25, 5-25, 10-25, 15-25, 20-25 and the second one 0-5, 5-10,
10-15, 15-20, 20-25. We would describe this feature as “tiger texture feature”. We intervened with
this feature across the entire face of the pirate and across the entire cat except its ears. These results

are from our first working SAE’s with k = 10 and nf = 5120.This is a preview, please find the
remaining multi-step intervention figures at the bottom of the document after the text.

(bottom rows with y-label “single”). The multi-layer interventions are performed from layer 18 to 56,
i.e., for 39 layers. They are effective using small intervention strengths. In contrast, the single-layer
interventions in FLUX require big intervention strengths to have a causal influence on the output. We
omit neuron interventions from the qualitative examples because they did not work in FLUX when
performed only using neurons from layer 18.

Fig. 14 shows our quantitative evaluation of our FLUX SAE interventions. We omitted neurons form
this plot because our neuron interventions based on the neurons from layer 18 did not significantly
increase CLIP similarity with the edit prompt in any of the categories. As can be seen, the multi-layer
interventions outperform the single-layer ones both for steering as well as for SAE interventions on
change object, add object, change content, color, material, background, style tasks. On the delete

object and change pose tasks none of the considered methods works well. The change pose tasks is
hard to achieve using our current RIEBench setup that in essence consists of interventions adding
an update vector to a masked area. We think the bad performance on the delete object task can be
overcome by improving the delete interventions. E.g., by improving the feature selection strategy or
by subtracting the relevant features everywhere in the image and not just locally.

F.1 Feature Visualization Techniques

We introduce our methods used for feature visualization used in Fig. 15. Informally, given a feature,
spatial activations (denoted by hmap) we highlight the regions of an image where the feature activates
during the generation process. Activation modulation (A. columns) refers to the intervention process
in which the feature activations are enhanced or diminished. This technique is used to demonstrate
how the manipulation of a feature’s value affects the generated image. Finally, empty-prompt

interventions (B. column) illustrate the isolated role of the feature by disabling all other features
during generation conditioned on an empty prompt. In the remainder of this section, we provide
formal definitions and details.
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Figure 13: Example for edit category 1: “change object”. Original prompt (target): “a cute little
bunny with big eyes”, edit prompt (source): “a cute little pig with big eyes”. Source and target refers
to from where we extract features (source) and where we insert them (target). Grounded SAM2
masks used to collect the features are not shown but in this example they would select the entire
foreground objects respectively. This is a preview, please find the figures for the remaining edit
categories at the bottom of this document after the text.

Spatial activations. We visualize a sparse feature map Sω → Rh↑w containing activations of a feature
ϑ across the spatial locations by up-scaling it to the size of the generated images and overlaying it as
a heatmap over the generated images. In the heatmap, red indicates the highest feature activation, and
blue represents the lowest non-zero one.

Top dataset examples. For a given feature ϑ, we sort dataset examples according to their average
spatial activation

aω =
1

wh

h∑

i=1

w∑

j=1

Sω
ij → R. (9)

We use equation 9 to define the top dataset examples and to sample from the top 5% quantile of the
activating examples (aω > 0). We will refer to them as top 5% images for a feature ϑ.

Note that Sω
ij always depends on an embedding of the input prompt c and input noise z1, via

Sij(c, z1) = ENC(!Dij(c, z1)), which we usually omit for ease of notation. As a result, aω also
depends on c and z1. When we refer to the top dataset examples, we mean our (c, z1) pairs with the
largest values for aω(c, z1).

Activation modulation. We design interventions that allow us to modulate the strength of the ϑth
feature. Specifically, we achieve this by adding or subtracting a multiple of the feature ϑ on all of the
spatial locations i, j proportional to its original activation Sω

ij

!D↓
ij = !Dij + ςSω

ijfω, (10)
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Figure 14: FLUX Schnell one-step evaluation on RIEBench; LPIPS with original image (x-axis)
versus increase in CLIP similarity with the edit prompt (y-axis) from feature-transfer interven-
tions using SAE features, and activations across nine edit categories from PIEBench [26]. We
omitted neuron experiments because they failed to increase CLIP similarity with edit prompt. Features
from the edit prompt (within SAM2 segmentation mask) are transferred into the original prompt’s
forward pass. We experiment with adding SAE/steering based updates to a single layer (SAE red,
steering yellow), which is the standard way to do this, as well as adding the same feature on multiple
layers (SAE blue, steering green). Strengths (s=1,...,s=50 for single-layer and s=0.7,s=1.0,s=1.3 for
multi-layer) and numbers of features transported (1, ..., 50) are indicated in the legend. We omit all

settings that fail to increase CLIP similarity.

in which !Dij is the update performed by the transformer block before and !D↓
ij after the interven-

tion, ς → R is a modulation factor, and fω is the ϑth learned feature vector. In the following, we will
refer to this intervention as activation modulation intervention.

Note that Sω
ij can be also freely defined allowing for the application of sparse features to arbitrary

images and spatial positions (refer to Fig. 1 for examples).

Activation on empty context. Another way of visualizing the causal effect of features is to activate
them while doing a forward pass on the empty prompt c(“”). To do so, we turn off all other features
at the transformer block ε of intervention and turn on the target feature ϑ. Formally, we modify the
forward pass by setting

Dout→

ij = Din
ij + ϱkµωfω, (11)

in which Dout→
ij replaces residual stream plus transformer block update, Din

ij is the input to the block,
fω is the ϑth learned feature vector, ϱ → R is a hyperparameter to adjust the intervention strength,
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and µω is a feature-dependent multiplier obtained by taking the average activation across positive
activations of ϑ (collected over a subset of 50.000 dataset examples). Multiplying it by k aims to
recover the coefficients lost by setting the other features to zero. Further in the text, we will refer to
this intervention as empty-prompt intervention, and the images generated using this method with ϱ
set to 1, as empty-prompt intervention images.

Note that we directly added/subtracted feature vectors to the dense vectors for both intervention types
instead of encoding, manipulating sparse features, and decoding. This approach helps mitigate side
effects caused due to reconstruction loss (see App. L).

G Case Study: Most Active Features on a Prompt

Combining all our feature visualization techniques, in Fig. 15, we depict the features with the highest
average activation when processing the prompt: “A cinematic shot of a professor sloth wearing a
tuxedo at a BBQ party”. We discuss the transformer blocks in order of decreasing interpretability.

Down.2.1 seems to contribute towards the image composition. Several features seem to relate directly
to phrases of the prompt: 4539 “professor sloth”, 4751, 1226, “wearing a tuxedo”, 2881, 567, 3119,
2345 “party”.

Turning off features (A. -6.0 column) removes elements and changes elements in the scene in ways
that align with heatmap (hmap column) and the top examples (C columns): 1674 removes the light
chains in the back, 4608 the umbrellas/tents, 4539 the 3D animation-like sloth face, 567 people in the
background, 3119, 2345 some of the light chains, and, 4751 changes the type of suit, 1226 the shirt.
Similarly, enhancing the same features (A. 6.0 column) enhances the corresponding elements and
sometimes changes them.

Activating the features on the empty prompt often creates related elements. Note that, for the fixed
random seed we use, the empty prompt itself looks like a painting of a piece of nature with a lot of
green and brown. Therefore, while the prompt is empty the features active during the forward pass
are not and due to the layers that we don’t intervene on still contribute to the images.

While top dataset examples (C.0, C.1 columns) and also empty-prompt intervention (B. column)
mostly agree with the feature activation heatmaps (hmap column), some of them add additional
insight, e.g., 2881, which activates on the suit, seems to correspond to (masqueraded) characters in a
(festive) scene, 3119 seems to be about party decorations in general and not just light chains, 2345
seems to react to other celebration backgrounds as well.

Up.0.1 transformer block indeed seems to contribute substantially to the style of the image. They are
hard to relate directly to phrases in the prompt, yet indirectly they do relate. E.g., the illumination
(2727) and shadow (500, 1700) effects probably have something to do with “a cinematic shot” and
the animal hair texture (2314) with “sloth”. Beyond that several features seem to mainly contribute to
the glowing lights in the background (1295, 4238, 2341).

Interestingly, turning on the up.0.1 features on the entire empty prompt (B. column) results in
texture-like images. In contrast, when activating them locally (A. columns) their contribution to the
output is highly localized and keeps most of the remaining image largely unchanged. For the up.0.1
we find it remarkable that often the ablation and amplification are counterparts: 500 (light, shadow),
2727 (shadow, light), 3936 (blue, orange), 2314 (less grey hair, more brown hair).

Up.0.0. First, we observe that up.0.0 features act very locally and we think that it often requires
relevant other features from the previous and subsequent transformer blocks effectively influence the
image. For the empty prompt, activating these features results in abstract looking images, which are
hard to relate to the other columns. Thus, we excluded this visualization technique and instead added
one more example.

Most top dataset examples and their activations (C columns) are highly interpretable: 3603 party
decoration, 5005 upper part of tent, 775 buttons on suit, 153 lower animal jaw, 1550 collars, 2648
pavilions, 1604 right part of the image, 564 bootie. Many of the features have a expected causal
effect on the generation when ablating/enhancing (B. columns): 3603, 5005, 775, 153, 1550, 564, but
not all: 2221, 2648, 1604. To sum up, this transformer block seems to mostly add local details to the
generation and when interventions are performed locally they are effective.
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(a) Top 9 features of down.2.1 (b) Top 9 features up.0.1

(c) Top 9 features of up.0.0 (d) Top 9 features of mid.0
Figure 15: The top 9 features of down.2.1 (a), up.0.1 (b), up.0.0 (c) and mid.0 (d) for the prompt:
“A cinematic shot of a professor sloth wearing a tuxedo at a BBQ party.” Each row represents a feature.
The first column depicts a feature heatmap (highest activation red and lowest nonzero one blue). The
column titles containing “A” show feature modulation interventions, the ones containing “B” the
intervention of turning on the feature on the empty prompt, and the ones containing “C” depict top
dataset examples. Floating point values in the title denote ς and ϱ values. These results are from our

first working SAE’s with k = 10 and nf = 5120.

Mid.0. Again to the best of our knowledge, mid.0’s role is also not well understood. We find it
harder to interpret because most interventions on the mid.0 have very subtle effects. Similar to
up.0.0, we did not include the results of empty-prompt interventions.
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While effects of interventions are subtle, dataset examples (C. columns) and heatmap (hmap column)
all mostly agree with each other and are specific enough to be interpretable: 4755 bottom right part
of faces, 4235 left part of (animal) faces, 1388 people in the background, 1935 is active on chests,
473 mostly active on the image border, 2322 again seems to have to do with backgrounds that also
contain people, 3067 active on the neck or neck accessories, and, 5102 outlines the left border of the
main object in the scene. The feature 3018 is difficult to interpret.

Our observations indicate that mid.0’s features encode more abstract concepts. Particularly, some of
them are activated at specific spatial locations within images10 and other features potentially signify
how image objects relate to each other.

H Case Study: Random Features

In this case study, we explore the learned features independently of any specific prompt. We moved

the many and large figures corresponding to this section to the end of the supplementary material.

In Fig. 44 and Fig. 45, we demonstrate the first 5 and last 5 learned features for each transformer
block (since SAEs were initialized randomly before training, we can treat these features as a random
sample). As SAEs are randomly initialized before the training process, these sets can be considered as
random samples of features. Each feature visualization consists of 3 images of top 5% images for this
feature, and their perturbations with activation modulation interventions. For down.2.1 and up.0.1,
we also include the empty-prompt intervention images. Additionally, we provide visualizations of
several selected features in App. H Fig. 46 and demonstrate the effects of their forced activation on
unrelated prompts in App. H Fig. 47.

Feature plots. We provide the same plots as in Fig. 44 but for the last six feature indices of each
transformer block in Fig. 45 and the corresponding prompts in Table 7. Additionally, provide some
selected features for down.2.1 and up.0.1 in Fig. 46 and the corresponding prompts in Table 8.

Intervention plots. Additionally, we provide plots in which we turn on features from Fig. 46 but in
unrelated prompts (as opposed to top dataset example prompts that already activate the features by
themselves). For simplicity here we simply turn on the features across all spatial locations, which
does not seem to be a well suitable strategy for up.0.1, which usually acts locally. To showcase, the
difference we created one example image in Fig. 16, in which we manually draw localized masks to
turn on the corresponding features.

I Quantitative Evaluation of the Roles of the Blocks

In this section, we follow up on qualitative insights by collecting quantitative evidence.

I.1 Annotation Pipeline

Feature annotation with an LLM followed by further evaluation is a common way to assess feature
properties such as specificity, sensitivity, and causality [7]. We found it applicable to the features
learned by the down.2.1 transformer block, which have a strong effect on the generation. Thus, they
are amendable to automatic annotation using visual language models (VLMs) such as GPT-4o [38].
In contrast, for the features of other blocks with more subtle effects, we found VLM-generated
captions to be unsatisfactory. In order to caption the features of down.2.1, we prompt GPT-4o with a
sequence of 14 images. The first five images are irrelevant to the feature (i.e., the feature was inactive
during the generation of the images), followed by a progression of 4 images with increasing average
activation values, and finished by five images with the highest average activation values. The last
nine images are provided alongside their so-called “coldmaps”: a version of an image with weakly
active and inactive regions being faded and concealed. The prompt template and examples of the
captions can be found in the App. J.

10SDXL Turbo does not utilize positional encodings for the spatial locations in the feature maps. Therefore,
we did a brief sanity check and trained linear probes to detect i, j given Din

ij . These probes achieved high
accuracy on a holdout set: 97.9%, 98.48%, 99.44%, 95.57% for down.2.1, mid.0, up.0.0, up.0.1.
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(a) Intervention history (b) Result
Figure 16: Local edits showcase up.0.1’s ability to locally change textures in the image without
affecting the remaining image. Multiple consecutive interventions are possible (a). The first in (a)
row depicts the original image and each subsequent row we add an intervention by drawing a heatmap
with a brush tool and then turning on the feature labelling the row only on that area. The other number
(240) is the absolute feature strength of the edit. Figure (b) shows the final result in full resolution
(512x512). These results are from our first working SAE’s with k = 10 and nf = 5120.

I.2 Experimental Details

We perform a series of experiments to get statistical insights into the features. We report the majority
of the experimental scores in the format M(S). When the score is reported in the context of a SDXL
Turbo transformer block, it means that we computed the score for each feature of the block and set
M and S to mean and standard deviation across the feature scores. Note that S does not represent the
error margin of M , as the actual error margin is much lower.11 Therefore, almost all the differences in
the reported means are statistically significant. For the baselines, we calculate the mean and standard
deviation across the scores of a 100-element sample.

Interpretability. Features are usually considered interpretable if they are sufficiently specific, i.e.,
images exhibiting the feature share some commonality. In order to measure this property, we compute
the similarity between images on which the feature is active. High similarity between these images is
a proxy for high specificity. For each feature, we collect 10 random images among top 5% images

11Given that M is computed over a sample of 1280 elements, the confidence interval of M can be estimated
as M ± S · 0.055.
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Table 2: Specificity, texture score, and color activation for different blocks and baselines.
Block Specificity Texture Color

Down.2.1 SAE 0.76 (0.10) 0.16 (0.02) 86.2 (14.9)
Down.2.1 Neurons 0.65 (0.09)
Down.2.1 PCA all 0.58 (0.06)
Down.2.1 PCA 50 0.66 (0.08)
Down.2.1 PCA 100 0.64 (0.08)
Down.2.1 PCA 500 0.61 (0.07)
Mid SAE 0.70 (0.10) 0.14 (0.01) 84.7 (16.3)
Mid Neurons 0.67 (0.07)
Up.0.0 SAE 0.74 (0.10) 0.18 (0.03) 86.3 (16.5)
Up.0.0 Neurons 0.67 (0.07)
Up.0.1 SAE 0.73 (0.09) 0.20 (0.02) 73.8 (20.6)
Up.0.1 Neurons 0.66 (0.08)
Random 0.57 (0.09) 0.13 (0.02) 90.7 (54.9)
Same Prompt 0.89 (0.06) – –
Textures – 0.18 (0.02) –

for this feature and calculate their average pairwise CLIP similarity [44, 9]. This value reflects how
semantically similar the contexts are in which the feature is most active. We display the results in
the first column of Table 2, which shows that the CLIP similarity between images with the feature
active is significantly higher then the random baseline (CLIP similarity between random images) for
all transformer blocks. This suggests that the generated images share similarities when a feature is
active.

For down.2.1 we compute an additional interpretability score by comparing how well the generated
annotations align with the top 5% images. The resulting CLIP similarity score is 0.21 (0.03)
and significantly higher then the random baseline (average CLIP similarity with random images)
0.12 (0.02). To obtain an upper bound on this score we also compute the CLIP similarity to an image
generated from the feature annotation, which is 0.25 (0.03).

Causality. We can use the feature annotations to measure a feature’s causal strength by comparing
the empty prompt intervention images with the caption.12 The CLIP similarity between intervention
images and feature caption is 0.19 (0.04) and almost matches the annotation-based interpretability
score of 0.21 (0.03). This suggests that feature annotations effectively describe to the corresponding
empty-prompt intervention images. Notably, the annotation pipeline did not use empty-prompt
intervention images to generate captions. This fact speaks for the high causal strength of the features
learned on down.2.1.

Sensitivity. A feature is considered sensitive when activated in its relevant context. As a proxy for
the context, we have chosen the feature annotations obtained with the auto-annotation pipeline. For
each learned feature, we collected the 100 prompts from a 1.5M sample of LAION-COCO with
the highest sentence similarity based on sentence transformer embeddings of all-MiniLM-L6-v2
[48]. Next, we run SDXL Turbo on these prompts and count the proportion of generated images in
which the feature is active on more than 0%, 10%, 30% of the image area, resulting in 0.60 (0.32),
0.40 (0.34), 0.27 (0.30) respectively, which is much higher than the random baseline, which is at
0.06 (0.09), 0.003 (0.006), 0.001 (0.003). However, the average scores are < 1 and thus not perfect.
This may be caused by incorrect or imprecise annotations for subtle features and, therefore, hard to
annotate with a VLM and SDXL Turbo failing to comply with some prompts.

Relatedness to texture. In Fig. 15 the empty prompt interventions of the up.0.1 features resulted
in texture-like pictures. To quantify whether this consistently happens, we design a simple texture
score by computing CLIP similarity between an image and the word “texture”. Using this score, we
compare empty-prompt interventions of the different transformer blocks with each other and real-
world texture images. The results are in the second column of Table 2 and suggest that empty-prompt
intervention images of up.0.1 and up.0.0 resemble textures and some of the down.2.1 images
look like textures as well. For up.0.0, we did not observe any connection of these images to the top
activating images. Interestingly, the score of up.0.1 is higher than the one of the real-world textures
dataset (Cimpoi et al. [10]).

Color sensitivity. In our qualitative analysis, we suggested that the features learned on up.0.1
relate to texture and color. If this holds, the image regions that activate a feature should not differ

12We require feature captions for the causality and sensitivity analyses, we only have them for down.2.1.
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significantly in color on average. To test that, we calculate the “average” color for each feature: this
is a weighted average of pixel colors with the feature activation values as weights. To determine the
average color of a each feature we compute it over a sample of 10 images of the feature’s top 5%
images. Then, we calculate Manhattan distances between the colors of the pixels and the “average”
color on the same images (the highest possible distance is 3 · 255 = 765). Finally, we take a weighted
average of the Manhattan distances using the same weights. We report these distances for different
transformer blocks and for the images generated on random prompts from LAION-COCO. We
present the results in the third column of Table 2. The average distance for the up.0.1 transformer
block is, in fact, the lowest.

Table 3: Manhattan distances between original and intervened images at varying intervention strengths
outside/inside of the feature’s activation map.

Block -10 -5 5 10

Down.2.1 148.2 / 116.0 124.2 / 94.4 101.4 / 78.7 128.9 / 105.60
Mid 69.2 / 32.2 39.4 / 18.5 33.2 / 15.2 59.9 / 29.82
Up.0.0 105.3 / 38.4 77.7 / 23.7 63.6 / 23.3 88.6 / 37.08
Up.0.1 125.0 / 26.8 73.1 / 16.4 68.6 / 21.9 98.9 / 34.74

Intervention locality. We suggested that features learned on up.0.0 and up.0.1 primarily influence
local regions of the generation, with minimal effect outside the active areas. To test this, we
measure changes in the top 5% images inside and outside the active regions while performing
activation modulation interventions. To exclude weak activation regions from consideration, a pixel
is considered inside the active area if the corresponding patch has an activation value larger than 50%
of the image patches, and it is outside the active area if the corresponding patch has zero activation.
Table 3 reports Manhattan distances between the original images and the intervened images outside
and inside the active areas for activation modulation intervention strengths -10, -5, 5, 10. The features
for up.0.0 and up.0.1 have a stronger effect inside the active area than outside, unlike down.2.1
where the difference is smaller.

J Annotation Pipeline Details

We used GPT-4o to caption learned features on down.2.1. For each feature, the model was shown a
series of 5 unrelated images, a progression of 9 images, the i-th of those corresponds to ⇐ i · 10%
average activation value of the maximum. Finally, we show 5 images corresponding to the highest
average activations. Since some features are active on particular parts of images, the last 9 images are
provided alongside their so-called “coldmaps”: a version of an image with weakly active and inactive
regions being faded and concealed.

The images were generated by 1-step SDXL Turbo diffusion process on 50↓000 random prompts of
LAION-COCO dataset.

J.1 Textual Prompt Template

Here is the prompt template for the VLM.

System. You are an experienced mechanistic interpretability researcher that is
labeling features from the hidden representations of an image generation model.
User. You will be shown a series of images generated by a machine learning model.
These images were selected because they trigger a specific feature of a sparse
auto-encoder, trained to detect hidden activations within the model. This feature
can be associated with a particular object, pattern, concept, or a place on an image.
The process will unfold in three stages:
1. **Reference Images:** First, you’ll see several images *unrelated* to the feature.
These will serve as a reference for comparison.
2. **Feature-Activating Images:** Next, you’ll view images that activate the
feature with varying strengths. Each of these images will be shown alongside a
version where non-activated regions are masked out, highlighting the areas linked
to the feature.
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3. **Strongest Activators:** Finally, you’ll be presented with the images that
most strongly activate this feature, again with corresponding masked versions to
emphasize the activated regions.
Your task is to carefully examine all the images and identify the thing or concept
represented by the feature. Here’s how to provide your response:
- **Reasoning:** Between ‘<thinking>‘ and ‘</thinking>‘ tags, write up to 400
words explaining your reasoning. Describe the visual patterns, objects, or concepts
that seem to be consistently present in the feature-activating images but not in the
reference images.
- **Expression:** Afterward, between ‘<answer>‘ and ‘</answer>‘ tags, write a
concise phrase (no more than 15 words) that best captures the common thing or
concept across the majority of feature-activating images.
Note that not all feature-activating images may perfectly align with the concept
you’re describing, but the images with stronger activations should give you the
clearest clues. Also pay attention to the masked versions, as they highlight the
regions most relevant to the feature.
User. These images are not related to the feature: {Reference Images}
User. This is a row of 9 images, each illustrating increasing levels of feature
activation. From left to right, each image shows a progressively higher activation,
starting with the image on the far left where the feature is activated at 10% relative
to the image that activates it the most, all the way to the far right, where the
feature activates at 90% relative to the image that activates it the most. This
gradual transition highlights the feature’s growing importance across the series.
{Feature-Activating Images}
User. This row consists of 9 masked versions of the original images. Each masked
image corresponds to the respective image in the activation row. Areas where the
feature is not activated are completely concealed by a white mask, while regions
with activation remain visible.) {Feature-Activating Images Coldmaps}
User. These images activate the feature most strongly. {Strongest Activators}
User. These masked images highlight the activated regions of the images that
activate the feature most strongly. The masked images correspond to the images
above. The unmasked regions are the ones that activate the feature. {Strongest
Activators Coldmaps}

J.2 Example of Prompt Images

The images used to annotate feature 0 are shown in Fig. 17.

J.3 Examples of Generated Captions

We present the captions generated by GPT-4o for the first and last 10 features in Table 4.

K Sparse Autoencoders and Superposition

This is an extended version of Sparse Autoencoders subsection of background section.

Let h(x) → Rd be some intermediate result of a forward pass of a neural network on the input x. In a
fully connected neural network, the components h(x) could correspond to neurons. In transformers,
which are residual neural networks with attention and fully connected layers, h(x) usually either
refers to the content of the residual stream after some layer, an update to the residual stream by some
layer, or the neurons within a fully connected block. In general, h(x) could refer to anything, e.g.,
also keys, queries, and values. It has been shown [62, 11, 5] that in many neural networks, especially
LLMs, intermediate representations can be well approximated by sparse sums of nf → N learned
feature vectors, i.e.,

h(x) ↑
nf∑

ω=1

sω(x)fω, (12)
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Table 4: down.2.1 first 10 and last 10 feature captions.

Block Feature Caption

down.2.1 0 Organizational/storage items for documents and office supplies
1 Luxury kitchen interiors and designs
2 Architectural Landmarks and Monumental Buildings
3 Upper body clothing and attire
4 Rustic or Natural Wooden Textures or Surfaces
5 Intricately designed and ornamental brooches
6 Technical diagrams and instructional content
7 Feature predominantly activated by visual representations of dresses
8 Home decor textiles focusing on cushions and pillows
9 Eyewear: glasses and sunglasses
5110 Concept of containment or organized enclosure
5111 Groups of people in collective settings
5112 Modern minimalist interior design
5113 Indoor plants and greenery
5114 Feature sensitivity focused on sneakers
5115 Handling or manipulating various objects
5116 Athletic outerwear, particularly zippered sporty jackets
5117 Spectator Seating in Sporting Venues
5118 Textiles and clothing materials, focus on textures and folds
5119 Yarn and Knitting Textiles

Figure 17: The images used by GPT-4o to generate captions for feature 0. From top to bottom:
irrelevant images to feature 0; image progression from left to right, showing increasing activation
of SAE feature 0, with low activation on the left and high activation on the right; “Coldmaps”
representing the image progression; images corresponding to the highest activation of feature 0;
“Coldmaps” corresponding to these highest activation images.
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where sω(x) are the input-dependent13 coefficients most of which are equal to zero and f1, . . . , fnf →
Rd is a learned dictionary of feature vectors.

Importantly, these learned features are usually highly interpretable (specific), sensitive (fire on the
relevant contexts), causal (change the output in expected ways in intervention) and usually do not
correspond directly to individual neurons. There are also some preliminary results on the universality
of these learned features, i.e., that different training runs on similar data result in the corresponding
models picking up largely the same features [5].

Superposition. By associating task-relevant features with directions in Rd instead of individual
components of h(x) → Rd, it is possible to represent many more features than there are components,
i.e., nf >> d. As a result, in this case, the learned dictionary vectors f1, . . . , fnf cannot be
orthogonal to each other, which can lead to interference when too many features are on (thus the
sparsity requirement). However, it would be theoretically possible to have exponentially (in d) many
almost orthogonal directions embedded in Rd.14

Using representations like this, the optimization process during training can trade off the benefits
of being able to represent more features than there are components in h with the costs of features
interfering with each other. Such representations are especially effective if the real features underlying
the data do not co-occur with each other too much, that is, they are sparse. In other words, in order to
represent a single input (“Michael Jordan”) only a small subset of the features (“person”, ..., “played
basketball”) is required [17, 5].

The phenomenon of neural networks that exploit representations with more features than there are
components (or neurons) is called superposition [17]. Superposition can explain the presence of
polysemantic neurons. The neurons, in this case, are simply at the wrong level of abstraction. The
closest feature vector can change when varying a neuron, resulting in the neuron seemingly reacting
to or steering semantically unrelated things.

Sparse autoencoders. In order to implement the sparse decomposition from equation 12, the vector
s containing the nf coefficients of the sparse sum is parameterized by a single linear layer followed
by an activation function, called the encoder,

s = ENC(h) = (W ENC(h↓ bpre) + bact), (13)

in which h → Rd is the latent that we aim to decompose, ω(·) is an activation function, W ENC → Rnf↑d

is a learnable weight matrix and bpre and bact are learnable bias terms. We omitted the dependencies
h = h(x) and s = s(h) that are clear from context.

Similarly, the learnable features are parametrized by a single linear layer, called decoder,

h↓ = DEC(s) = W DECs+ bpre, (14)

in which W DEC = (f1| · · · |fnf ) → Rd↑nf is a learnable matrix of whose columns take the role of
learnable features and bpre is a learnable bias term.

Training. The pair ENC and DEC are trained in a way that ensures that h↓ is a sparse sum of feature
vectors. Given a dataset of latents h1, . . . , hn, both encoder and decoder are trained jointly to
minimize a proxy to the loss

min
W ENC,W DEC

bpre,bact

n∑

i=1

⇒h↓
i ↓ hi⇒22 + φ⇒si⇒0, (15)

where hi = h(xi), si = ENC(h(xi)) (when we refer to components of s we use sω instead), the
⇒h↓

i↓hi⇒22 is a reconstruction loss, ⇒si⇒0 a regularization term ensuring the sparsity of the activations
and φ the corresponding trade-off term.

In practice, ⇒si⇒0 cannot be efficiently optimized directly, which is why it is usually replaced with
⇒si⇒1 or other proxy objectives.

13In the literature this input dependence is usually omitted.
14It follows from the Johnson-Lindenstrauss Lemma [25] that one can find at least exp(dω2/8) unit vectors in

Rd with the dot product between any two not larger than ω.

31



Figure 18: Images generated from 10 random prompts taken from the LAION-COCO dataset are
shown in the first row. In the second row, down.2.1 updates are replaced by their SAE reconstructions
(k = 10, nf = 5120). The third row visualizes the differences between the original and reconstructed
images.

Technical details. In our work, we make use of the top-k formulation from [19], in which ⇒si⇒0 ⇑ k
is ensured by introducing the a top-k function TopK into the encoder:

s = ENC(h) = RELU(TopK(W ENC(h↓ bpre) + bact)). (16)

As the name suggests, TopK returns a vector that sets all components except the top k ones to zero.

In addition [19] use an auxiliary loss to handle dead features. During training, a sparse feature ϑ is
considered dead if sω remains zero over the last 10M training examples.

The resulting training loss is composed of two terms: the L2-reconstruction loss and the top-auxiliary
L2-reconstruction loss for dead feature reconstruction. For a single latent h, the loss is defined

L(h, h↓) = ⇒h↓ h↓⇒22 + ϖ⇒h↓ h↓
aux⇒22 (17)

In this equation, the h↓
aux is the reconstruction based on the top kaux dead features. This auxiliary

loss is introduced to mitigate the issue of dead features. After the end of the training process, we
observed none of them. Following [19], we set ϖ = 1

32 and kaux = 256, performed tied initialization
of encoder and decoder, normalized decoder rows after each training step. The number of learned
features nf is set to 5120, which is four times the length of the input vector. The value of k is set to
10 as a good trade-off between sparsity and reconstruction quality. Other training hyperparameters
are batch size: 4096, optimizer: Adam with learning rate: 10↗4 and betas: (0.9, 0.999).

L SAE Training Results

We trained several SAEs with different sparsity levels and sparse layer sizes and observed no dead
features. To assess reconstruction quality, we processed 100 random LAION-COCO prompts through
a one-step SDXL Turbo process, replacing the additive component of the corresponding transformer
block with its SAE reconstruction.

The explained variance ratio and the output effects caused by reconstruction are shown in Table 5.
Fig. 18 presents random examples of reconstructions from an SAE with the following hyperparame-
ters: k = 10, nf = 5120, trained on down.2.1. The reconstruction causes minor deviations in the
images, and the fairly low LPIPS [63] and pixel distance scores also support these findings. However,
to prevent these minor reconstruction errors from affecting our analysis of interventions, we decided
to directly add or subtract learned directions from dense feature maps.
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Table 5: Distances and explained variance ratio in generated images. “Mean” represents the average
pixel Manhattan distance between original and reconstruction-intervened images, with a maximum
possible value of 765. “Median” represents the median Manhattan distance per pixel, averaged over
all images. ’LPIPS’ refers to the average LPIPS score, measuring perceptual similarity. “Explained
variance ratio” denotes the ratio of variance explained by the trained SAEs to the total variance.

k nf Configuration Mean | Median LPIPS EV (%)

5

640

down.2.1 83.29 | 50.04 0.3383 56.0
mid.0 52.64 | 26.82 0.2032 43.4
up.0.0 55.89 | 30.69 0.2276 44.8
up.0.1 52.67 | 34.53 0.2073 50.3

5120

down.2.1 74.68 | 41.49 0.3036 67.8
mid.0 48.82 | 24.60 0.1845 50.8
up.0.0 49.19 | 25.86 0.1969 57.2
up.0.1 47.50 | 31.11 0.1775 59.5

10

640

down.2.1 73.65 | 41.79 0.2893 62.8
mid.0 46.80 | 23.10 0.1772 51.5
up.0.0 48.43 | 25.80 0.1908 52.5
up.0.1 43.06 | 26.85 0.1638 58.7

5120

down.2.1 64.97 | 34.77 0.2582 73.7
mid.0 44.02 | 21.72 0.1627 58.8
up.0.0 42.08 | 21.54 0.1624 64.2
up.0.1 39.77 | 24.84 0.1453 67.1

20

640

down.2.1 59.29 | 31.47 0.2291 69.9
mid.0 39.95 | 19.44 0.1459 60.0
up.0.0 40.15 | 21.06 0.1499 60.9
up.0.1 31.97 | 18.15 0.1196 66.7

5120

down.2.1 56.37 | 29.04 0.2190 78.8
mid.0 37.28 | 17.82 0.1328 66.5
up.0.0 35.73 | 18.03 0.1302 70.6
up.0.1 30.31 | 17.22 0.1104 74.2

Figure 19: Performing interventions across different time intervals. For each prompt there are two
rows, the first row contains ranges 0-25, 5-25, 10-25, 15-25, 20-25 and the second one 0-5, 5-10,
10-15, 15-20, 20-25. We would describe this feature as “evil feature”. We intervened with this
feature across the entrire spatial grid. These results are from our first working SAE’s with k = 10 and

nf = 5120.
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Table 6: Prompts for the top 5% quantile examples in Fig. 44

Block Feature Prompt

down.2.1 0 A file folder with the word document management on it.
0 Two blue folders filled with dividers.
1 A kitchen with an island and bar stools.
1 An unfinished bar with stools and a wood counter.
2 The Taj Mahal, or a white marble building in India.
2 The Taj Mahal, or a white marble building in India.
3 A man and woman standing next to each other.
3 Two men in suits hugging each other outside.
4 An old Forester whiskey bottle sitting on top of a wooden table.
4 Red roses and hearts on a wooden table.
5 A beaded brooch with pearls and copper.
5 An image of a brooch with diamonds.

mid.0 0 The Boss TS-3W pedal has an electronic tuner.
0 An engagement ring with blue sapphire and diamonds.
0 The women’s pink sneaker is shown.
1 A white ceiling fan with three blades.
1 A ceiling fan with three blades and a light.
1 The ceiling fan is dark brown and has two wooden blades.
2 The black dress is made from knit and has metallic sleeves.
2 The back view of a woman wearing a black and white sports bra.
2 The woman is wearing a striped swimsuit.
3 An old-fashioned photo frame with a little girl on it.
3 The woman is sitting in her car with her head down.
3 The contents of an empty bottle in a box.
4 An old painting of a man in uniform.
4 The model wears an off-white sweatshirt with green panel.
4 The Statue of Liberty stands tall in front of a blue sky.
5 Cheese and crackers on a cutting board.
5 Two cufflinks with coins on them.
5 Three pieces of luggage are shown in blue.

up.0.0 0 Three wine glasses with gold and silver designs.
0 Three green wine glasses sitting next to each other.
0 New Year’s Eve with champagne, gold, and silver.
1 The birdhouse is made from wood and has a brown roof.
1 The garage is white with red shutters.
1 Two garages with one attached porch and the other on either side.
2 An elegant white lace purse with gold clasp.
2 The red handbag has gold and silver designs.
2 A pink and green floral-colored purse.
3 A magazine rack with magazines on it.
3 The year-in-review page for this digital scrap.
3 The planner sticker kit is shown with gold and black accessories.
4 A clock with numbers on the face.
4 A silver watch with roman numerals on the face.
4 An automatic watch with a silver dial.
5 Four pieces of wooden furniture with blue and white designs.
5 The green chair is in front of a white rug.
5 The wish chair with a black seat.

up.0.1 0 The wooden toy kitchen set includes bread, eggs, and flour.
0 The office chair is brown and black.
1 An aerial view of the white sand and turquoise water.
1 An aerial view of the beach and ocean.
2 The patriarch of Ukraine is shown speaking to reporters.
2 German Chancellor Merkel gestures as she speaks to the media.
3 Four pictures showing dogs wearing orange vests.
3 Two dogs are standing on the ground next to flowers.
4 A man standing in front of a wooden wall.
4 A blue mailbox sitting on top of a wooden floor.
5 The baseball players are posing for a team photo.
5 The baseball players are holding up their trophies.
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Table 7: Prompts for the top 5 % quantile examples in Fig. 45

Block Feature Prompt

down.2.1 5114 Black and white Converse sneakers with the word black star.
5114 Black and white Converse sneakers with the word Chuck.
5115 A woman holding up a photo of herself.
5115 A man holding up a tennis ball in the air.
5116 The Nike Women’s U.S. Soccer Team DRI-Fit 1/4 Zip Top.
5116 The women’s gray and orange half-zip sweatshirt.
5117 A large group of people sitting in front of a basketball court.
5117 Hockey players are playing in an arena with spectators.
5118 The black and white plaid shirt is shown.
5118 The different colors and sizes of t-shirts.
5119 A ball of yarn on a white background.
5119 Two balls of colored wool are on the white surface.

mid.0 5114 People holding signs in front of a building.
5114 Two men dressed in suits and ties are holding up signs.
5114 A large group of people holding flags and signs.
5115 A kitchen with white cabinets and a blue stove.
5115 The kitchen is clean and ready for us to use.
5115 A kitchen with white cabinets and stainless steel appliances.
5116 The steering wheel and dashboard in a car.
5116 The interior of a car with dashboard controls.
5116 The dashboard and steering wheel in a car.
5117 Three men are celebrating a goal on the field.
5117 Two men in Red Bull racing gear standing next to each other.
5117 Two men are posing for the camera at an event.
5118 Someone is holding up their nail polish with pink and black designs.
5118 The nail is very cute and looks great with marble.
5118 White stily nails with gold and diamonds.
5119 The Mighty Thor comic book.
5119 The camera is showing its flash drive.
5119 A truck with bikes on the back parked next to a camper.

up.0.0 5114 The Acer laptop is open and ready to use.
5114 The Lenovo S13 laptop is open and has an image of a person jumping off the keyboard.
5114 A laptop with the words Hosting Event on it.
5115 A horse with a black nose and brown mane.
5115 The horse leather oil is being used to protect horses.
5115 An oil painting on a canvas of a horse.
5116 The sun is shining brightly over Saturn.
5116 A football player throws the ball to another team.
5116 Car door light logo sticker for Hyundai.
5117 An artistic black and silver sculpture with speakers.
5117 The pink brushes are sitting on top of each other.
5117 Four kings playing cards in the hand.
5118 A man is fixing an air conditioner.
5118 The black Land Rover is parked in front of a large window.
5118 A flat screen TV mounted on the wall above a fireplace.
5119 A table with many different tools on it.
5119 A camera with many different items including flash cards, lenses, and other accessories.
5119 The contents of an open suitcase and some clothes.

up.0.1 5114 An old Navajo rug with multicolored designs.
5114 The pillow is made from an old kilim.
5115 An image of noni juice with some fruits.
5115 A bottle and glass on the counter with green juice.
5116 Someone cleaning the shower with a sponge.
5116 A man on a skateboard climbing a wall with ropes.
5117 A man taking a selfie in front of some camera equipment.
5117 A person holding up a business card with the words cycle transportation.
5118 Two photos are placed on top of an open book.
5118 An open book with pictures of children and their parents.
5119 An engagement ring with diamonds on top.
5119 An oval ruby and diamond ring.
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Figure 20: Performing interventions across different time intervals. For each prompt there are two
rows, the first row contains ranges 0-25, 5-25, 10-25, 15-25, 20-25 and the second one 0-5, 5-10,
10-15, 15-20, 20-25. We would describe this feature as “cartoon feature”. We intervened with this
feature across the entire spatial grid. These results are from our first working SAE’s with k = 10 and

nf = 5120.

36



Figure 21: Performing interventions across different time intervals. For each prompt there are two
rows, the first row contains ranges 0-25, 5-25, 10-25, 15-25, 20-25 and the second one 0-5, 5-10,
10-15, 15-20, 20-25. We would describe this feature as “ear feature”. We intervened with this feature
on the ears. These results are from our first working SAE’s with k = 10 and nf = 5120.
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Figure 22: Performing interventions across different time intervals. For each prompt there are two
rows, the first row contains ranges 0-25, 5-25, 10-25, 15-25, 20-25 and the second one 0-5, 5-10,
10-15, 15-20, 20-25. We would describe this feature as “beard feature”. We intervened with this
feature on the chin/beard area. In the pirate we subtracted this feature. These results are from our first

working SAE’s with k = 10 and nf = 5120.
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Figure 23: Performing interventions across different time intervals. For each prompt there are two
rows, the first row contains ranges 0-25, 5-25, 10-25, 15-25, 20-25 and the second one 0-5, 5-10,
10-15, 15-20, 20-25. We would describe this feature as “furry feature”. We intervened with this
feature across the entire beard and face of the pirate and across the entire cat except its ears. These

results are from our first working SAE’s with k = 10 and nf = 5120.
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Figure 24: Performing interventions across different time intervals. For each prompt there are two
rows, the first row contains ranges 0-25, 5-25, 10-25, 15-25, 20-25 and the second one 0-5, 5-10,
10-15, 15-20, 20-25. We would describe this feature as “tiger texture feature”. We intervened with
this feature across the entire face of the pirate and across the entire cat except its ears. These results

are from our first working SAE’s with k = 10 and nf = 5120.
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Figure 25: Performing interventions across different time intervals. For each prompt there are two
rows, the first row contains ranges 0-25, 5-25, 10-25, 15-25, 20-25 and the second one 0-5, 5-10,
10-15, 15-20, 20-25. We would describe this feature as “giraffe pattern feature”. We intervened with
this feature across the entire face of the pirate and across the entire cat except its ears. These results

are from our first working SAE’s with k = 10 and nf = 5120.
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Figure 26: SDXL Turbo 4-step interventions; Example for edit category 1: “change object”. Original
prompt (target): “a cute little bunny with big eyes”, edit prompt (source): “a cute little pig with big
eyes”. Source and target refers to from where we extract features (source) and where we insert them
(target). Grounded SAM2 masks used to collect the features are not shown but in this example they
would select the entire foreground objects respectively.
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Figure 27: SDXL Turbo 4-step interventions; Example for edit category 2: “add object”. Original
prompt (target): “a cat”, edit prompt (source): “a cat with a gold chain and a star on its head”.
Source and target refers to from where we extract features (source) and where we insert them (target).
Grounded SAM2 masks used to collect the features are not shown but in this example they would
select the cat’s gold chain from the source forward and also use the same area in the target forward
pass.
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Figure 28: SDXL Turbo 4-step interventions; Example for edit category 3: “delete object”. Original
prompt (target): “a cat wearing headphones on a gray background”, edit prompt (source): “a cat on a
gray background”. Source and target refers to from where we extract features (source) and where
we insert them (target). Grounded SAM2 masks used to collect the features are not shown but in
this example they would select the headphones in the target forward and the same area in the source
forward pass. This example showcases a frequent failure mode of our intervention where the deleted
object (re)appears in a different location in the image.
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Figure 29: SDXL Turbo 4-step interventions; Example for edit category 4: “change content”. Original
prompt (target): “a detailed oil painting of a calm beautiful woman with stars in her hair”, edit prompt
(source): “a detailed oil painting of a laughing beautiful woman with stars in her hair”. Source and
target refers to from where we extract features (source) and where we insert them (target). Grounded
SAM2 masks used to collect the features are not shown but in this example they would select the
woman’s face in both forward passes.
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Figure 30: SDXL Turbo 4-step interventions; Example for edit category 5: “change pose”. Original
prompt (target): “a cartoon dog laying down on the ground”, edit prompt (source): “a cartoon dog
jumping up from the ground”. Source and target refers to from where we extract features (source)
and where we insert them (target). Grounded SAM2 masks used to collect the features are not shown
but in this example they would select the dogs in both forward passes.
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Figure 31: SDXL Turbo 4-step interventions; Example for edit category 6: “change color”. Original
prompt (target): “a woman wearing a red hat and a red dress”, edit prompt (source): “a woman
wearing a green hat and a red dress”. Source and target refers to from where we extract features
(source) and where we insert them (target). Grounded SAM2 masks used to collect the features are
not shown but in this example they would select the hats in both forward passes.
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Figure 32: SDXL Turbo 4-step interventions; Example for edit category 7: “change material”.
Original prompt (target): “a drawing of a young man with blue eyes”, edit prompt (source): “a
drawing of a young robot with blue eyes”. Source and target refers to from where we extract features
(source) and where we insert them (target). Grounded SAM2 masks used to collect the features are
not shown but in this example they would select the face of the man in the target and the robot in the
source forward pass.
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Figure 33: SDXL Turbo 4-step interventions; Example for edit category 8: “change background”.
Original prompt (target): “illustration of a woman meditating in a yoga pose”, edit prompt (source):
“illustration of a woman meditating in a yoga pose in the sky with stars”. Source and target refers to
from where we extract features (source) and where we insert them (target). Grounded SAM2 masks
used to collect the features are not shown but in this example they would select the backgrounds in
both forward passes.
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Figure 34: SDXL Turbo 4-step interventions; Example for edit category 9: “change style”. Original
prompt (target): “a photograph a clown with colorful hair”, edit prompt (source): “a clown in pixel
art style with colorful hair”. Source and target refers to from where we extract features (source) and
where we insert them (target). In this edit category we used features from the entire spatial grid. From
this example it becomes clear that for this edit category we should select fewer features and probably
a lower strength.
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Figure 35: FLUX Schnell 1-step interventions; Example for edit category 1: “change object”. Original
prompt (target): “a cute little bunny with big eyes”, edit prompt (source): “a cute little pig with big
eyes”. Source and target refers to from where we extract features (source) and where we insert them
(target). Grounded SAM2 masks used to collect the features are not shown but in this example they
would select the entire foreground objects respectively. The y-labels indicate interventions strength
and whether single- or multi-layer interventions are used. The column titles indicate the intervention
types and numbers of features transported.
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Figure 36: FLUX Schnell 1-step interventions; Example for edit category 2: “add object”. Original
prompt (target): “a cat”, edit prompt (source): “a cat with a gold chain and a star on its head”.
Source and target refers to from where we extract features (source) and where we insert them (target).
Grounded SAM2 masks used to collect the features are not shown but in this example they would
select the cat’s gold chain from the source forward and also use the same area in the target forward
pass. The y-labels indicate interventions strength and whether single- or multi-layer interventions are
used. The column titles indicate the intervention types and numbers of features transported.
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Figure 37: FLUX Schnell 1-step interventions; Example for edit category 3: “delete object”. Original
prompt (target): “a cat wearing headphones on a gray background”, edit prompt (source): “a cat on a
gray background”. Source and target refers to from where we extract features (source) and where
we insert them (target). Grounded SAM2 masks used to collect the features are not shown but in
this example they would select the headphones in the target forward and the same area in the source
forward pass. This example showcases a frequent failure mode of our intervention where the deleted
object (re)appears in a different location in the image. The y-labels indicate interventions strength
and whether single- or multi-layer interventions are used. The column titles indicate the intervention
types and numbers of features transported.
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Figure 38: FLUX Schnell 1-step interventions; Example for edit category 4: “change content”.
Original prompt (target): “a detailed oil painting of a calm beautiful woman with stars in her hair”,
edit prompt (source): “a detailed oil painting of a laughing beautiful woman with stars in her hair”.
Source and target refers to from where we extract features (source) and where we insert them (target).
Grounded SAM2 masks used to collect the features are not shown but in this example they would
select the woman’s face in both forward passes. The y-labels indicate interventions strength and
whether single- or multi-layer interventions are used. The column titles indicate the intervention
types and numbers of features transported.
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Figure 39: FLUX Schnell 1-step interventions; Example for edit category 5: “change pose”. Original
prompt (target): “a cartoon dog laying down on the ground”, edit prompt (source): “a cartoon dog
jumping up from the ground”. Source and target refers to from where we extract features (source) and
where we insert them (target). Grounded SAM2 masks used to collect the features are not shown but
in this example they would select the dogs in both forward passes. The y-labels indicate interventions
strength and whether single- or multi-layer interventions are used. The column titles indicate the
intervention types and numbers of features transported.
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Figure 40: FLUX Schnell 1-step interventions; Example for edit category 6: “change color”. Original
prompt (target): “a woman wearing a red hat and a red dress”, edit prompt (source): “a woman
wearing a green hat and a red dress”. Source and target refers to from where we extract features
(source) and where we insert them (target). Grounded SAM2 masks used to collect the features are
not shown but in this example they would select the hats in both forward passes. The y-labels indicate
interventions strength and whether single- or multi-layer interventions are used. The column titles
indicate the intervention types and numbers of features transported.
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Figure 41: FLUX Schnell 1-step interventions; Example for edit category 7: “change material”.
Original prompt (target): “a drawing of a young man with blue eyes”, edit prompt (source): “a
drawing of a young robot with blue eyes”. Source and target refers to from where we extract features
(source) and where we insert them (target). Grounded SAM2 masks used to collect the features are
not shown but in this example they would select the face of the man in the target and the robot in the
source forward pass. The y-labels indicate interventions strength and whether single- or multi-layer
interventions are used. The column titles indicate the intervention types and numbers of features
transported.
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Figure 42: FLUX Schnell 1-step interventions; Example for edit category 8: “change background”.
Original prompt (target): “illustration of a woman meditating in a yoga pose”, edit prompt (source):
“illustration of a woman meditating in a yoga pose in the sky with stars”. Source and target refers to
from where we extract features (source) and where we insert them (target). Grounded SAM2 masks
used to collect the features are not shown but in this example they would select the backgrounds in
both forward passes. The y-labels indicate interventions strength and whether single- or multi-layer
interventions are used. The column titles indicate the intervention types and numbers of features
transported.
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Figure 43: FLUX Schnell 1-step interventions; Example for edit category 9: “change style”. Original
prompt (target): “a photograph a clown with colorful hair”, edit prompt (source): “a clown in pixel
art style with colorful hair”. Source and target refers to from where we extract features (source) and
where we insert them (target). In this edit category we used features from the entire spatial grid. From
this example it becomes clear that for this edit category we should select fewer features and probably
a lower strength. The y-labels indicate interventions strength and whether single- or multi-layer
interventions are used. The column titles indicate the intervention types and numbers of features
transported.
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(a) down.2.1 (b) mid.0 (c) up.0.0 (d) up.0.1
Figure 44: We visualize 6 features for down.2.1 (a), mid.0 (b), up.0.0, and up.0.1. We use three
columns for each transformer block and three rows for each feature. For down.2.1 and up.0.1 we
visualize the two samples from the top 5% quantile of activating dataset examples (middle) together
a feature ablation (left) and a feature enhancement (right), and, activate the feature on the empty
prompt with ϱ = 0.5, 1, 2 from left to right. For mid.0 and up.0.0 we display three samples with
ablation and enhancement. Captions are in Table 6. These results are from our first working SAE’s

with k = 10 and nf = 5120.
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(a) down.2.1 (b) mid.0 (c) up.0.0 (d) up.0.1
Figure 45: We visualize last 6 features for down.2.1 (a), mid.0 (b), up.0.0, and up.0.1. We use
three columns for each transformer block and three rows for each feature. For down.2.1 and up.0.1
we visualize two samples from the top 5% quantile of activating dataset examples (middle) together
a feature ablation (left) and a feature enhancement (right), and, activate the feature on the empty
prompt with ϱ = 0.5, 1, 2 from left to right. For mid.0 and up.0.0 we display three samples with
ablation and enhancement. Captions are in Table 7. These results are from our first working SAE’s

with k = 10 and nf = 5120.
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(a) down.2.1 (b) up.0.1
Figure 46: We visualize 6 features for down.2.1 (a) and up.0.1 (b). For each feature, we use 5
columns showing ablations (left), activating examples (middle), enhancements (right) and 3 rows
with different samples from the top 5% quantile of activating examples. Captions are in Table 8.
These results are from our first working SAE’s with k = 10 and nf = 5120.
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(a) down.2.1 (b) up.0.1
Figure 47: We turn on the features from Fig. 46 on three unrelated prompts “a photo of a colorful
model”, “a cinematic shot of a dog playing with a ball”, and “a cinematic shot of a classroom with
excited students”. These results are from our first working SAE’s with k = 10 and nf = 5120.
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Table 8: Prompts for the top 5% quantile examples in Fig. 46

Block Feature Prompt

down.2.1 4998 A cartoon bee wearing a hat and holding something.
4998 Two cartoon pictures of the same man with his hands in his pockets.
4998 A cartoon bear with a purple shirt and yellow shorts.
4074 An anime character with cat ears and a dress.
4074 Two anime characters, one with white hair and the other with red eyes.
4074 An anime book with two women in blue dresses.
2301 A man with white hair and red eyes holding a chain.
2301 An animated man with white hair and a beard.
2301 The character is standing with horns on his head.
56 Two men in uniforms riding horses with swords.
56 A woman riding on the back of a brown horse.
56 Two jockeys on horses racing down the track.
59 A red jar with floral designs on it.
59 An old black vase with some design on it.
59 A vase with birds and flowers on it.
89 StarCraft 2 is coming to the Nintendo Wii.
89 Overwatch is coming to Xbox and PS3.
89 The hero in Overwatch is holding his weapon.

up.0.1 4955 An African wild dog laying in the grass.
4955 The woman is posing for a photo in her leopard print top.
4955 An animal print cube ottoman with brown and white fur.
4977 A white tiger with blue eyes standing in the snow.
4977 A bottle and tiger are shown next to each other.
4977 A mural on the side of a building with a tiger.
3718 Giraffes are standing in the grass near a vehicle.
3718 Two giraffes standing next to each other in the grass.
3718 A giraffe standing next to an ironing board.
90 A lion is roaring its teeth in the snow.
90 A lion sitting in the grass looking off into the distance.
90 Two lions with flowers on their backs.
1093 The sun is shining over mountains and trees.
1093 Bride and groom in front of a lake with sun flare.
1093 The milky sun is shining brightly over the trees.
2165 The silhouette of a person riding a bike at sunset.
2165 The Dark Knight rises from his cave in Batman’s poster.
2165 A yellow sign with black design depicting a tractor.
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