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ABSTRACT

Missing data remains a key challenge in multivariate time series modeling, often
degrading downstream performance. Recent score-based generative models show
strong potential for high-quality imputations, yet most ignore original missing
data during training, since ground truth is unavailable, resulting in biased score
estimation. We theoretically analyze the effect of missingness on score-based
modeling under the denoising diffusion probabilistic model (DDPM) framework.
Our findings reveal that ignoring original missing patterns—especially under high
missing rates or strong inter-variable correlations—can significantly distort the
learned score function even at non-missing points. To overcome this, we propose
the Hierarchical Score-Based Generative Model (HSGM) for probabilistic time
series imputation. HSGM integrates latent-space and observation-space diffusion
in a layer-wise refinement framework grounded in the chain rule of probability. A
pretrained Variational Autoencoder (VAE) with normalizing flows captures com-
plex latent distributions, while a continuous-time variational diffusion (VPSDE)
operates in latent space. A cross-attention mechanism between the original and de-
noised latent states enhances the fidelity and resolution of the generative outputs,
while an observation-space diffusion module further refines the final imputations.
Experiments on four benchmark datasets show that HSGM achieves the best ac-
curate imputations with tighter uncertainty estimates than existing methods, while
effectively correcting score function bias, establishing a new state of the art in
time series imputation.

1 INTRODUCTION

Missing data in multivariate time series (MTS) is ubiquitous during data collection, arising from
factors such as sensor unreliability and network instability [Wang et al.| (2024); Miao et al.| (2022).
Such missingness can significantly degrade the performance of data-driven models in downstream
tasks, making multivariate time series imputation (MTSI) a crucial solution Jin et al.|(2024); |[Fang &
Wang| (2020). Recently, deep learning—particularly score-based models—has achieved remarkable
progress in MTSI.

Most imputation approaches based on score-based models simulate missing masks and values to
estimate the (conditional) score function, often ignoring the original missing entries due to the lack
of ground truth [Tashiro et al.[(2021); Yang et al.|(2024). Common heuristics, such as zero- or mean-
imputation, assume that original missing values are independent of both observed and simulated
data—an assumption rarely valid in real-world datasets. In practice, the original missing values often
exhibit strong temporal or spatiotemporal correlations|Cao et al.| (2025);(Wang et al.| (2025);[Yuan &
Qiaol and ignoring them can bias score estimation. This is particularly problematic in domains like
healthcare, where missing rates can be around 80%, making the original missing data too prevalent
to disregard |Xu et al.| (2023); |Dai1 et al.| (2024); Liu et al.|(2023a). A central challenge in score-
based imputation is mitigating bias in the score-matching objective. Popular approaches, including
MissDiff |Ouyang et al.| (2023)), mask the conditional score-based function during denoising score
matching but typically ignore dependencies between observed and original missing data, leading to
suboptimal score estimates. To address this, Givens et al. (Givens et al.| (2025)) proposed importance
weighting (IW) and variational approximations of the true score. While IW mitigates distributional
shifts by reweighting samples, it can induce high variance and unstable gradients when the weights
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are poorly estimated. Variational methods, such as the Marginal Variational (Marg-Var) approach
based on the Expectation-Maximization (EM) algorithm, provide improved stability but often rely
on manual feature engineering, limiting end-to-end training. DiffPuter|Zhang et al.|(2025) integrates
diffusion models with EM to tackle missing data imputation, iteratively learning the joint distribution
of observed and missing values while performing conditional sampling. These approaches remain
computationally demanding due to repeated score approximations at each diffusion step.

In this paper, we analyze the original missing effect in learning the score-based function from a
mathematical perspective under the denoising diffusion probabilistic model (DDPM) framework.
To explicitly account for original missing values, we propose a Hierarchical Score-Based Genera-
tive Model (HSGM) for probabilistic time series imputation. Inspired by the layer-wise refinement
paradigm of multilayer perceptrons (MLPs), HSGM leverages both latent and observation score-
based diffusion models to capture the latent distribution of the dataset. The original missing values
are reconstructed via the latent diffusion process and a Variational Autoencoder (VAE) decoder
without requiring ground-truth values, while the observation diffusion layer conditions on these
reconstructed values to learn a more accurate score-based function, thereby producing improved
imputations in the observation space. The main contributions of our work are as follows:

1. Theoretical analysis of bias in score-based functions under the observation DDPM
framework. We rigorously show that ignoring original missing data—especially under
high missing rates or strong inter-variable correlations—can lead to substantial bias in the
learned score function, even for observed points.

2. Hierarchical latent-to-observation diffusion framework. Inspired by the layer-wise re-
finement paradigm of MLP, we theoretically integrate latent-space and observation-space
diffusion in a layer-wise refinement framework grounded in the chain rule of probability.
This approach corrects the bias in score estimation induced by original missing values,
enabling accurate modeling of complex, non-Gaussian data distributions while adaptively
handling original missing data without requiring ground-truth supervision during training.

3. Cross-attention and continuous latent diffusion for high-fidelity imputation. To bal-
ance generative flexibility with reconstruction accuracy, we introduce cross-attention mech-
anisms between original and denoised latent variables, along with continuous latent diffu-
sion implemented via Ordinary Differential Equation (ODE) sampling. These components
jointly guide the generative process, yielding high-fidelity and accurate imputed outputs.

2 RELATED WORK

Variational Generative Models: VAEs Fortuin et al.;|Lee et al.| (2022); | Kingma & Welling| repre-
sent one of the earliest and most widely adopted generative approaches for multivariate time series
imputation (MTSI). By introducing probabilistic latent variables, VAEs capture the underlying data
distribution, encode meaningful variations, and explicitly model uncertainty |Vahdat & Kautz|(2020).
This probabilistic formulation offers a principled and interpretable alternative to deterministic mod-
els Zhao et al.|(2024). Furthermore, VAEs operate naturally in an unsupervised learning paradigm,
making them well-suited for real-world scenarios where the original missing phenomenon prevents
access to ground-truth labels.

Score-based Models in Observation Space: Score-based models have recently attracted consider-
able attention for time series imputation due to their theoretical rigor and ability to generate high-
quality outputs [Yang et al| (2023). CSDI Tashiro et al. (2021) formulates imputation as a condi-
tional diffusion process, using a transformer to capture inter-feature dependencies. PriSTI [Liu et al.
(2023b)) extends this by incorporating conditional features to model temporal and spatial correla-
tions. MTSCI |Zhou et al.[(2024) enforces intra- and inter-consistency via masking and conditional
mixup, while MIDM Wang et al.| (2023) re-derives the ELBO to explicitly model consistency be-
tween observed and missing values through redesigned noise processes. SADI Dai et al.| (2024)
leverages cross-time, cross-feature, and cross-patient information for temporal EHR imputation, and
FGTI |Yang et al.| (2024)) emphasizes residual components with high-frequency filtering, integrating
frequency-domain insights with deep representations. Collectively, these methods highlight the im-
portance of consistency, structured information, and frequency-aware modeling for accurate impu-
tation. DiffPuter|Zhang et al.|(2025) combines diffusion models with the Expectation-Maximization
algorithm to address missing data imputation. It iteratively learns the joint distribution of observed
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and missing values and performs conditional sampling. Furthermore, in observation-based Score-
based model settings, the original missingness is typically assumed to be independent of both ob-
served and original missing data. In practice, original missing entries are often replaced with zeros
or mean values during training, which introduces substantial bias into the learned score function and
undermines the model’s ability to faithfully capture uncertainty.

Latent Score-based Models: Recent research has explored integrating VAEs with score-based
models to enhance imputation quality Zhang et al.|(2024). For instance, LSSDM |Liang et al.|(2025)
adopts a two-stage approach, first imputing originally missing data with a VAE, followed by a dif-
fusion process. Nevertheless, the imputation remains constrained by typical VAE limitations, such
as blurry reconstructions and limited capacity to capture complex distributions. Inspired by Stable
Diffusion Rombach et al.| (2022), latent diffusion has shown success in generating high-resolution
outputs in vision tasks [Croitoru et al.| (2023); Ma et al.| (2025)); |Corneanu et al.| (2024). LDT [Feng
et al.| (2024)) features a symmetric statistics-aware autoencoder for learning time series latents and
a diffusion-based conditional generator for flexible future prediction. Applying this paradigm to
imputation, however, presents unique challenges: due to the nonlinear mapping between latent and
observation spaces, small perturbations in latent variables can lead to disproportionately large bias
in reconstructed data, compromising robustness. Conditional guidance mechanisms partially mit-
igate this issue by aligning the latent diffusion with observed data distributions [Ni et al.| (2023);
Van Gansbeke & De Brabandere| (2024), yet they cannot fully eliminate irrelevant noise introduced
during latent sampling, necessitating further refinement of the outputs. Moreover, balancing genera-
tive flexibility and reconstruction fidelity in latent diffusion remains an open problem. VA-VAE Yao
et al.| (2025) proposes a Vision Foundation model alignment loss, combining marginal cosine sim-
ilarity and distance matrix losses in the latent space. However, it only considers complete datasets
and neglects the impact of missing values within the latent representations.

3 BACKGROUND

3.1 PRELIMINARY

Let X € RV*F denote the complete dataset and M € RV > the missing mask, where M; ; = 0
indicates that the j-th sensor at time ¢ is missing, and M; ; = 1 otherwise. Similarly, X ;) or zo(;5)
denotes the (4, j)-th entry of X in this study. Missing values are categorized as original missing data
(ground-truth unavailable) and simulated missing data (used for training and evaluation), leading
to X§" and X7, with masks M©" and M”?, respectively. Thus, X® = X, ® (1 — MT9),
X9 = Xo® (1 —MO") and X§" = Xy © MO7. Additionally, simulated and original missing
masks do not overlap, (MP" = 0) n (M7¢ = 0) = (#. The conditional observed data is defined as
XOCo =Xy — XOT“ — X(? "T=Xo0® MO M?e, Visualization of how the matrix of the available
data is created is provided in Appendix [A.T}

3.2 REVIEW OF DDPM MODEL

Diffusion models can be formulated within the framework of a general stochastic differential equa-
tion (SDE). One of the SDE diffusion methods is DDPM |Ho et al.| (2020), a class of generative
score-based models that learn to reverse a gradual noising process. Generative models aim to learn
data distributions and generate realistic samples. DDPMs are a recent class that generate data by

reversing a diffusion process. We define a sequence of latent variables X, X1, ..., X7, where
Xo ~ q(Xy) is the data and DDPM as:
a(Xe | Xio1) = N (Xisn/T= Bi X1, BT) (M
with a variance schedule 31, ..., 8. This formulation leads to the conditional distribution:
q(X¢|Xo) = N(Xy; vV Xo, (1 — a)I), (2
where a; = H§:1(1 — B;). The model is trained by optimizing a re-weighted evidence lower
bound (ELBO)|Song et al.;
T
0% = argmin D11 = @By xo0) Baxi1x,) [V, log pa(Xe) — Vx, log q(Xe[Xo)[?] . (3)
i=1
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We further denote sg(X;,t) = Vx, logpg(X;) as the parameteric score function. Through repa-
rameterization and after ignoring the constant term of /1 — a4, the simplified objective function
can be written as:

£ = Exet|le = eoXe 1) @

where € ~ A(0,I) and X; = \/@; X + +/1 — ay €. After obtaining the optimal model sy« (X4, t),
new samples can be generated through the following reverse process:

1
X, 1 = m(xtwtse* (X4, 1)) + +/Bre, (5)

where € ~ A(0,I). DDPMs provide stable training and high-quality generation, outperforming
many Generative Adversarial Networks(GANSs) in sample quality.

4 BIAS ANALYSIS OF SCORE-BASED DIFFUSION WITH MISSING EFFECT

Proposition 4.1 (Bias under Independent Assumption in DDPM Setting). Consider a data matrix
Xy in the DDPM score-based diffusion setting, where each entry is independent. Assume that the

score-based function s;;(Xy,t) is differentiable at XOr. Then the bias of the score-based function

at time step t is:
_ V@tZo(ij)

Shias(ij) = Sij (X¢,t) — Sij (X?T’ t) = 1—ay

(6)
Proof is provided in Appendix [A.2]

We plot the relative approximation bias under the setting of total time steps 7' = 200, 5y = 0.02,
and S = 0.5. As shown in Fig. the bias of the score function is relatively large in the early
steps but gradually diminishes as ¢ increases.
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Figure 1: Bias plot under different assumptions.

Corollary 4.1 (Expected Cumulative bias). Under the assumptions of Proposition [{.1) the ex-
pected cumulative bias over T diffusion steps is proportional to the original missing rate p©

Sl Do (1-MP") |
NF .

T T 1
E [Z Sbias] =p" > D, |:—\/Olt—1 1_Zizso(ij)] . (7
=1

t=14,5€0r

Proof is provided in Appendix [A.3]

From Corollary [41] the bias is proportional to the original missing rate. Consequently, when the
missing rate is high, the effect of missingness cannot be neglected.
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Proposition 4.2 (Bias under Correlated Gaussian Data in DDPM Setting). Consider two correlated
points To;;) and Toxyy in the DDPM score-based diffusion setting, which follow a joint Gaussian
distribution with correlation coefficient p and standard deviation o. If xo,) is originally missing
and replaced by zero, then the bias on the observed point xo(;;) is:

Shias(ij) = Sz'j(xt(ij)7t) — Sij (xto(fj)at)

Ti(ij) — VOt i

arod; + (1 =)’
®)

where D; = (dtafj +(1- @t)) (dtail +(1-— dt)) — (dtpcrijakl)z. This shows that the bias on

observed points increases with the correlation coefficient p. Proof is provided in Appendix [A.4]

1
=D, [(@tail + (1= @) (o) — Vapig) — apoior (T — vV an) | —

Given 0;; = 1 and o3; = 1, we plot !sb%‘ = %. According to Eq. With varying p,
under the same setting as Proposition .1} As shown in Fig. [Ib] the bias decreases as the diffusion
step ¢ increases, but becomes more pronounced as the correlation coefficient p grows at the early
steps. In practice, time-series sensors are often highly correlated with both their temporal and spatial
neighbors. Therefore, even when training with simulated missing values for which ground-truth data

are available, the effects of the original missing values—intrinsic to the dataset—cannot be ignored.

5 METHODOLOGY
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Figure 2: Stage 1: NVAE |Vahdat & Kautz (2020) with normalizing flows is pretrained to obtain
non-Gaussian latent variables Z x from observed and interpolated data. Stage 2: Z i is refined via a
continuous latent diffusion model with cross-attention over the missing mask and position encoding
(encoder is frozen). Stage 3: reconstructed Z g is aligned with Z g through cross-attention, and the
NVAE decoder is fine-tuned to produce XOO". Stage 4: a final diffusion step in the observation space
yields the imputed data X7
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5.1 SCORE CORRECTION BY LATENT SCORE-BASED GENERATIVE MODELS

We have previously shown that correlations such as X§° 4 XZ¢ 4 X§" can induce substantial
estimation errors. To mitigate this bias, we propose a latent score-based generative model that ex-
plicitly captures these dependencies. A central challenge is correcting the bias in the score function,
as the ground-truth values of the originally missing data are inherently unobserved. To tackle this,
we exploit the chain rule of probability to decompose the learning objective into two tractable terms:

- 10gP(XoTa7 X(C))T|XOCO) ~ —log [Jp(Xga|Xocov Xoor)p(ngXocov Z())P(Z()\Xgo)dzo

a o 2 s 9 T o o 9
= —log p(X “|X§*, X§") —log f (X7 1XG°, Zo)p(Zol X§)dZo . )

L1 (Observation term) Lo Latont term)
o(Latent term

For the observation term £, we adopt the conditional score-based diffusion model (CSDI) Tashiro
et al.[(2021) to compute the conditional probability, conditioned on the reconstructed outputs X"
obtained from the latent term Lo. Details are provided in Appendix[A.5] For the latent term Lo, we
employ normalizing flows with K layers to transform the objective into the following form:

ok

det
¢ 02k

K
Ly =E, [f log p(X§"X6°, ZK)] +E, {log 9(Zo|X§", X§) = > log } +Ey [~ log p(Zk|X5)]
k=1

cross entropy

reconstruction term "
negative enconder entropy

_ (10)
where X©" denotes the linear interpolation of the original missing data, det is the determinant, f is
the planar flow, and Z g is the output of the normalizing flow; see Appendix [A.6]for details.

5.2 CONTINUOUS LATENT DIFFUSION

In the latent space, for the cross-entropy term, we adopt the variance-preserving SDE (VPSDE),

defined as dz = —1 B(t)zdt + \/B(t)dw, where B(t) = Byart + (Bend — Bsart)t, t € [0, 1]. Thus, the
forward process can be defined as|Song et al.;

Q((ZK)t | ZK) — N((ZK)t; e(_%Bsmnt— i (5end_6smn)t2) ZK7 I o Ie(—ﬁgtant_ % (ﬁﬂld_ﬁﬂun)t?) 7 te [07 1]

(11)
Following the previous work as LSGM |Vahdat et al.| (2021), the cross entropy term in the continuous
situation can be calculated in an unweighted explicit score matching (ESM) setting as:

Eq [log p(Zk|XE°)] = Eivugo,) [Eq(zo|Xg>7‘,X§°),e~N(0,I) [3]le — 60((ZK)t|XoC°7t)||2]] + § log (2meof)

(12)
Where D is the dimension of the latent space. Thus, the final training objective can be expressed as:
* Or 2 X Or Co < afk
£(6) =Bz, qzoixgrxge) | (X = Xo) OMO7|" — log g(Zo|XE", X§?) + ) log |det 7
k=1 -
13)

D
+ Eiu4[0,1] [Eq(zt)|)_(g’",Xoc°),e~./\/(0,I) [lle - 69((ZK)t|XoC°7t)H2]] + 5 log (2mect;)
2

+Eenon. | (€ — (X7 X5, XE7) © (1 - M™)

where X denotes the reconstructed output of the VAE decoder. Further details on latent diffusion
guidance and the continuous-time sampling procedure are provided in Appendix [A.7]

5.3 CROSS ATTENTION BETWEEN ENCODER LATENT VARIABLE AND RECONSTRUCTED
LATENT VARIABLE

Unlike latent diffusion models such as Stable Diffusion, which focus primarily on generation tasks
and use projection to reduce computational complexity of high-dimensional observation space,
our approach focuses on exploring the latent structure of the dataset and data reconstruction. In
order to balance the generation and reconstruction capability of latent diffusion, we introduce a
cross-attention layer [Vaswani et al.[ (2017) to the original latent variable Z; and the reconstructed
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latent variable Z x of continuous latent diffusion. As a result, the output of the VAE decoder
X = VAE..(Attention(Z, Z)) can be obtianed by:

. KT
X = VAE .. [softmax (L) . V]
vD

Where Q = Wo - Zie, K = Wi -Zg, V = Wy -Zg. and Wo, W, Wy € RP*P are
the learnable matrices. The overview of the algorithm is shown in Fig. and the corresponding
algorithms are listed in Appendix [A.8]

(14)

6 EXPERIMENTS

Datasets and evaluation setting: We evaluate our method on benchmark datasets from diverse
domains with varying temporal dynamics and missingness; detailed descriptions are provided in
Appendix [A.9] Following the out-of-sample protocol [Cini et al.| (2021)), datasets are split into dis-
joint training, validation and test sequences. For P2012, MIMIC-IV, and the Synthetic dataset, we
additionally mask 50% of observed points, as in CSDI [Tashiro et al.|(2021). For ETT, we adopt the
GRIN [Cini et al.| (2021) block-missing strategy with a more challenging setting: random masking
of 10% plus block masking of 6-24 steps with 1.5% probability. The datasets capture complemen-
tary challenges for time series imputation: P2012 |Silva et al.| (2012)) and MIMIC-IV v3.1 Johnson
et al.| (2024) are large-scale clinical datasets with high natural missingness (80.52% and 49.09%),
ETT|Zhou et al.| (2021)) is fully observed but subjected to simulated structured missingness, and the
Synthetic dataset [Fang et al.| (2024)) provides controlled multiscale correlations. For ETT and Syn-
thetic, simulated missing values are excluded from training, ensuring equal treatment of original and
natural missingness and enabling analysis of ground-truth versus model-implied score functions.

Experimental results: As shown in Tab. [T, HSGM achieves the best imputation performance com-
pared to all baselines. Traditional models fail to capture the nonlinear dependencies inherent in
time series, while matrix completion methods struggle to identify reliable low-rank structures under
severe missingness. Discriminative deep learning models such as RNNs and GNNs rely primarily
on temporal or spatial neighbors for representation learning, which reduces their robustness under
irregular sampling and high missing rates, as frequently encountered in healthcare data. In contrast,
generative models aim to capture the underlying data distribution rather than depending solely on
local neighbor information, making them more flexible for imputing realistic missing values and
effectively leveraging labeled data in complex scenarios. Furthermore, methods that ignore the
original missingness and directly apply observation diffusion layers, such as CSDI, exhibit limited
generative capacity and induce substantial bias in the score-based function. This ultimately de-
grades both imputation accuracy and uncertainty estimation, whereas HSGM can flexibly handle the
original missing data.

Table 1: Results of different methods across datasets

Model P12@50% MIMICIV@50% ETT@BIock missing Synthetic dataset@50%
MAE RMSE CRP. MAE RMSE CRPS MAE RM CRPS MAE RMSE CRP!
Traditional iterative
0.703£0.000  1.01620.000 — 0.138£0.000  0.38120.000 — 0.733£0.000  1.1360.000 — 0.382+0.000  0.435:0.000 —
KNN 4.398+0.000  7.8030.000 — L641£0.000  2.442:0.000 — 0.949£0.000  1.2600.000 — 0.951£0.000  1.076+0.000 —
MICE 0.698+0.000 1.046+0.000 — 0.1400.000  0.380+0.000 — 0.494£0.000 _ 0.807:0.000 — 0.4040.000 _ 0.520+0.000 —
Matrix Completion
MF 1.673£0.000  3.899£0.000 — 0.230£0.000  0.451:0.000 — 0.527£0.000  0.7250.000 — 0.173£0.000  0.207+0.000 —
M2DMTF (ICLR 2021)  0.700:0.001 _1.095:0.001 — 0.3630.001 09000001 — 0.544:0.001 _ 0.88120.001 — 0.448+0.001 04970001 —
Non-GNN models
Transformer (NeurIPS 2017)  0.297+0.002  0.675+0.027 — 0.058£0.001  0.182+0.002 — 0.532£0.003  0.9330.004 — 0.113£0.009  0.155£0.012 —
BRITS (NeurlPS 2017)  0.3680.002  0.693+0.023 — 0.065£0.001 ~ 0.215+0.002 — 0.556:0.003  0.984:0.004 — 03190.030  0.354+0.030 —
SAIT (ESWS 2023) 0.296+0.002  0.675+0.020 — 0.0530.001 _ 0.178+0.002 — 0.405:0.003  0.762+0.004 — 0.1070.009 0.147+0.010 —
GNN methods —
MPGRU (ICLR 2018) ~ 0.460+0.002 0.8320.023 — 0.071£0.002  0.234+0.002 — 0.391:0.003  0.831:0.004 — 0.3940.003  0.44120.004 —
GRIN (ICLR 2022) 0.371:0.003  0.7370.021 — 0.056£0.002  0.189+0.002 — 0.201:0.003  0.460+0.004 — 0.231£0.003  0.2900.004 —
HSPGNN (CIKM 2024)  0.321:0.003 _0.566+0.013 — 0.037+0.001 _ 0.122+0.003 — 0.206£0.010  0.313£0.013 — 0.131£0.005  0.180+0.004 —
Generative models
CSDI (NeurPS 2021)  0.30120.002  0.614x0.017  0.330+0.002  0.050:0.001 ~0.178:0.002 0.281+0.001 ~0.227+0.004 0.606£0.005 0.165£0.003 0.136£0.011 0.204£0.012  0.106+0.009
FGTI (NeurlPS 2024)  0.686:0.002 1.708+0.012  0.106£0.002 0.055£0.001 0.192£0.002 0.063£0.001 0.225:0.004 0.4180.005 0.191+0.003 0.1430.015 0.188£0.012  0.1640.008
BayOTIDE (ICML 2024)  0.54820.002 0.834x0.010 0.497+0.002 0.064x0.002 0.147+0.003 0.510:0.003 0.332:0.002 0.516£0.005 0.495:0.003 0.147+0.010 0.181£0.002 0.745+0.008
LSSDM (ICASSP2025)  0.262:0.002 0.598:0.015 0.315:0.002 0.042:0.001 0.126:0.002 0.251+0.002 0.221:0.004 0.585£0.005 0.164£0.002 0.112£0.018 0.157£0.012  0.08620.009
DiffPuter ICLR 2025)  0.496:0.004 0.781+0.013 0.067+0.003 0.056£0.004 0.160£0.003 0.086£0.003 0.605£0.005 1.0730.010 0.086£0.003 0.1330.014 0.1990.010 0.101x0.013
HSGM (Ours) 0.241:0.003  0.538£0.015  0.273£0.002 _ 0.032£0.002  0.109£0.003 0.205:0.002 _ 0.1800.002  0.289:0.004 _0.0300.002 0.1040.010 0.146x0.011 _0.0770.008

!'For GNN methods, Pearson correlation is applied.

Meanwhile, HSGM achieves comparable Continuous Ranked Probability Score (CRPS) Matheson
& Winkler| (1976) among the generative baselines, indicating that it not only improves imputation
accuracy but also captures realistic data distributions by leveraging both observation and latent dif-
fusion layers. Compared to CSDI, we visualize imputation results on four datasets in Fig[3] These
examples demonstrate that HSGM produces more accurate imputations with tighter uncertainty es-
timates while maintaining consistency with the observed data, highlighting the beneficial effect of
latent diffusion on the observation diffusion process. Although CRPS is slightly higher on a few
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Figure 3: Probabilistic time series imputation examples across different datasets. Observed values
are indicated by red crosses, and ground-truth imputation targets by blue circles. The median im-
puted values are shown as lines, with the 5% and 95% quantiles represented as shaded areas.

datasets, this mainly reflects HSGM’s focus on accurate point estimation, which favors narrower
predictive distributions. An ablation study is provided in Appendix

Bias of score-based function: In the Synthetic and ETT dataset settings, simulated missing values
are treated as original missing data and are excluded from the training stage. Accordingly, the
objective in Eq. [0]can be rewritten as

XTa XCo . ,
s S 108 [ OIS 20) 20 XE°) a2,

log ——————-"——
p(XJXGe XT

5 15)
2 (Zf - ‘ — log p(Z|X()|.
Interestingly, by moving the imputed distribution term to the left-hand side, one obtains the likeli-
hood ratio between the ground-truth and imputed distributions, which can be estimated via the latent
generative term. This observation suggests that future improvements in latent generative imputation
should focus on optimizing the latent-space objective to maximize this probabilistic ratio, potentially
yielding more principled and effective imputation strategies. The latent variable Z i fundamentally
governs the information gain in Eq. [I3]through its learned representation. Consequently, higher ra-
tios correspond to more confident imputations, whereas lower ratios indicate greater uncertainty in
the imputation process. In this study, log p(XZ'*|X§°) and p(XT*|X§°, XZ*) are sampled using
the learned score-based function as in Eq.[5} To investigate the effect of missing data on the score-
based function, we train CSDI on the Ground truth data, with missing values replaced by zeros, and
HSGM on the Synthetic training dataset while evaluating them on the same test dataset. Fig. #a]and
[b| present the MAE of bias and the accumulated bias of Eq. [5|along the reverse process. Initially, all
learned score-based functions yield nearly identical values; however, biases grow progressively over
the reverse steps, consistent with the theoretical analysis in Fig. [I] Correcting such bias remains
challenging: as reverse time increases, accumulated bias amplifies, potentially leading to divergence
from the true distribution. Notably, HSGM effectively mitigates this bias, achieving superior perfor-
mance compared to CSDI, as also reflected in Tab. E} To further illustrate this effect, we reshape and
visualize the heat maps of the learned score-based functions at different reverse time steps in Fig.
[Z_f] (c-k). These visualizations demonstrate that HSGM consistently corrects bias in the score-based
function. Similar visualizations for the ETT dataset are provided in Appendix [A.T3]

det

K
<E, |~ 1ogp(X§"1X§", Zic) + log a(Zo|X§", X§°) — ) log
1

Generation vs Reconstruction: High-fidelity and diverse imputations for missing values often rely
on unconditional score-based functions with latent diffusion, while reconstruction of observed (non-
missing) values can benefit from conditional score-based functions and a VAE architecture. For
datasets containing both missing and observed values, balancing generative and reconstructive ca-
pabilities is crucial. In this work, we address this challenge by combining the original and denoised
latent variables through cross-attention mechanisms, together with continuous latent diffusion and
ODE-based sampling in the latent space. To evaluate the effectiveness of this approach, we compare
it against the following baselines: (1) Conditional latent probability flow (PF) ODE, (2) Uncon-
ditional latent PF ODE. (3) VAE architecture with norm flow. (4) Conditional latent PF ODE with
cross attention (Ours). The results are summarized in Tab.[2} As shown in Tab. 2] our model achieves



Under review as a conference paper at ICLR 2026

Ground Truth I

MAE of score function bias in the reverse process stage

—=— CSDI /
HSGM

ath I I 4x Sensors evaluate ime length

(c) Ground truth atul (d) HSGM at 1 4 (e) CSDI at 1

[ OSSN SUUUUUUUY CUUUIUORO PRS- - - . .
0 ° 0 40 50 Ground Truth I HSGM I CSDI I

20 3
Diffusion step

(a) MAE of score function bias on syn-
thetic dataset.

I 4x Sensors evaluate time length I 4xSensors e e length I

Accumulation bias in the reverse sampling stage

Diffusion reverse step

2.0f —— cspi P e (f) Ground truth at 25 (g) HSGM at 25 (h) CSDI at 25
HSGM el o
n.“"" Ground Truth I HSGM I Ccsol I
r'"‘ " " N as ” o
10 w u M
L |
0 o “
10 20 30 40 50 I I

(b) Accumulation bias on synthetic - I
dataset. (1) Ground truth at49  (j) HSGM at 49 (k) CSDI at 49

Figure 4: Synthetic dataset evaluation: (a) MAE of bias; (b) accumulated bias over the reverse
process; (c—k) heat maps of learned score-based functions at selected reverse time steps for ground
truth, HSGM, and CSDI.

Table 2: Generation and reconstruction performance of generative models on benchmark datasets

Generation Reconstruction

Datasets Models MAE RMSE MAE RMSE
Conditional latent PF ODE 1.703£0.003 1.979+£0.015 2.040+0.003 2.316+0.015
P2012@50% Unconditional latent PF ODE 1.829+0.004 2.103£0.016 2.207+0.004 2.499+0.016
VAE-norm 0.374+£0.003  0.610+£0.015 0.326+0.003  0.536+0.015
PF ODE with cross attention (Ours) 0.329+0.003 0.569+0.015  0.227+0.003  0.449+0.015
Conditional latent PF ODE 0.167£0.003  0.325+0.004 0.224+0.003 0.413%0.004
MIMIC IV @50% Unconditional latent PF ODE 0.194+£0.003  0.362+0.004  0.257+0.003  0.461+0.004
VAE-norm 0.045+£0.002  0.129+0.003  0.042+0.002 0.121+0.003
PF ODE with cross attention (Ours) 0.041+£0.002 0.122+0.003  0.032+0.002 0.081+0.003
Conditional latent PF ODE 0.941£0.003  1.2274£0.005 0.963+0.004  1.258+0.005
ETT@Block missing Unconditional latent PF ODE 0.931£0.003  1.218+0.005 0.973+0.004  1.269+0.005
VAE-norm 0.190+£0.002  0.294+0.004 0.123+0.003  0.181+0.004
PF ODE with cross attention (Ours) 0.180+0.002 0.289+0.004 0.103+0.003  0.148+0.004
Conditional latent PF ODE 0.491£0.012  0.560+0.017 0.463+0.012  0.532+0.018
Synthetic@350% Unconditional latent PF ODE 0.532+0.011  0.556+0.016  0.460+0.013  0.529+0.017
VAE-norm 0.190+0.010  0.234+0.012 0.181+0.010 0.223+0.012

PF ODE with cross attention (Ours) 0.173+0.010  0.215+0.014  0.153+£0.010  0.193+0.015

the best performance in both generation and reconstruction. A key advantage of the PF ODE with
cross-attention is its ability to balance these two objectives. By leveraging cross-attention over latent
space, the model selectively emphasizes informative patterns, enabling realistic sequence generation
while maintaining fidelity to observed data. In contrast, VAE-based models typically prioritize re-
construction at the expense of generative diversity, whereas latent PF ODE models may generate
plausible sequences but struggle to reconstruct observed values accurately.

7 CONCLUSION

We theoretically analyze bias in the score function induced by missing data within the DDPM frame-
work, showing that ignoring missing patterns—especially under high missing rates or strong inter-
variable correlations—can significantly impair the learned score function. To address this, we pro-
pose HSGM, which bridges observation and latent diffusion via the chain rule of probability and
unsupervised VAE projection. Flexible latent distributions are modeled through normalizing flows,
while cross-attention between original and denoised latent variables balances generative and recon-
structive capabilities. Our model effectively mitigates score function bias, yielding more accurate
imputations with reduced uncertainty. Experiments verify that HSGM consistently surpasses prior
methods, demonstrating its effectiveness.
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A APPENDIX

Use of large language models statement We use the LLM to polish the writing. All other parts,
including experimental results, analyses were written by the authors and carefully verified for accu-
racy before and after any LLM-assisted editing.

A.1  VISUALIZATION OF AVAILABLE DATA MATRIX
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Figure 5: Illustration of how the available data matrix is created.

A.2 PROOF OF PROPOSITION[4.]]

Proof. According to the assumption, Yz
obtain:

ij) » Yook € Xo, Toij) AL To(rr)- As aresult, we will

N F
p(Xo) = [ [[ [ p(zoais) (16)

i=0 ;=0

where ;) is the signal of i-th sensor in the j-th time step of Xo. With this assumption, the true
score-based function can be obtained by a variational Markov chain as:

Sij (xt(ij)at) = th(m IOgJQ(xt(ij)‘xo(ij))p(xo(ij))dxo(ij)
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The learning label is the same as a non-missing DDPM score-based function, but the input of the
score-based function is changed. Then, we apply Taylor expansion to s;;(4(;;), t) at the point z9

as: t(w)
Oor Sij/(xg' ,t) or Sij”(xg» 7t) o
513 ()2 ©) = 813 (5, 0) + =17 @) = wilip) + = () — o)’
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81] (l‘t i7)? ) Or \n
Tt n!( - (@e(ij) — m?(ij)) + R (2435, t)
(18)

" 855(2e(ij) 1) = Ve Va,, log fq(l“tuj)|$o<ij>)P(xo<z'j>)dx0(z‘j>
Ve § 0@ T )p(@ogis) ) dogy)
SQ(xt(zj)|$0(ij))P(Io(ij))dl’o(ij)
§(20(i)) Ve, N (T1(i5) vV @Togg)s (1 — @r))dzo )
F SN (@) Vo), (1 — a@w))p(@ogis) ) dzogis)
§p(wo(ig)) (= “ELTYEENN (2435) : v/Eeogiy), (1= @))daogs)

Tt(ig)

=V

= v “t(ig — —
e SN(It(ij) DTy, (1 — a))p(Togis))dTo(izy
_c Ti(i) — VOtTogij)y _ 1
= :Ct(ij)[_ 1_dt ]__1_0—%
1
S;/J (xt(ij)’ t) = VJ«'t(ij) [_ 1 dt] =0

SZ(xtu‘j)a“t.). =0
Or
i (B ) = s (il 1) + W(ﬂctw) i)
Thus, we can obtain: (19)
= Spias(ij) = Sij (Te(ij) t) — sij(xzfj)’t) = Sij/(x%)’t)@xo(ij) _ _W (20)
O

A.3 PROOF OF COROLLARY [4.1]
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Proof. C0n51der1ng the original missing rate as p© J , We analyze the cumula-
tive error in DDPM sampling process, focusing on the bias 1ntroduced by ﬁmte difference approxi-
mations in score estimation. From Eq. [5] each step’s error propagates through subsequent steps with

amplification factor \/f_tit, which can be transformed as 1\70% . The expectation of the accumulated

bias can be obtained as:
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Where Or means the original missing data.

A.4 PROOF OF PROPOSITION[4.2]

Proof. The real situation will be more complex since most of the time series data possess temporal
correlation or even spatio-temporal relationships. In this case, the indpendent assumption of Propo-
sition will not be valid due to z(;;j) 4 (k). Therefore, the original missing bias can provably
cause the bias of a non-original missing entity. To analyze this effect, we analyze two correlated

points Xy = [xo(ij )] with a non-independent Gaussian distribution in the DDPM setting. The

To(kl)
probability density function is:
(o) = 5= (~5(%0 — )% (Ko~ ) )
= ———exp| —= — — ,
p 0 271_\/@ P 2 0 1 0 0 12
. 2 .

where mean vector p = [,u ”] and Xy = [ Tij p U”f“] with correlation coefficient p €

Mkl PO ;0K Ol

[-1,1] . Then, in the forward process, p(X:|Xo) ~ N(Xy; /@ Xo, (1 — @)I) and p(Xo) =
N (Xo; p, 30), let By = @30 + (1 — a;)1, we can obtain p(X;) ~ N (Xy; /@y, 3y). Thus, the
score-based function can be calculated as:
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B N e L O [ v

Dy | —upoijow o + (1 —ay Ty(ki) okl
_ [ao?, + (1 — ) —Qit P00kl Ty(ig) — /Ot fbij
D, | —Qpoijor dthj + (1 =) | | ety — VOrhr

[ (1 + O_lt(o']%l - 1))$t(zg) QPO ORIT (k1) — (1 + O_‘t(akl ))V t Mij + atpdzgdkz\/ t Mkl

Dy | —apoijortyig) + (1 + ar(o7; — 1)@y + Qupoijory/as pij — (14 (o — 1))/ay p
(23)

Where D; = Determinant(X;) = (dtafj +(1- dt)) (@tazl +(1- dt)) — (a4poijor)?. From Eq.

[23] if the two points do not correlate with each other, i.e., p = 0, and the score-based function can

be transformed as:

S(Xt, t) =

1 [(1 + Cjét(ff/;z — D)z — (1 + O}t(géz —)va Hz‘j]
(@ + (1 — @) (od, + (1 — &) (1 + au(03) = 1)zegury — (1 + aelog; — 1)v/a i
It(ij)_\/aﬂij
aiof;+(1-ar)
Ti(rt) =V OBkl
a0z, +(1—ay)
24
and there is no effect on one point, even the other point suffers the original missing and is replaced
with 0, which has the same result and conclusion as Proposition [Zf;f} We assume that z kl) is the

original missing point while x¢(;;) is the observed point. Thus, p°r =0, ukl = 0 and cr =0,

then, s, (z97, ) = % Thus, we can obtain:
Spias(ig) = Sij (@1,) — 535 (x07, 1)

1

T(iq) — v/ Apfhi;
=D [(aropy + (1 — @) (= tig) — VOupij) — Gepoiio (Teery — Vi) | — M

arod; + (1 —ay)
(25)

From Eq. @ Ty (i) still suffer the missing effect of x;(;;) when the correlation coefficient p is not
equal to 0, which means that even the observed data can not be reconstructed without bias if the
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original missing data is correlated to the observed data. In order to know the bias effect of score-
based function from the original missing data to the non-missing data, assuming all variances are
unity, afj = o}, = 1, we obtain:

oy +(1L—a) =1, aop+(L—ay) =1, awpoijou = ap, (26)

which reduces the determinant to

Dy =1—(ap)*. 27)

Combining these expressions and simplifying the numerator yields the final form:

(@p)* (@) — Vauhij) — Qup(@ore) — V/@efiri)

Sbias(ij) = 1— (@02
o, e 28)
Sbias(ij) _ (Qep)° —up  —dup
=N = =
€ 1— (ayp)? 14 aup
O
The plot of Eq. [28]is shown in Fig.
A.5 OBSERVATION SCORE-BASED OBJECTIVE FUNCTION DEDUCTION
From CSDI|[Tashiro et al.|(2021)), the objective function £; can be transformed as:
Ta Co ~Or q(X,{%|XOCO7 XOOT)
—log p(X5 X5 7, Xg") < Eq(XlT:”T'IXOC%Xé”") log (29)

Po(Xa%|Xg°» X(?T)

Apply reparameterization as CSDI [Tashiro et al.| (2021), we can obtain the loss function from the
observation space as:

. 2
L1(0) = Eenon.e | (€ — €o(X7, 11X5°, X5") © (1 - M™) (30)
A.6 LATENT SCORE-BASED OBJECTIVE FUNCTION DEDUCTION
As for the second term Lo, we applied Jensen’s inequality,
£a = ~log [ p(XE"IXE", Z0)p(20|X5°) 20
1o [2(Z0lXET XG)p(XE X, Zo)p(Zo|XE)
= —log v Or Co dZO
‘J(ZO|X0 X5 ) (31)

o q(Zo|X§", X5°)
p(XG XS, Zo)p(Zo|XS?)
— B,z xge x50 |08 p(XGT1XE?, Zo) | + KL (a(ZolX§", XE°) Ip(Zo/X5))

< K Or o
< By(zx97 x5 10

where KL denotes the Kullback-Leibler divergence, and X" represents the linear interpolation
values of the original missing data during the data preprocessing stage, aiming to prevent the neural
network from encountering sparse input data issues. In our study, the prior distribution p(Z 1X§°)
and the posterior distribution q(Zo|X$", X§°) are not as simple as the Normal distribution under
complex temporal correlation and serious missing condition.
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A.6.1 NORMALIZING FLOW OBJECTIVE FUNCTION DEDUCTION

To approximate the posterior distribution q(Zo|X§", X§°), normalizing flow is applied. Given a
base latent variable Zg ~ q(Zo|X§",X§°), a normalizing flow applies a sequence of invertible,
differentiable transformations Rezende & Mohamed, (2015):

Ofk

det 7,

K
log q(Z x| X§", X§°) = log q(Zo| X", XE°) — > log
k=1

; (32)

where det is determinant and Zy = fx o fx_1 0--- 0o f1(Zp) as a shorthand for the composition
frx(frx-1(... f1(z))) and the normalizing flow can approximate any distribution in theory. In this
study, we adopt planar flow f and initialization Z as:

f(Z) = Z + wotanh(w] Z + b)  Zo ~ N(0,1), (33)

where wy € R”, w; € RPand b € R! are the learnable parameters and D is the dimension of the
latent space. As a result, Lo can be transformed to:

K
Ly = KBz, q(zox0r x5°) | — log p(X§"|XE°, Zk) + log q(Zo|X§", XE°) — Z log
=1

afk? o
det 57~ ’—logp(ZK\Xg)

(34)

1

A.7 GUIDANCE AND SAMPLING STRATEGY IN LATENT DIFFUSION

A.7.1 POSITION ENCODING

To effectively handle sequential data with missing values, we incorporate positional encoding and
masked self-attention mechanisms in our model. Since the attention architecture lacks inherent
positional awareness, we apply sinusoidal positional encoding to the input sequence X“°. The
positional encoding vector PE is defined as |Vaswani et al.[(2017):

. . pos . pos
PE(pos, 2t) = sin <> , PE(pos,2i+1) = cos () (3%)
( ) 100007 ( ) 100007
where pos € {0,1,..., N, — 1} is the token index and F), is the embedding dimension while i €

{0,1,...,F,/2 — 1} is the channel index. The positional encodings PE are added to the input
Xpos = X% + PE. We then apply a multi-head self-attention mechanism with H = 8 heads:

MultiHead(Q, K, V) = Concat(hy, ..., hg)W©, (36)
h; = Attention(QW2, KWK, vw)), (37)

where Q = K = V = X,, and WiQ,WiK,WZ.V e REfpxde 1O e RVpdexFp gre learnable
projection matrices and dj = % Each scaled dot-product attention head is computed as:

QK"
Vi

The resulting output y € RN»*» of MultiHead(Q, K, V') contains context-aware representations
for each token.

Attention(Q, K, V') = softmax ( + MO7') V. (38)

A.7.2 GUIDANCE OF LATENT DIFFUSION

We incorporate missing mask M°" and position encoding representations into intermediate layers of
latent diffusion via a cross-attention mechanism, which has proven effective in aligning multi-modal
signals such as language, image, and time-series features. Specifically, to process the input time se-
ries X©°, we first apply a positional encoder followed by a multihead attention encoder [A.7.1| that
outputs a refined representation y € RV»*¥»_ We introduce a domain-specific encoder 75 Rombach
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et al.[(2022) that projects y into an intermediate representation 74(y) € RP*!. This encoded repre-
sentation serves as the conditioning input to the model and is integrated into intermediate layers via
a cross-attention mechanism. Specifically, for a given layer 7, the cross attention is computed as:

KT
Attention(Q, K, V') = softmax (Q> V,

VD
Q=wy ¢i(h), (39)
K:WI(E-Tgy,

¥)
V=W ().

Here, ¢;(h) € RPi*1 denotes the flattened latent feature representation of the i-th layer, and Wc(gl ) e

RP*D: @ W‘(; ) & RP*D gre learnable projection matrices. By integrating 7(y) into the model
via attention, we enable fine-grained and dynamic conditioning on external guidance throughout the
denoising process.

A.7.3 CONTINUOUS ODE SAMPLING STRATEGY
To mitigate the stochasticity inherent in the latent sampling process, we adopt deterministic proba-

bility flow ODE sampling. The corresponding deterministic trajectory is governed by the following
ordinary differential equation (ODE) [Song et al.;

dx = [£(,1) — 3 9(1)*Viclog pi ()}t (40)

where f(z,t) = $5(t) and g(t) = 1/B(t) and we will obtain the sampling equation as:

[0, B eol(Zr)dXEe 1)
d(Zk): = 5 (Zg )t + 2 0w @1

Where e(— 81t — o(—Buant—3 (Bena—Buan)t?)

A.8 ALGORITHM DETAIL

The training algorithm is shown in Algorithm[I] while the sampling Algorithm is in Algorithm 2]

A.9 DATASETS DETAIL

1. PhysioNet 2012 Mortality Prediction Challenge (P2012) Silva et al.|(2012): The Phys-
ioNet 2012 Mortality Prediction Challenge (P2012) dataset comprises multivariate clinical
time series collected from 4,000 ICU patients during the first 48 hours of admission. Each
patient record includes 35 physiological and laboratory measurements sampled at irregular
intervals. The dataset is highly sparse, with 80.52% of original missing values. The data is
split and preprocessed as [Tashiro et al.[(2021)).

2. MIMIC-IV v3.1(Johnson et al.| (2024): MIMIC-IV v3.1, released in October 2024, in-
cludes electronic health records from 364,627 patients admitted to the Beth Israel Dea-
coness Medical Center between 2008 and 2022. Following the preprocessing procedure
in |[Harutyunyan et al.| (2019), we retain eight vital signs—Diastolic blood pressure (BP),
Fraction of inspired oxygen, Glucose, Heart rate, Mean BP, Oxygen saturation, Respiratory
rate, and Systolic BP. Patients with fewer than 48 time steps are excluded to maintain tensor
alignment. The final dataset comprises 36,401 patients, each with 48 time steps and 8§ vari-
ables, with an overall original missing rate of 49.09%. The data is split and preprocessed
as|Hayat et al.| (2022).

3. Electricity Transformer Temperature (ETT)|Zhou et al. (2021): The ETT dataset con-
tains 15-minute interval readings from electricity transformers between July 1, 2016 and
June 26, 2018, totaling 69,680 samples without original missing data. Each sample in-
cludes seven features: one oil temperature and six power load variables. The data is split
and preprocessed as|Du et al.| (2023).
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Algorithm 1 Training of HSGM

1: Input: Time series values X&o )_(6) 7 M7Te and MO

O J o U1 b W

14:
15:
16:
17:
18:

19:

20:
21:

: Output: Latent varible Z g, Reconstructed original missing data XOO" and model parameters

A = {¢, 9,0}, where ¢ and 1 are the encoder, decoder and planar flow learnable parameters of
VAE and normalizing flow while 6 is the latent and observation diffusion learnable parameters.
Pre-train the NVAE architecture, optimize the Objective function Eq. inputting X§e, X§r
Frozen the encoder parameters ¢ of NVAE, obtain the latent distribution Z g
Initialize variables 6 for latent diffusion
for each epoch in latent training do

Add noise to Z g by Eq.

Optimize the latent objective function in Eq.[I2]by taking gradient step on
Viole — €o((Zx):| XG5, )]

: end for
11:
12:
13:

Obtain the reconstructed latent variable Z x from Algorithm

Calculate the cross attention Eq. by inputting Z g and Zx
Post-train the decoder parameters 1) of NVAE with the output of cross attention by

H(X ~xo)omor|’

Obtain the reconstructed original missing data XOOT by the trained decoder of VAE.
Initialize the variables 6 for observation diffusion
for each epoch in observation diffusion do

Add noise to X7 @

Optimize the observation objective function in Eq.[30|by taking gradient step on

A 2
Vo (e — eo(XT2, X5, X¢M) © (1 - M)

end for
return Latent varible Z ¢, Reconstructed original missing data X§" and \

Algorithm 2 Sampling (Imputation) of HSGM

1:

O J o 0w

Input: Time series values Xg o MTe MO | Latent varible Z y, Reconstructed original miss-
ing data X§" and A\ = {¢,v, 0}

: Output: The predicted missing values Xé“ and reconstructed latent Variable Z

Generate the Gassian Noise Z7 ~ N (0, 1)
for t = T to 1 in the latent space do
Sample (Z g );_1 using Eq. With condition on X§°
end for )
Obtain the reconstructed latent Variable Z g

: Generate the Gassian Noise X% ~ N(0,1)
: for ¢t = T to 1 in the observation space do

10:
11:
12:

13:

Sample X%’}‘l using Eq. with condition on X§° and X(?T
end for A
Obtain the reconstructed simulated missing values X{®

return Z x and X§*
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4. Synthetic dataset Fang et al. (2024): A synthetic dataset with highly spatio-temporal
correlations of 4 channels, and each channel is a mixture of multiscale trend and seasonality
factors. The dataset can be generated by 4 correlation functions and a weight matrix, which
are defined as:

1 1 2 -2 10t
UV (o4 1 o2 1 | sin(207t)
S == WhereU=1| 43 5 1 1] VO=|cosont)
-1 1 1 05 sin(607t)

(42)
2000 data points over 500 are irregularly sampled timestamps from [0, 1] as the same as
Fang et al.| (2024). The dataset is divided into training (70%), validation (10%), and test
(20%) sets.

A.10 EXPERIMENTAL SETTINGS

We implement a VAE and a normalizing flow with NVAE |Vahdat & Kautz (2020), and use CSDI
for observation diffusion Tashiro et al.|(2021). The normalizing flow uses K = 4 transformations.
For latent diffusion, the batch size is 8 and we use a linear noise schedule with Sy, = 0.1 and
Bena = 20, adopting the NCSN architecture Song et al.| to learn the score based function. To reduce

randomness, we draw 100 samples of Z and report their mean as the final output. Latent ODE
sampling in Eq.41|is performed with a continuous ODE solver [Chen et al.|(2018). All experiments
are run in PyTorch 1.13.1 on a Linux server with an Intel Core i7 1800H at 2.30 GHz, an NVIDIA
GeForce RTX 3080, and 32 GB memory.

A.11 METRICS

To evaluate the imputation performance of different methods, we adopt mean absolute error (MAE)
and root mean square error (RMSE) as:

e Mean Absolute Error(MAE):
H (XTa, _ XT(I,) 0) (1 _ MTa)
1
1 =M,

MAE(XT* XT) =

* Root Mean Squared Error(RMSE):
H(XTa _ XTa) ® (1 _ MTa)
11— M|

RMSE(XTe XTa) =

where ||, and [|e| denotes L1 norm and L2 norm. RMSE and M AE are quantitatively used to
describe the difference between the predictive value and the ground truth value. The smaller the
value is, the more accurate the model is.

To evaluate the uncertainty of the generative model, we adopt the continuous ranked probability
score (CRPS) Matheson & Winkler|(1976)) to evaluate the compatibility of the estimated probability
distribution with the observed value. For a missing value z whose estimated probability distribution
is D, CRPS measures the compatibility of D and x, which can be defined as the integral of the
quantile loss A:

CRPS(D 1 z) = r 2A (D7), 2)da, (43)
0
AQ(D_I(Oz), LL’) = (a - HI<D—1(a))($ - D_l(a)), (44)

where o € [0,1] is the quantile level, D~1(«) is the a-quantile of distribution D, and I is the
indicator function. Since our distribution of missing values is approximated by generating 100
samples, we compute quantile losses for discretized quantile levels with 0.05 ticks following Tashiro
et al.[(2021) as:
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19

1
2 2Mix0.05(D (i x 0.05), 2). (45)
i=1

CRPS(D ', z) ~ —
(D7 2) >
We compute CRPS for each estimated missing value and use the average as the evaluation metric,
which is formalized as:

1
CRPS(D, X" =

o Z CRPS(D~ !, ). (46)

reXta

The smaller the CRPS value, the less uncertainty there is in the imputation result.

A.12 BASELINES

We compare the performance of HSGM against a diverse set of baseline methods, including tradi-
tional statistical approaches, matrix factorization techniques, and recent deep learning-based models:

* Mean: A naive baseline that fills missing values using the mean of each node over the
entire time horizon.

* KNN: Estimates missing values by averaging the values of the 3 nearest neighboring nodes.

* MICE |Van Buuren| (2000): Conducts multiple imputations through chained equations; we
set the maximum iterations to 100.

* MF (Cichocki & Phan, |[2009): Performs matrix completion via singular value decomposi-
tion (SVD) to recover missing entries from low-rank structure.

e M2DMTF (Fan, 2021): Performs imputation using multi-mode deep matrix and tensor
factorization.

* Transformer (Vaswani et al., 2017): Applies a multi-head attention mechanism for cap-
turing long-range dependencies in time series imputation.

e BRITS (Cao et al.,[2018): Utilizes a bidirectional RNN structure to iteratively infer missing
values.

e SAITS (Du et all 2023): Employs a self-attention-based architecture tailored for time
series imputation under a self-supervised setting.

* MPGRU (Li et al.|[2018): Integrates graph neural networks with GRU for spatio-temporal
imputation.

* GRIN (Cini et al.;[2021): Combines GNN and bidirectional GRU in a two-stage framework
for structured time series imputation.

* HSPGNN (Liang et al.,[2024): Use the physics-incorporated neural network with attention
and GNN for imputation.

* CSDI (Tashiro et al., [2021): Leverages conditional score-based diffusion models for time
series imputation, explicitly trained to model correlations in observed data, achieving
strong performance on healthcare and environmental datasets.

* FGTI Yang et al.| (2024) integrates frequency-domain information into a diffusion model
for multivariate time-series imputation, emphasizing residual terms via high-frequency fil-
tering and complementing trend and seasonal components through dominant-frequency fil-
tering.

* BayOTIDE Fang et al. (2024) is a Bayesian model for online multivariate time series im-
putation, decomposing the series into a temporal function basis and channel-wise weights
modeled with Gaussian processes (GPs). An efficient online inference algorithm leverages
the SDE representation of GPs and moment-matching.

* LSSDM (Liang et al.,|2025): Performs unsupervised time series imputation by learning a
low-dimensional latent representation of observed data and refining coarse reconstructions
via conditional diffusion, enabling high-fidelity imputation with uncertainty estimation.
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* DiffPuter [Zhang et al| (2025) combines diffusion models with the Expectation-
Maximization algorithm to address missing data imputation. It iteratively learns the joint
distribution of observed and missing values and performs conditional sampling.

A.13

BIAS VISUALIZATION OF SCORE-BASED FUNCTIONS ON THE ETT DATASET

We conduct experiments on the ETT dataset to evaluate the biased behavior of score-based functions.

* Bias and accumulated bias. We report the MAE of both bias and accumulated bias, as
illustrated in Fig. [6]

* Heat map visualization. We visualize the score-based functions as heat maps across dif-
ferent reverse time steps. Fig. [7] presents the ground truth, HSGM, and CSDI results at
reverse steps 1, 40, and 49.

A.14 ABLATION STUDY

To evaluate the contribution of each component in HSGM, we conduct an ablation study, with re-
sults shown in Tab. [3] The results indicate that a VAE without normalizing flows is limited in
capturing complex latent distributions, whereas normalizing flows provide a more flexible latent
representation. Furthermore, unifying the latent diffusion and observation diffusion leads to im-
proved imputation performance, especially when the dataset contains a high proportion of original
missing values. On the ETT dataset, latent diffusion alone yields superior imputation performance
compared to the observation diffusion layer. However, incorporating the output of latent diffusion
consistently enhances the performance of the observation diffusion layer for all datasets.

Table 3: Performance comparison across datasets and components

Model P2012@50% MIMIC IV @50% ETT@Block Missing Synthetic@50%
MAE RMSE MAE RMSE MAE RMSE MAE RMSE
VAE-Non norm 0.382+0.003 0.624+0.016 0.046£0.002 0.132+0.003 0.207+0.002 0.311+0.003 0.198+0.010 0.248+0.010
VAE-norm 0.374£0.003  0.610+0.015  0.045+0.002  0.129+£0.003  0.190+0.002  0.294+0.004 0.190+0.010  0.234+0.012
Latent Diffusion 0.329+0.003  0.569+0.015 0.041+0.002 0.122+0.003  0.180+0.002 0.289+0.004 0.173+0.010 0.215+0.014
Observation Diffusion(CSDI)  0.301+0.002  0.614+0.017  0.050+0.001  0.178+0.002 0.227+0.004  0.606+0.005 0.136+0.011  0.204+0.012
Latent+Observation Diffusion  0.241+0.003  0.538+0.015  0.032+0.002 0.109+0.003 0.220+0.004 0.581+0.005 0.104+0.010  0.146+0.011

MAE of score function bias in reverse stage

Accumulation bias in the reverse sampling stage
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N
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(a) MAE of score function bias on the ETT dataset.

Diffusion reverse step

(b) Accumulation bias on the ETT dataset.

Figure 6: MAE comparison of bias and accumulated bias on the ETT dataset.
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Figure 7: Heat map visualization of score-based functions at different reverse time steps on the ETT

dataset.
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