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Abstract
Large language models are increasingly used001
in scientific domains, especially for molecular002
understanding and analysis. However, existing003
models are affected by hallucination issues, re-004
sulting in errors in drug design and utilization.005
In this paper, we first analyze the sources of hal-006
lucination in LLMs for molecular comprehen-007
sion tasks, specifically the knowledge shortcut008
phenomenon observed in the PubChem dataset.009
To evaluate hallucination in molecular compre-010
hension tasks with computational efficiency, we011
introduce Mol-Hallu, a novel free-form eval-012
uation metric that quantifies the degree of hal-013
lucination based on the scientific entailment014
relationship between generated text and actual015
molecular properties. Utilizing the Mol-Hallu016
metric, we reassess and analyze the extent017
of hallucination in various LLMs performing018
molecular comprehension tasks. Furthermore,019
the Hallucination Reduction Post-processing020
stage (HRPP) is proposed to alleviate molecu-021
lar hallucinations, Experiments show the effec-022
tiveness of HRPP on decoder-only and encoder-023
decoder molecular LLMs. Our findings provide024
critical insights into mitigating hallucination025
and improving the reliability of LLMs in scien-026
tific applications.027

1 Introduction028

Large language models (LLMs) are regarded as029

foundation models in scientific fields due to their030

outstanding cross-domain generalization capabil-031

ity (Zhang et al., 2024a,b). In chemistry, LLMs032

are used for molecular property prediction (Lv033

et al., 2024; Qian et al., 2023) and molecular de-034

sign (Flam-Shepherd et al., 2022; Grisoni, 2023).035

These models bridge the gap between molecular036

structural and property features and the natural lan-037

guage descriptions, facilitating multiple chemical038

applications including virtual screening, drug de-039

sign, retrosynthesis planning, etc.040

Although LLMs have shown powering genera-041

tion capability in biochemistry domains, they suf-042
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Figure 1: (1) The top figure shows the scoring curves of
Mol-Hallu v.s. traditional metrics (BLEU, ROUGE,
METEOR) across varying degrees of hallucination.
H : n indicates that samples contain n counterfactual
errors, Mol-Hallu imposes an exponential penalty on
hallucination errors in text., whereas traditional metrics
fail to evaluate biochemical hallucination in texts rea-
sonably. (2) The bottom figure proposes a biochemical
sample that suffers severe hallucination (red are coun-
terfactual entities) as an example. Mol-Hallu precisely
reflects the hallucination degree in scientific texts com-
pared to traditional metrics.

fer from hallucinations (Bang et al., 2023) which 043

leads to the fabrication of non-existent facts or in- 044

appropriate molecular properties (Yao et al., 2023). 045

Hallucinations often arise when new biochemical 046

knowledge introduced during the supervised fine- 047

tuning (SFT) stage conflicts with the model’s pre- 048

trained knowledge (Gekhman et al., 2024). The 049

risky SFT strategy is frequently employed in vari- 050

ous molecular LLMs (Pei et al., 2023; Fang et al., 051

2023; Yu et al., 2024), demonstrating the ubiquity 052

of hallucinations. 053

Several studies on molecular LLMs analyze the 054

hallucination phenomenon in molecule comprehen- 055

sion tasks. MoleculeQA (Lu et al., 2024b) and 056

MoleculeTextQA (Laghuvarapu et al., 2024) con- 057

struct multi-choice QA datasets to assess the hal- 058
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lucination issues in molecular LLMs. However,059

these approaches require additional datasets for060

fine-tuning in the context of fixed-form evalua-061

tion (Li et al., 2024b) and their multiple-choice062

question format is ill-suited for assessing the open-063

ended generation capabilities of large language064

models (Wang et al., 2023). To address this limita-065

tion, there is an urgent need for a free-form evalua-066

tion metric to quantify the degree of hallucination067

in molecular LLMs. Moreover, existing research068

has not yet analyzed the sources of hallucination069

in molecular LLMs or explored how to effectively070

mitigate these hallucinations.071

To alleviate these issues, we first analyze the072

source of hallucinations in molecular LLMs and073

propose Mol-Hallu, the first free-form evaluation074

metric specifically designed to assess hallucina-075

tion. Our investigation focuses on the PubChemQA076

dataset (Li et al., 2024a), a widely recognized077

benchmark source from PubChem database (Wang078

et al., 2009) that aligns molecular structures with079

textual descriptions. We identify that knowledge080

shortcuts in this dataset hinder the alignment be-081

tween molecular structures and biochemical enti-082

ties, resulting in increased hallucinations. To quan-083

tify the extent of hallucinations, Mol-Hallu lever-084

ages the union of the answer and the molecular085

general description, rewarding correct biomedical086

entities. The union and intersection are computed087

using an entailment model to determine whether the088

molecular descriptions entail a given text n-gram.089

To enhance evaluation, we curated a chemical en-090

tity database by automatically annotating PubChem091

and ChEMBL (Mendez et al., 2019) datasets, to092

accurately retrieve biomedical entities from pre-093

dicted texts. Fig.1 demonstrates the rationality094

of Mol-Hallu for hallucination evaluation com-095

pared to traditional metrics including BLEU (Pa-096

pineni et al., 2002a), ROUGE (Lin, 2004), and097

METEOR (Banerjee and Lavie, 2005).098

To mitigate the hallucination in current molecu-099

lar LLMs, we propose the Hallucination Reduction100

Post-processing (HRPP) stage, which constructs a101

hallucination-sensitive preference dataset by lever-102

aging our chemical entity database, thereby opti-103

mizing the accuracy of scientific entities in text gen-104

erated by molecular LLMs. The HRPP approach105

has validated its effectiveness and generalizability106

under decoder-only and encoder-decoder language107

models, two basic paradigms of molecular LLMs.108

Our contributions are summarized as follows:109

• We dive into the molecular hallucination issue 110

and identify that bio-knowledge shortcuts in the 111

dataset exacerbate LLM hallucination. 112

• To measure the hallucination in molecular com- 113

prehension with efficiency, we propose the first 114

free-form evaluation metric, Mol-Hallu, which 115

calculates the F1-score of scientific entities using 116

entailment probability. 117

• We further propose the hallucination reduction 118

post-processing stage to alleviate the molecular 119

hallucination using the hallucination-sensitive 120

preference dataset. 121

2 Related Works 122

2.1 LLMs for Molecular Comprehension 123

Large language models pretrained with biochemi- 124

cal scientific data have shown substantial success in 125

molecular comprehension tasks (Feng et al., 2024). 126

The molecular encoders capture 1D sequential fea- 127

tures (Irwin et al., 2022; Edwards et al., 2022; 128

Fang et al., 2023; Wang et al., 2019), 2D topo- 129

logical features (Rong et al., 2020; Ying et al., 130

2021; Wang et al., 2022), and 3D structural pat- 131

terns (Liu et al., 2021; Zhou et al., 2023; Lu et al., 132

2024a) from the molecule. Related studies have 133

adopted two primary strategies to bridge the het- 134

erogeneity gap between molecular and textual rep- 135

resentations for enhanced comprehension. Firstly, 136

the cross-modal contrastive learning strategy is ap- 137

plied to fine-tune molecular and textual encoders. 138

MoMu (Su et al., 2022), MoleculeSTM (Liu et al., 139

2023a), and MolCA (Liu et al., 2023b) construct a 140

joint representational space that aligns molecular 141

features with their corresponding textual descrip- 142

tions. As textual encoders grow in parameter size 143

and inferential capability, some studies (Cao et al., 144

2025, 2024b; Hu et al., 2025) have turned to super- 145

vised fine-tuning using molecular-text datasets to 146

establish a pooling layer that maps molecular rep- 147

resentations into the textual space of LLMs. How- 148

ever, constrained by the feature bias of molecular 149

encoders and the prior knowledge of LLMs, cur- 150

rent molecular LLMs are plagued by significant 151

hallucination issues. 152

2.2 Hallucination in Biochemical LLMs 153

Alongside the advancement in reasoning, LLM 154

models often generate nonsensical or unfaithful 155

content to the provided source, referred as hallu- 156

cination (Bang et al., 2023; Maynez et al., 2020). 157
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The source-reference divergence phenomenon (Ji158

et al., 2023) is the main cause of hallucination.159

The divergence comes from heuristic data collec-160

tion (Parikh et al., 2020) and imperfect representa-161

tion learning during the training procedure (Feng162

et al., 2020) or erroneous decoding when conduct-163

ing inference (Dziri et al., 2021). In molecular164

comprehension tasks, molecular LLMs often gen-165

erate counterfactual content, which can lead to ad-166

verse consequences such as misleading users, and167

ultimately undermine the reliability of LLMs in168

scientific applications (Lu et al., 2024b).169

The evaluation of hallucinations in LLMs can be170

categorized into two main types: (1) Fixed-form171

evaluation and (2) Free-form evaluation. Fixed-172

form evaluation uses multi-choice QA datasets,173

such as MoleculeQA and MoleculeTextQA, to as-174

sess hallucinations. However, this method requires175

fine-tuning LLMs on hallucination datasets and176

uses a multi-choice format that differs from the177

open-ended nature of LLM tasks, making it less re-178

flective of true hallucination extent. In contrast,179

free-form evaluation leverages automated func-180

tions for faster, more computationally efficient as-181

sessments. Hallucination detection methods also182

fall into two categories: (1) Fact-checking-based183

methods, which verify accuracy through exter-184

nal (Chern et al., 2023; Min et al., 2023) or in-185

ternal knowledge (Kadavath et al., 2022; Dhuli-186

awala et al., 2023), and (2) Uncertainty estimation187

methods (Varshney et al., 2023; Manakul et al.,188

2023), which detect hallucinations by quantify-189

ing model confidence without external references.190

Our work bridges these approaches by introducing191

a free-form evaluation metric for molecular com-192

prehension tasks. This method leverages ground193

truth while avoiding the need for external retrieval194

or fine-tuning, providing an efficient and domain-195

specific solution for hallucination detection. Cur-196

rently, there are no such metrics for hallucination197

assessment in biochemical LLMs (Rawte et al.,198

2023), which limits the effectiveness of large sci-199

entific models in drug discovery. To address this,200

we propose the first free-form evaluation metric201

focused on the entailment of scientific entities, en-202

abling more reliable application in this domain.203

3 Methodology204

In this section, we propose the definition, the205

source, the Mol-Hallu evaluation metric, and the206

alleviation strategy for the molecular hallucination207

phenomenon. 208

3.1 Definition of Molecular Hallucination 209

Before delving into the source and evaluation of 210

molecular hallucination, we first define the Molec- 211

ular Hallucination as prediction texts that do not 212

consist of the pharmacological or chemical proper- 213

ties of the molecule. Formally, given the molecule 214

SMILES M and the question Q. The hallucination 215

is that LLM fθ(·) outputs non-existent or counter- 216

factual scientific entities E that do not satisfy the 217

reality T, where T is the ground-truth entity set 218

without any non-existent facts. 219

3.2 Source of Molecular Hallucination 220

The phenomenon of hallucination in LLMs arises 221

from multiple sources, including inherent diver- 222

gence and spurious noise within the data (Lee et al., 223

2022), as well as input knowledge bias (Yin et al., 224

2023) in training paradigms during training and 225

inference processes. 226

LLMs exhibit significant hallucinations in molec- 227

ular comprehension tasks. Upon analyzing the Pub- 228

ChemQA dataset, we identified the bio-knowledge 229

shortcuts exacerbate LLM hallucinations. 230
231

232Molecule: Given a molecule [SMILES]. 233

Question: What is the role of [Drug Name] in 234

cellular processes? 235

236

To be more specific, bio-knowledge shortcuts 237

refer to instances where drug names (e.g., beryl- 238

lium) are present in molecular-related questions, 239

leading the model to establish mappings between 240

drug names and their physicochemical properties 241

during supervised fine-tuning, rather than between 242

molecular structures from SMILES and physico- 243

chemical properties, which is the original intent 244

of molecular comprehension tasks. The existence 245

of such shortcuts makes LLMs prone to hallucina- 246

tion due to changes or the absence of drug names 247

and hinders their ability to infer physicochemical 248

properties for novel molecules. 249

To prove this, we conduct attacks on the drug 250

names contained in the questions within the 251

molecular question-answer samples from the Pub- 252

chemQA dataset and analyze the sources of hal- 253

lucinations by observing the changes in halluci- 254

nations corresponding to different attack strate- 255

gies (Cao et al., 2024a). Specifically, given a sam- 256

ple and its corresponding question Q, we replace 257
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Figure 2: Experiments demonstrate that in both decoder-only LLMs and encoder-decoder LLMs, molecule masking
attacking has little impact while drug masking and distracting attackings lead to substantial decrease. This indicates
that the knowledge shortcut prompts LLMs to establish alignment between molecular properties and drug names
instead of molecular structures, thereby deviating from the goal of molecular comprehension.

the drug name Dj in Q with (1) a masked pro-258

noun [ this molecule ] and (2) a distracting drug259

name [ unlike Dj ]. Fig. 2 shows that two classes260

of commonly used scientific LLMs, the decoder-261

only models (e.g., Llama (Touvron et al., 2023;262

Dubey et al., 2024)) and the encoder-decoder mod-263

els (e.g., T5 (Raffel et al., 2020)), both exhibit264

severe hallucination phenomena (-21% Acc.) un-265

der two attack strategies. However, the absence of266

SMILES input has little influence on both models (-267

5% Acc.). This indicates that the models rely more268

on textual cues (e.g., drug names) than on SMILES269

structural information to infer molecular proper-270

ties, highlighting their inability to align SMILES271

with molecular properties. This limits their gen-272

eralization and reasoning capabilities for accurate273

molecular question-answering.274

3.3 Mol-Hallu Metric275

To better quantify hallucination in LLMs for molec-276

ular comprehension tasks, we introduce the Mol-277

Hallu evaluation metric to assess the extent of hal-278

lucination. This metric calculates Recall and Preci-279

sion by comparing the entity entailment probability280

between the predicted answer Ai, the ground-truth281

answer Gi, and the molecular description Ti corre-282

sponding to the molecule Mi, thereby evaluating283

the hallucination rate.284

3.3.1 Entity Entailment Probability285

We define molecular hallucination as the phe-286

nomenon of scientific entity mismatches between287

predicted text and reference answers in Sec. 3.1. To288

annotate scientific entities in the text, we employed289

Meta-llama-3.2 (Dubey et al., 2024) with a 10-shot290

prompting approach to automatically label scien- 291

tific entities in captions and QA texts from the Pub- 292

ChemQA dataset and the ChEMBL dataset. After 293

filtering based on inclusiveness, length, and seman- 294

tics, we go through the human evaluation and ob- 295

tain 97,219 chemical entities as the entity database. 296

The statistic visualization below shows that half 297

of the entities in our entity database are molecu- 298

lar structural entities, while the entities related to 299

drug application, property, and natural source are 300

balanced. Then, we introduce the entity entailment

Type Application Property Source Structure

Rate 14.3% 19.7% 12.0% 51.2%

301
probability, defined as the probability that the pres- 302

ence of entity list e is correct given the associated 303

molecular descriptions and answers. Inspired by 304

previous entailment works (Dagan et al., 2005), 305

we find that simple models are effective for entail- 306

ment probability measurement. Here we apply the 307

probability function as w(·), 308

w(e) =
n∑

j=1

1(ej ∈ T̄)/n, (1) 309

where 1 is the indicator function, n is the entity 310

number of e, and T̄ represents the set of all the 311

entities present in description T . Then we compute 312

the precision and the recall of the predicted text. 313

3.3.2 Entailed Precision 314

The entailed precision aims to represent the correct 315

fraction of the n-gram entities in mathbbAi, where 316

mathbbAi is the set of all entities in predicted an- 317

swer Ai. An n-gram entity e is treated as correct 318
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Entity Preference Dataset

Sample from PubChem

What are the characteristic features of 

Isopentenyldehydrorhodopin’s structure?

It contains a long carbon chain consisting 
of 45 carbon atoms, multiple triple bonds
in its SMILES code, and an amide group
denoted by the -OH in its structure.

HRPP Strategy (Ours)

LLMs

Llama, T5, GPT

What are the characteristic features of 

Isopentenyldehydrorhodopin’s structure?

It contains a long carbon …. and 
an alcoholic group denoted by 
the -OH in its structure.

𝑸𝒊

𝑷𝒊

𝑮𝒊

Maximize likelihood

𝑮𝒊𝑯𝒊

What are the characteristic features of 

this molecule’s structure?

𝑸𝒊

𝑷𝒊
𝟏

Logistic Loss

What are the characteristic features of 

this molecule’s structure?

Remove bio-knowledge shortcuts

Hallucination Entity Replacement

Baseline SFT Strategy

𝑸𝒊

𝑷𝒊
𝟐

Figure 3: The pipeline of entity preference dataset and our hallucination-reduction post-processing stage. The entity
preference dataset is generated by removing bio-knowledge shortcuts and replacing entities with hallucinations.
Then we apply the entity preference dataset for scientific-entity hallucination alleviation during the HRPP stage.

if it appears in the ground-truth answer or if it ap-319

pears in the molecular description, which is also a320

substantial correct answer. We apply w(e) as the321

reward weight of the second scenario.322

P n-gram
e =

∑
e∈Ai

[Pr(e ∈ Gn-gram) + w(e)Pr(e /∈ Gn-gram)],

(2)323

Specifically, P n-gram
e represents the reward of the324

n-gram entity e. It receives a score of 1 if the325

ground-truth answer entails it. Otherwise, it re-326

ceives a score of w(e) if e appears in the molecular327

description. We consider the numerator during the328

weight calculation of P n-gram
e . Finally, we apply329

the geometric average to calculate the precision of330

the total sample group,331

P̄e = exp(
4∑

n-gram=1

1

4
log P n-gram

e ), (3)332

where we select the n-gram order from 1-4 as other333

metrics (Papineni et al., 2002b; Post, 2018; Dhingra334

et al., 2019). Meanwhile, we calculate the n-gram335

matching score P̄∅ for non-entity words. To bal-336

ance the precision P̄e from scientific entities and337

P̄∅ from non-entities, we use the entity error count338

γ as a weighting factor,339

γ = 1− (Nwrong/Ntotal)
0.5, (4)340

P = γP̄∅ + (1− γ)P̄e, (5)341

where Nwrong and Ntotal are wrong entity and total342

entity counts. P represents the final precision score.343

3.3.3 Entailed Recall344

The entailed recall R reflects the extent to which345

the model misses correct words. R is computed346

between predicted A and ground truth G to ensure 347

that entities and other n-gram words with high fre- 348

quency in the ground truth receive a higher score 349

when predicted correctly. We also apply the geo- 350

metric average to get R from R1...n. 351

3.3.4 Smoothing & Combination 352

Mol-Hallu employs the geometric average to com- 353

pute entailed precision due to its ability to reflect 354

compound changes accurately. However, when a 355

component approaches 0, the geometric average 356

also tends to 0. To mitigate this issue, we apply 357

smoothing θ=10−5 to components close to 0. After 358

the precision smoothing, we calculate the F1-score 359

based on the entailed precision P and recall R. 360

Mol-Hallu(A,G, T ) = 2P · R/(P + R), (6) 361

Mol-Hallu(fθ) =
1

N

N∑
i=1

Mol-Hallu(Ai, Gi, Ti), (7) 362

where the F1-scores from all samples generated by 363

the model fθ are arithmetic averaged to represent 364

the hallucination rate of fθ. 365

3.4 Hallucination Reduction Post-processing 366

To mitigate the hallucination in LLM-based molec- 367

ular comprehension, we propose the Hallucina- 368

tion Reduction Post-processing (HRPP) stage. As 369

shown in Fig. 3, HRPP consists of two main steps: 370

(1) reducing the model’s reliance on entity name 371

shortcuts through supervised fine-tuning, and (2) 372

improving response accuracy and reducing halluci- 373

nation using Direct Preference Optimization (DPO) 374

with a hallucination-sensitive preference dataset. 375

To mitigate the model’s tendency to generate 376

hallucinated responses due to over-reliance on 377
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Models # Params BLEU-2 BLEU-4 ROUGE-1 ROUGE-L METEOR Mol-Hallu↑
Molecular-LLMs

MolT5-small 80M 49.46 41.94 55.04 51.56 55.40 59.01
MolT5-base 250M 50.21 42.53 55.70 52.07 56.00 44.74
MolT5-large 800M 49.58 41.97 55.52 51.85 55.80 60.13
MoMu-small 82M 50.81 42.54 52.78 51.18 55.94 55.73
MoMu-base 252M 51.07 43.29 53.71 50.98 55.59 56.29
BioT5-base 252M 43.36 35.10 51.05 47.16 51.55 55.21
MolCA 1.3B 51.93 44.28 55.00 51.41 56.79 55.82
3D-MoLM 7B 32.00 26.17 40.13 34.64 52.15 53.18
BioMedGPT 10B 37.31 31.29 39.62 36.87 48.31 43.88

General-LLMs
T5-small 60M 49.97 42.40 54.88 51.16 55.47 59.07
T5-base 220M 51.01 43.27 55.89 52.17 56.43 60.21
T5-large 770M 50.79 42.85 55.98 52.23 56.42 60.93
Llama-2 7B 28.15 23.24 35.14 30.41 46.87 53.78
Llama-3.1 8B 52.19 43.51 55.41 51.18 57.48 60.14

Universal-LLM-API (Few-shot)
Qwen-2.5-Instruct 32B 35.72 27.51 43.59 38.22 49.63 49.97
Qwen-Reason (QwQ) 32B 18.62 13.62 27.33 23.32 35.14 25.61
DeepSeek-V3 671B 49.31 39.86 53.96 48.37 57.69 62.16
DeepSeek-R1 671B 32.12 24.17 41.77 37.56 40.65 46.65
GPT-4o-20241120 1.8T 47.78 41.74 51.97 46.99 51.24 55.71
o1-mini 300B 40.22 31.06 46.99 41.81 51.88 51.23

Table 1: Experimental results for hallucination evaluation across molecular LLMs (fine-tuned), general LLMs
(fine-tuned), and universal LLMs (API-based inference). We report accuracy (%) using both standard textual metrics
and our proposed hallucination-specific evaluation metric.

entity name shortcuts, we employ a supervised378

fine-tuning approach. Given a training dataset379

D = {(qi, Gi)}Ni=1, where Qi is the input text and380

Gi is the corresponding ground truth response, we381

preprocess Qi by masking entity names, replacing382

them with "this molecule" to prevent shortcut learn-383

ing. We then optimize the model parameters θ by384

minimizing the cross-entropy loss:385

LCE(θ) = −
N∑
i=1

T∑
t=1

logPθ(G
t
i | Qi, G

<t
i ) (8)386

where T is the sequence length, N is the sample387

number, and Pθ represents the model’s probability388

distribution over the vocabulary.389

To further improve response accuracy and fac-390

tual consistency of molecular LLMs, we first con-391

struct a hallucination-sensitive preference dataset392

Dp = {(qi, G+
i , G

-
i)}Mi=1, where G+

i represents the393

preferred response, and G-
i represents the less pre-394

ferred response. As shown in Fig. 3 left, to con-395

struct this dataset, we randomly extract 2000 QA396

pairs from the training set. The ground truth Gi is397

designated as G+
i . To generate the negative sam-398

ple G-
i, we introduce entity perturbations by ran-399

domly replacing certain entities in Gi with different400

ones using our chemical entity database. Addition- 401

ally, we sample four responses from the model at 402

a high temperature for each qi, incorporating them 403

into the set of G-
i responses. 404

We use DPO to optimize the model by maxi- 405

mizing the divergence between the likelihood of 406

preferred and rejected responses: 407

L(θ) = −
M∑
i=1

log σ

(
β log

Pθ(G
+
i |qi)Pr(G

-
i|qi)

Pθ(G
-
i|qi)Pr(G+

i |qi)

)
(9) 408

where σ(·) is the sigmoid function, Pr is the refer- 409

ence model, and β is a temperature hyperparameter 410

that controls the strength of preference learning. In 411

the experiment section, we apply HRPP to decoder- 412

only LLMs and encoder-decoder LLMs for effec- 413

tiveness analysis. 414

4 Experiments 415

4.1 Baseline Models and Training Procedures 416

To comprehensively evaluate the LLM perfor- 417

mance in molecular conprehension, we introduce 418

three categories of LLMs as baselines, including 419

scientifically fine-tuned LLMs, general-purpose 420
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Molecular LLMs BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR Mol-Hallu↑
MolT5 34.48 26.54 45.13 28.17 41.34 37.08 46.15

+ HRPP 40.65 30.73 47.47 29.98 43.54 44.31 49.03
Llama-3.1-8B 33.18 24.75 44.19 27.12 40.66 37.57 44.21

+ HRPP 38.79 28.95 46.12 28.41 42.17 43.27 46.28

Table 2: Hallucination Reduction Post-processing (HRPP) has substantial improvements in textural metrics and our
Mol-Hallu metric, demonstrating its effectiveness on both decoder-only models and encoder-decoder-based models.
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Figure 4: Hallucination Distribution Comparison. We visualize the distributions of hallucination entity numbers
between molecular LLMs (MolT5, Llama-3.1) and their de-hallucination versions. Our HRPP effectively mitigates
the frequent occurrence of hallucinations in cases, shifting the distribution peak closer to 0.

LLMs, and commercial LLMs. Specifically, LLMs421

fine-tuned with biochemical knowledge exhibit422

strong capabilities in modeling molecular SMILES423

and protein sequences. We evaluate their hallu-424

cination levels on the PubChemQA dataset in a425

zero-shot manner. General-purpose LLMs, trained426

extensively in natural scenarios, although less adept427

at modeling molecular SMILES compared to sci-428

entifically fine-tuned LLMs, possess stronger rea-429

soning abilities. Commercial LLMs have stronger430

prior knowledge and reasoning capabilities due to431

their large parameter sizes. We conduct paid eval-432

uations using the APIs of commercial LLMs, em-433

ploying 10-shot instruction fine-tuning to generate434

responses to molecular-related queries.435

4.2 Main Results436

We summarize and analyze the baseline perfor-437

mances in Table.1.438

Hallucinations in baseline models. (1) The439

hallucination metric remains within the range of440

40-60%, with an average of 3-4 counterfactual en-441

tities present, indicating significant room for im-442

provement. (2) The degree of hallucination is not443

necessarily positively correlated with model perfor-444

mance. While MolT5-base shows comparable per-445

formance to MolT5-small and MolT5-large, its hal-446

lucination is notably more severe. In contrast, 3D-447

MoLM exhibits moderate performance but demon-448

strates a lower degree of hallucination.449

Structure Comparison: Encoder-Decoder v.s.450

Decoder-only. Encoder-decoder models surpass451

other structures in molecular comprehension tasks452

due to their compact size and excellent perfor- 453

mance. We observe that T5-based models, rep- 454

resented by T5-finetune, MolT5, and MoMu, ex- 455

hibit strong performance on the MolecularQA task 456

even in their small versions, surpassing molecu- 457

lar LLMs based on Llama by 2.7% and GPT-4 by 458

13%. This is attributed to the T5 model’s encoder- 459

decoder structure, which employs a span corruption 460

pre-training strategy. Additionally, its smaller pa- 461

rameter count supports full-parameter fine-tuning 462

instead of the LoRA fine-tuning used in Llama, 463

resulting in better generalization in few-shot sce- 464

narios within the biochemistry domain. 465

Reward strategies in LLMs amplify hallu- 466

cination. Deepseek-R1 and o1-mini have widely 467

adopted reinforcement learning as an effective ap- 468

proach to enhance the LLM reasoning capabilities 469

for complex problems. However, this optimization 470

strategy often leads to a hallucination increase (For- 471

rest et al., 2025). We observe a similar phenomenon 472

in Molecular Comprehension. In the LLM-API 473

part of Table.1, we compare Qwen, Deepseek, and 474

GPT-4, with their reasoning-enhanced versions on 475

scientific QA tasks. The results indicate a signifi- 476

cant decline in both prediction quality and factual 477

accuracy, attributed to: (1) the trade-off between 478

improved reasoning in math/code tasks and the 479

reduced reliance on prior knowledge, making it 480

harder to address scientific questions; and (2) the 481

tendency of reasoning-enhanced LLMs to gener- 482

ate chain-of-thought outputs, which often contain 483

more hallucinated entities. Therefore, balancing 484

reasoning and hallucination in domain-specific sce- 485
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Molecule Query-Type Ground truth Our answer Metric

Isolated
Area

This compound is isolated from the
plants Sorbus cuspidata and Cal-
ceolaria dentata.

Hexaen is isolated from the plants
pentahydroxy and benzoate.

B: 78.9%
R: 86.4%
M: 87.9%
M-H: 43.3%

Potential
Reactiv-
ity

This compound has potential re-
activity towards nucleophiles and
bases due to the presence of ketone
and lactone groups.

This compound has potential re-
activity towards aromaticity and
methoxy due to the presence of sol-
ubility and reactivity groups.

B: 92.2%
R: 93.3%
M: 93.9%
M-H: 66.1%

Table 3: Case Studies for Mol-Hallu and Other Textural Metrics. Our Mol-Hallu exhibits stronger sensitivity to
hallucinated outputs under different question types in molecule comprehension.

narios remains a critical challenge.486

Extra protein knowledge: no benefit to hal-487

lucination. During pretraining, extending the488

dataset to include both chemical molecules and489

protein macromolecules cannot alleviate halluci-490

nation. Instead, it leads to a decrease in perfor-491

mance for molecular understanding tasks. In Ta-492

ble 1, BioMedGPT (Luo et al., 2023) and BioT5493

utilize various protein dataset size (1.8M, 27M)494

as additional knowledge. However, their perfor-495

mance and hallucination assessment are inferior496

to the MolT5-based model due to the structural497

differences between FASTA-based protein inputs498

and SMILES-based molecular inputs, as well as499

the significant domain-specific entity differences500

between proteins and chemical molecules. Conse-501

quently, the incorporation of such knowledge fails502

to enhance generalization or reduce hallucination.503

4.3 Analysis for Hallucination Reduction504

In Table. 2 and Fig. 4, we dive into the hallucination505

reduction post-processing (HRPP) and analyze its506

effectiveness on hallucination alleviation.507

Effectiveness of HRPP Stage. Our HRPP508

stage shows effectiveness and generalizability on509

both decoder-only and T5-based models. Ta-510

ble. 2 shows that HRPP has substantial improve-511

ments for molecular LLMs, bringing an average512

of 4.0% improvements on textural metrics. For513

the hallucination evaluation, our HRPP stage also514

achieves effective hallucination alleviation on both515

decoder-only structure (2.9% ↑) and T5-based516

structure (2.0% ↑). Meanwhile, we observed a517

significant improvement in the BLEU and ME-518

TEOR (5-7%) during the HRPP stage, while the519

ROUGE series improvement is less pronounced (1-520

2%). This indicates that molecular LLMs opti-521

mized through HRPP tend to generate text with522

higher precision in scientific entities and more ac-523

curate semantics. However, missing scientific enti-524

ties still occur in some answers due to the ROUGE525

series metrics being more sensitive to recall. 526

Hallucination Distribution Analysis. To analyze 527

the impact of HRPP on hallucinated samples gen- 528

erated by LLMs, we visualize the change in the 529

number of counterfactual entities Nc before and 530

after the HRPP stage. In Fig. 4, HRPP effectively 531

suppresses highly hallucinated samples (Nc > 4) 532

in both decoder-only and encoder-decoder LLMs. 533

After the HRPP stage, the distribution of counter- 534

factual entities significantly shifts toward the low- 535

hallucination region (0 < Nc < 3), demonstrating 536

the efficacy of the HRPP stage. 537

4.4 Case Studies 538

We select samples with hallucinations and demon- 539

strate a numerical comparison between our Mol- 540

Hallu metric and traditional textual metrics. Ta- 541

ble. 3 shows that Mol-Hallu are more sensitive to 542

hallucinations. When the prediction and ground 543

truth share similar sentence structures but differ in 544

scientific entities, Mol-Hallu assigns a lower score, 545

whereas traditional evaluation methods consider 546

them semantically similar. Additional case studies 547

are proposed in the Appendix.A1. 548

5 Conclusion and Future Work 549

In conclusion, our work aims to evaluate and alle- 550

viate the LLM’s hallucination in molecular com- 551

prehension. By attacking the scientific entities in 552

molecule-related questions, we identify the bio- 553

knowledge shortcuts in the PubChem dataset as 554

the hallucination source of the molecular compre- 555

hension task. We further propose the hallucination 556

evaluation metric, Mol-Hallu, for molecular com- 557

prehension. To alleviate the hallucination, we pro- 558

pose the hallucination reduction post-processing 559

strategy with a molecular hallucination-sensitive 560

preference dataset constructed based on entity re- 561

placement. Experimental results demonstrate that 562

various LLM architectures significantly suppressed 563

hallucinations with this strategy. 564
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Limitations565

We conclude our limitations into the following as-566

pects: (1) Our Mol-Hallu metric relies on a scien-567

tific entity database to localize scientific entities in568

predicted texts and evaluate the degree of hallucina-569

tion. Although the current entity database demon-570

strates excellent coverage in the small molecule571

domain, its coverage in other scientific fields, such572

as protein understanding, remains limited. Future573

work should incorporate domain-specific termi-574

nologies to construct a more comprehensive en-575

tity database. (2) The current benchmark lacks576

full fine-tuning of large models due to insufficient577

training resources. Future efforts will focus on fine-578

tuning LLMs with 7B+ parameters and exploring579

the relationship between the performance and hal-580

lucination levels of molecular LLMs under scaling581

laws.582

Potential Risks583

Although Mol-Hallu provides a viable metric for584

hallucination assessment in the molecular com-585

prehension domain, there remains a risk of abuse.586

Mol-Hallu evaluation may not accurately represent587

a model’s hallucination level over all chemistry-588

related scenarios.589

References590

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An591
automatic metric for mt evaluation with improved cor-592
relation with human judgments. In Proceedings of593
the acl workshop on intrinsic and extrinsic evaluation594
measures for machine translation and/or summariza-595
tion, pages 65–72.596

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-597
liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei598
Ji, Tiezheng Yu, Willy Chung, et al. 2023. A multi-599
task, multilingual, multimodal evaluation of chatgpt600
on reasoning, hallucination, and interactivity. arXiv601
preprint arXiv:2302.04023.602

He Cao, Zijing Liu, Xingyu Lu, Yuan Yao, and Yu Li.603
2025. InstructMol: Multi-modal integration for build-604
ing a versatile and reliable molecular assistant in605
drug discovery. In Proceedings of the 31st Inter-606
national Conference on Computational Linguistics,607
pages 354–379, Abu Dhabi, UAE. Association for608
Computational Linguistics.609

He Cao, Weidi Luo, Yu Wang, Zijing Liu, Bing Feng,610
Yuan Yao, and Yu Li. 2024a. Guide for defense611
(g4d): Dynamic guidance for robust and balanced612
defense in large language models. arXiv preprint613
arXiv:2410.17922.614

He Cao, Yanjun Shao, Zhiyuan Liu, Zijing Liu, Xian- 615
gru Tang, Yuan Yao, and Yu Li. 2024b. PRESTO: 616
Progressive pretraining enhances synthetic chemistry 617
outcomes. In Findings of the Association for Com- 618
putational Linguistics: EMNLP 2024, pages 10197– 619
10224, Miami, Florida, USA. Association for Com- 620
putational Linguistics. 621

I Chern, Steffi Chern, Shiqi Chen, Weizhe Yuan, Kehua 622
Feng, Chunting Zhou, Junxian He, Graham Neubig, 623
Pengfei Liu, et al. 2023. Factool: Factuality detec- 624
tion in generative ai–a tool augmented framework 625
for multi-task and multi-domain scenarios. arXiv 626
preprint arXiv:2307.13528. 627

Ido Dagan, Oren Glickman, and Bernardo Magnini. 628
2005. The pascal recognising textual entailment chal- 629
lenge. In Machine learning challenges workshop, 630
pages 177–190. Springer. 631

Bhuwan Dhingra, Manaal Faruqui, Ankur Parikh, Ming- 632
Wei Chang, Dipanjan Das, and William W Cohen. 633
2019. Handling divergent reference texts when 634
evaluating table-to-text generation. arXiv preprint 635
arXiv:1906.01081. 636

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, 637
Roberta Raileanu, Xian Li, Asli Celikyilmaz, and Ja- 638
son Weston. 2023. Chain-of-verification reduces hal- 639
lucination in large language models. arXiv preprint 640
arXiv:2309.11495. 641

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 642
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 643
Akhil Mathur, Alan Schelten, Amy Yang, Angela 644
Fan, et al. 2024. The llama 3 herd of models. arXiv 645
preprint arXiv:2407.21783. 646

Nouha Dziri, Andrea Madotto, Osmar Zaïane, and 647
Avishek Joey Bose. 2021. Neural path hunter: Re- 648
ducing hallucination in dialogue systems via path 649
grounding. arXiv preprint arXiv:2104.08455. 650

Carl Edwards, Tuan Lai, Kevin Ros, Garrett Honke, 651
Kyunghyun Cho, and Heng Ji. 2022. Translation 652
between molecules and natural language. arXiv 653
preprint arXiv:2204.11817. 654

Yin Fang, Xiaozhuan Liang, Ningyu Zhang, Kangwei 655
Liu, Rui Huang, Zhuo Chen, Xiaohui Fan, and Hua- 656
jun Chen. 2023. Mol-instructions: A large-scale 657
biomolecular instruction dataset for large language 658
models. arXiv preprint arXiv:2306.08018. 659

Bin Feng, Zequn Liu, Nanlan Huang, Zhiping Xiao, 660
Haomiao Zhang, Srbuhi Mirzoyan, Hanwen Xu, 661
Jiaran Hao, Yinghui Xu, Ming Zhang, et al. 2024. 662
A bioactivity foundation model using pairwise meta- 663
learning. Nature Machine Intelligence, 6(8):962– 664
974. 665

Yang Feng, Wanying Xie, Shuhao Gu, Chenze Shao, 666
Wen Zhang, Zhengxin Yang, and Dong Yu. 2020. 667
Modeling fluency and faithfulness for diverse neural 668
machine translation. In Proceedings of the AAAI Con- 669
ference on Artificial Intelligence, volume 34, pages 670
59–66. 671

9

https://aclanthology.org/2025.coling-main.25/
https://aclanthology.org/2025.coling-main.25/
https://aclanthology.org/2025.coling-main.25/
https://aclanthology.org/2025.coling-main.25/
https://aclanthology.org/2025.coling-main.25/
https://doi.org/10.18653/v1/2024.findings-emnlp.597
https://doi.org/10.18653/v1/2024.findings-emnlp.597
https://doi.org/10.18653/v1/2024.findings-emnlp.597
https://doi.org/10.18653/v1/2024.findings-emnlp.597
https://doi.org/10.18653/v1/2024.findings-emnlp.597


Daniel Flam-Shepherd, Kevin Zhu, and Alán Aspuru-672
Guzik. 2022. Language models can learn complex673
molecular distributions. Nature Communications,674
13(1):3293.675

Bao Forrest, Xu Chenyu, and Mendelevitch Ofer. 2025.676
Deepseek-r1 hallucinates more than deepseek-v3.677

Zorik Gekhman, Gal Yona, Roee Aharoni, Matan Eyal,678
Amir Feder, Roi Reichart, and Jonathan Herzig. 2024.679
Does fine-tuning llms on new knowledge encourage680
hallucinations? In Proceedings of the 2024 Con-681
ference on Empirical Methods in Natural Language682
Processing, pages 7765–7784, Miami, Florida, USA.683
Association for Computational Linguistics.684

Francesca Grisoni. 2023. Chemical language models for685
de novo drug design: Challenges and opportunities.686
Current Opinion in Structural Biology, 79:102527.687

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,688
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,689
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-690
centivizing reasoning capability in llms via reinforce-691
ment learning. arXiv preprint arXiv:2501.12948.692

Chengxin Hu, Hao Li, Yihe Yuan, Zezheng Song, and693
Haixin Wang. 2025. Omni-mol: Exploring universal694
convergent space for omni-molecular tasks. Preprint,695
arXiv:2502.01074.696

Ross Irwin, Spyridon Dimitriadis, Jiazhen He, and697
Esben Jannik Bjerrum. 2022. Chemformer: a698
pre-trained transformer for computational chem-699
istry. Machine Learning: Science and Technology,700
3(1):015022.701

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan702
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea703
Madotto, and Pascale Fung. 2023. Survey of halluci-704
nation in natural language generation. ACM Comput-705
ing Surveys, 55(12):1–38.706

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom707
Henighan, Dawn Drain, Ethan Perez, Nicholas708
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli709
Tran-Johnson, et al. 2022. Language models710
(mostly) know what they know. arXiv preprint711
arXiv:2207.05221.712

Siddhartha Laghuvarapu, Namkyeong Lee, Chufan713
Gao, and Jimeng Sun. 2024. Moltextqa: A cu-714
rated question-answering dataset and benchmark for715
molecular structure-text relationship learning. Open-716
Review.717

Katherine Lee, Daphne Ippolito, Andrew Nystrom,718
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,719
and Nicholas Carlini. 2022. Deduplicating training720
data makes language models better. In Proceedings721
of the 60th Annual Meeting of the Association for722
Computational Linguistics, pages 8424–8445.723

Sihang Li, Zhiyuan Liu, Yanchen Luo, Xiang Wang,724
Xiangnan He, Kenji Kawaguchi, Tat-Seng Chua,725
and Qi Tian. 2024a. Towards 3d molecule-text726

interpretation in language models. arXiv preprint 727
arXiv:2401.13923. 728

Wangyue Li, Liangzhi Li, Tong Xiang, Xiao Liu, Wei 729
Deng, and Noa Garcia. 2024b. Can multiple-choice 730
questions really be useful in detecting the abilities of 731
llms? arXiv preprint arXiv:2403.17752. 732

Chin-Yew Lin. 2004. Rouge: A package for automatic 733
evaluation of summaries. In Text summarization 734
branches out, pages 74–81. 735

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, 736
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi 737
Deng, Chenyu Zhang, Chong Ruan, et al. 2024. 738
Deepseek-v3 technical report. arXiv preprint 739
arXiv:2412.19437. 740

Shengchao Liu, Weili Nie, Chengpeng Wang, Jiarui 741
Lu, Zhuoran Qiao, Ling Liu, Jian Tang, Chaowei 742
Xiao, and Animashree Anandkumar. 2023a. Multi- 743
modal molecule structure–text model for text-based 744
retrieval and editing. Nature Machine Intelligence, 745
5(12):1447–1457. 746

Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan 747
Lasenby, Hongyu Guo, and Jian Tang. 2021. Pre- 748
training molecular graph representation with 3d ge- 749
ometry. arXiv preprint arXiv:2110.07728. 750

Zhiyuan Liu, Sihang Li, Yanchen Luo, Hao Fei, Yixin 751
Cao, Kenji Kawaguchi, Xiang Wang, and Tat-Seng 752
Chua. 2023b. Molca: Molecular graph-language 753
modeling with cross-modal projector and uni-modal 754
adapter. arXiv preprint arXiv:2310.12798. 755

Shuqi Lu, Zhifeng Gao, Di He, Linfeng Zhang, and 756
Guolin Ke. 2024a. Data-driven quantum chemical 757
property prediction leveraging 3d conformations with 758
uni-mol+. Nature Communications, 15(1):7104. 759

Xingyu Lu, He Cao, Zijing Liu, Shengyuan Bai, Leqing 760
Chen, Yuan Yao, Hai-Tao Zheng, and Yu Li. 2024b. 761
Moleculeqa: A dataset to evaluate factual accu- 762
racy in molecular comprehension. arXiv preprint 763
arXiv:2403.08192. 764

Yizhen Luo, Jiahuan Zhang, Siqi Fan, Kai Yang, 765
Yushuai Wu, Mu Qiao, and Zaiqing Nie. 2023. 766
Biomedgpt: Open multimodal generative pre-trained 767
transformer for biomedicine. arXiv preprint 768
arXiv:2308.09442. 769

Liuzhenghao Lv, Hao Li, Yu Wang, Zhiyuan Yan, Zi- 770
jun Chen, Zongying Lin, Li Yuan, and Yonghong 771
Tian. 2024. Navigating chemical-linguistic sharing 772
space with heterogeneous molecular encoding. arXiv 773
preprint arXiv:2412.20888. 774

Potsawee Manakul, Adian Liusie, and Mark JF Gales. 775
2023. Selfcheckgpt: Zero-resource black-box hal- 776
lucination detection for generative large language 777
models. arXiv preprint arXiv:2303.08896. 778

10

https://www.vectara.com/blog/deepseek-r1-hallucinates-more-than-deepseek-v3
https://doi.org/10.18653/v1/2024.emnlp-main.444
https://doi.org/10.18653/v1/2024.emnlp-main.444
https://doi.org/10.18653/v1/2024.emnlp-main.444
https://arxiv.org/abs/2502.01074
https://arxiv.org/abs/2502.01074
https://arxiv.org/abs/2502.01074
https://doi.org/10.18653/v1/2022.acl-long.577
https://doi.org/10.18653/v1/2022.acl-long.577
https://doi.org/10.18653/v1/2022.acl-long.577


Joshua Maynez, Shashi Narayan, Bernd Bohnet, and779
Ryan McDonald. 2020. On faithfulness and factu-780
ality in abstractive summarization. In Proceedings781
of the 58th Annual Meeting of the Association for782
Computational Linguistics, pages 1906–1919.783

David Mendez, Anna Gaulton, A Patrícia Bento, Jon784
Chambers, Marleen De Veij, Eloy Félix, María Paula785
Magariños, Juan F Mosquera, Prudence Mutowo,786
Michał Nowotka, et al. 2019. Chembl: towards direct787
deposition of bioassay data. Nucleic acids research,788
47(D1):D930–D940.789

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike790
Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer,791
Luke Zettlemoyer, and Hannaneh Hajishirzi. 2023.792
Factscore: Fine-grained atomic evaluation of factual793
precision in long form text generation. arXiv preprint794
arXiv:2305.14251.795

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-796
Jing Zhu. 2002a. Bleu: a method for automatic eval-797
uation of machine translation. In Proceedings of the798
40th annual meeting of the Association for Computa-799
tional Linguistics, pages 311–318.800

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-801
Jing Zhu. 2002b. Bleu: a method for automatic eval-802
uation of machine translation. In Proceedings of the803
40th annual meeting of the Association for Computa-804
tional Linguistics, pages 311–318.805

Ankur P Parikh, Xuezhi Wang, Sebastian Gehrmann,806
Manaal Faruqui, Bhuwan Dhingra, Diyi Yang, and807
Dipanjan Das. 2020. Totto: A controlled table-to-text808
generation dataset. arXiv preprint arXiv:2004.14373.809

Qizhi Pei, Wei Zhang, Jinhua Zhu, Kehan Wu, Kaiyuan810
Gao, Lijun Wu, Yingce Xia, and Rui Yan. 2023.811
Biot5: Enriching cross-modal integration in biology812
with chemical knowledge and natural language asso-813
ciations. In Proceedings of the 2023 Conference on814
Empirical Methods in Natural Language Processing,815
pages 1102–1123, Singapore.816

Matt Post. 2018. A call for clarity in reporting bleu817
scores. arXiv preprint arXiv:1804.08771.818

Chen Qian, Huayi Tang, Zhirui Yang, Hong Liang,819
and Yong Liu. 2023. Can large language models820
empower molecular property prediction? Preprint,821
arXiv:2307.07443.822

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine823
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,824
Wei Li, and Peter J Liu. 2020. Exploring the lim-825
its of transfer learning with a unified text-to-text826
transformer. Journal of machine learning research,827
21(140):1–67.828

Vipula Rawte, Amit Sheth, and Amitava Das. 2023. A829
survey of hallucination in large foundation models.830
arXiv preprint arXiv:2309.05922.831

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, 832
Ying Wei, Wenbing Huang, and Junzhou Huang. 833
2020. Self-supervised graph transformer on large- 834
scale molecular data. Advances in neural information 835
processing systems, 33:12559–12571. 836

Bing Su, Dazhao Du, Zhao Yang, Yujie Zhou, Jiang- 837
meng Li, Anyi Rao, Hao Sun, Zhiwu Lu, and Ji- 838
Rong Wen. 2022. A molecular multimodal founda- 839
tion model associating molecule graphs with natural 840
language. arXiv preprint arXiv:2209.05481. 841

Qwen Team. 2024a. Qwen2.5: A party of foundation 842
models. 843

Qwen Team. 2024b. Qwq: Reflect deeply on the bound- 844
aries of the unknown. 845

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 846
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 847
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 848
Bhosale, et al. 2023. Llama 2: Open founda- 849
tion and fine-tuned chat models. arXiv preprint 850
arXiv:2307.09288. 851

Neeraj Varshney, Wenlin Yao, Hongming Zhang, Jian- 852
shu Chen, and Dong Yu. 2023. A stitch in time saves 853
nine: Detecting and mitigating hallucinations of 854
llms by validating low-confidence generation. arXiv 855
preprint arXiv:2307.03987. 856

Sheng Wang, Yuzhi Guo, Yuhong Wang, Hongmao Sun, 857
and Junzhou Huang. 2019. Smiles-bert: large scale 858
unsupervised pre-training for molecular property pre- 859
diction. In Proceedings of the 10th ACM interna- 860
tional conference on bioinformatics, computational 861
biology and health informatics, pages 429–436. 862

Yanli Wang, Jewen Xiao, Tugba O Suzek, Jian Zhang, 863
Jiyao Wang, and Stephen H Bryant. 2009. Pubchem: 864
a public information system for analyzing bioactiv- 865
ities of small molecules. Nucleic acids research, 866
37(suppl_2):W623–W633. 867

Yixu Wang, Yan Teng, Kexin Huang, Chengqi Lyu, 868
Songyang Zhang, Wenwei Zhang, Xingjun Ma, Yu- 869
Gang Jiang, Yu Qiao, and Yingchun Wang. 2023. 870
Fake alignment: Are llms really aligned well? arXiv 871
preprint arXiv:2311.05915. 872

Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir 873
Barati Farimani. 2022. Molecular contrastive learn- 874
ing of representations via graph neural networks. Na- 875
ture Machine Intelligence, 4(3):279–287. 876

Jia-Yu Yao, Kun-Peng Ning, Zhen-Hui Liu, Mu-Nan 877
Ning, Yu-Yang Liu, and Li Yuan. 2023. Llm lies: 878
Hallucinations are not bugs, but features as adversar- 879
ial examples. arXiv preprint arXiv:2310.01469. 880

Zhangyue Yin, Qiushi Sun, Qipeng Guo, Jiawen Wu, 881
Xipeng Qiu, and Xuanjing Huang. 2023. Do large 882
language models know what they don‘t know? In 883
Findings of the Association for Computational Lin- 884
guistics: ACL 2023, pages 8653–8665. 885

11

https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://arxiv.org/abs/2307.07443
https://arxiv.org/abs/2307.07443
https://arxiv.org/abs/2307.07443
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://doi.org/10.18653/v1/2023.findings-acl.551
https://doi.org/10.18653/v1/2023.findings-acl.551
https://doi.org/10.18653/v1/2023.findings-acl.551


Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin886
Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-887
Yan Liu. 2021. Do transformers really perform badly888
for graph representation? Advances in neural infor-889
mation processing systems, 34:28877–28888.890

Botao Yu, Frazier N Baker, Ziqi Chen, Xia Ning, and891
Huan Sun. 2024. Llasmol: Advancing large language892
models for chemistry with a large-scale, comprehen-893
sive, high-quality instruction tuning dataset. arXiv894
preprint arXiv:2402.09391.895

Qiang Zhang, Keyan Ding, Tianwen Lv, Xinda Wang,896
Qingyu Yin, Yiwen Zhang, Jing Yu, Yuhao Wang,897
Xiaotong Li, Zhuoyi Xiang, et al. 2024a. Scientific898
large language models: A survey on biological &899
chemical domains. ACM Computing Surveys.900

Yu Zhang, Xiusi Chen, Bowen Jin, Sheng Wang, Shui-901
wang Ji, Wei Wang, and Jiawei Han. 2024b. A com-902
prehensive survey of scientific large language mod-903
els and their applications in scientific discovery. In904
EMNLP’24, pages 8783–8817.905

Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang906
Zheng, Hongteng Xu, Zhewei Wei, Linfeng Zhang,907
and Guolin Ke. 2023. Uni-mol: A universal 3d908
molecular representation learning framework. In The909
Eleventh International Conference on Learning Rep-910
resentations.911

A Appendix912

A.1 Case Studies for PubchemQA Dataset913

We systematically enumerated samples with vary-914

ing degrees of hallucination from the PubchemQA915

dataset and compared the scores of traditional met-916

rics (BLEU-2/4, ROUGE-1/2/L, and METEOR)917

with those of Mol-Hallu. Fig. 4 provides 7 sam-918

ples from PubchemQA, where Q-Type represents919

the question type of the sample, B,R,M,M -H in920

Metric represents the average of BLEU-2/4, the av-921

erage of Rouge-1/2/L, Meteor, and our Mol-Hallu922

metric. The experiment results in Fig. 4 covered923

diverse molecular structures and question types,924

demonstrating that Mol-Hallu accurately reflects925

the hallucination degree across different scenarios,926

exhibiting robust performance and domain adapt-927

ability. Notably, in the second case, where the928

model’s prediction completely deviated from the929

ground truth, Mol-Hallu assigned a low score of930

1.6%, while traditional metrics, misled by super-931

ficial sentence similarities, provided significantly932

higher scores (83.8%, 87.5%, 91.5%). This con-933

trast not only highlights the inherent limitations of934

traditional metrics in evaluating hallucinations in935

biochemical texts but also further validates the re-936

liability and superiority of Mol-Hallu in detecting937

semantic errors in scientific entities.938

A.2 The Evaluation Introduction 939

In this subsection, we provide the detailed informa- 940

tion for traditional textural evaluation metrics for 941

LLM prediction in Question-Answering tasks. 942

BLEU: (Bilingual Evaluation Understudy) is a 943

precision-based metric widely used for evaluating 944

the quality of machine-generated text by compar- 945

ing it to one or more reference texts. It measures 946

the overlap of n-grams (typically up to 4-grams) 947

between the generated text and the references. The 948

BLEU score is calculated as follows: 949

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
(10) 950

where BP is the brevity penalty to penalize short 951

translations, wn is the weight for each n-gram pre- 952

cision pn, and N is the maximum n-gram order 953

(usually 4). 954

ROUGE: (Recall-Oriented Understudy for Gist- 955

ing Evaluation) is a recall-oriented metric com- 956

monly used for evaluating summarization tasks. It 957

measures the overlap of n-grams, word sequences, 958

or word pairs between the generated text and the 959

reference texts. The most frequently used variant, 960

ROUGE-N, is defined as: 961

ROUGE-N =

∑
R
∑

n-gram∈R Cmatch(n-gram)∑
R
∑

n-gram∈R C(n-gram)
(11) 962

where Cmatch(n-gram) is the number of n-grams 963

co-occurring in both the generated and reference 964

texts R, and C(n-gram) is the total number of n- 965

grams in the reference. 966

METEOR: (Metric for Evaluation of Transla- 967

tion with Explicit ORdering) is a metric designed 968

to address some limitations of BLEU by incorpo- 969

rating synonymy, stemming, and word order. It 970

calculates a weighted harmonic mean of precision 971

and recall, with a penalty for word order discrepan- 972

cies. The METEOR score is computed as: 973

METEOR = (1− γ · Penalty) · 10 · P ·R
R+ 9 · P

(12) 974

where P and R are precision and recall, respec- 975

tively, γ is a parameter controlling the penalty 976

weight, and Penalty is a function of the number 977

of word order violations. 978
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Molecule Q-Type Ground truth Our answer Metric

Structure

It has a docosanoid structure with
a 22-carbon chain and unsaturated
bonds at positions 8, 15, and 19.
It also contains hydroxyl groups at
positions 7 and 17.

It has a docosanoid structure with
a 22-carbon chain and sedative at
disorders 8, 15, and 19. It also con-
tains appetite at disorders 7.

B: 88.4%
R: 87.5%
M: 91.5%
M-H: 66.5%

Class This organic compound belongs to
the class of benzamides.

This organic compound belongs to
the class of carboxylic acid.

B: 83.8%
R: 82.6%
M: 85.7%
M-H: 1.6%

Solubility
Property

This molecule has solubility in
both polar and nonpolar solvents
due to the presence of a hy-
droxy group (-OH) and a methoxy
group (-OCH3).

This molecule has shaking in both
polar and insomnia due to the pres-
ence of a hallucinations (-OH) and
a seizures (-OCH3).

B: 88.3%
R: 87.9%
M: 90.9%
M-H: 63.9%

Isolated
Area

This compound is isolated from the
plants Sorbus cuspidata and Cal-
ceolaria dentata.

Hexaen is isolated from the plants
pentahydroxy and benzoate.

B: 78.9%
R: 86.4%
M: 87.9%
M-H: 43.3%

Potential
Reactiv-
ity

This compound has potential re-
activity towards nucleophiles and
bases due to the presence of ketone
and lactone groups.

This compound has potential re-
activity towards aromaticity and
methoxy due to the presence of sol-
ubility and reactivity groups.

B: 92.2%
R: 93.3%
M: 93.9%
M-H: 66.1%

Structure

The molecule has a glycerol back-
bone with a hexadecanoyl group
attached to the sn-1 position and a
methyl group attached to the sn-2
position. It also has a phosphate
group and a choline molecule at-
tached to the sn-3 position.

The molecule has a glycerol back-
bone with a hexadecanoyl group
attached to the sn-1 position and
a methyl group attached to the
PbSO4 position. It also has a zinc
group and a silver molecule at-
tached to the copper position.

B: 79.6%
R: 87.8%
M: 84.1%
M-H: 67.9%

Chemical
Classify

The compound is classified as
a carbohydrate acid derivative,
meaning it is a derivative of a car-
boxylic acid that contains a carbo-
hydrate moiety. It is also catego-
rized as an oligosaccharide sulfate,
indicating it is a sulfated oligosac-
charide with multiple sugar units
and sulfate groups.

The compound is classified as a
carbohydrate acid postganglionic,
meaning it is a postganglionic of
a effector-cell acid that contains a
carbohydrate moiety. It is also cat-
egorized as a receptor, indicating it
is a sulfated oligosaccharide with
multiple muscle and sulfate bron-
choconstriction.

B: 78.1%
R: 86.2%
M: 85.2%
M-H: 65.5%

Table 4: Additional case studies for Mol-Hallu and other textural metrics. Our Mol-Hallu exhibits stronger sensitivity
to hallucinated outputs under different question types in molecule comprehension.

A.3 Licenses and Terms of Use for Models979

and Datasets980

In this study, we employed multiple models and981

datasets, each subject to distinct licensing terms.982

The following is a summary of these licenses along983

with their respective usage conditions.984

MolT5: Released by blender-nlp under the BSD985

3-Clause License. This license permits free use,986

modification, and distribution, provided that spe-987

cific conditions are met, such as retaining the copy-988

right notice and disclaimer. Commercial use is989

allowed, but endorsement or promotion of derived990

products using the copyright holder’s name re-991

quires prior written permission. The license also992

includes a liability disclaimer, stating that the soft-993

ware is provided "as is" without warranties or guar- 994

antees. 995

MoMu: Released under the MIT License. This 996

license permits free use, modification, and distribu- 997

tion, including for commercial purposes, as long as 998

the original copyright notice and permission notice 999

are retained. The software is provided "as is," with- 1000

out any warranties or guarantees, and the authors 1001

bear no liability for any claims, damages, or other 1002

issues arising from its use. 1003

BioT5: Released under the MIT License. This 1004

license permits free use, modification, and distribu- 1005

tion, including for commercial purposes, as long as 1006

the original copyright notice and permission notice 1007

are retained. The software is provided "as is," with- 1008
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out any warranties or guarantees, and the authors1009

bear no liability for any claims, damages, or other1010

issues arising from its use.1011

3D-MoLM: Released under the Apache 2.0 Li-1012

cense. This license permits free use, modification,1013

and distribution, including for commercial pur-1014

poses, provided that the original copyright notice1015

and license terms are retained. Users are allowed1016

to patent their modifications but must grant a li-1017

cense for any patented contributions. The software1018

is provided "as is," without warranties or liabili-1019

ties, and users must include a notice stating any1020

modifications made to the original version.1021

BioMedGPT: Released under the MIT License.1022

This license permits free use, modification, and1023

distribution, including for commercial purposes, as1024

long as the original copyright notice and permission1025

notice are retained. The software is provided "as1026

is," without any warranties or guarantees, and the1027

authors bear no liability for any claims, damages,1028

or other issues arising from its use.1029

T5: Released under the Apache 2.0 License.1030

This license permits free use, modification, and1031

distribution, including for commercial purposes,1032

provided that the original copyright notice and li-1033

cense terms are retained. Users are allowed to1034

patent their modifications but must grant a license1035

for any patented contributions. The software is pro-1036

vided "as is," without warranties or liabilities, and1037

users must include a notice stating any modifica-1038

tions made to the original version.1039

Llama-2: Released by Meta under the Llama1040

2 Community License. This license permits free1041

use, modification, and distribution, but restricts the1042

model’s use for training other language models and1043

imposes specific conditions for commercial use,1044

such as active user limits.1045

Llama-3.1: Released by Meta under the Llama1046

3.1 Community License. This license permits free1047

use, modification, and distribution, with require-1048

ments such as attribution, compliance with Meta’s1049

Acceptable Use Policy, and display of "Built with1050

Llama" for derivative works. Commercial use is1051

allowed, but entities with over 700 million monthly1052

active users must obtain a separate license from1053

Meta. The license includes disclaimers of warranty1054

and liability, and any legal disputes fall under the1055

jurisdiction of California law.1056

Qwen-2.5-Instruct (Team, 2024a): Released un-1057

der the Apache 2.0 License. This license permits1058

free use, modification, and distribution, including1059

for commercial purposes, provided that the origi-1060

nal copyright notice and license terms are retained. 1061

Users are allowed to patent their modifications but 1062

must grant a license for any patented contributions. 1063

The software is provided "as is," without warranties 1064

or liabilities, and users must include a notice stating 1065

any modifications made to the original version. 1066

Qwen-Reason (QwQ) (Team, 2024b): Released 1067

under the Apache 2.0 License. This license permits 1068

free use, modification, and distribution, including 1069

for commercial purposes, provided that the origi- 1070

nal copyright notice and license terms are retained. 1071

Users are allowed to patent their modifications but 1072

must grant a license for any patented contributions. 1073

The software is provided "as is," without warranties 1074

or liabilities, and users must include a notice stating 1075

any modifications made to the original version. 1076

DeepSeek-V3 (Liu et al., 2024): Released by 1077

DeepSeek under the DeepSeek License (v1.0, Oct 1078

23, 2023). It grants a free, global, irrevoca- 1079

ble license for using, modifying, and distributing 1080

DeepSeek-V3, with strict restrictions on military 1081

use, harm, misinformation, discrimination, and 1082

unauthorized data processing. Users must enforce 1083

these limits in derivatives. DeepSeek may restrict 1084

misuse remotely and disclaims warranties and lia- 1085

bility. Governed by Chinese law (PRC), jurisdic- 1086

tion in Hangzhou. 1087

DeepSeek-R1 (Guo et al., 2025): Released un- 1088

der the MIT License. This license permits free use, 1089

modification, and distribution, including for com- 1090

mercial purposes, as long as the original copyright 1091

notice and permission notice are retained. The soft- 1092

ware is provided "as is," without any warranties or 1093

guarantees, and the authors bear no liability for any 1094

claims, damages, or other issues arising from its 1095

use. 1096

GPT-4o-20241120: Released by OpenAI. It is 1097

proprietary software. Access to this model is pro- 1098

vided through OpenAI’s platforms, such as Chat- 1099

GPT and the Azure OpenAI Service, under specific 1100

subscription plans. The model is not open-source 1101

and is subject to OpenAI’s terms of service and 1102

usage policies. 1103

o1-mini: Released by OpenAI. It is proprietary 1104

software. Access to o1-mini is provided through 1105

OpenAI’s API and platforms, such as ChatGPT, 1106

under specific subscription plans. The model is not 1107

open-source and is subject to OpenAI’s terms of 1108

service and usage policies. 1109

PubChemQA (3D-MoIT): Released under the 1110

Apache 2.0 License. This license permits free use, 1111

modification, and distribution, including for com- 1112
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mercial purposes, provided that the original copy-1113

right notice and license terms are retained. Users1114

are allowed to patent their modifications but must1115

grant a license for any patented contributions. The1116

software is provided "as is," without warranties or1117

liabilities, and users must include a notice stating1118

any modifications made to the original version.1119

ChEMBL: Released under the Creative Com-1120

mons Attribution-ShareAlike 3.0 Unported License.1121

This license allows free use, modification, and dis-1122

tribution of the dataset, but requires appropriate1123

attribution and mandates that any derivative works1124

or modifications must be distributed under the same1125

license.1126
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