

000 LATENT-TO-OBSERVABLE SCORE CORRECTION FOR 001 PROBABILISTIC TIME SERIES IMPUTATION 002 003 004

005 **Anonymous authors**
006 **Paper under double-blind review**
007
008
009

010 ABSTRACT 011

012 Missing data remains a key challenge in multivariate time series modeling, often
013 degrading downstream performance. Recent score-based generative models show
014 strong potential for high-quality imputations, yet most ignore original missing
015 data during training, since ground truth is unavailable, resulting in biased score
016 estimation. We theoretically analyze the effect of missingness on score-based
017 modeling under the denoising diffusion probabilistic model (DDPM) framework.
018 Our findings reveal that ignoring original missing patterns—especially under high
019 missing rates or strong inter-variable correlations—can significantly distort the
020 learned score function even at non-missing points. To overcome this, we propose
021 the Hierarchical Score-Based Generative Model (HSGM) for probabilistic time
022 series imputation. HSGM integrates latent-space and observation-space diffusion
023 in a layer-wise refinement framework grounded in the chain rule of probability. A
024 pretrained Variational Autoencoder (VAE) with normalizing flows captures com-
025 plex latent distributions, while a continuous-time variational diffusion (VPSDE)
026 operates in latent space. A cross-attention mechanism between the original and de-
027 noised latent states enhances the fidelity and resolution of the generative outputs,
028 while an observation-space diffusion module further refines the final imputations.
029 Experiments on four benchmark datasets show that HSGM achieves the best ac-
030 curate imputations with tighter uncertainty estimates than existing methods, while
031 effectively correcting score function bias, establishing a new state of the art in
032 time series imputation.
033

034 1 INTRODUCTION 035

036 Missing data in multivariate time series (MTS) is ubiquitous during data collection, arising from
037 factors such as sensor unreliability and network instability Wang et al. (2024); Miao et al. (2022).
038 Such missingness can significantly degrade the performance of data-driven models in downstream
039 tasks, making multivariate time series imputation (MTSI) a crucial solution Jin et al. (2024); Fang &
040 Wang (2020). Recently, deep learning—particularly score-based models—has achieved remarkable
041 progress in MTSI.

042 Most imputation approaches based on score-based models simulate missing masks and values to
043 estimate the (conditional) score function, often ignoring the original missing entries due to the lack
044 of ground truth Tashiro et al. (2021); Yang et al. (2024). Common heuristics, such as zero- or mean-
045 imputation, assume that original missing values are independent of both observed and simulated
046 data—an assumption rarely valid in real-world datasets. In practice, the original missing values often
047 exhibit strong temporal or spatiotemporal correlations Cao et al. (2025); Wang et al. (2025); Yuan &
048 Qiao, and ignoring them can bias score estimation. This is particularly problematic in domains like
049 healthcare, where missing rates can be around 80%, making the original missing data too prevalent
050 to disregard Xu et al. (2023); Dai et al. (2024); Liu et al. (2023a). A central challenge in score-
051 based imputation is mitigating bias in the score-matching objective. Popular approaches, including
052 MissDiff Ouyang et al. (2023), mask the conditional score-based function during denoising score
053 matching but typically ignore dependencies between observed and original missing data, leading to
suboptimal score estimates. To address this, Givens et al. Givens et al. (2025) proposed importance
weighting (IW) and variational approximations of the true score. While IW mitigates distributional
shifts by reweighting samples, it can induce high variance and unstable gradients when the weights

054 are poorly estimated. Variational methods, such as the Marginal Variational (Marg-Var) approach
 055 based on the Expectation-Maximization (EM) algorithm, provide improved stability but often rely
 056 on manual feature engineering, limiting end-to-end training. DiffPutter Zhang et al. (2025) integrates
 057 diffusion models with EM to tackle missing data imputation, iteratively learning the joint distribution
 058 of observed and missing values while performing conditional sampling. These approaches remain
 059 computationally demanding due to repeated score approximations at each diffusion step.

060 In this paper, we analyze the original missing effect in learning the score-based function from a
 061 mathematical perspective under the denoising diffusion probabilistic model (DDPM) framework.
 062 To explicitly account for original missing values, we propose a Hierarchical Score-Based Genera-
 063 tive Model (HSGM) for probabilistic time series imputation. Inspired by the layer-wise refinement
 064 paradigm of multilayer perceptrons (MLPs), HSGM leverages both latent and observation score-
 065 based diffusion models to capture the latent distribution of the dataset. The original missing values
 066 are reconstructed via the latent diffusion process and a Variational Autoencoder (VAE) decoder
 067 without requiring ground-truth values, while the observation diffusion layer conditions on these
 068 reconstructed values to learn a more accurate score-based function, thereby producing improved
 069 imputations in the observation space. The main contributions of our work are as follows:

- 070 **1. Theoretical analysis of bias in score-based functions under the observation DDPM
 071 framework.** We rigorously show that ignoring original missing data—especially under
 072 high missing rates or strong inter-variable correlations—can lead to substantial bias in the
 073 learned score function, even for observed points.
- 074 **2. Hierarchical latent-to-observation diffusion framework.** Inspired by the layer-wise re-
 075 finement paradigm of MLP, we theoretically integrate latent-space and observation-space
 076 diffusion in a layer-wise refinement framework grounded in the chain rule of probability.
 077 This approach corrects the bias in score estimation induced by original missing values,
 078 enabling accurate modeling of complex, non-Gaussian data distributions while adaptively
 079 handling original missing data without requiring ground-truth supervision during training.
- 080 **3. Cross-attention and continuous latent diffusion for high-fidelity imputation.** To bal-
 081 ance generative flexibility with reconstruction accuracy, we introduce cross-attention mech-
 082 anisms between original and denoised latent variables, along with continuous latent diffu-
 083 sion implemented via Ordinary Differential Equation (ODE) sampling. These components
 084 jointly guide the generative process, yielding high-fidelity and accurate imputed outputs.

085 2 RELATED WORK

086 **Variational Generative Models:** VAEs Fortuin et al.; Lee et al. (2022); Kingma & Welling
 087 represent one of the earliest and most widely adopted generative approaches for multivariate time series
 088 imputation (MTSI). By introducing probabilistic latent variables, VAEs capture the underlying data
 089 distribution, encode meaningful variations, and explicitly model uncertainty Vahdat & Kautz (2020).
 090 This probabilistic formulation offers a principled and interpretable alternative to deterministic mod-
 091 els Zhao et al. (2024). Furthermore, VAEs operate naturally in an unsupervised learning paradigm,
 092 making them well-suited for real-world scenarios where the original missing phenomenon prevents
 093 access to ground-truth labels.

094 **Score-based Models in Observation Space:** Score-based models have recently attracted consider-
 095 able attention for time series imputation due to their theoretical rigor and ability to generate high-
 096 quality outputs Yang et al. (2023). CSDI Tashiro et al. (2021) formulates imputation as a con-
 097 ditional diffusion process, using a transformer to capture inter-feature dependencies. PriSTI Liu et al.
 098 (2023b) extends this by incorporating conditional features to model temporal and spatial corre-
 099 lations. MTSCI Zhou et al. (2024) enforces intra- and inter-consistency via masking and conditional
 100 mixup, while MIDM Wang et al. (2023) re-derives the ELBO to explicitly model consistency be-
 101 tween observed and missing values through redesigned noise processes. SADI Dai et al. (2024)
 102 leverages cross-time, cross-feature, and cross-patient information for temporal EHR imputation, and
 103 FGTI Yang et al. (2024) emphasizes residual components with high-frequency filtering, integrating
 104 frequency-domain insights with deep representations. Collectively, these methods highlight the impor-
 105 tance of consistency, structured information, and frequency-aware modeling for accurate impu-
 106 tation. DiffPutter Zhang et al. (2025) combines diffusion models with the Expectation-Maximization
 107 algorithm to address missing data imputation. It iteratively learns the joint distribution of observed

108 and missing values and performs conditional sampling. Furthermore, in observation-based Score-
 109 based model settings, the original missingness is typically assumed to be independent of both ob-
 110 served and original missing data. In practice, original missing entries are often replaced with zeros
 111 or mean values during training, which introduces substantial bias into the learned score function and
 112 undermines the model’s ability to faithfully capture uncertainty.

113 **Latent Score-based Models:** Recent research has explored integrating VAEs with score-based
 114 models to enhance imputation quality Zhang et al. (2024). For instance, LSSDM Liang et al. (2025)
 115 adopts a two-stage approach, first imputing originally missing data with a VAE, followed by a dif-
 116 fusion process. Nevertheless, the imputation remains constrained by typical VAE limitations, such
 117 as blurry reconstructions and limited capacity to capture complex distributions. Inspired by Stable
 118 Diffusion Rombach et al. (2022), latent diffusion has shown success in generating high-resolution
 119 outputs in vision tasks Croitoru et al. (2023); Ma et al. (2025); Corneau et al. (2024). LDT Feng
 120 et al. (2024) features a symmetric statistics-aware autoencoder for learning time series latents and
 121 a diffusion-based conditional generator for flexible future prediction. Applying this paradigm to
 122 imputation, however, presents unique challenges: due to the nonlinear mapping between latent and
 123 observation spaces, small perturbations in latent variables can lead to disproportionately large bias
 124 in reconstructed data, compromising robustness. Conditional guidance mechanisms partially mit-
 125 iate this issue by aligning the latent diffusion with observed data distributions Ni et al. (2023);
 126 Van Gansbeke & De Brabandere (2024), yet they cannot fully eliminate irrelevant noise introduced
 127 during latent sampling, necessitating further refinement of the outputs. Moreover, balancing genera-
 128 tive flexibility and reconstruction fidelity in latent diffusion remains an open problem. VA-VAE Yao
 129 et al. (2025) proposes a Vision Foundation model alignment loss, combining marginal cosine sim-
 130 ilarity and distance matrix losses in the latent space. However, it only considers complete datasets
 131 and neglects the impact of missing values within the latent representations.

3 BACKGROUND

3.1 PRELIMINARY

132 Let $\mathbf{X}_0 \in \mathbb{R}^{N \times F}$ denote the complete dataset and $\mathbf{M} \in \mathbb{R}^{N \times F}$ the missing mask, where $\mathbf{M}_{i,j} = 0$
 133 indicates that the j -th sensor at time i is missing, and $\mathbf{M}_{i,j} = 1$ otherwise. Similarly, $\mathbf{X}_{0(ij)}$ or $x_{0(ij)}$
 134 denotes the (i, j) -th entry of \mathbf{X}_0 in this study. Missing values are categorized as original missing data
 135 (ground-truth unavailable) and simulated missing data (used for training and evaluation), leading
 136 to \mathbf{X}_0^{Or} and \mathbf{X}_0^{Ta} , with masks \mathbf{M}^{Or} and \mathbf{M}^{Ta} , respectively. Thus, $\mathbf{X}_0^{Ta} = \mathbf{X}_0 \odot (1 - \mathbf{M}^{Ta})$,
 137 $\mathbf{X}_0^{Or} = \mathbf{X}_0 \odot (1 - \mathbf{M}^{Or})$ and $\mathbf{X}_0^{\bar{Or}} = \mathbf{X}_0 \odot \mathbf{M}^{Or}$. Additionally, simulated and original missing
 138 masks do not overlap, $(\mathbf{M}^{Or} = 0) \cap (\mathbf{M}^{Ta} = 0) = \emptyset$. The conditional observed data is defined as
 139 $\mathbf{X}_0^{Co} = \mathbf{X}_0 - \mathbf{X}_0^{Ta} - \mathbf{X}_0^{Or} = \mathbf{X}_0 \odot \mathbf{M}^{Or} \odot \mathbf{M}^{Ta}$. Visualization of how the matrix of the available
 140 data is created is provided in Appendix A.1.

3.2 REVIEW OF DDPM MODEL

141 Diffusion models can be formulated within the framework of a general stochastic differential equa-
 142 tion (SDE). One of the SDE diffusion methods is DDPM Ho et al. (2020), a class of generative
 143 score-based models that learn to reverse a gradual noising process. Generative models aim to learn
 144 data distributions and generate realistic samples. DDPMs are a recent class that generate data by
 145 reversing a diffusion process. We define a sequence of latent variables $\mathbf{X}_0, \mathbf{X}_1, \dots, \mathbf{X}_T$, where
 146 $\mathbf{X}_0 \sim q(\mathbf{X}_0)$ is the data and DDPM as:

$$q(\mathbf{X}_t | \mathbf{X}_{t-1}) = \mathcal{N} \left(\mathbf{X}_t; \sqrt{1 - \beta_t} \mathbf{X}_{t-1}, \beta_t \mathbf{I} \right), \quad (1)$$

147 with a variance schedule β_1, \dots, β_T . This formulation leads to the conditional distribution:

$$q(\mathbf{X}_t | \mathbf{X}_0) = \mathcal{N}(\mathbf{X}_t; \sqrt{\bar{\alpha}_t} \mathbf{X}_0, (1 - \bar{\alpha}_t) \mathbf{I}), \quad (2)$$

148 where $\bar{\alpha}_t := \prod_{j=1}^t (1 - \beta_j)$. The model is trained by optimizing a re-weighted evidence lower
 149 bound (ELBO) Song et al.:

$$\theta^* = \arg \min_{\theta} \sum_{i=1}^T (1 - \bar{\alpha}_t) \mathbb{E}_{p_{\text{data}}(\mathbf{x}_0)} \mathbb{E}_{q(\mathbf{x}_t | \mathbf{x}_0)} [\|\nabla_{\mathbf{x}_t} \log p_{\theta}(\mathbf{x}_t) - \nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t | \mathbf{x}_0)\|^2]. \quad (3)$$

We further denote $\mathbf{s}_\theta(\mathbf{X}_t, t) = \nabla_{\mathbf{X}_t} \log p_\theta(\mathbf{X}_t)$ as the parameteric score function. Through reparameterization and after ignoring the constant term of $\sqrt{1 - \bar{\alpha}_t}$, the simplified objective function can be written as:

$$\mathcal{L} = \mathbb{E}_{\mathbf{X}_0, \epsilon, t} \left[\|\epsilon - \mathbf{s}_\theta(\mathbf{X}_t, t)\|^2 \right], \quad (4)$$

where $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and $\mathbf{X}_t = \sqrt{\bar{\alpha}_t} \mathbf{X}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon$. After obtaining the optimal model $\mathbf{s}_{\theta*}(\mathbf{X}_t, t)$, new samples can be generated through the following reverse process:

$$\mathbf{X}_{t-1} = \frac{1}{\sqrt{1 - \beta_t}} (\mathbf{X}_t + \beta_t \mathbf{s}_{\theta*}(\mathbf{X}_t, t)) + \sqrt{\beta_t} \epsilon, \quad (5)$$

where $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. DDPMs provide stable training and high-quality generation, outperforming many Generative Adversarial Networks(GANs) in sample quality.

4 BIAS ANALYSIS OF SCORE-BASED DIFFUSION WITH MISSING EFFECT

Proposition 4.1 (Bias under Independent Assumption in DDPM Setting). *Consider a data matrix \mathbf{X}_0 in the DDPM score-based diffusion setting, where each entry is independent. Assume that the score-based function $\mathbf{s}_{ij}(\mathbf{X}_t, t)$ is differentiable at $\mathbf{X}_t^{\overline{Or}}$. Then the bias of the score-based function at time step t is:*

$$\mathbf{s}_{bias(ij)} = \mathbf{s}_{ij}(\mathbf{X}_t, t) - \mathbf{s}_{ij}(\mathbf{X}_t^{\overline{Or}}, t) = -\frac{\sqrt{\bar{\alpha}_t} x_{0(ij)}}{1 - \bar{\alpha}_t}. \quad (6)$$

Proof is provided in Appendix A.2.

We plot the relative approximation bias under the setting of total time steps $T = 200$, $\beta_0 = 0.02$, and $\beta_T = 0.5$. As shown in Fig. 1a, the bias of the score function is relatively large in the early steps but gradually diminishes as t increases.

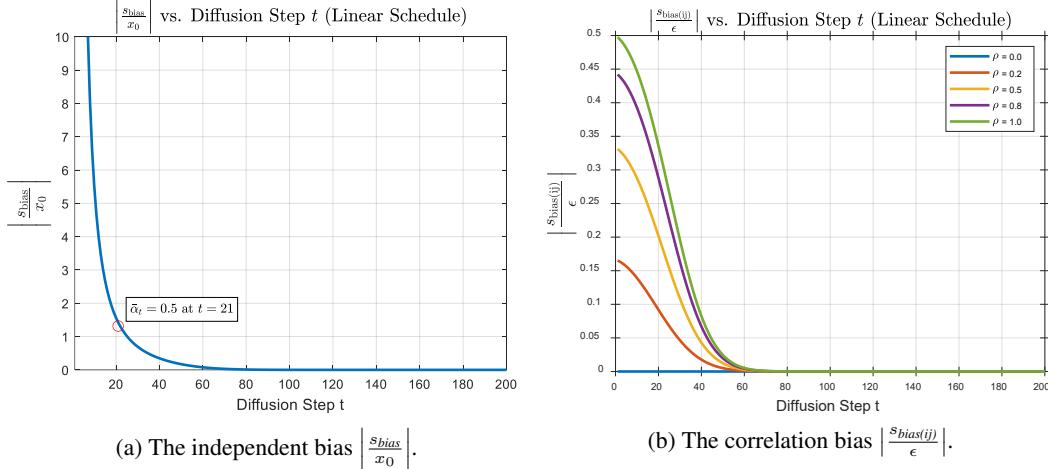


Figure 1: Bias plot under different assumptions.

Corollary 4.1 (Expected Cumulative bias). *Under the assumptions of Proposition 4.1, the expected cumulative bias over T diffusion steps is proportional to the original missing rate $p^{Or} = \frac{\sum_{i=0}^N \sum_{j=0}^F (1 - \mathbf{M}_{ij}^{Or})}{NF}$.*

$$\mathbb{E} \left[\sum_{t=1}^T \mathbf{s}_{bias} \right] = p^{Or} \sum_{t=1}^T \sum_{i,j \in Or} \left[-\sqrt{\bar{\alpha}_{t-1}} \frac{1 - \alpha_t}{1 - \bar{\alpha}_t} x_{0(ij)} \right]. \quad (7)$$

Proof is provided in Appendix A.3.

From Corollary 4.1, the bias is proportional to the original missing rate. Consequently, when the missing rate is high, the effect of missingness cannot be neglected.

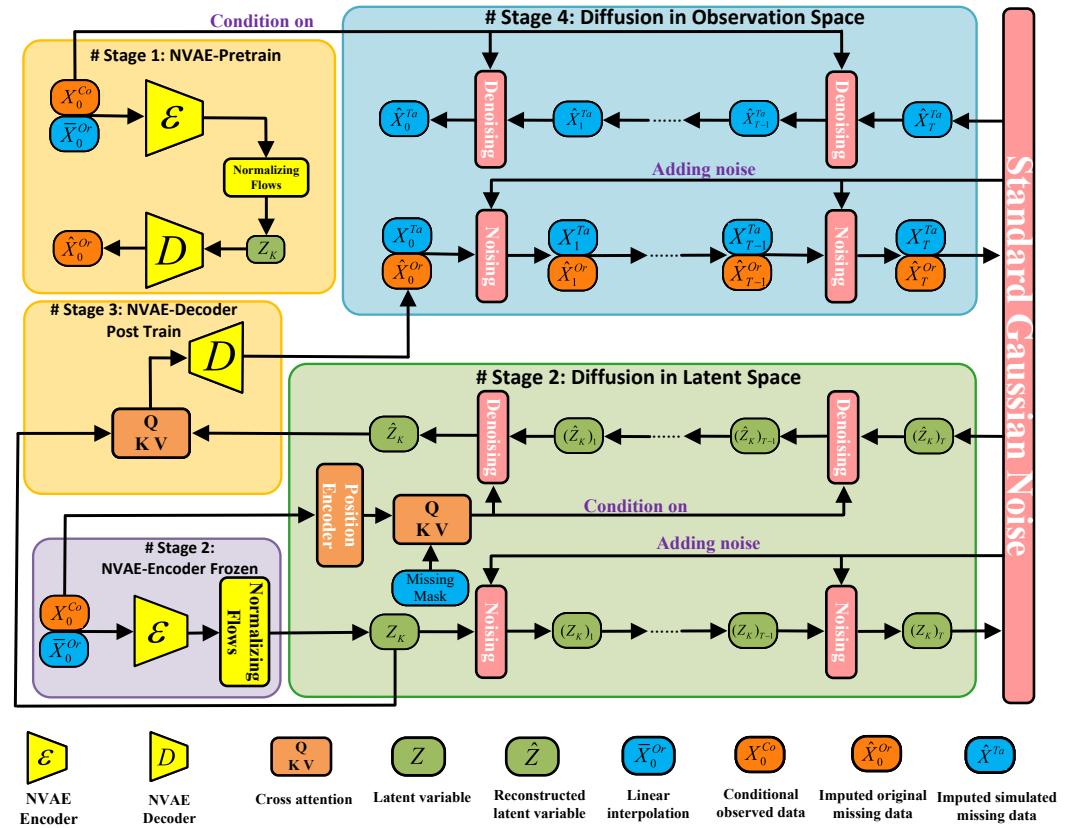
216 **Proposition 4.2** (Bias under Correlated Gaussian Data in DDPM Setting). *Consider two correlated*
 217 *points $x_{0(ij)}$ and $x_{0(kl)}$ in the DDPM score-based diffusion setting, which follow a joint Gaussian*
 218 *distribution with correlation coefficient ρ and standard deviation σ . If $x_{0(kl)}$ is originally missing*
 219 *and replaced by zero, then the bias on the observed point $x_{0(ij)}$ is:*

$$221 \quad \mathbf{s}_{bias(ij)} = s_{ij}(x_{t(ij)}, t) - s_{ij}(\bar{x}_{0r}^{Or}, t) \\ 222 \\ 223 \quad = \frac{1}{D_t} \left[(\bar{\alpha}_t \sigma_{kl}^2 + (1 - \bar{\alpha}_t)) (x_{t(ij)} - \sqrt{\bar{\alpha}_t} \mu_{ij}) - \bar{\alpha}_t \rho \sigma_{ij} \sigma_{kl} (x_{t(kl)} - \sqrt{\bar{\alpha}_t} \mu_{kl}) \right] - \frac{x_{t(ij)} - \sqrt{\bar{\alpha}_t} \mu_{ij}}{\bar{\alpha}_t \sigma_{ij}^2 + (1 - \bar{\alpha}_t)}. \quad (8)$$

225 where $D_t = (\bar{\alpha}_t \sigma_{ij}^2 + (1 - \bar{\alpha}_t)) (\bar{\alpha}_t \sigma_{kl}^2 + (1 - \bar{\alpha}_t)) - (\bar{\alpha}_t \rho \sigma_{ij} \sigma_{kl})^2$. This shows that the bias on
 226 observed points increases with the correlation coefficient ρ . Proof is provided in Appendix A.4.

228 Given $\sigma_{ij} = 1$ and $\sigma_{kl} = 1$, we plot $\left| \frac{s_{bias(ij)}}{\epsilon} \right| = \frac{|\bar{\alpha}_t \rho|}{1 + \bar{\alpha}_t \rho}$. According to Eq. 8 with varying ρ ,
 229 under the same setting as Proposition 4.1. As shown in Fig. 1b, the bias decreases as the diffusion
 230 step t increases, but becomes more pronounced as the correlation coefficient ρ grows at the early
 231 steps. In practice, time-series sensors are often highly correlated with both their temporal and spatial
 232 neighbors. Therefore, even when training with simulated missing values for which ground-truth data
 233 are available, the effects of the original missing values—*intrinsic* to the dataset—cannot be ignored.

235 5 METHODOLOGY



264 Figure 2: **Stage 1:** NVAE Vahdat & Kautz (2020) with normalizing flows is pretrained to obtain
 265 non-Gaussian latent variables Z_K from observed and interpolated data. **Stage 2:** Z_K is refined via a
 266 continuous latent diffusion model with cross-attention over the missing mask and position encoding
 267 (encoder is frozen). **Stage 3:** reconstructed \hat{Z}_K is aligned with Z_K through cross-attention, and the
 268 NVAE decoder is fine-tuned to produce \hat{X}_0^{Or} . **Stage 4:** a final diffusion step in the observation space
 269 yields the imputed data \hat{X}_0^{Ta} .

270 5.1 SCORE CORRECTION BY LATENT SCORE-BASED GENERATIVE MODELS
271

272 We have previously shown that correlations such as $\mathbf{X}_0^{Co} \nparallel \mathbf{X}_0^{Ta} \nparallel \mathbf{X}_0^{Or}$ can induce substantial
273 estimation errors. To mitigate this bias, we propose a latent score-based generative model that ex-
274 plicitly captures these dependencies. A central challenge is correcting the bias in the score function,
275 as the ground-truth values of the originally missing data are inherently unobserved. To tackle this,
276 we exploit the chain rule of probability to decompose the learning objective into two tractable terms:

$$277 \begin{aligned} 278 -\log p(\mathbf{X}_0^{Ta}, \mathbf{X}_0^{Or} | \mathbf{X}_0^{Co}) &\approx -\log \left[\int p(\mathbf{X}_0^{Ta} | \mathbf{X}_0^{Co}, \hat{\mathbf{X}}_0^{Or}) p(\hat{\mathbf{X}}_0^{Or} | \mathbf{X}_0^{Co}, \mathbf{Z}_0) p(\mathbf{Z}_0 | \mathbf{X}_0^{Co}) d\mathbf{Z}_0 \right] \\ 279 &= \underbrace{-\log p(\mathbf{X}_0^{Ta} | \mathbf{X}_0^{Co}, \hat{\mathbf{X}}_0^{Or})}_{\mathcal{L}_1(\text{Observation term})} - \underbrace{\log \int p(\hat{\mathbf{X}}_0^{Or} | \mathbf{X}_0^{Co}, \mathbf{Z}_0) p(\mathbf{Z}_0 | \mathbf{X}_0^{Co}) d\mathbf{Z}_0}_{\mathcal{L}_2(\text{Latent term})}. \end{aligned} \quad (9)$$

282 For the observation term \mathcal{L}_1 , we adopt the conditional score-based diffusion model (CSDI) Tashiro
283 et al. (2021) to compute the conditional probability, conditioned on the reconstructed outputs $\hat{\mathbf{X}}_0^{Or}$
284 obtained from the latent term \mathcal{L}_2 . Details are provided in Appendix A.5. For the latent term \mathcal{L}_2 , we
285 employ normalizing flows with K layers to transform the objective into the following form:

$$286 \mathcal{L}_2 = \underbrace{\mathbb{E}_q \left[-\log p(\hat{\mathbf{X}}_0^{Or} | \mathbf{X}_0^{Co}, \mathbf{Z}_K) \right]}_{\text{reconstruction term}} + \underbrace{\mathbb{E}_q \left[\log q(\mathbf{Z}_0 | \bar{\mathbf{X}}_0^{Or}, \mathbf{X}_0^{Co}) - \sum_{k=1}^K \log \left| \det \frac{\partial f_k}{\partial \mathbf{Z}_{k-1}} \right| \right]}_{\text{negative encoder entropy}} + \underbrace{\mathbb{E}_q \left[-\log p(\mathbf{Z}_K | \mathbf{X}_0^{Co}) \right]}_{\text{cross entropy}} \quad (10)$$

291 where $\bar{\mathbf{X}}_0^{Or}$ denotes the linear interpolation of the original missing data, \det is the determinant, f is
292 the planar flow, and \mathbf{Z}_K is the output of the normalizing flow; see Appendix A.6 for details.

294 5.2 CONTINUOUS LATENT DIFFUSION
295

296 In the latent space, for the cross-entropy term, we adopt the variance-preserving SDE (VPSDE),
297 defined as $d\mathbf{z} = -\frac{1}{2}\beta(t)\mathbf{z}dt + \sqrt{\beta(t)}d\mathbf{w}$, where $\beta(t) = \beta_{\text{start}} + (\beta_{\text{end}} - \beta_{\text{start}})t$, $t \in [0, 1]$. Thus, the
298 forward process can be defined as Song et al.:

$$300 q((\mathbf{Z}_K)_t | \mathbf{Z}_K) = \mathcal{N}((\mathbf{Z}_K)_t; e^{-\frac{1}{2}\beta_{\text{start}}t - \frac{1}{4}(\beta_{\text{end}} - \beta_{\text{start}})t^2} \mathbf{Z}_K, \mathbf{I} - \mathbf{I} e^{(-\beta_{\text{start}}t - \frac{1}{2}(\beta_{\text{end}} - \beta_{\text{start}})t^2)}), \quad t \in [0, 1] \quad (11)$$

301 Following the previous work as LSGM Vahdat et al. (2021), the cross entropy term in the continuous
302 situation can be calculated in an unweighted explicit score matching (ESM) setting as:

$$304 \mathbb{E}_q \left[\log p(\mathbf{Z}_K | \mathbf{X}_0^{Co}) \right] = \mathbb{E}_{t \sim \mathcal{U}[0, 1]} \left[\mathbb{E}_{q(\mathbf{Z}_0 | \bar{\mathbf{X}}_0^{Or}, \mathbf{X}_0^{Co}), \epsilon \sim \mathcal{N}(0, \mathbf{I})} \left[\frac{1}{2} \|\epsilon - \epsilon_\theta((\mathbf{Z}_K)_t | \mathbf{X}_0^{Co}, t)\|^2 \right] \right] + \frac{D}{2} \log(2\pi e \sigma_K^2) \quad (12)$$

306 Where D is the dimension of the latent space. Thus, the final training objective can be expressed as:

$$308 \mathcal{L}(\theta) = \mathbb{E}_{\mathbf{Z}_0 \sim q(\mathbf{Z}_0 | \bar{\mathbf{X}}_0^{Or}, \mathbf{X}_0^{Co})} \left[\left\| (\hat{\mathbf{X}} - \mathbf{X}_0) \odot \mathbf{M}^{Or} \right\|^2 - \log q(\mathbf{Z}_0 | \bar{\mathbf{X}}_0^{Or}, \mathbf{X}_0^{Co}) + \sum_{k=1}^K \log \left| \det \frac{\partial f_k}{\partial \mathbf{Z}_{k-1}} \right| \right] \\ 310 + \mathbb{E}_{t \sim \mathcal{U}[0, 1]} \left[\mathbb{E}_{q(\mathbf{Z}_0 | \bar{\mathbf{X}}_0^{Or}, \mathbf{X}_0^{Co}), \epsilon \sim \mathcal{N}(0, \mathbf{I})} \left[\|\epsilon - \epsilon_\theta((\mathbf{Z}_K)_t | \mathbf{X}_0^{Co}, t)\|^2 \right] \right] + \frac{D}{2} \log(2\pi e \sigma_K^2) \\ 312 + \mathbb{E}_{\epsilon \sim \mathcal{N}(0, \mathbf{I}), t} \left\| (\epsilon - \epsilon_\theta(\mathbf{X}_t^{Ta}, t | \mathbf{X}_0^{Co}, \hat{\mathbf{X}}_0^{Or})) \odot (1 - \mathbf{M}^{Ta}) \right\|^2 \quad (13)$$

314 where $\hat{\mathbf{X}}$ denotes the reconstructed output of the VAE decoder. Further details on latent diffusion
315 guidance and the continuous-time sampling procedure are provided in Appendix A.7.

317 5.3 CROSS ATTENTION BETWEEN ENCODER LATENT VARIABLE AND RECONSTRUCTED
318 LATENT VARIABLE
319

320 Unlike latent diffusion models such as Stable Diffusion, which focus primarily on generation tasks
321 and use projection to reduce computational complexity of high-dimensional observation space,
322 our approach focuses on exploring the latent structure of the dataset and data reconstruction. In
323 order to balance the generation and reconstruction capability of latent diffusion, we introduce a
cross-attention layer Vaswani et al. (2017) to the original latent variable \mathbf{Z}_k and the reconstructed

latent variable $\hat{\mathbf{Z}}_K$ of continuous latent diffusion. As a result, the output of the VAE decoder $\hat{\mathbf{X}} = \mathbf{VAE}_{dec}(\text{Attention}(\mathbf{Z}_K, \hat{\mathbf{Z}}_K))$ can be obtained by:

$$\hat{\mathbf{X}} = \mathbf{VAE}_{dec} \left[\text{softmax} \left(\frac{QK^T}{\sqrt{D}} \right) \cdot V \right] \quad (14)$$

Where $Q = W_Q \cdot \mathbf{Z}_K$, $K = W_K \cdot \hat{\mathbf{Z}}_K$, $V = W_V \cdot \hat{\mathbf{Z}}_K$, and $W_Q, W_K, W_V \in \mathbb{R}^{D \times D}$ are the learnable matrices. The overview of the algorithm is shown in Fig. 2, and the corresponding algorithms are listed in Appendix A.8.

6 EXPERIMENTS

Datasets and evaluation setting: We evaluate our method on benchmark datasets from diverse domains with varying temporal dynamics and missingness; detailed descriptions are provided in Appendix A.9. Following the out-of-sample protocol Cini et al. (2021), datasets are split into disjoint training, validation and test sequences. For P2012, MIMIC-IV, and the Synthetic dataset, we additionally mask 50% of observed points, as in CSDI Tashiro et al. (2021). For ETT, we adopt the GRIN Cini et al. (2021) block-missing strategy with a more challenging setting: random masking of 10% plus block masking of 6–24 steps with 1.5% probability. The datasets capture complementary challenges for time series imputation: P2012 Silva et al. (2012) and MIMIC-IV v3.1 Johnson et al. (2024) are large-scale clinical datasets with high natural missingness (80.52% and 49.09%), ETT Zhou et al. (2021) is fully observed but subjected to simulated structured missingness, and the Synthetic dataset Fang et al. (2024) provides controlled multiscale correlations. For ETT and Synthetic, simulated missing values are excluded from training, ensuring equal treatment of original and natural missingness and enabling analysis of ground-truth versus model-implied score functions.

Experimental results: As shown in Tab. 1, HSGM achieves the best imputation performance compared to all baselines. Traditional models fail to capture the nonlinear dependencies inherent in time series, while matrix completion methods struggle to identify reliable low-rank structures under severe missingness. Discriminative deep learning models such as RNNs and GNNs rely primarily on temporal or spatial neighbors for representation learning, which reduces their robustness under irregular sampling and high missing rates, as frequently encountered in healthcare data. In contrast, generative models aim to capture the underlying data distribution rather than depending solely on local neighbor information, making them more flexible for imputing realistic missing values and effectively leveraging labeled data in complex scenarios. Furthermore, methods that ignore the original missingness and directly apply observation diffusion layers, such as CSDI, exhibit limited generative capacity and induce substantial bias in the score-based function. This ultimately degrades both imputation accuracy and uncertainty estimation, whereas HSGM can flexibly handle the original missing data.

Table 1: Results of different methods across datasets

Model	P2012@50%			MIMIC-IV@50%			ETT@Block missing			Synthetic dataset@50%		
	MAE	RMSE	CRPS	MAE	RMSE	CRPS	MAE	RMSE	CRPS	MAE	RMSE	CRPS
<i>Traditional iterative</i>												
Mean	0.703±0.000	1.016±0.000	—	0.138±0.000	0.381±0.000	—	0.733±0.000	1.136±0.000	—	0.382±0.000	0.435±0.000	—
KNN	4.398±0.000	7.803±0.000	—	1.641±0.000	2.442±0.000	—	0.949±0.000	1.260±0.000	—	0.951±0.000	1.076±0.000	—
MICE	0.698±0.000	1.046±0.000	—	0.140±0.000	0.380±0.000	—	0.949±0.000	0.807±0.000	—	0.404±0.000	0.520±0.000	—
<i>Matrix Completion</i>												
MF	1.673±0.000	3.899±0.000	—	0.230±0.000	0.451±0.000	—	0.527±0.000	0.725±0.000	—	0.173±0.000	0.207±0.000	—
M ² DMTTE (ICLR 2021)	0.700±0.001	1.095±0.001	—	0.363±0.001	0.900±0.001	—	0.544±0.001	0.881±0.001	—	0.448±0.001	0.497±0.001	—
<i>Non-GNN models</i>												
Transformer (NeurIPS 2017)	0.297±0.002	0.675±0.027	—	0.058±0.001	0.182±0.002	—	0.532±0.003	0.933±0.004	—	0.113±0.009	0.155±0.012	—
BRITS (NeurIPS 2017)	0.368±0.002	0.693±0.023	—	0.065±0.001	0.215±0.002	—	0.556±0.003	0.984±0.004	—	0.319±0.030	0.354±0.030	—
SAIT (ESWS 2023)	0.296±0.002	0.675±0.020	—	0.053±0.001	0.178±0.002	—	0.405±0.003	0.762±0.004	—	0.107±0.009	0.147±0.010	—
<i>GNN methods</i>												
MPGRU (ICLR 2018)	0.460±0.002	0.832±0.023	—	0.071±0.002	0.234±0.002	—	0.391±0.003	0.831±0.004	—	0.394±0.003	0.441±0.004	—
GRIN (ICLR 2022)	0.371±0.003	0.737±0.021	—	0.056±0.001	0.189±0.002	—	0.201±0.003	0.460±0.004	—	0.231±0.003	0.290±0.004	—
HPGNN (ICLR 2024)	0.321±0.003	0.566±0.013	—	0.037±0.001	0.122±0.003	—	0.206±0.010	0.313±0.013	—	0.131±0.005	0.180±0.004	—
<i>Generative</i>												
CSDI (NeurIPS 2021)	0.301±0.002	0.614±0.017	0.330±0.002	0.050±0.001	0.178±0.002	0.281±0.001	0.227±0.004	0.606±0.005	0.165±0.003	0.136±0.011	0.204±0.012	0.106±0.009
FGTH (NeurIPS 2024)	0.686±0.002	1.708±0.012	0.106±0.002	0.055±0.001	0.192±0.002	0.063±0.001	0.225±0.004	0.418±0.005	0.191±0.003	0.143±0.015	0.188±0.012	0.164±0.008
BayOTID (ICML 2024)	0.548±0.002	0.834±0.010	0.497±0.002	0.064±0.002	0.147±0.003	0.510±0.003	0.332±0.002	0.516±0.005	0.495±0.003	0.147±0.010	0.181±0.002	0.745±0.008
LSSDM (ICASSP 2025)	0.262±0.002	0.598±0.015	0.315±0.002	0.042±0.001	0.126±0.002	0.251±0.002	0.221±0.004	0.585±0.005	0.164±0.002	0.112±0.018	0.157±0.012	0.086±0.009
DifffPuter (ICLR 2025)	0.496±0.004	0.781±0.013	0.067±0.003	0.056±0.001	0.160±0.003	0.086±0.003	0.065±0.005	0.107±0.010	0.086±0.003	0.133±0.014	0.199±0.010	0.101±0.013
HSGM (Ours)	0.241±0.003	0.538±0.015	0.273±0.002	0.032±0.002	0.109±0.003	0.205±0.002	0.180±0.002	0.289±0.004	0.030±0.002	0.104±0.010	0.146±0.011	0.077±0.008

¹For GNN methods, Pearson correlation is applied.

Meanwhile, HSGM achieves comparable Continuous Ranked Probability Score (CRPS) Matheson & Winkler (1976) among the generative baselines, indicating that it not only improves imputation accuracy but also captures realistic data distributions by leveraging both observation and latent diffusion layers. Compared to CSDI, we visualize imputation results on four datasets in Fig.3. These examples demonstrate that HSGM produces more accurate imputations with tighter uncertainty estimates while maintaining consistency with the observed data, highlighting the beneficial effect of latent diffusion on the observation diffusion process. Although CRPS is slightly higher on a few

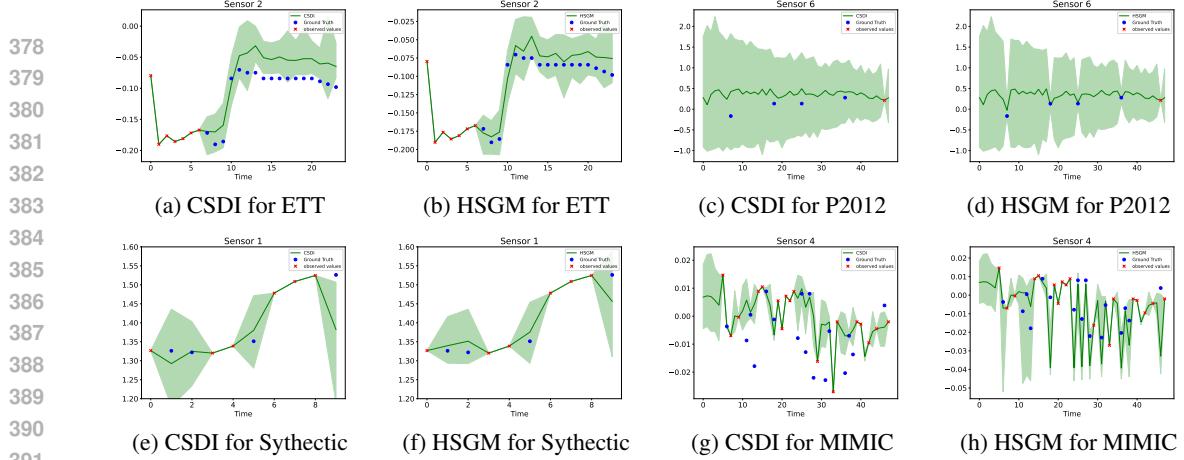


Figure 3: Probabilistic time series imputation examples across different datasets. Observed values are indicated by red crosses, and ground-truth imputation targets by blue circles. The median imputed values are shown as lines, with the 5% and 95% quantiles represented as shaded areas.

datasets, this mainly reflects HSGM’s focus on accurate point estimation, which favors narrower predictive distributions. An ablation study is provided in Appendix A.14.

Bias of score-based function: In the Synthetic and ETT dataset settings, simulated missing values are treated as original missing data and are excluded from the training stage. Accordingly, the objective in Eq. 9 can be rewritten as

$$\begin{aligned} \log \frac{p(\mathbf{X}_0^{Ta} | \mathbf{X}_0^{Co})}{p(\mathbf{X}_0^{Ta} | \mathbf{X}_0^{Co}, \hat{\mathbf{X}}_0^{Ta})} &\approx \log \int p(\hat{\mathbf{X}}_0^{Ta} | \mathbf{X}_0^{Co}, \mathbf{Z}_0) p(\mathbf{Z}_0 | \mathbf{X}_0^{Co}) d\mathbf{Z}_0, \\ &\leq \mathbb{E}_q \left[-\log p(\hat{\mathbf{X}}_0^{Or} | \mathbf{X}_0^{Co}, \mathbf{Z}_K) + \log q(\mathbf{Z}_0 | \hat{\mathbf{X}}_0^{Or}, \mathbf{X}_0^{Co}) - \sum_{k=1}^K \log \left| \det \frac{\partial f_k}{\partial \mathbf{Z}_{k-1}} \right| - \log p(\mathbf{Z}_K | \mathbf{X}_0^{Co}) \right]. \end{aligned} \quad (15)$$

Interestingly, by moving the imputed distribution term to the left-hand side, one obtains the likelihood ratio between the ground-truth and imputed distributions, which can be estimated via the latent generative term. This observation suggests that future improvements in latent generative imputation should focus on optimizing the latent-space objective to maximize this probabilistic ratio, potentially yielding more principled and effective imputation strategies. The latent variable \mathbf{Z}_K fundamentally governs the information gain in Eq. 15 through its learned representation. Consequently, higher ratios correspond to more confident imputations, whereas lower ratios indicate greater uncertainty in the imputation process. In this study, $\log p(\mathbf{X}_0^{Ta} | \mathbf{X}_0^{Co})$ and $p(\mathbf{X}_0^{Ta} | \mathbf{X}_0^{Co}, \hat{\mathbf{X}}_0^{Ta})$ are sampled using the learned score-based function as in Eq. 5. To investigate the effect of missing data on the score-based function, we train CSDI on the Ground truth data, with missing values replaced by zeros, and HSGM on the Synthetic training dataset while evaluating them on the same test dataset. Fig. 4a and 4b present the MAE of bias and the accumulated bias of Eq. 5 along the reverse process. Initially, all learned score-based functions yield nearly identical values; however, biases grow progressively over the reverse steps, consistent with the theoretical analysis in Fig. 1. Correcting such bias remains challenging: as reverse time increases, accumulated bias amplifies, potentially leading to divergence from the true distribution. Notably, HSGM effectively mitigates this bias, achieving superior performance compared to CSDI, as also reflected in Tab. 1. To further illustrate this effect, we reshape and visualize the heat maps of the learned score-based functions at different reverse time steps in Fig. 4 (c-k). These visualizations demonstrate that HSGM consistently corrects bias in the score-based function. Similar visualizations for the ETT dataset are provided in Appendix A.13.

Generation vs Reconstruction: High-fidelity and diverse imputations for missing values often rely on unconditional score-based functions with latent diffusion, while reconstruction of observed (non-missing) values can benefit from conditional score-based functions and a VAE architecture. For datasets containing both missing and observed values, balancing generative and reconstructive capabilities is crucial. In this work, we address this challenge by combining the original and denoised latent variables through cross-attention mechanisms, together with continuous latent diffusion and ODE-based sampling in the latent space. To evaluate the effectiveness of this approach, we compare it against the following baselines: (1) Conditional latent probability flow (PF) ODE, (2) Unconditional latent PF ODE, (3) VAE architecture with norm flow, (4) Conditional latent PF ODE with cross attention (Ours). The results are summarized in Tab. 2. As shown in Tab. 2, our model achieves

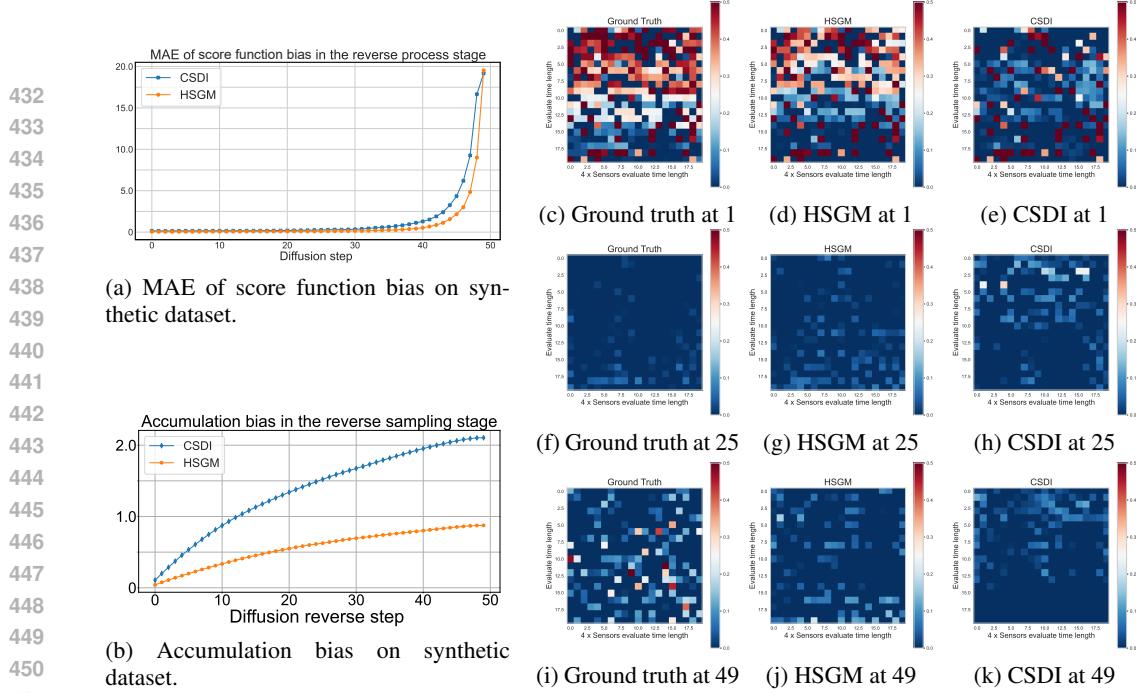


Figure 4: Synthetic dataset evaluation: (a) MAE of bias; (b) accumulated bias over the reverse process; (c–k) heat maps of learned score-based functions at selected reverse time steps for ground truth, HSGM, and CSDI.

Table 2: Generation and reconstruction performance of generative models on benchmark datasets

Datasets	Models	Generation		Reconstruction	
		MAE	RMSE	MAE	RMSE
P2012@50%	Conditional latent PF ODE	1.703 \pm 0.003	1.979 \pm 0.015	2.040 \pm 0.003	2.316 \pm 0.015
	Unconditional latent PF ODE	1.829 \pm 0.004	2.103 \pm 0.016	2.207 \pm 0.004	2.499 \pm 0.016
	VAE-norm	0.374 \pm 0.003	0.610 \pm 0.015	0.326 \pm 0.003	0.536 \pm 0.015
	PF ODE with cross attention (Ours)	0.329\pm0.003	0.569\pm0.015	0.227\pm0.003	0.449\pm0.015
MIMIC IV @50%	Conditional latent PF ODE	0.167 \pm 0.003	0.325 \pm 0.004	0.224 \pm 0.003	0.413 \pm 0.004
	Unconditional latent PF ODE	0.194 \pm 0.003	0.362 \pm 0.004	0.257 \pm 0.003	0.461 \pm 0.004
	VAE-norm	0.045 \pm 0.002	0.129 \pm 0.003	0.042 \pm 0.002	0.121 \pm 0.003
	PF ODE with cross attention (Ours)	0.041\pm0.002	0.122\pm0.003	0.032\pm0.002	0.081\pm0.003
ETT@Block missing	Conditional latent PF ODE	0.941 \pm 0.003	1.227 \pm 0.005	0.963 \pm 0.004	1.258 \pm 0.005
	Unconditional latent PF ODE	0.931 \pm 0.003	1.218 \pm 0.005	0.973 \pm 0.004	1.269 \pm 0.005
	VAE-norm	0.190 \pm 0.002	0.294 \pm 0.004	0.123 \pm 0.003	0.181 \pm 0.004
	PF ODE with cross attention (Ours)	0.180\pm0.002	0.289\pm0.004	0.103\pm0.003	0.148\pm0.004
Synthetic@50%	Conditional latent PF ODE	0.491 \pm 0.012	0.560 \pm 0.017	0.463 \pm 0.012	0.532 \pm 0.018
	Unconditional latent PF ODE	0.532 \pm 0.011	0.556 \pm 0.016	0.460 \pm 0.013	0.529 \pm 0.017
	VAE-norm	0.190 \pm 0.010	0.234 \pm 0.012	0.181 \pm 0.010	0.223 \pm 0.012
	PF ODE with cross attention (Ours)	0.173\pm0.010	0.215\pm0.014	0.153\pm0.010	0.193\pm0.015

the best performance in both generation and reconstruction. A key advantage of the PF ODE with cross-attention is its ability to balance these two objectives. By leveraging cross-attention over latent space, the model selectively emphasizes informative patterns, enabling realistic sequence generation while maintaining fidelity to observed data. In contrast, VAE-based models typically prioritize reconstruction at the expense of generative diversity, whereas latent PF ODE models may generate plausible sequences but struggle to reconstruct observed values accurately.

7 CONCLUSION

We theoretically analyze bias in the score function induced by missing data within the DDPM framework, showing that ignoring missing patterns—especially under high missing rates or strong inter-variable correlations—can significantly impair the learned score function. To address this, we propose HSGM, which bridges observation and latent diffusion via the chain rule of probability and unsupervised VAE projection. Flexible latent distributions are modeled through normalizing flows, while cross-attention between original and denoised latent variables balances generative and reconstructive capabilities. Our model effectively mitigates score function bias, yielding more accurate imputations with reduced uncertainty. Experiments verify that HSGM consistently surpasses prior methods, demonstrating its effectiveness.

486 REFERENCES
487

488 Lingxiao Cao, Bin Wang, Guiyuan Jiang, Yanwei Yu, and Junyu Dong. Spatiotemporal-aware trend-
489 seasonality decomposition network for traffic flow forecasting. In *Proceedings of the AAAI Con-*
490 *ference on Artificial Intelligence*, volume 39, pp. 11463–11471, 2025.

491 Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. Brits: Bidirectional recurrent
492 imputation for time series. *Advances in neural information processing systems*, 31, 2018.

493

494 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
495 differential equations. *Advances in neural information processing systems*, 31, 2018.

496 Andrzej Cichocki and Anh-Huy Phan. Fast local algorithms for large scale nonnegative matrix and
497 tensor factorizations. *IEICE transactions on fundamentals of electronics, communications and*
498 *computer sciences*, 92(3):708–721, 2009.

499

500 Andrea Cini, Ivan Marisca, Cesare Alippi, et al. Filling the g_ap_s: Multivariate time series imputa-
501 tion by graph neural networks. *ICLR 2022*, pp. 1–20, 2021.

502 Ciprian Corneanu, Raghudeep Gadde, and Aleix M Martinez. Latentpaint: Image inpainting in latent
503 space with diffusion models. In *Proceedings of the IEEE/CVF winter conference on applications*
504 *of computer vision*, pp. 4334–4343, 2024.

505

506 Florinel-Alin Croitoru, Vlad Hondu, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models
507 in vision: A survey. *IEEE transactions on pattern analysis and machine intelligence*, 45(9):
508 10850–10869, 2023.

509

510 Zongyu Dai, Emily Getzen, and Qi Long. Sadi: Similarity-aware diffusion model-based imputa-
511 tion for incomplete temporal ehr data. In *International Conference on Artificial Intelligence and*
512 *Statistics*, pp. 4195–4203. PMLR, 2024.

513

514 Wenjie Du, David Côté, and Yan Liu. Saits: Self-attention-based imputation for time series. *Expert*
515 *Systems with Applications*, 219:119619, 2023.

516

517 Jicong Fan. Multi-mode deep matrix and tensor factorization. In *international conference on learn-*
518 *ing representations*, 2021.

519

520 Chenguang Fang and Chen Wang. Time series data imputation: A survey on deep learning ap-
521 *roaches*. *arXiv preprint arXiv:2011.11347*, 2020.

522

523 Shikai Fang, Qingsong Wen, Yingtao Luo, Shandian Zhe, and Liang Sun. Bayotide: Bayesian online
524 multivariate time series imputation with functional decomposition. In *International Conference*
525 *on Machine Learning*, pp. 12993–13009. PMLR, 2024.

526

527 Shibo Feng, Chunyan Miao, Zhong Zhang, and Peilin Zhao. Latent diffusion transformer for proba-
528 *bilistic time series forecasting*. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
529 volume 38, pp. 11979–11987, 2024.

530

531 Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, and Stephan Mandt. Gp-vae: Deep probabilis-
532 *tic multivariate time series imputation*. In *Proc. AISTATS*, pp. 1651–1661.

533

534 Josh L Givens, Song Liu, and Henry Reeve. Score matching with missing data. In *The 42nd*
535 *International Conference on Machine Learning (ICML 2025)*. Proceedings of Machine Learning
536 Research, 2025.

537

538 Hrayr Harutyunyan, Hrant Khachatrian, David C. Kale, Greg Ver Steeg, and Aram Galstyan. Mul-
539 *task learning and benchmarking with clinical time series data*. *Scientific Data*, 6(1):96, 2019.
ISSN 2052-4463. doi: 10.1038/s41597-019-0103-9. URL <https://doi.org/10.1038/s41597-019-0103-9>.

540

541 Nasir Hayat, Krzysztof J Geras, and Farah E Shamout. Medfuse: Multi-modal fusion with clinical
542 time-series data and chest x-ray images. In *Machine Learning for Healthcare Conference*, pp.
543 479–503. PMLR, 2022.

540 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 541 *neural information processing systems*, 33:6840–6851, 2020.

542

543 Ming Jin, Huan Yee Koh, Qingsong Wen, Daniele Zambon, Cesare Alippi, Geoffrey I Webb, Irwin
 544 King, and Shirui Pan. A survey on graph neural networks for time series: Forecasting, classifi-
 545 cation, imputation, and anomaly detection. *IEEE Transactions on Pattern Analysis and Machine*
 546 *Intelligence*, 2024.

547 A Johnson, L Bulgarelli, T Pollard, B Gow, B Moody, S Horng, LA Celi, and R Mark. Mimic-iv
 548 (version 3.0). physionet, 2024.

549

550 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In *Int. Conf. on Learning*
 551 *Representations*.

552 Mihee Lee, Samuel S Sohn, Seonghyeon Moon, Sejong Yoon, Mubbashir Kapadia, and Vladimir
 553 Pavlovic. Muse-vae: Multi-scale vae for environment-aware long term trajectory prediction. In
 554 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 2221–
 555 2230, 2022.

556 Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
 557 work: Data-driven traffic forecasting. In *International Conference on Learning Representations*,
 558 2018.

559

560 Guojun Liang, Prayag Tiwari, Sławomir Nowaczyk, and Stefan Byttner. Higher-order spatio-
 561 temporal physics-incorporated graph neural network for multivariate time series imputation. In
 562 *Proceedings of the 33rd ACM International Conference on Information and Knowledge Manage-
 563 ment*, pp. 1356–1366, 2024.

564 Guojun Liang, Najmeh Abiri, Atiye Sadat Hashemi, Jens Lundström, Stefan Byttner, and Prayag
 565 Tiwari. Latent space score-based diffusion model for probabilistic multivariate time series impu-
 566 tation. In *ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal
 567 Processing (ICASSP)*, pp. 1–5. IEEE, 2025.

568

569 Mingxuan Liu, Siqi Li, Han Yuan, Marcus Eng Hock Ong, Yilin Ning, Feng Xie, Seyed Ehsan
 570 Saffari, Yuqing Shang, Victor Volovici, Bibhas Chakraborty, et al. Handling missing values in
 571 healthcare data: A systematic review of deep learning-based imputation techniques. *Artificial
 572 intelligence in medicine*, 142:102587, 2023a.

573

574 Mingzhe Liu, Han Huang, Hao Feng, Leilei Sun, Bowen Du, and Yanjie Fu. Pristi: A conditional
 575 diffusion framework for spatiotemporal imputation. In *2023 IEEE 39th International Conference
 576 on Data Engineering (ICDE)*, pp. 1927–1939. IEEE, 2023b.

577

578 Zhiyuan Ma, Yuzhu Zhang, Guoli Jia, Liangliang Zhao, Yichao Ma, Mingjie Ma, Gaofeng Liu,
 579 Kaiyan Zhang, Ning Ding, Jianjun Li, et al. Efficient diffusion models: A comprehensive survey
 580 from principles to practices. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
 2025.

581

582 James E Matheson and Robert L Winkler. Scoring rules for continuous probability distributions.
Management science, 22(10):1087–1096, 1976.

583

584 Xiaoye Miao, Yangyang Wu, Lu Chen, Yunjun Gao, and Jianwei Yin. An experimental survey of
 585 missing data imputation algorithms. *IEEE Transactions on Knowledge and Data Engineering*, 35
 (7):6630–6650, 2022.

586

587 Haomiao Ni, Changhao Shi, Kai Li, Sharon X Huang, and Martin Renqiang Min. Conditional
 588 image-to-video generation with latent flow diffusion models. In *Proceedings of the IEEE/CVF*
 589 *conference on computer vision and pattern recognition*, pp. 18444–18455, 2023.

590

591 Yidong Ouyang, Liyan Xie, Chongxuan Li, and Guang Cheng. Missdiff: Training diffusion models
 592 on tabular data with missing values. *arXiv preprint arXiv:2307.00467*, 2023.

593

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In *Interna-
 594 tional conference on machine learning*, pp. 1530–1538. PMLR, 2015.

594 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 595 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 596 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

597

598 Ikaro Silva, George Moody, Daniel J Scott, Leo A Celi, and Roger G Mark. Predicting in-hospital
 599 mortality of icu patients: The physionet/computing in cardiology challenge 2012. In *2012 com-
 600 puting in cardiology*, pp. 245–248. IEEE, 2012.

601 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 602 Poole. Score-based generative modeling through stochastic differential equations. In *Inter-
 603 national Conference on Learning Representations*.

604 Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based dif-
 605 fusion models for probabilistic time series imputation. *Advances in neural information processing
 606 systems*, 34:24804–24816, 2021.

607

608 Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. *Advances in neural
 609 information processing systems*, 33:19667–19679, 2020.

610 Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
 611 *Advances in neural information processing systems*, 34:11287–11302, 2021.

612

613 Stef Van Buuren. *Multivariate imputation by chained equations: MICE V1. 0 user's manual*. Leiden:
 614 TNO, 2000.

615 Wouter Van Gansbeke and Bert De Brabandere. A simple latent diffusion approach for panoptic
 616 segmentation and mask inpainting. In *European Conference on Computer Vision*, pp. 78–97.
 617 Springer, 2024.

618

619 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 620 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 621 tion processing systems*, 30, 2017.

622 Jun Wang, Wenjie Du, Yiyuan Yang, Linglong Qian, Wei Cao, Keli Zhang, Wenjia Wang, Yuxuan
 623 Liang, and Qingsong Wen. Deep learning for multivariate time series imputation: A survey. *arXiv
 624 preprint arXiv:2402.04059*, 2024.

625

626 Shiyu Wang, Jiawei Li, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Ju Shengtong, Zhixuan
 627 Chu, and Ming Jin. Timemixer++: A general time series pattern machine for universal predictive
 628 analysis. In *ICLR 2025: The Thirteenth International Conference on Learning Representations*.
 629 International Conference on Learning Representations, 2025.

630

631 Xu Wang, Hongbo Zhang, Pengkun Wang, Yudong Zhang, Binwu Wang, Zhengyang Zhou, and
 632 Yang Wang. An observed value consistent diffusion model for imputing missing values in multi-
 633 variate time series. In *Proceedings of the 29th ACM SIGKDD conference on knowledge discovery
 634 and data mining*, pp. 2409–2418, 2023.

635

636 Jingwen Xu, Fei Lyu, and Pong C Yuen. Density-aware temporal attentive step-wise diffusion model
 637 for medical time series imputation. In *Proceedings of the 32nd ACM International Conference on
 638 Information and Knowledge Management*, pp. 2836–2845, 2023.

639

640 Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
 641 Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
 642 applications. *ACM computing surveys*, 56(4):1–39, 2023.

643

644 Xinyu Yang, Yu Sun, Xinyang Chen, et al. Frequency-aware generative models for multivariate time
 645 series imputation. *Advances in Neural Information Processing Systems*, 37:52595–52623, 2024.

646

647 Jingfeng Yao, Bin Yang, and Xinggang Wang. Reconstruction vs. generation: Taming optimization
 648 dilemma in latent diffusion models. In *Proceedings of the Computer Vision and Pattern Recog-
 649 nition Conference*, pp. 15703–15712, 2025.

650

651 Xinyu Yuan and Yan Qiao. Diffusion-ts: Interpretable diffusion for general time series generation.
 652 In *The Twelfth International Conference on Learning Representations*.

648 Hengrui Zhang, Liancheng Fang, Qitian Wu, and Philip S Yu. Diffputer: Empowering diffusion
649 models for missing data imputation. In *The Thirteenth International Conference on Learning*
650 *Representations*, 2025.

651

652 Kexin Zhang, Qingsong Wen, Chaoli Zhang, Rongyao Cai, Ming Jin, Yong Liu, James Y Zhang,
653 Yuxuan Liang, Guansong Pang, Dongjin Song, et al. Self-supervised learning for time series
654 analysis: Taxonomy, progress, and prospects. *IEEE transactions on pattern analysis and machine*
655 *intelligence*, 46(10):6775–6794, 2024.

656

657 Sijie Zhao, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Muyao Niu, Xiaoyu Li, Wenbo Hu, and
658 Ying Shan. Cv-vae: A compatible video vae for latent generative video models. *Advances in*
659 *Neural Information Processing Systems*, 37:12847–12871, 2024.

660

661 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
662 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *The Thirty-*
663 *Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Conference*, volume 35, pp.
664 11106–11115. AAAI Press, 2021.

665

666 Jianping Zhou, Junhao Li, Guanjie Zheng, Xinbing Wang, and Chenghu Zhou. Mtsci: A conditional
667 diffusion model for multivariate time series consistent imputation. In *Proceedings of the 33rd*
668 *ACM International Conference on Information and Knowledge Management*, pp. 3474–3483,
669 2024.

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

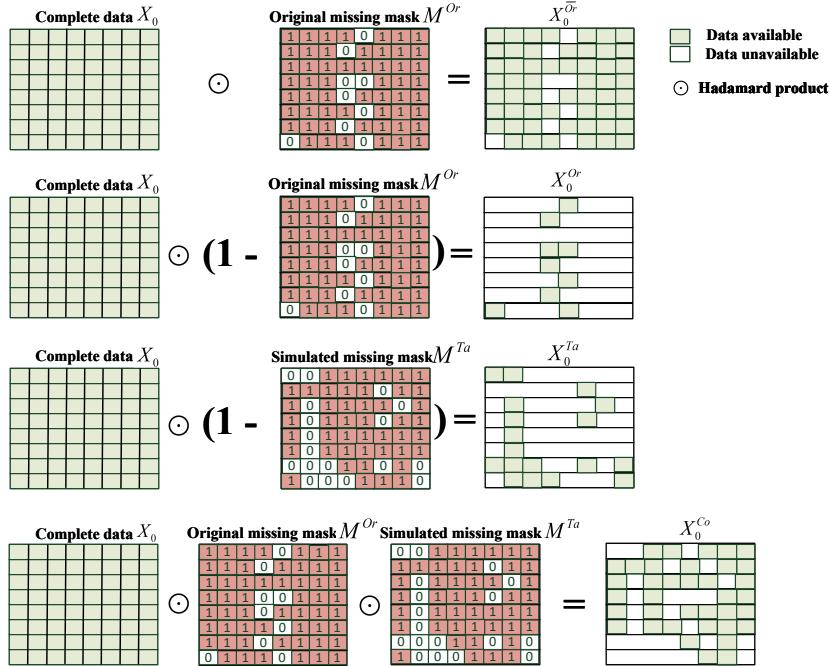
697

698

699

700

701

702 **A APPENDIX**
703704 **Use of large language models statement** We use the LLM to polish the writing. All other parts,
705 including experimental results, analyses were written by the authors and carefully verified for accu-
706 racy before and after any LLM-assisted editing.
707708 **A.1 VISUALIZATION OF AVAILABLE DATA MATRIX**
709

756 The learning label is the same as a non-missing DDPM score-based function, but the input of the
 757 score-based function is changed. Then, we apply Taylor expansion to $s_{ij}(x_{t(ij)}, t)$ at the point $x_{t(ij)}^{\overline{Or}}$
 758 as:
 759

$$760 \quad s_{ij}(x_{t(ij)}, t) = s_{ij}(x_{t(ij)}^{\overline{Or}}, t) + \frac{s_{ij}'(x_{t(ij)}^{\overline{Or}}, t)}{1!}(x_{t(ij)} - x_{t(ij)}^{\overline{Or}}) + \frac{s_{ij}''(x_{t(ij)}^{\overline{Or}}, t)}{2!}(x_{t(ij)} - x_{t(ij)}^{\overline{Or}})^2 \\ 761 \quad + \dots + \frac{s_{ij}^{(n)}(x_{t(ij)}^{\overline{Or}}, t)}{n!}(x_{t(ij)} - x_{t(ij)}^{\overline{Or}})^n + R_n(x_{t(ij)}, t) \quad (18)$$

$$762 \quad \therefore s'_{ij}(x_{t(ij)}, t) = \nabla_{x_{t(ij)}} \nabla_{x_{t(ij)}} \log \int q(x_{t(ij)} | x_{0(ij)}) p(x_{0(ij)}) dx_{0(ij)} \\ 763 \quad = \nabla_{x_{t(ij)}} \frac{\nabla_{x_{t(ij)}} \int q(x_{t(ij)} | x_{0(ij)}) p(x_{0(ij)}) dx_{0(ij)}}{\int q(x_{t(ij)} | x_{0(ij)}) p(x_{0(ij)}) dx_{0(ij)}} \\ 764 \quad = \nabla_{x_{t(ij)}} \frac{\int p(x_{0(ij)}) \nabla_{x_{t(ij)}} \mathcal{N}(x_{t(ij)} : \sqrt{\bar{\alpha}_t} x_{0(ij)}, (1 - \bar{\alpha}_t)) dx_{0(ij)}}{\int \mathcal{N}(x_{t(ij)} : \sqrt{\bar{\alpha}_t} x_{0(ij)}, (1 - \bar{\alpha}_t)) p(x_{0(ij)}) dx_{0(ij)}} \\ 765 \quad = \nabla_{x_{t(ij)}} \frac{\int p(x_{0(ij)}) \left(-\frac{x_{t(ij)} - \sqrt{\bar{\alpha}_t} x_{0(ij)}}{1 - \bar{\alpha}_t} \right) \mathcal{N}(x_{t(ij)} : \sqrt{\bar{\alpha}_t} x_{0(ij)}, (1 - \bar{\alpha}_t)) dx_{0(ij)}}{\int \mathcal{N}(x_{t(ij)} : \sqrt{\bar{\alpha}_t} x_{0(ij)}, (1 - \bar{\alpha}_t)) p(x_{0(ij)}) dx_{0(ij)}} \\ 766 \quad = \nabla_{x_{t(ij)}} \left[-\frac{x_{t(ij)} - \sqrt{\bar{\alpha}_t} x_{0(ij)}}{1 - \bar{\alpha}_t} \right] = -\frac{1}{1 - \bar{\alpha}_t} \\ 767 \quad s''_{ij}(x_{t(ij)}, t) = \nabla_{x_{t(ij)}} \left[-\frac{1}{1 - \bar{\alpha}_t} \right] = 0 \\ 768 \quad \dots \\ 769 \quad s_{ij}^n(x_{t(ij)}, t) = 0$$

$$770 \quad \therefore s_{ij}(x_{t(ij)}, t) = s_{ij}(x_{t(ij)}^{\overline{Or}}, t) + \frac{s_{ij}'(x_{t(ij)}^{\overline{Or}}, t)}{1!}(x_{t(ij)} - x_{t(ij)}^{\overline{Or}}) \quad (19)$$

771 Thus, we can obtain:
 772

$$773 \quad \Rightarrow \mathbf{s}_{bias}(ij) = s_{ij}(x_{t(ij)}, t) - s_{ij}(x_{t(ij)}^{\overline{Or}}, t) = s_{ij}'(x_{t(ij)}^{\overline{Or}}, t) \sqrt{\bar{\alpha}_t} x_{0(ij)} = -\frac{\sqrt{\bar{\alpha}_t} x_{0(ij)}}{1 - \bar{\alpha}_t} \quad (20)$$

□

774 A.3 PROOF OF COROLLARY 4.1

775 *Proof.* Considering the original missing rate as $p^{Or} = \frac{\sum_{i=0}^N \sum_{j=0}^F (1 - \mathbf{M}_{ij}^{Or})}{NF}$, We analyze the cumulative
 776 error in DDPM sampling process, focusing on the bias introduced by finite-difference approximations in score estimation. From Eq. 5, each step's error propagates through subsequent steps with
 777 amplification factor $\frac{\beta_t}{\sqrt{1 - \beta_t}}$, which can be transformed as $\frac{1 - \alpha_t}{\sqrt{\alpha_t}}$. The expectation of the accumulated
 778 bias can be obtained as:
 779

$$780 \quad \mathbb{E} \left[\sum_{t=1}^T \mathbf{s}_{bias} \right] = \mathbb{E} \left[\sum_{t=1}^T \left\| \mathbf{s}(\mathbf{X}_t) - \mathbf{s}(\mathbf{X}_t^{\overline{Or}}, t) \right\|^2 \right] \\ 781 \quad = \mathbb{E} \left[\sum_{t=1}^T \left\| \frac{1 - \alpha_t}{\sqrt{\alpha_t}} \mathbf{s}_{bias} \odot (1 - \mathbf{M}^{Or}) \right\|^2 \right] \\ 782 \quad = p^{Or} \left[\sum_{t=1}^T \sum_{i,j \in Or} \left[-\frac{1 - \alpha_t}{\sqrt{\alpha_t}} \frac{\sqrt{\bar{\alpha}_t}}{1 - \bar{\alpha}_t} x_{0(ij)} \right] \right] \\ 783 \quad = p^{Or} \sum_{t=1}^T \sum_{i,j \in Or} \left[-\sqrt{\bar{\alpha}_{t-1}} \frac{1 - \alpha_t}{1 - \bar{\alpha}_t} x_{0(ij)} \right] \quad (21)$$

□

810 Where Or means the original missing data.
 811

812 **A.4 PROOF OF PROPOSITION 4.2**
 813

814 *Proof.* The real situation will be more complex since most of the time series data possess temporal
 815 correlation or even spatio-temporal relationships. In this case, the independent assumption of Propo-
 816 sition 4.1 will not be valid due to $x_{0(ij)} \not\perp x_{0(kl)}$. Therefore, the original missing bias can provably
 817 cause the bias of a non-original missing entity. To analyze this effect, we analyze two correlated
 818 points $\mathbf{X}_0 = \begin{bmatrix} x_{0(ij)} \\ x_{0(kl)} \end{bmatrix}$ with a non-independent Gaussian distribution in the DDPM setting. The
 819 probability density function is:
 820

$$821 \quad p(\mathbf{X}_0) = \frac{1}{2\pi\sqrt{|\Sigma_0|}} \exp\left(-\frac{1}{2}(\mathbf{X}_0 - \boldsymbol{\mu})^\top \Sigma_0^{-1}(\mathbf{X}_0 - \boldsymbol{\mu})\right), \quad (22)$$

822 where mean vector $\boldsymbol{\mu} = \begin{bmatrix} \mu_{ij} \\ \mu_{kl} \end{bmatrix}$ and $\Sigma_0 = \begin{bmatrix} \sigma_{ij}^2 & \rho\sigma_{ij}\sigma_{kl} \\ \rho\sigma_{ij}\sigma_{kl} & \sigma_{kl}^2 \end{bmatrix}$ with correlation coefficient $\rho \in$
 823 $[-1, 1]$. Then, in the forward process, $p(\mathbf{X}_t | \mathbf{X}_0) \sim \mathcal{N}(\mathbf{X}_t; \sqrt{\bar{\alpha}_t} \mathbf{X}_0, (1 - \bar{\alpha}_t) \mathbf{I})$ and $p(\mathbf{X}_0) =$
 824 $\mathcal{N}(\mathbf{X}_0; \boldsymbol{\mu}, \Sigma_0)$, let $\Sigma_t = \bar{\alpha}_t \Sigma_0 + (1 - \bar{\alpha}_t) \mathbf{I}$, we can obtain $p(\mathbf{X}_t) \sim \mathcal{N}(\mathbf{X}_t; \sqrt{\bar{\alpha}_t} \boldsymbol{\mu}, \Sigma_t)$. Thus, the
 825 score-based function can be calculated as:
 826

$$827 \quad \begin{aligned} \mathbf{s}(\mathbf{X}_t, t) &= \nabla_{\mathbf{X}_t} \log p(\mathbf{X}_t) = \nabla_{\mathbf{X}_t} \log \mathcal{N}(\mathbf{X}_t; \sqrt{\bar{\alpha}_t} \boldsymbol{\mu}, \Sigma_t) \\ 828 &= \nabla_{\mathbf{X}_t} \left[-\frac{1}{2}(\mathbf{X}_t - \sqrt{\bar{\alpha}_t} \boldsymbol{\mu})^\top \Sigma_t^{-1}(\mathbf{X}_t - \sqrt{\bar{\alpha}_t} \boldsymbol{\mu}) + \text{constant} \right] \\ 829 &= -\frac{1}{2}(\Sigma_t^{-1} + (\Sigma_t^{-1})^\top)(\mathbf{X}_t - \sqrt{\bar{\alpha}_t} \boldsymbol{\mu}) \\ 830 &= -\Sigma_t^{-1}(\mathbf{X}_t - \sqrt{\bar{\alpha}_t} \boldsymbol{\mu}) \\ 831 &= \frac{1}{D_t} \begin{bmatrix} \bar{\alpha}_t \sigma_{kl}^2 + (1 - \bar{\alpha}_t) & -\bar{\alpha}_t \rho \sigma_{ij} \sigma_{kl} \\ -\bar{\alpha}_t \rho \sigma_{ij} \sigma_{kl} & \bar{\alpha}_t \sigma_{ij}^2 + (1 - \bar{\alpha}_t) \end{bmatrix} \left(\begin{bmatrix} x_{t(ij)} \\ x_{t(kl)} \end{bmatrix} - \sqrt{\bar{\alpha}_t} \begin{bmatrix} \mu_{ij} \\ \mu_{kl} \end{bmatrix} \right) \\ 832 &= \frac{1}{D_t} \begin{bmatrix} \bar{\alpha}_t \sigma_{kl}^2 + (1 - \bar{\alpha}_t) & -\bar{\alpha}_t \rho \sigma_{ij} \sigma_{kl} \\ -\bar{\alpha}_t \rho \sigma_{ij} \sigma_{kl} & \bar{\alpha}_t \sigma_{ij}^2 + (1 - \bar{\alpha}_t) \end{bmatrix} \begin{bmatrix} x_{t(ij)} - \sqrt{\bar{\alpha}_t} \mu_{ij} \\ x_{t(kl)} - \sqrt{\bar{\alpha}_t} \mu_{kl} \end{bmatrix} \\ 833 &= \frac{1}{D_t} \begin{bmatrix} (1 + \bar{\alpha}_t(\sigma_{kl}^2 - 1))x_{t(ij)} - \bar{\alpha}_t \rho \sigma_{ij} \sigma_{kl} x_{t(kl)} - (1 + \bar{\alpha}_t(\sigma_{kl}^2 - 1))\sqrt{\bar{\alpha}_t} \mu_{ij} + \bar{\alpha}_t \rho \sigma_{ij} \sigma_{kl} \sqrt{\bar{\alpha}_t} \mu_{kl} \\ -\bar{\alpha}_t \rho \sigma_{ij} \sigma_{kl} x_{t(ij)} + (1 + \bar{\alpha}_t(\sigma_{ij}^2 - 1))x_{t(kl)} + \bar{\alpha}_t \rho \sigma_{ij} \sigma_{kl} \sqrt{\bar{\alpha}_t} \mu_{ij} - (1 + \bar{\alpha}_t(\sigma_{ij}^2 - 1))\sqrt{\bar{\alpha}_t} \mu_{kl} \end{bmatrix} \end{aligned} \quad (23)$$

834 Where $D_t = \text{Determinant}(\Sigma_t) = (\bar{\alpha}_t \sigma_{ij}^2 + (1 - \bar{\alpha}_t))(\bar{\alpha}_t \sigma_{kl}^2 + (1 - \bar{\alpha}_t)) - (\bar{\alpha}_t \rho \sigma_{ij} \sigma_{kl})^2$. From Eq.
 835 23, if the two points do not correlate with each other, i.e., $\rho = 0$, and the score-based function can
 836 be transformed as:
 837

$$838 \quad \begin{aligned} \mathbf{s}(\mathbf{X}_t, t) &= \frac{1}{(\bar{\alpha}_t \sigma_{ij}^2 + (1 - \bar{\alpha}_t))(\bar{\alpha}_t \sigma_{kl}^2 + (1 - \bar{\alpha}_t))} \left[(1 + \bar{\alpha}_t(\sigma_{kl}^2 - 1))x_{t(ij)} - (1 + \bar{\alpha}_t(\sigma_{kl}^2 - 1))\sqrt{\bar{\alpha}_t} \mu_{ij} \right. \\ 839 &\quad \left. (1 + \bar{\alpha}_t(\sigma_{ij}^2 - 1))x_{t(kl)} - (1 + \bar{\alpha}_t(\sigma_{ij}^2 - 1))\sqrt{\bar{\alpha}_t} \mu_{kl} \right] \\ 840 &= \begin{bmatrix} \frac{x_{t(ij)} - \sqrt{\bar{\alpha}_t} \mu_{ij}}{\bar{\alpha}_t \sigma_{ij}^2 + (1 - \bar{\alpha}_t)} \\ \frac{x_{t(kl)} - \sqrt{\bar{\alpha}_t} \mu_{kl}}{\bar{\alpha}_t \sigma_{kl}^2 + (1 - \bar{\alpha}_t)} \end{bmatrix} \end{aligned} \quad (24)$$

841 and there is no effect on one point, even the other point suffers the original missing and is replaced
 842 with 0, which has the same result and conclusion as Proposition 4.1. We assume that $x_{0(kl)}$ is the
 843 original missing point while $x_{0(ij)}$ is the observed point. Thus, $\rho^{\text{Or}} = 0$, $\mu_{kl}^{\text{Or}} = 0$ and $\sigma_{kl}^{\text{Or}} = 0$,
 844 then, $s_{ij}(x_t^{\text{Or}}, t) = \frac{x_{t(ij)} - \sqrt{\bar{\alpha}_t} \mu_{ij}}{\bar{\alpha}_t \sigma_{ij}^2 + (1 - \bar{\alpha}_t)}$. Thus, we can obtain:
 845

$$846 \quad \begin{aligned} \mathbf{s}_{\text{bias}}(x_{0(ij)}) &= s_{ij}(x_t, t) - s_{ij}(x_t^{\text{Or}}, t) \\ 847 &= \frac{1}{D_t} \left[(\bar{\alpha}_t \sigma_{kl}^2 + (1 - \bar{\alpha}_t))(x_{t(ij)} - \sqrt{\bar{\alpha}_t} \mu_{ij}) - \bar{\alpha}_t \rho \sigma_{ij} \sigma_{kl} (x_{t(kl)} - \sqrt{\bar{\alpha}_t} \mu_{kl}) \right] - \frac{x_{t(ij)} - \sqrt{\bar{\alpha}_t} \mu_{ij}}{\bar{\alpha}_t \sigma_{ij}^2 + (1 - \bar{\alpha}_t)} \end{aligned} \quad (25)$$

848 From Eq. 25, $x_{t(ij)}$ still suffer the missing effect of $x_{t(kl)}$ when the correlation coefficient ρ is not
 849 equal to 0, which means that even the observed data can not be reconstructed without bias if the
 850

original missing data is correlated to the observed data. In order to know the bias effect of score-based function from the original missing data to the non-missing data, assuming all variances are unity, $\sigma_{ij}^2 = \sigma_{kl}^2 = 1$, we obtain:

$$\bar{\alpha}_t \sigma_{ij}^2 + (1 - \bar{\alpha}_t) = 1, \quad \bar{\alpha}_t \sigma_{kl}^2 + (1 - \bar{\alpha}_t) = 1, \quad \bar{\alpha}_t \rho \sigma_{ij} \sigma_{kl} = \bar{\alpha}_t \rho, \quad (26)$$

which reduces the determinant to

$$D_t = 1 - (\bar{\alpha}_t \rho)^2. \quad (27)$$

Combining these expressions and simplifying the numerator yields the final form:

$$\begin{aligned} \mathbf{s}_{bias}(ij) &= \frac{(\bar{\alpha}_t \rho)^2 (x_{t(ij)} - \sqrt{\bar{\alpha}_t} \mu_{ij}) - \bar{\alpha}_t \rho (x_{t(kl)} - \sqrt{\bar{\alpha}_t} \mu_{kl})}{1 - (\bar{\alpha}_t \rho)^2} \\ \implies \frac{\mathbf{s}_{bias}(ij)}{\epsilon} &= \frac{(\bar{\alpha}_t \rho)^2 - \bar{\alpha}_t \rho}{1 - (\bar{\alpha}_t \rho)^2} = \frac{-\bar{\alpha}_t \rho}{1 + \bar{\alpha}_t \rho} \end{aligned} \quad (28)$$

□

The plot of Eq. 28 is shown in Fig. 1b.

A.5 OBSERVATION SCORE-BASED OBJECTIVE FUNCTION DEDUCTION

From CSDI Tashiro et al. (2021), the objective function \mathcal{L}_1 can be transformed as:

$$-\log p(\mathbf{X}_0^{Ta} | \mathbf{X}_0^{Co}, \hat{\mathbf{X}}_0^{Or}) \leq \mathbb{E}_{q(\mathbf{X}_{1:T}^{Ta} | \mathbf{X}_0^{Co}, \hat{\mathbf{X}}_0^{Or})} \log \frac{q(\mathbf{X}_{1:T}^{Ta} | \mathbf{X}_0^{Co}, \hat{\mathbf{X}}_0^{Or})}{p_{\theta}(\mathbf{X}_{0:T}^{Ta} | \mathbf{X}_0^{Co}, \hat{\mathbf{X}}_0^{Or})} \quad (29)$$

Apply reparameterization as CSDI Tashiro et al. (2021), we can obtain the loss function from the observation space as:

$$\mathcal{L}_1(\theta) = \mathbb{E}_{\epsilon \sim \mathcal{N}(0, \mathbf{I}), t} \left\| (\epsilon - \epsilon_{\theta}(\mathbf{X}_t^{Ta}, t | \mathbf{X}_0^{Co}, \hat{\mathbf{X}}_0^{Or}) \odot (1 - \mathbf{M}^{Ta})) \right\|^2 \quad (30)$$

A.6 LATENT SCORE-BASED OBJECTIVE FUNCTION DEDUCTION

As for the second term \mathcal{L}_2 , we applied Jensen's inequality,

$$\begin{aligned} \mathcal{L}_2 &= -\log \int p(\hat{\mathbf{X}}_0^{Or} | \mathbf{X}_0^{Co}, \mathbf{Z}_0) p(\mathbf{Z}_0 | \mathbf{X}_0^{Co}) d\mathbf{Z}_0 \\ &= -\log \int \frac{q(\mathbf{Z}_0 | \bar{\mathbf{X}}_0^{Or}, \mathbf{X}_0^{Co}) p(\hat{\mathbf{X}}_0^{Or} | \mathbf{X}_0^{Co}, \mathbf{Z}_0) p(\mathbf{Z}_0 | \mathbf{X}_0^{Co})}{q(\mathbf{Z}_0 | \bar{\mathbf{X}}_0^{Or}, \mathbf{X}_0^{Co})} d\mathbf{Z}_0 \\ &\leq \mathbb{E}_{q(\mathbf{Z}_0 | \bar{\mathbf{X}}_0^{Or}, \mathbf{X}_0^{Co})} \log \frac{q(\mathbf{Z}_0 | \bar{\mathbf{X}}_0^{Or}, \mathbf{X}_0^{Co})}{p(\hat{\mathbf{X}}_0^{Or} | \mathbf{X}_0^{Co}, \mathbf{Z}_0) p(\mathbf{Z}_0 | \mathbf{X}_0^{Co})} \\ &= -\mathbb{E}_{q(\mathbf{Z}_0 | \bar{\mathbf{X}}_0^{Ta}, \mathbf{X}_0^{Co})} \left[\log p(\hat{\mathbf{X}}_0^{Or} | \mathbf{X}_0^{Co}, \mathbf{Z}_0) \right] + \text{KL} (q(\mathbf{Z}_0 | \bar{\mathbf{X}}_0^{Or}, \mathbf{X}_0^{Co}) || p(\mathbf{Z}_0 | \mathbf{X}_0^{Co})) \end{aligned} \quad (31)$$

where KL denotes the Kullback–Leibler divergence, and $\bar{\mathbf{X}}_0^{Or}$ represents the linear interpolation values of the original missing data during the data preprocessing stage, aiming to prevent the neural network from encountering sparse input data issues. In our study, the prior distribution $p(\mathbf{Z}_0 | \mathbf{X}_0^{Co})$ and the posterior distribution $q(\mathbf{Z}_0 | \bar{\mathbf{X}}_0^{Or}, \mathbf{X}_0^{Co})$ are not as simple as the Normal distribution under complex temporal correlation and serious missing condition.

918 A.6.1 NORMALIZING FLOW OBJECTIVE FUNCTION DEDUCTION
919

920 To approximate the posterior distribution $q(\mathbf{Z}_0|\bar{\mathbf{X}}_0^{Or}, \mathbf{X}_0^{Co})$, normalizing flow is applied. Given a
921 base latent variable $\mathbf{Z}_0 \sim q(\mathbf{Z}_0|\bar{\mathbf{X}}_0^{Or}, \mathbf{X}_0^{Co})$, a normalizing flow applies a sequence of invertible,
922 differentiable transformations Rezende & Mohamed (2015):

$$923 \log q(\mathbf{Z}_K|\bar{\mathbf{X}}_0^{Or}, \mathbf{X}_0^{Co}) = \log q(\mathbf{Z}_0|\bar{\mathbf{X}}_0^{Or}, \mathbf{X}_0^{Co}) - \sum_{k=1}^K \log \left| \det \frac{\partial f_k}{\partial \mathbf{Z}_{k-1}} \right|, \quad (32)$$

926 where \det is determinant and $\mathbf{Z}_K = f_K \circ f_{K-1} \circ \dots \circ f_1(\mathbf{Z}_0)$ as a shorthand for the composition
927 $f_K(f_{K-1}(\dots f_1(x)))$ and the normalizing flow can approximate any distribution in theory. In this
928 study, we adopt planar flow f and initialization \mathbf{Z}_0 as:

$$930 f(\mathbf{Z}) = \mathbf{Z} + \mathbf{w}_0 \tanh(\mathbf{w}_1^\top \mathbf{Z} + \mathbf{b}) \quad \mathbf{Z}_0 \sim \mathcal{N}(0, \mathbf{I}), \quad (33)$$

931 where $\mathbf{w}_0 \in \mathbb{R}^D$, $\mathbf{w}_1 \in \mathbb{R}^D$ and $\mathbf{b} \in \mathbb{R}^1$ are the learnable parameters and D is the dimension of the
932 latent space. As a result, \mathcal{L}_2 can be transformed to:

$$934 \mathcal{L}_2 = \mathbb{E}_{\mathbf{Z}_0 \sim q(\mathbf{Z}_0|\bar{\mathbf{X}}_0^{Or}, \mathbf{X}_0^{Co})} \left[-\log p(\mathbf{X}_0^{Or}|\mathbf{X}_0^{Co}, \mathbf{Z}_K) + \log q(\mathbf{Z}_0|\bar{\mathbf{X}}_0^{Or}, \mathbf{X}_0^{Co}) - \sum_{k=1}^K \log \left| \det \frac{\partial f_k}{\partial \mathbf{Z}_{k-1}} \right| - \log p(\mathbf{Z}_K|\mathbf{X}_0^{Co}) \right] \quad (34)$$

937 A.7 GUIDANCE AND SAMPLING STRATEGY IN LATENT DIFFUSION

938 A.7.1 POSITION ENCODING

939 To effectively handle sequential data with missing values, we incorporate positional encoding and
940 masked self-attention mechanisms in our model. Since the attention architecture lacks inherent
941 positional awareness, we apply sinusoidal positional encoding to the input sequence \mathbf{X}^{Co} . The
942 positional encoding vector \mathbf{PE} is defined as Vaswani et al. (2017):

$$943 \mathbf{PE}(pos, 2i) = \sin \left(\frac{pos}{10000^{\frac{2i}{F}}} \right), \quad \mathbf{PE}(pos, 2i+1) = \cos \left(\frac{pos}{10000^{\frac{2i}{F}}} \right) \quad (35)$$

944 where $pos \in \{0, 1, \dots, N_p - 1\}$ is the token index and F_p is the embedding dimension while $i \in$
945 $\{0, 1, \dots, F_p/2 - 1\}$ is the channel index. The positional encodings \mathbf{PE} are added to the input
946 $\mathbf{X}_{\text{pos}} = \mathbf{X}^{Co} + \mathbf{PE}$. We then apply a multi-head self-attention mechanism with $H = 8$ heads:

$$947 \text{MultiHead}(Q, K, V) = \text{Concat}(h_1, \dots, h_H)W^O, \quad (36)$$

$$948 h_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V), \quad (37)$$

949 where $Q = K = V = \mathbf{X}_{\text{pos}}$, and $W_i^Q, W_i^K, W_i^V \in \mathbb{R}^{F_p \times d_k}$, $W^O \in \mathbb{R}^{N_p d_k \times F_p}$ are learnable
950 projection matrices and $d_k = \frac{K}{H}$. Each scaled dot-product attention head is computed as:

$$951 \text{Attention}(Q, K, V) = \text{softmax} \left(\frac{QK^\top}{\sqrt{d_k}} + \mathbf{M}^{Or} \right) V. \quad (38)$$

952 The resulting output $\mathbf{y} \in \mathbb{R}^{N_p \times F_p}$ of $\text{MultiHead}(Q, K, V)$ contains context-aware representations
953 for each token.

954 A.7.2 GUIDANCE OF LATENT DIFFUSION

955 We incorporate missing mask \mathbf{M}^{Or} and position encoding representations into intermediate layers of
956 latent diffusion via a cross-attention mechanism, which has proven effective in aligning multi-modal
957 signals such as language, image, and time-series features. Specifically, to process the input time series
958 \mathbf{X}^{Co} , we first apply a positional encoder followed by a multihead attention encoder A.7.1 that
959 outputs a refined representation $\mathbf{y} \in \mathbb{R}^{N_p \times F_p}$. We introduce a domain-specific encoder τ_θ Rombach

et al. (2022) that projects \mathbf{y} into an intermediate representation $\tau_\theta(\mathbf{y}) \in \mathbb{R}^{D \times 1}$. This encoded representation serves as the conditioning input to the model and is integrated into intermediate layers via a cross-attention mechanism. Specifically, for a given layer i , the cross attention is computed as:

$$\begin{aligned} \text{Attention}(Q, K, V) &= \text{softmax} \left(\frac{QK^\top}{\sqrt{D}} \right) V, \\ Q &= W_Q^{(i)} \cdot \varphi_i(\mathbf{h}), \\ K &= W_K^{(i)} \cdot \tau_\theta(\mathbf{y}), \\ V &= W_V^{(i)} \cdot \tau_\theta(\mathbf{y}). \end{aligned} \quad (39)$$

Here, $\varphi_i(\mathbf{h}) \in \mathbb{R}^{D_i \times 1}$ denotes the flattened latent feature representation of the i -th layer, and $W_Q^{(i)} \in \mathbb{R}^{D \times D_i}$, $W_K^{(i)}, W_V^{(i)} \in \mathbb{R}^{D \times D}$ are learnable projection matrices. By integrating $\tau_\theta(\mathbf{y})$ into the model via attention, we enable fine-grained and dynamic conditioning on external guidance throughout the denoising process.

A.7.3 CONTINUOUS ODE SAMPLING STRATEGY

To mitigate the stochasticity inherent in the latent sampling process, we adopt deterministic probability flow ODE sampling. The corresponding deterministic trajectory is governed by the following ordinary differential equation (ODE) Song et al.:

$$d\mathbf{x} = [\mathbf{f}(x, t) - \frac{1}{2}g(t)^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x})] dt \quad (40)$$

where $f(x, t) = \frac{1}{2}\beta(t)$ and $g(t) = \sqrt{\beta(t)}$ and we will obtain the sampling equation as:

$$d(\hat{\mathbf{Z}}_K)_t = \left[\frac{\beta(t)}{2}(\hat{\mathbf{Z}}_K)_t + \frac{\beta(t)}{2} \frac{\epsilon_\theta((\hat{\mathbf{Z}}_K)_t | \mathbf{X}_0^{Co}, t)}{\sqrt{1 - e^{(-\int \beta(t) dt)}}} \right] dt \quad (41)$$

Where $e^{(-\int \beta(t) dt)} = e^{(-\beta_{\text{start}} t - \frac{1}{2}(\beta_{\text{end}} - \beta_{\text{start}})t^2)}$.

A.8 ALGORITHM DETAIL

The training algorithm is shown in Algorithm 1 while the sampling Algorithm is in Algorithm 2.

A.9 DATASETS DETAIL

1. **PhysioNet 2012 Mortality Prediction Challenge (P2012) Silva et al. (2012):** The PhysioNet 2012 Mortality Prediction Challenge (P2012) dataset comprises multivariate clinical time series collected from 4,000 ICU patients during the first 48 hours of admission. Each patient record includes 35 physiological and laboratory measurements sampled at irregular intervals. The dataset is highly sparse, with 80.52% of original missing values. The data is split and preprocessed as Tashiro et al. (2021).
2. **MIMIC-IV v3.1 Johnson et al. (2024):** MIMIC-IV v3.1, released in October 2024, includes electronic health records from 364,627 patients admitted to the Beth Israel Deaconess Medical Center between 2008 and 2022. Following the preprocessing procedure in Harutyunyan et al. (2019), we retain eight vital signs—Diastolic blood pressure (BP), Fraction of inspired oxygen, Glucose, Heart rate, Mean BP, Oxygen saturation, Respiratory rate, and Systolic BP. Patients with fewer than 48 time steps are excluded to maintain tensor alignment. The final dataset comprises 36,401 patients, each with 48 time steps and 8 variables, with an overall original missing rate of 49.09%. The data is split and preprocessed as Hayat et al. (2022).
3. **Electricity Transformer Temperature (ETT) Zhou et al. (2021):** The ETT dataset contains 15-minute interval readings from electricity transformers between July 1, 2016 and June 26, 2018, totaling 69,680 samples without original missing data. Each sample includes seven features: one oil temperature and six power load variables. The data is split and preprocessed as Du et al. (2023).

1026

1027

1028

1029

Algorithm 1 Training of HSGM

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

Algorithm 2 Sampling (Imputation) of HSGM

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1: **Input:** Time series values \mathbf{X}_0^{Co} , $\bar{\mathbf{X}}_0^{Or}$, \mathbf{M}^{Ta} and \mathbf{M}^{Or}
 2: **Output:** Latent variable \mathbf{Z}_K , Reconstructed original missing data $\hat{\mathbf{X}}_0^{Or}$ and model parameters $\lambda = \{\phi, \psi, \theta\}$, where ϕ and ψ are the encoder, decoder and planar flow learnable parameters of VAE and normalizing flow while θ is the latent and observation diffusion learnable parameters.
 3: Pre-train the NVAE architecture, optimize the Objective function Eq. 10 inputting \mathbf{X}_0^{Co} , $\bar{\mathbf{X}}_0^{Or}$
 4: Frozen the encoder parameters ϕ of NVAE, obtain the latent distribution \mathbf{Z}_K
 5: Initialize variables θ for latent diffusion
 6: **for** each epoch in latent training **do**
 7: Add noise to \mathbf{Z}_K by Eq. 11
 8: Optimize the latent objective function in Eq. 12 by taking gradient step on
 9: $\nabla_\theta \|\epsilon - \epsilon_\theta((\mathbf{Z}_K)_t | \mathbf{X}_0^{Co}, t)\|^2$
 10: **end for**
 11: Obtain the reconstructed latent variable $\hat{\mathbf{Z}}_K$ from Algorithm 2
 12: Calculate the cross attention Eq. 41 by inputting \mathbf{Z}_K and $\hat{\mathbf{Z}}_K$
 13: Post-train the decoder parameters ψ of NVAE with the output of cross attention by
 14: $\|(\hat{\mathbf{X}} - \mathbf{X}_0) \odot \mathbf{M}^{Or}\|^2$
 15: Initialize the variables θ for observation diffusion
 16: **for** each epoch in observation diffusion **do**
 17: Add noise to \mathbf{X}_0^{Ta}
 18: Optimize the observation objective function in Eq. 30 by taking gradient step on
 19: $\nabla_\theta \|(\epsilon - \epsilon_\theta(\mathbf{X}_t^{Ta}, t | \mathbf{X}_0^{Co}, \hat{\mathbf{X}}_0^{Or})) \odot (1 - \mathbf{M}^{Ta})\|^2$
 20: **end for**
 21: **return** Latent variable \mathbf{Z}_K , Reconstructed original missing data $\hat{\mathbf{X}}_0^{Or}$ and λ

1080
 1081 4. **Synthetic dataset Fang et al. (2024):** A synthetic dataset with highly spatio-temporal
 1082 correlations of 4 channels, and each channel is a mixture of multiscale trend and seasonality
 1083 factors. The dataset can be generated by 4 correlation functions and a weight matrix, which
 1084 are defined as:

1085
$$\mathbf{S}(t) = \frac{\mathbf{U}\mathbf{V}(t)}{10}, \quad \text{Where } \mathbf{U} = \begin{pmatrix} 1 & 1 & -2 & -2 \\ 0.4 & 1 & 2 & -1 \\ -0.3 & 2 & 1 & 1 \\ -1 & 1 & 1 & 0.5 \end{pmatrix}, \quad \mathbf{V}(t) = \begin{pmatrix} 10t \\ \sin(20\pi t) \\ \cos(40\pi t) \\ \sin(60\pi t) \end{pmatrix}. \quad (42)$$

 1086
 1087
 1088

1089 2000 data points over 500 are irregularly sampled timestamps from $[0, 1]$ as the same as
 1090 Fang et al. (2024). The dataset is divided into training (70%), validation (10%), and test
 1091 (20%) sets.

1092 A.10 EXPERIMENTAL SETTINGS

1093 We implement a VAE and a normalizing flow with NVAE Vahdat & Kautz (2020), and use CSDI
 1094 for observation diffusion Tashiro et al. (2021). The normalizing flow uses $K = 4$ transformations.
 1095 For latent diffusion, the batch size is 8 and we use a linear noise schedule with $\beta_{\text{start}} = 0.1$ and
 1096 $\beta_{\text{end}} = 20$, adopting the NCSN architecture Song et al. to learn the score based function. To reduce
 1097 randomness, we draw 100 samples of $\hat{\mathbf{Z}}$ and report their mean as the final output. Latent ODE
 1098 sampling in Eq. 41 is performed with a continuous ODE solver Chen et al. (2018). All experiments
 1099 are run in PyTorch 1.13.1 on a Linux server with an Intel Core i7 1800H at 2.30 GHz, an NVIDIA
 1100 GeForce RTX 3080, and 32 GB memory.

1103 A.11 METRICS

1104 To evaluate the imputation performance of different methods, we adopt mean absolute error (MAE)
 1105 and root mean square error (RMSE) as:

- 1107 • Mean Absolute Error(MAE):

1108
$$MAE(\mathbf{X}^{Ta}, \hat{\mathbf{X}}^{Ta}) = \frac{\|(\mathbf{X}^{Ta} - \hat{\mathbf{X}}^{Ta}) \odot (1 - \mathbf{M}^{Ta})\|_1}{\|1 - \mathbf{M}^{Ta}\|_1}$$

 1109
 1110
 1111

- 1112 • Root Mean Squared Error(RMSE):

1113
$$RMSE(\mathbf{X}^{Ta}, \hat{\mathbf{X}}^{Ta}) = \frac{\|(\mathbf{X}^{Ta} - \hat{\mathbf{X}}^{Ta}) \odot (1 - \mathbf{M}^{Ta})\|}{\|1 - \mathbf{M}^{Ta}\|}$$

 1114
 1115
 1116

1117 where $\|\bullet\|_1$ and $\|\bullet\|$ denotes L1 norm and L2 norm. $RMSE$ and MAE are quantitatively used to
 1118 describe the difference between the predictive value and the ground truth value. The smaller the
 1119 value is, the more accurate the model is.

1120 To evaluate the uncertainty of the generative model, we adopt the continuous ranked probability
 1121 score (CRPS) Matheson & Winkler (1976) to evaluate the compatibility of the estimated probability
 1122 distribution with the observed value. For a missing value x whose estimated probability distribution
 1123 is D , CRPS measures the compatibility of D and x , which can be defined as the integral of the
 1124 quantile loss Λ_α :

1125
$$CRPS(D^{-1}, x) = \int_0^1 2\Lambda_\alpha(D^{-1}(\alpha), x)d\alpha, \quad (43)$$

 1126
 1127
 1128

1129
$$\Lambda_\alpha(D^{-1}(\alpha), x) = (\alpha - \mathbb{I}_{x < D^{-1}(\alpha)})(x - D^{-1}(\alpha)), \quad (44)$$

 1130

1131 where $\alpha \in [0, 1]$ is the quantile level, $D^{-1}(\alpha)$ is the α -quantile of distribution D , and \mathbb{I} is the
 1132 indicator function. Since our distribution of missing values is approximated by generating 100
 1133 samples, we compute quantile losses for discretized quantile levels with 0.05 ticks following Tashiro
 et al. (2021) as:

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

$$\text{CRPS}(D^{-1}, x) \simeq \frac{1}{19} \sum_{i=1}^{19} 2\Lambda_{i \times 0.05}(D^{-1}(i \times 0.05), x). \quad (45)$$

We compute CRPS for each estimated missing value and use the average as the evaluation metric, which is formalized as:

$$\text{CRPS}(D, \mathbf{X}^{ta}) = \frac{1}{|\mathbf{X}^{ta}|} \sum_{x \in \mathbf{X}^{ta}} \text{CRPS}(D^{-1}, x). \quad (46)$$

The smaller the CRPS value, the less uncertainty there is in the imputation result.

A.12 BASELINES

We compare the performance of HSGM against a diverse set of baseline methods, including traditional statistical approaches, matrix factorization techniques, and recent deep learning-based models:

- **Mean**: A naive baseline that fills missing values using the mean of each node over the entire time horizon.
- **KNN**: Estimates missing values by averaging the values of the 3 nearest neighboring nodes.
- **MICE** Van Buuren (2000): Conducts multiple imputations through chained equations; we set the maximum iterations to 100.
- **MF** (Cichocki & Phan, 2009): Performs matrix completion via singular value decomposition (SVD) to recover missing entries from low-rank structure.
- **M²DMTF** (Fan, 2021): Performs imputation using multi-mode deep matrix and tensor factorization.
- **Transformer** (Vaswani et al., 2017): Applies a multi-head attention mechanism for capturing long-range dependencies in time series imputation.
- **BRITS** (Cao et al., 2018): Utilizes a bidirectional RNN structure to iteratively infer missing values.
- **SAITS** (Du et al., 2023): Employs a self-attention-based architecture tailored for time series imputation under a self-supervised setting.
- **MPGRU** (Li et al., 2018): Integrates graph neural networks with GRU for spatio-temporal imputation.
- **GRIN** (Cini et al., 2021): Combines GNN and bidirectional GRU in a two-stage framework for structured time series imputation.
- **HSPGNN** (Liang et al., 2024): Use the physics-incorporated neural network with attention and GNN for imputation.
- **CSDI** (Tashiro et al., 2021): Leverages conditional score-based diffusion models for time series imputation, explicitly trained to model correlations in observed data, achieving strong performance on healthcare and environmental datasets.
- **FGTI** Yang et al. (2024) integrates frequency-domain information into a diffusion model for multivariate time-series imputation, emphasizing residual terms via high-frequency filtering and complementing trend and seasonal components through dominant-frequency filtering.
- **BayOTIDE** Fang et al. (2024) is a Bayesian model for online multivariate time series imputation, decomposing the series into a temporal function basis and channel-wise weights modeled with Gaussian processes (GPs). An efficient online inference algorithm leverages the SDE representation of GPs and moment-matching.
- **LSSDM** (Liang et al., 2025): Performs unsupervised time series imputation by learning a low-dimensional latent representation of observed data and refining coarse reconstructions via conditional diffusion, enabling high-fidelity imputation with uncertainty estimation.

1188
 1189
 1190
 1191
 1192 • **DiffPuter** Zhang et al. (2025) combines diffusion models with the Expectation-
 1193 Maximization algorithm to address missing data imputation. It iteratively learns the joint
 1194 distribution of observed and missing values and performs conditional sampling.

1195 **A.13 BIAS VISUALIZATION OF SCORE-BASED FUNCTIONS ON THE ETT DATASET**

1196 We conduct experiments on the ETT dataset to evaluate the biased behavior of score-based functions.

1197
 1198 • **Bias and accumulated bias.** We report the MAE of both bias and accumulated bias, as
 1199 illustrated in Fig. 6.

1200 • **Heat map visualization.** We visualize the score-based functions as heat maps across dif-
 1201 ferent reverse time steps. Fig. 7 presents the ground truth, HSGM, and CSDI results at
 1202 reverse steps 1, 40, and 49.

1203 **A.14 ABLATION STUDY**

1204 To evaluate the contribution of each component in HSGM, we conduct an ablation study, with re-
 1205 sults shown in Tab. 3. The results indicate that a VAE without normalizing flows is limited in
 1206 capturing complex latent distributions, whereas normalizing flows provide a more flexible latent
 1207 representation. Furthermore, unifying the latent diffusion and observation diffusion leads to im-
 1208 proved imputation performance, especially when the dataset contains a high proportion of original
 1209 missing values. On the ETT dataset, latent diffusion alone yields superior imputation performance
 1210 compared to the observation diffusion layer. However, incorporating the output of latent diffusion
 1211 consistently enhances the performance of the observation diffusion layer for all datasets.

1212 Table 3: Performance comparison across datasets and components

Model	P2012@50%		MIMIC IV@50%		ETT@Block Missing		Synthetic@50%	
	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE
VAE-Non norm	0.382±0.003	0.624±0.016	0.046±0.002	0.132±0.003	0.207±0.002	0.311±0.003	0.198±0.010	0.248±0.010
VAE-norm	0.374±0.003	0.610±0.015	0.045±0.002	0.129±0.003	0.190±0.002	0.294±0.004	0.190±0.010	0.234±0.012
Latent Diffusion	0.329±0.003	0.569±0.015	0.041±0.002	0.122±0.003	0.180±0.002	0.289±0.004	0.173±0.010	0.215±0.014
Observation Diffusion(CSDI)	0.301±0.002	0.614±0.017	0.050±0.001	0.178±0.002	0.227±0.004	0.606±0.005	0.136±0.011	0.204±0.012
Latent+Observation Diffusion	0.241±0.003	0.538±0.015	0.032±0.002	0.109±0.003	0.220±0.004	0.581±0.005	0.104±0.010	0.146±0.011

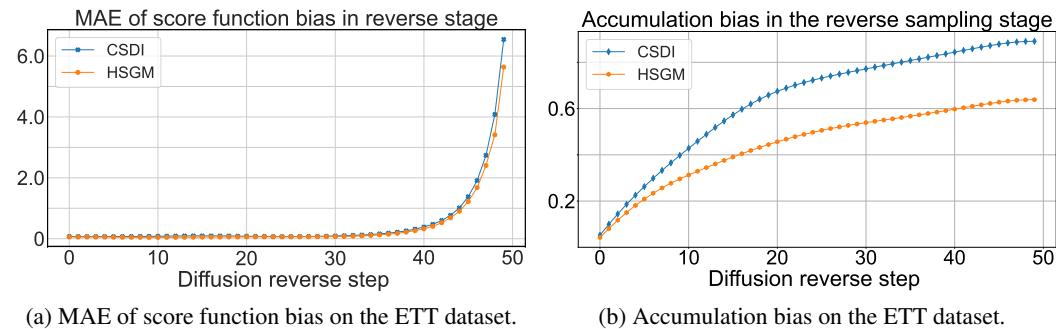


Figure 6: MAE comparison of bias and accumulated bias on the ETT dataset.

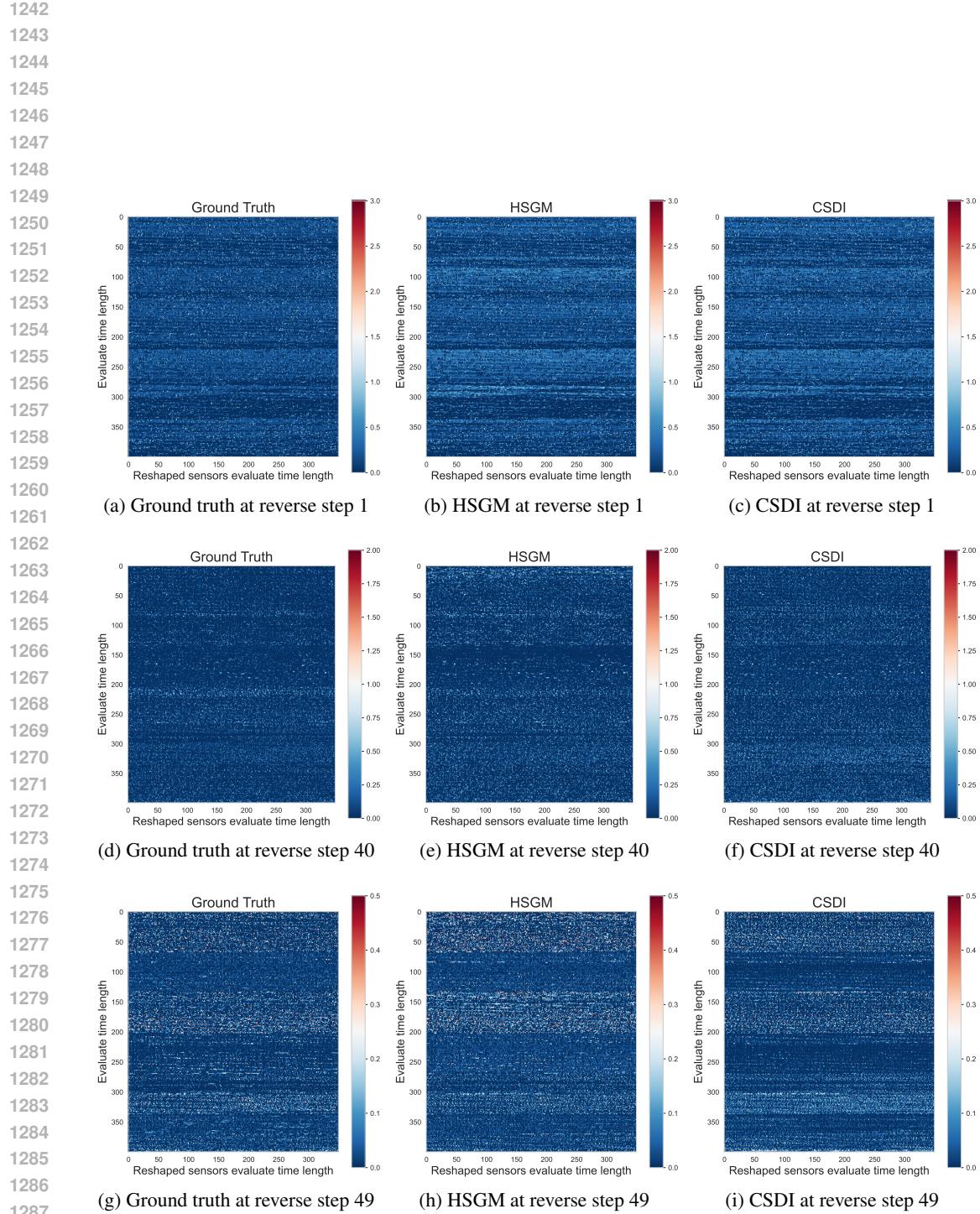


Figure 7: Heat map visualization of score-based functions at different reverse time steps on the ETT dataset.